
MD-jeep: an Implementation of

a Branch & Prune Algorithm

for Distance Geometry Problems

A. Mucherino1, L. Liberti2, and C. Lavor3

1 INRIA Lille Nord Europe, Villeneuve d’Ascq, France,
antonio.mucherino@inria.fr

2 LIX, École Polytechnique, Palaiseau, France,
liberti@lix.polytechnique.fr

3 Dept. of Applied Mathematics, State University of Campinas, Campinas-SP, Brazil,
clavor@ime.unicamp.br

Abstract. We present MD-jeep, an implementation of a Branch & Prune
(BP) algorithm, which we employ for the solution of distance geometry
problems related to molecular conformations. We consider the problem
of finding the conformation of a molecule from the distances between
some pairs of its atoms, which can be estimated by experimental tech-
niques. We reformulate this problem as a combinatorial optimization
problem, and describe a branch and prune solution strategy. We discuss
its software implementation, and its complexity in terms of floating-point
operations and memory requirements. MD-jeep has been developed in
the C programming language. The sources of the presented software are
available on the Internet under the GNU General Public License (v.2).

1 Introduction

The Distance Geometry Problem (DGP) [4, 5, 8, 13] is the problem of finding the
coordinates of a set of points from some known distances between pairs of such
points. There are different real-life applications where a DGP needs to be solved,
and the most interesting and challenging application arises in biology. Distances
between pairs of atoms of a molecule can be estimated through experiments
of Nuclear Magnetic Resonance (NMR), and such distances can be used for
formulating a DGP. DGPs arising in biology are usually referred to as Molecular
DGPs (MDGPs — whence the name of our software).

Proteins are important molecules, because they perform many important
functions in living beings. There is a web database, the Protein Data Bank
(PDB) [1] (web address: http://www.rcsb.org/), which is completely devoted
to the three-dimensional conformations of proteins. In fact, the conformation
of a protein can give insights on its dynamics in the cells, and therefore on its
function. Currently, the conformation and the function of many proteins are still
not known: each gene of recently sequenced genomes is potentially able to code
for a protein (or for more than one), but the corresponding conformation and

2 Mucherino, Liberti, Lavor

function are still unknown. One way of solving this problem is to isolate each of
such proteins and to perform experiments of NMR in order to obtain a subset of
distances between pairs of their atoms. The successive step is to solve an MDGP.

The MDGP is, in its basic form, a constraint satisfaction problem, where
molecular conformations, that satisfy all the constraints based on the distances,
must be identified. This problem is often reformulated as a global continuous
optimization problem, where a penalty function, measuring the satisfaction of
the set of constraints, needs to be minimized. Different penalty functions have
been proposed over the years for the MDGP, and all of them contain several local
minima, where many traditional nonlinear descent methods can easily get stuck
at. The most common penalty function is the Largest Distance Error (LDE):

LDE(X) =
1

m

∑

i,j

| ||xi − xj || − dij |

dij

, (1)

where X = {x1, x2, . . . , xn} is a three-dimensional conformation of n atoms, and
m is the number of known distances dij .

Many techniques have been proposed for the MDGP, and the reader is re-
ferred to [8, 13] for a survey. However, there are only a few software for the MDGP
that are freely available for the scientific community. As an example, DGSOL

(http://www.mcs.anl.gov/~more/dgsol/) is based on the idea of approximating
the penalty function (in the continuous reformulation of the problem) with a se-
quence of smoother functions converging to the original objective function [14].
Other available software products are based on general meta-heuristic searches
for global optimization. Xplor-NIH (http://nmr.cit.nih.gov/xplor-nih/) has been
particularly designed for solving MDGPs arising from NMR experiments [19],
and it includes different functionalities. In particular, for the solution of MDGPs,
it makes use of heuristic methods (such as Simulated Annealing) and local
search methods (such as Conjugate Gradient Minimization). Finally, TINKER

(http://dasher.wustl.edu/tinker/) is a package for molecular modeling and de-
sign. It includes many force fields for attempting the prediction of protein confor-
mations from their chemical structure only. One of its functionalities, however, is
to solve MDGPs. TINKER implements the method for distance geometry proposed
in [6]. Solutions are found by applying the meta-heuristic Simulated Annealing
and they are successively equilibrated with Molecular Dynamics techniques.

