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Abstract

During the last few years, there has been an intense e�ort in the development of the so-called Order-N methods to

solve the electronic-structure problem, for which the numerical e�orts scale only linearly with the size of the system. The

combination of these algorithms with total energy schemes has expanded our capability of performing electronic-struc-

ture based molecular dynamics (MD) simulations for systems of unprecedented size. In general, Order-N methods yield

approximate solutions, based on physically motivated approximations. The central idea is, in most cases, the concept of

localization (or the dependence of the relevant physical quantities on only the local environment). Therefore, the Tight-

Binding (TB) formulation (or, more generally, the use of some kind of localized basis set), either from ®rst principles or

in an empirical form, is a natural framework to develop and apply Order-N schemes. In this paper we analyze the main

ideas involved in these methods and their di�erent implementations. We will focus on schemes to compute total energies

and forces, therefore suited for MD simulations, and also on approaches to study the spectral properties like the density

of states and eigenvalue information. These two classes of methods provided valuable complementary information and

are often based on very similar assumptions and formalisms. Ó 1998 Elsevier Science B.V. All rights reserved.

1. Introduction

Since the early days of quantum mechanics, the
prospect of being able to predict and explain the
behavior of condensed matter systems at the atom-
ic level, by solving the fundamental equations for
the nuclei and electrons, has fascinated many gen-
erations of scientists. Over the years, this has prov-
en to be an exceedingly di�cult task, because of
the intrinsic complexity of the solution of the cou-
pled many-body quantum-mechanical problem,

and the tremendous numerical workload involved
even for approximate solutions. However, atomic,
molecular and solid state physics, quantum chem-
istry, materials science, and many other disciplines
have contributed in the search of viable ways to
put this prospect to practice, both in the derivation
of approximate theories to simplify the original
many-body problem and in the development of
computational methods to solve these theories
for particular systems. At the same time, the avail-
able computing power provided by digital comput-
ers has grown by several orders of magnitude over
the last three decades, allowing the application of
these techniques to real problems.

The application of quantum-mechanical com-
putations to the study of atomistic processes in
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condensed matter has blossomed during the last
two decades due of the combination of those two
factors. Nowadays, calculations of structural, en-
ergetic and even dynamical properties of atomic
systems of moderate size can be done routinely,
and are an important piece of our understanding
of the microscopic processes in condensed matter.
These calculations can provide a wealth of infor-
mation that is not easily or possibly accessible in
experiments, and therefore are of great importance
in ®elds like materials science, biochemistry, solid
state physics, etc. The everyday necessity of treat-
ing larger systems is present in all these applica-
tions: the problems of technological relevance in
materials and biophysics usually involve thou-
sands or even millions of atoms.

Most of the methods currently used in atomistic
calculations rely on the Born±Oppenheimer ap-
proximation, and therefore treat ions as classical
particles that move in the potential produced by
the quantum-mechanical electrons. The electron-
ic-structure problem is therefore the bottleneck
that limits the size and complexity of the systems
that can currently be tackled. Di�erent electron-
ic-structure methods present di�erent computa-
tional requirements. However, a common feature
of the traditional methods is the over-linear scaling
of the computational e�ort (CPU time and memo-
ry) with the number of atoms or electrons Ne in the
system. This scaling ranges from exponential for
the Con®guration Interaction methods of quan-
tum chemistry (QC) to a power law in one-electron
theories like Density Functional Theory [1] (DFT)
and Hartree±Fock (HF). This nonlinear scaling
represents a serious limiting factor in the size of
the systems that can be approached in practice.
In the case of the one-electron theories (to which
we will restrict ourselves in this paper), the unfa-
vorable scaling is a consequence of the Pauli exclu-
sion principle between electrons. This is usually
expressed in terms of global orthonormalization
conditions for the one-electron states, or idempo-
tency constraints for the density matrix (DM),
both of which would scale as, at least, O�N 2

e �.
For instance, the traditional direct diagonalization
scheme, in which all the Hamiltonian eigenstates
are computed, scales as O�N 3

b � (where Nb is the size

of the basis set, which is in general proportional to
the number of electrons Ne).

An important step towards larger system sizes
was taken by Car and Parrinello [2], who initiated
a new set of methods [3] for which the numerical
e�ort was largely diminished compared to methods
of the time, improving the e�ciency of large-scale
electronic-structure calculations. These are itera-
tive diagonalization techniques, in which the total
energy is written as a functional of the occupied
electronic wave functions, which are iterated to-
ward the minimum energy solution. The required
e�ort grows as O�N 2

eNb�; which can be consider-
ably less than that for direct diagonalization, spe-
cially if the number of basis orbitals per electron is
large. Whereas for tight-binding (TB) Hamiltoni-
ans [4] the gain is not very large due to the small
number of basis functions per electron, the impact
on plane wave (PW) calculations has been enor-
mous, because in this case the ratio between Nb

and Ne is typically about 100. These methods have
boosted the applicability of electronic-structure
calculations, especially for ®rst principles molecu-
lar dynamics (MD) applications. However, despite
its tremendous importance, this class of methods
still scales as the cube of the number of electrons
for the CPU time, and the square for the memory.
Due to this over-linear scaling the application of
electronic-structure methods is limited to systems
with a few hundred electrons in the case of ®rst-
principle methods and less that a thousand for em-
pirical tight-binding (ETB) Hamiltonians (using
the most powerful computational platforms).