Ever since 2006 [7–13, 15–17], we have been working on a combinatorial re-
formulation of the MDGP. When some particular assumptions are satisfied [12],
the domain of the penalty function can be discretized, and, in particular, it can
be seen as a binary tree containing positions for the atoms of the considered
molecule. Therefore, the optimization problem to be solved becomes combinato-
rial, and we refer to this combinatorial reformulation as the Discretizable MDGP
(DMDGP). Both the MDGP and the DMDGP are NP-hard [7, 18].

In order to solve instances of the reformulated problem, we employ a Branch
& Prune (BP) algorithm [12], which is strongly based on the binary tree structure
of the penalty function domain. The basic idea is to construct the binary tree
during the execution of the algorithm. At each iteration, two new nodes of the

An Implementation of the BP algorithm 3

tree are added, which represent two new positions for a current atom xi. Then,
the feasibility of the two positions is checked, and branches of the tree containing
infeasible positions are pruned. This pruning phase allows for reducing the binary
tree very quickly, and for solving the DMDGP in a reasonable amount of time.
The BP algorithm has been shown to provide very accurate solutions on sets of
instances related to protein conformations.

In this paper, we present the software MD-jeep, which is an implementation
of the BP algorithm in the C programming language. We present in detail the
implementation strategies that are employed for an efficient execution of the BP
algorithm. In particular, we describe the strategy we consider for reducing to the
minimum possible the memory requirement and the floating-point operations.
Computational experiments are shown, and implementation issues regarding fu-
ture versions of the software are also discussed. MD-jeep is distributed under the
GNU General Public License (v.2) and it can be downloaded from the following
web address: http://www.antoniomucherino.it/en/mdjeep.php.

The rest of the paper is organized as follows. In Section 2 we describe the
BP algorithm and we discuss several implementation details regarding the de-
velopment of MD-jeep. In Section 3 we present some computational experiments
obtained by using the developed software, and show how the outputs it provides
can be visualized by using visualization software. In Section 4 we discuss some
implementation issues related to future versions of MD-jeep. Section 5 concludes
the paper.

2 An implementation of the BP algorithm

2.1 The DMDGP and the BP algorithm

Let G = (V, E, d) be a weighted undirected graph, where vertices in V =
{1, 2, . . . , n} correspond to the atoms of the considered molecule, and there is
an edge between two vertices if and only if the corresponding distance is known.
The weights d associated to the edges provide the numerical value of the known
distances. Instances of the DMDGP must satisfy the following two assumptions,
for a given ordering on V :

– {1, 2, 3} ⊂ V must be a clique, and, for each atom xi ∈ V with rank i > 3,
the set E must contain the three edges (i − 1, i), (i − 2, i) and (i − 3, i);

– for each triplet of consecutive atoms xi, xi−1 and xi−2, the triangular in-
equality on the corresponding distances must hold strictly:

di−2,i < di−2,i−1 + di−1,i.

When these two assumptions are satisfied, a binary tree of atomic positions can
be built and explored for solving the DMDGP (see Figure. 1). In fact, if the
positions for the first i − 1 atoms are already known, then there are only two
possible positions for the atom xi, because of the two assumptions. The binary
tree can be simply built by repeating recursively the same procedure on all the

4 Mucherino, Liberti, Lavor

Fig. 1. An example of binary tree for a small molecule with n = 6 atoms. The boxes
show a complete path on tree, which corresponds to a solution to the DMDGP.

atoms forming the molecule (we provide more details regarding this procedure in
Section 2.4). Note that the binary tree has n layers, and all the possible positions
for the same atom xi can be found on the layer i of the tree.

The BP algorithm [12], that we use for solving instances of the DMDGP,
is strongly based on the structure of this binary tree. At each iteration of the
algorithm, two new positions for the current atom are computed by exploiting
the distances that must be known because of the assumptions. However, other
distances (which are not required by the assumptions) may also be known, and
they can be used for checking the feasibility of the computed atomic positions.
Therefore, during the search, branches of the binary tree are pruned as soon as
one of its positions are discovered to be infeasible. This pruning phase helps in
reducing the binary tree quickly, so that an exhaustive search of the remaining
branches is not computationally expensive.

More details on the assumptions of the DMDGP, on the construction of the
binary tree and on the BP algorithm can be found in [7, 12]. Alg. 1 is a sketch of
the BP algorithm. The input parameters for the algorithm are i, the current atom
whose positions are searched, n, the total number of atoms forming the molecule,
and d, the subset of available distances. The condition | ||xi−xj||−dij | < ε, ∀j <

i, represents the pruning test that we employ for discovering infeasible atomic
positions. Since a perfect match on the floating-point arithmetic of a computer
machine is impossible, a tolerance ε is used (usually set to 0.001). Note that the
algorithm invokes itself recursively for working on the successive atoms of the
molecule. The output provided by the BP algorithm is the set of solutions to
the DMDGP.

2.2 Input arguments

MD-jeep is written in the C programming language. It accepts as input a list of
distances on pairs of atoms of a molecule through a text file with a predefined

An Implementation of the BP algorithm 5

Algorithm 1 The BP algorithm.

0: BP(i, n, d)
for (k = 1, 2) do

compute the kth atomic position for the ith atom: xi;
check the feasibility of the atomic position xi:
if (| ||xi − xj || − dij | < ε,∀j < i) then

the atomic position xi is feasible;
if (i = n) then

a solution is found;
else

BP(i + 1,n,d);
end if

else

the branch containing xi is pruned;
end if

end for

format. In particular, since we mainly work with protein conformations, some
additional information related to these molecules can also be specified in the
input file. Such additional information are currently not used during the exe-
cution of the BP algorithm, but they are included in the output files so that
other software can use them, together with the solutions provided by the BP
algorithm.

The general format of each single row of the input text file must be:

i j l u i atom j atom i amino j amino ,
where

− i the label of the first atom to which the distance refers;
− j the label of the second atom to which the distance refers;
− l the lower bound on the distance;
− u the upper bound on the distance;
− i atom the name of the atom i;
− j atom the name of the atom j;
− i amino the name of the amino acid the atom i belongs to;
− j amino the name of the amino acid the atom j belongs to.

Note that the names of the amino acids can be expressed in the standard 3-
digit code (e.g.: glycine is GLY). Naturally, i amino and j amino regard protein
conformations only. If there are no amino acids in the molecule, or if the names
of the amino acids are unknown, the symbol UNK (unknown) can be used.

It is important to note that the BP algorithm is currently able to solve
DMDGPs where exact distances d are provided, rather than lower and upper
bounds. However, the decision to include in the input text file two values l and
u has been taken in order to guarantee the compatibility of this format with the
future versions of the software, when lower and upper bounds will be considered.
Currently, only instances in which the lower bound l coincides with the upper
bound u can be solved.

6 Mucherino, Liberti, Lavor

2.3 Instance preprocessing

Once the input text file is read, some checks are performed before invoking the
BP algorithm. First of all, we need to verify if the instance in memory is actually
a DMDGP. In order to check this, the first assumption of the DMDGP is verified:
for each atom xi, the distances between xi and the three preceding atoms must
be known. Instead, we do not spend computational time for checking the second
assumption, for which all the triangular inequalities on the triplets on consecutive
atoms must hold strictly. We avoid this check because the probability for this
assumption not being satisfied is zero. If the distances contain errors or noise,
the (non-strict) triangular inequality can be checked for all the possible triplets
of atoms of the molecule. This is a necessary condition for the compatibility of
the distances given in input, and can be performed by MD-jeep by setting the
appropriate option.

2.4 An efficient implementation

The data from the input text file are stored into a predefined data structure,
PROBL, where each distance is represented by all the information provided on the
generic row of the input file. As a consequence, an array of n elements of this
data structure represents an entire instance of the DMDGP.

Let us suppose that the distance between the two atoms i and j is needed
sometimes during the execution of the BP algorithm. In order to find information
on the distance, it is necessary to scan the array PROBL until the corresponding
distance is found (if it is actually included in the considered instance). To avoid
scanning this array every time a distance is needed, we use a matrix of pointers
which is able to provide the location in PROBL of the needed distance by using the
two labels i and j. Of course, in this way, a bi-dimensional array of n2 integers
needs to be defined, but it is worth using this memory for speeding the algorithm
up.