On the other hand, since many years there is
abundant evidence that this nonlinear scaling of
the electronic-structure problem can be overcome.
Although quantum mechanics requires that the
properties cannot be purely local, the e�ect of
the surrounding decays rapidly (in a sense that will
be discussed in the next few sections). Particularly
Heine and coworkers [5] have emphasized that the
local properties of a region can be computed from
the knowledge of the electronic states only in the
vicinity of that region. Kohn [6] has recently refor-
mulated this ``nearsightedness'' principle in a more
precise manner. The recursion method is one of
the techniques that has used these ideas to com-
pute local properties of large systems with an e�ort
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independent of the size of the system. This natural-
ly leads to linear scaling or Order-N algorithms,
since di�erent parts can be computed independent-
ly, with an e�ort independent of the system size.

In the last few years, there has been a renewed
awareness of the possibility of linear scaling elec-
tronic-structure methods. As a result, many Or-
der-N methods have been proposed and applied
in di�erent contexts and systems. These develop-
ments have expanded the applicability of electron-
ic-structure calculations to systems of
unprecedented size, to the point that we can now
treat, at the ab-initio level, system sizes that were
hardly manageable with empirical methods only
a few years ago. We will refer to this set of meth-
ods as ``modern'' Order-N methods. These are
characterized by the aim towards being able to
perform MD simulations, relaxations, etc., and
therefore total energies and forces are required.
The solution of the whole system, and not only lo-
cal information, is then needed.

It is important to stress here that all the Order-
N methods in which the properties of the whole
system are computed (for instance, the charge dis-
tribution, the total energy or the forces on all at-
oms), provide necessarily approximations to the
exact solution of the e�ective one-electron Hamil-
tonian. These approximations are based on physi-
cal assumptions, which are generally connected to
the above mentioned locality or nearsightedness
principle in one way or another. The details of
the approximations are di�erent for di�erent
schemes, as well as how to put them into practice.

The fact the some kind of localization is in-
voked in Order-N approaches has important con-
sequences in determining the optimal basis sets
for linear scaling algorithms. It is clear that local-
ized bases will be preferred as a natural way to ex-
press localization conditions. For this reason, the
use of extended basis sets like PW in the context
of linear scaling has proven to be di�cult (but
not impossible [7]), and most of the Order-Nmeth-
ods have been developed either under the assump-
tion of some kind of local orbitals basis, or directly
in a real space representation. This makes ETB
models the ideal testing ground for development
and application of Order-N methods. There have
been nevertheless several recent attempts to extend

Order-N schemes to ab-initio calculations. These
are generally reformulations of the ®rst-principle
theories in the form of a TB Hamiltonian, usually
by the explicit use of localized, atomic-like basis
sets, or by some other real space formalism
through the use of intermediate ``support func-
tions'' of localized orbital character. We will desig-
nate this general class of methods as ab-initio
tight-binding (AITB) formulations. The advantage
of ETB lies in its signi®cantly reduced computa-
tional demands compared to ab-initio methods,
since the construction of the Hamiltonian matrix
is straightforward from the parametrization. In
the AITB case, the Hamiltonian has ®rst to be
computed from ®rst principles, and then solved
to obtain the energy, charge distribution, etc.,
and both stages need scale linearly with the size
of the system. The calculation of this Hamiltonian
in Order-N operations is by no means a trivial
problem, and much work has been devoted to it
in the last few years [8±19]. However, the descrip-
tion of these methods is beyond the scope of this
work, and here we will concentrate on the problem
of how to solve a given Hamiltonian in Order-N
operations.

The range of the linear scaling electronic-struc-
ture methods is quite large. However, they can be
roughly divided in two broad classes, depending
on the main physical quantities that the method
is able to provide. The ®rst class is aimed at the
calculation of total energies and forces, and are
therefore suited for MD simulations. The second
one focuses on the spectral properties like densities
of states, response functions and optical spectra.
The border between these classes is, nevertheless,
quite ill de®ned, and some methods can be applied
for both tasks. In addition, some of the underlying
techniques may be common to some of the meth-
ods belonging to the two classes. The rest of this
paper is organized as follows. In Section 2 we des-
cribe the underlying physical principles which al-
low us to build Order-N schemes, and give an
example of how to exploit them in a particular im-
plementation. In Section 3 we describe a group of
methods which are based on variational principles
to calculate the energies and forces. In Section 4 a
class of methods with the same aim of computing
total energies and forces, but which are not varia-
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tional, are introduced. In Section 5 we discuss
methods that allow us to obtain information about
the spectrum of the system in Order-N operations.
Finally, we present our conclusions in Section 6.