Before invoking the BP algorithm, the angles θ among consecutive triplets of
atoms are computed, as well as the cosine of each torsion angle ω that is defined
by each quadruplet of consecutive atoms (details about these computations are
given in [7]). Each cos(ω) implies the definition of two possible values for ω,
which in turn implies two possible atomic positions for the corresponding atom.
At each iteration of the algorithm, the two atomic positions are computed as
follows. The matrix:

B′

i =









− cos θi−2,i − sin θi−2,i 0 −di−1,i cos θi−2,i

sin θi−2,i cosωi−3,i − cos θi−2,i cosωi−3,i − sinωi−3,i di−1,i sin θi−2,i cosωi−3,i

sin θi−2,i sinωi−3,i − cos θi−2,i sin ωi−3,i cosωi−3,i di−1,i sin θi−2,i sin ωi−3,i

0 0 0 1









is considered for computing the first position for xi, and the matrix:

B′′

i =









− cos θi−2,i − sin θi−2,i 0 −di−1,i cos θi−2,i

sin θi−2,i cosωi−3,i − cos θi−2,i cosωi−3,i sinωi−3,i di−1,i sin θi−2,i cosωi−3,i

− sin θi−2,i sin ωi−3,i cos θi−2,i sinωi−3,i − cosωi−3,i di−1,i sin θi−2,i sinωi−3,i

0 0 0 1









An Implementation of the BP algorithm 7

is considered for the second position. Note that the only difference between
B′

i and B′′

i is the sign of the sine of the torsion angle ωi−3,i. In the following
discussion, we will consider the symbol Bi for referring to any of the two matrices,
and the symbols B′

i and B′′

i when it will be important to discriminate between
the two matrices. In order to obtain the two sets of coordinates for xi, the two
matrices are multiplied by all the preceding matrices Bj , ∀j < i:

Q′

i = B4 · · ·Bi−1B
′

i Q′′

i = B4 · · ·Bi−1B
′′

i (2)

and the coordinates for the two positions for xi are given by:

[Q′

i(1, 4), Q′

i(2, 4), Q′

i(3, 4)] [Q′′

i (1, 4), Q′′

i (2, 4), Q′′

i (3, 4)] ,

where Q′

i(k, h) and Q′

i(k, h) refer to the element (k, h) of the two matrices.
Let us analyze the complexity of this procedure. All the matrices that are

needed for computing an atomic position can be associated to the corresponding
vertex of the binary tree. For each atomic position, we need to compute the
matrix B′

i or the matrix B′′

i , and then we need to compute the matrix Q′

i or Q′′

i ,
respectively. In the worst case (in which BP never prunes), we would need mem-
ory for representing the full unpruned tree: the memory requirement would be
O(2× 2n−3), where n is the number of considered atoms. This memory require-
ment is huge for large molecules. Moreover, every time a new atomic position
is computed for xi, the product among i − 3 matrices needs to be performed.
For all the atomic positions belonging to the same layer i of the binary tree, the
complexity is O(i − 3).

In order to reduce both memory requirement and floating-point operations,
we consider the following strategy. The matrices Bi are needed for computing
the matrices Qi, from which the coordinates of the atomic positions can be
extracted. However, the matrix Qi related to the atom xi can also be computed
as:

Qi = Qi−1Bi, (3)

where Qi−1 is the matrix related to xi−1. Therefore, instead of considering all the
matrices Bj , with j < i, only the matrix Qi−1 can be exploited for calculating
Qi. This brings to two consequences. First, we can avoid to keep in memory
all the matrices Bi, because they are never used again after the computation of
Qi. Secondly, by using the expression (3) instead of (2), the calculation of each
atomic position, on any layer i of the binary tree, only needs the computation
of the product between two 4 × 4 matrices.

If all the matrices Qi are kept in memory, the new memory requirement in the
worst case is O(2n−3), which is still too large. Let us analyze a single iteration of
the BP algorithm. Two new matrices Q′

i and Q′′

i are computed for identifying the
two possible positions for xi. Both Q′

i and Q′′

i depend by the preceding matrix
Qi−1, which, after this computation, will never be used again. Until the search
is not backtracked on higher layers of the binary tree, the matrix Qi−1 keeps
the coordinates of the atom xi−1. However, when the search is backtracked, the
memory for Qi−1 can be released and used for storing the new matrix Qi−1

8 Mucherino, Liberti, Lavor

corresponding to the branch currently being explored. In this way, the memory
requirement is decreased to O(n − 3).

The only evident flaw of this strategy is that found solutions are lost when the
search is backtracked: once a solution is found, the algorithm can continue the
exploration of the remaining branches of the binary tree, and the arrays where
the matrices Qi are stored are overwritten. For this reason, we print on text files
the solutions as soon as they are found. If only the best solution is required by
the user, we allocate memory for storing only another solution, where we keep
the best solution ever found during the search, and we print it at the end of the
execution.

2.5 Solutions in PDB format

The solutions found by the BP algorithm are printed in text files in PDB for-
mat. Details about this format can be found on the web site of the Protein Data
Bank (http://www.rcsb.org/). The advantage in using this format is that it is
compatible with many other software for the management or for the visualiza-
tion of molecules. In particular, we use RasMol (http://www.rasmol.org/) for
visualizing the conformations obtained by the BP algorithm.

3 Experiments

MD-jeep was compiled by the GNU C compiler v.4.1.2 with the -O3 flag. We
performed the following experiments on an Intel Core 2 CPU 6400 @ 2.13 GHz
with 4GB RAM, running Linux.

The instances we consider were generated artificially by employing a com-
monly used technique [3, 7, 20]. We chose a subset of proteins from the PDB
and we extracted the backbone atoms from these molecules, i.e. the sequence of
atoms N−Cα−C. We computed all the possible distances between pairs of such
atoms, and we kept only the distances smaller than 6Å. This is done for simu-
lating distances obtained through experiments of Nuclear Magnetic Resonance
(NMR). Actually, in order to simulate real NMR data [9, 10], such distances
should be mainly related to hydrogen atoms, and they should be noisy. How-
ever, the aim of the presented experiments is only to show how the developed
software works. For considering more realistic (and more complex) instances of
the DMDGP, the BP algorithm can be adapted as described, as an example, in
[9–11, 15, 17].

Table 1 shows some computational experiments on a set of generated in-
stances, which can be downloaded at the same address as the sources of MD-jeep.
The label given to the each instance is the label of the corresponding downloaded
PDB file. In the table, n is the total number of atoms contained into the protein
conformation, m is the total number of available distances, #Sol is the number
of solutions found by the BP algorithm, best LDE is the penalty function value
(1) in correspondence with the best found solution, and, finally, the CPU time
is given in seconds for each experiment. All the experiments show that this im-
plementation of the BP algorithm is able to find very accurate solutions to the

An Implementation of the BP algorithm 9

instance name n m #Sol best LDE CPU time

1crn 138 846 2 5.79e-14 0.00
1hoe 222 1259 2 7.26e-14 0.00
1jk2 270 1816 8 5.63e-14 0.01
1a70 291 1628 2 3.25e-13 0.00
1fs3 372 2209 2 1.84e-13 0.01
1mbn 459 3200 8 2.08e-10 0.00
1rgs 792 4936 8 1.55e-13 0.06
1m40 1224 13823 2 2.46e-13 0.03
1bpm 1443 9303 2 8.87e-14 0.03
1n4w 1610 10920 2 2.58e-13 0.04
1mqq 2032 13016 8 5.40e-13 0.09
1rwh 2265 14057 2 4.49e-14 0.12
3b34 2790 19563 4 4.91e-12 0.15
2e7z 2907 27706 2 1.22e-12 0.18

Table 1. Computational experiments on a set of artificially generated instances.

problem (the best LDE is very close to 0 in all the cases), while the computa-
tional time is only a small fraction of seconds, even when the largest instances
are solved.

By setting the appropriate options, our software can provide the found so-
lutions in PDB format. The results can then be analyzed by using visualization
software for molecular conformations. In Figure 2 we show two different represen-
tations of the best found solution corresponding to the instance 1mbn. These two

Fig. 2. Two different ways to represent with RasMol one of the solutions obtained by
the BP algorithm.

10 Mucherino, Liberti, Lavor

pictures have been created by using the software RasMol (http://www.rasmol.org/),
which accepts as input a protein conformation in PDB format. In the picture on
the left, all the atoms of the molecule are represented by small spheres having
different colors. The choice of the colors is made by RasMol by analyzing the
additional information that we inserted in our output files (in this specific case,
the labels for the atoms). In the picture on the right, only the trace of the protein
backbone is represented.

4 New developments

We recently proposed an extention of the DMDGP, to which we refer as the
Discretizable Distance Geometry Problem (DDGP) [16]. In the DDGP in <3,
the assumptions for the discretization are relaxed:

– {1, 2, 3} ⊂ V must be a clique, and, for each atom xi ∈ V with rank i > 3,
there must exist three vertices j, k, h such that

j < i, k < i, h < i, (j, i), (k, i), (h, i) ∈ E, djk < dkh + dhi.

This new assumption allows for discretizing a larger subclass of distance geom-
etry problems, which are not necessarily related to molecular conformations. In
[16], a wide discussion on the main differences between the DMDGP and the
DDGP is presented. We point out that the DDGP can be also defined in spaces
with several dimensions.

Future versions of MD-jeep will also solve DDGPs. Even though the DDGP
can be seen an extention of the problem that MD-jeep is currently able to solve,
the extention of MD-jeep is not trivial. In particular, the strategy which is im-
plemented for the computation of the atomic positions cannot be used anymore:
such a strategy can be employed only when all torsion angles ω are defined by
consecutive quadruplets of atoms. As a consequence, we need to use an alterna-
tive strategy.

Let us suppose that all the atoms with rank smaller than xi have been already
placed somewhere and that the two possible positions for xi need to be found.
By the new assumption, there are three atoms xj , xk and xh that precede xi and
for which the three distances dji, dki, dhi are known. Therefore, three spheres
having center in xj , xk and xh and radius dji, dki and dhi, respectively, can be
defined. Since the triangular inequality djk < dkh +dhi holds, the intersection of
these three spheres can result in two different points, which are the two possible
positions for the atom xi.

The intersection of the three spheres can be computed by solving two linear
systems, as explained in [2]. As a consequence, two linear systems need to be
solved for finding the coordinates of each atomic position on the binary tree. It is
important to note that, differently from the strategy based on the torsion angles,
round-off errors can more easily propagate when solving these linear systems.
The main reason is that the new assumption for the DDGP does not require
the consecutivity among the three preceding atoms used for placing the current

An Implementation of the BP algorithm 11

atom xi. Therefore, spheres having different sizes are generally intersected, and
this helps the propagation of numerical errors.

In order to keep low the propagation of errors, we plan to implement two main
strategies. First, spheres having very different diameters bring to the definition of
linear systems where the coefficient matrix is badly-scaled: elements on the rows
or on the columns of the matrix can be much larger than the others. Therefore,
we need to use a strategy for scaling the coefficient matrix before the solution of
the linear system. Secondly, the lost of the consecutivity assumption allows us to
choose which distances to use for building the binary tree, and which distances
to use for pruning. Since more than three distances between the current atom xi

and the predecessors may be available, there are different possible combinations
of distances that can be used for computing the two atomic positions. We plan
to develop a strategy for finding out which is the best triplet of distances, i.e.
which is the triplet of distances for which the propagation of errors is as low as
possible.

5 Conclusions

We presented MD-jeep, an implementation of the BP algorithm for solving in-
stances of the DMDGP. We discussed many aspects related to the development
of MD-jeep, from the input and output formats to the strategies that are consid-
ered for reducing the memory requirements and the floating-point operations.
The presented software is freely downloadable and usable, and it is distributed
under the GNU General Public License (v.2). Future releases of the software
will consider more general DMDGPs (for example, considering lower and upper
bounds on the distances) and the recently proposed DDGP.

Acknowledgments

The authors wish to thank Sonia Cafieri for the discussions on badly-scaled
matrices, and Virginia Costa and Luiz M. Carvalho for their help in the devel-
opment of the presented software. We would also like to thank the Brazilian
research agencies FAPESP and CNPq, the French research agency CNRS and
École Polytechnique, for financial support.

References

1. H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig,
I.N. Shindyalov, P.E. Bourne, The Protein Data Bank, Nucleic Acids Research
28, 235–242, 2000.

2. I.D. Coope, Reliable Computation of the Points of Intersection of n Spheres in

n-space, ANZIAM Journal 42, 461-477, 2000.
3. P. Biswas, K.-C. Toh, and Y. Ye, A Distributed SDP Approach for Large-Scale

Noisy Anchor-Free Graph Realization with Applications to Molecular Conforma-

tion, SIAM Journal on Scientific Computing 30, 1251–1277, 2008.
4. G.M. Crippen and T.F. Havel, Distance Geometry and Molecular Conformation,

John Wiley & Sons, New York, 1988.

12 Mucherino, Liberti, Lavor

5. T.F. Havel, Distance Geometry, D.M. Grant and R.K. Harris (Eds.), Encyclopedia
of Nuclear Magnetic Resonance, Wiley, New York, 1701-1710, 1995.

6. M.E. Hodsdon, J.W. Ponder and D.P. Cistola, The NMR Solution Structure of

Intestinal Fatty Acid-binding Protein Complexed with Palmitate: Application of a

Novel Distance Geometry Algorithm, Journal of Molecular Biology 264, 585-602,
1996.

7. C. Lavor, L. Liberti, and N. Maculan, Discretizable Molecular Distance Geometry

Problem, Tech. Rep. q-bio.BM/0608012, arXiv, 2006.
8. C. Lavor, L. Liberti, and N. Maculan, Molecular Distance Geometry Problem, In:

Encyclopedia of Optimization, C. Floudas and P. Pardalos (Eds.), 2nd edition,
Springer, New York, 2305–2311, 2009.

9. C. Lavor, A. Mucherino, L. Liberti, N. Maculan, Discrete Approaches for Solving

Molecular Distance Geometry Problems using NMR Data, to appear in Interna-
tional Journal of Computational Biosciences, 2010.

10. C. Lavor, A. Mucherino, L. Liberti, and N. Maculan, Computing Artificial Back-

bones of Hydrogen Atoms in order to Discover Protein Backbones, IEEE Conference
Proceedings, International Multiconference on Computer Science and Information
Technology (IMCSIT09), Workshop on Computational Optimization (WCO09),
Mragowo, Poland, 751-756, 2009.

11. C. Lavor, A. Mucherino, L. Liberti, and N. Maculan, An Artificial Backbone of

Hydrogens for Finding the Conformation of Protein Molecules, Proceedings of the
Computational Structural Bioinformatics Workshop (CSBW09), Washington D.C.,
USA, 152–155, 2009.

12. L. Liberti, C. Lavor, and N. Maculan, A Branch-and-Prune Algorithm for the

Molecular Distance Geometry Problem, International Transactions in Operational
Research 15 (1), 1–17, 2008.

13. L. Liberti, C. Lavor, A. Mucherino, N. Maculan, Molecular Distance Geometry

Methods: from Continuous to Discrete, to appear in International Transactions in
Operational Research, 2010.

14. J.J. Moré and Z. Wu, Distance Geometry Optimization for Protein Structures,
Journal of Global Optimization 15, 219–223, 1999.

15. A. Mucherino, C. Lavor, The Branch and Prune Algorithm for the Molecular Dis-

tance Geometry Problem with Inexact Distances, Proceedings of World Academy
of Science, Engineering and Technology (WASET), International Conference on
Bioinformatics and Biomedicine (ICBB09), Venice, Italy, 349–353, 2009.

16. A. Mucherino, C. Lavor, L. Liberti, The Discretizable Distance Geometry Problem,
Optimization Letters, in revision.

17. A. Mucherino, L. Liberti, C. Lavor, and N. Maculan, Comparisons between an Ex-

act and a MetaHeuristic Algorithm for the Molecular Distance Geometry Problem,
ACM Conference Proceedings, Genetic and Evolutionary Computation Conference
(GECCO09), Montréal, Canada, 333–340, 2009.

18. J.B. Saxe, Embeddability of Weighted Graphs in k-space is Strongly NP-hard, Pro-
ceedings of 17th Allerton Conference in Communications, Control, and Computing,
Monticello, IL, 480–489, 1979.

19. C.D. Schwieters, J.J. Kuszewski, G.M. Clore, Using Xplor-NIH for NMR Molecular

Structure Determination, Progress in Nuclear Magnetic Resonance Spectroscopy
48, 47–62, 2006.

20. D. Wu and Z. Wu, An Updated Geometric Build-Up Algorithm for Solving the

Molecular Distance Geometry Problem with Sparse Distance Data, Journal of
Global Optimization 37, 661–673, 2007.