2. Locality in electronic-structure

The central ideas behind most of the Order-N
methods for electronic-structure exploit the con-
cept of locality. It is known since many years that
most of the static properties of many-electron sys-
tems at a certain position depend only on the local
environment within a few shells of neighbors. Ex-
amples of this are the local density of states, charge
distribution, local magnetic moments, binding en-
ergies, etc. The fact that the properties of bulk ma-
terials can be de®ned and calculated without any
reference to the surface of the material (with the
exception of e�ects due to surface charge distribu-
tions and the associated polarization ®elds) is an-
other example of this concept. This means for
instance that the description of the bulk is inde-
pendent of the boundary conditions. Although this
is commonly assumed in an implicit way, much
work has also been involved in exploiting this in
an explicit way. One example is the Green's func-
tions approach to the calculation of electronic
states of surface [20] and in amorphous systems
[21]. The recursion method [5,22] is the paradigm
of a traditional electronic-structure method that
exploits locality, and has been used very success-
fully in a variety of problems.

2.1. Nearsightedness principle

Regardless of the evident utility of locality, the
concept remained vaguely de®ned until a precise
statement was given very recently by Kohn [6],
motivated by the development of modern Order-
N techniques. Kohn has discussed a widely appli-
cable principle of ``nearsightedness'' for equilibri-
um systems of many quantum-mechanical
particles in an external potential v(r). The formula-
tion of the principle is that the physical properties
of a part of a system are not a�ected by changes of
the potential at distant regions, and is illustrated in
Fig. 1. The principle states that, for F being a

static property depending on the coordinates with-
in a volume x of linear dimension k around �r;
then, at constant chemical potential l;F is not
sensitive to arbitrarily large changes in the poten-
tial Dv�r0� if this change is restricted to distant po-
sitions r0. Here k is a typical de Broglie wavelength
of the system which determines the degree of local-
ity. It should be emphasized that the potential
must remain unchanged in the region around �r,
and changes only in regions far compared with k.
Long range electric ®elds like those occurring in
polar crystals or originating from surface charges
in insulators should be treated separately in a
self-consistent manner, but do not a�ect the basics
of the principle.

As Kohn points out, nearsightedness implies
immediately the possibility of existence of linear
scaling methods. It would su�ce to divide the sys-
tem, of volume X, in subsystems of volumes of or-
der xi / k3. For each subsystem, we extract a
volume x0

i containing xi plus some bu�er region
around it. The procedure is sketched in Fig. 2.
We then solve the properties of each volume x0

i
separately, using hard wall boundary conditions.
If the volumes x0

i are su�ciently larger than xi,
then the properties within xi will be properly de-
scribed because of nearsightedness. Therefore,
computing the properties within each xi requires
an e�ort independent of the size of the system
(since it can be done using only information within

Fig. 1. Kohn's principle of nearsightedness for quantum many-

particles systems: the static properties around �r do not depend

on changes Dv�r0� at distant regions.
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x0
i). Since the number of volumes xi will be pro-

portional to the system size, computing the prop-
erties of the whole system will be an O�N� task.
This general scheme is in fact very closely followed
by one of the ®rst modern linear scaling methods,
as will be described in Section 2.4.

Locality in electronic-structure manifests in
many ways as we have indicated. There are how-
ever two very well known facts which are related
to locality and nearsightedness which play a role
of paramount importance in the theory of solids
and molecular systems in general, and in the devel-
opment of Order-N methods in particular. These
are the existence of localized Wannier-like func-
tions and the decay of the DM at large distances.

2.2. Wannier functions

The fact that the properties of a system can be
described either with extended eigenstates or, alter-
natively, with localized wave functions, is well
known in solid state physics and in quantum
chemistry. In crystalline solids these localized

states are the Wannier functions [23], which are
the basis of many theoretical developments like
the semiclassical theory of electron dynamics
[24]. In molecules or clusters, these correspond to
the ``localized molecular orbitals'' of quantum
chemistry [25]. In both cases, the localized states
are just a unitary transformation of the corre-
sponding extended eigenstates (Bloch functions
for solids and canonical molecular orbitals in mol-
ecules). For the purpose of computing ground
state properties, only the occupied part of the spec-
trum is usually required, so that the localized
states are a unitary transformation of the occupied
eigenfunctions. (Note that in some cases, as in the
calculation of electronic correlation in many-body
approaches, empty states are also needed, in which
case one can also de®ne localized functions span-
ning the empty subspace.)

The decay of the Wannier functions has been
the subject of many investigations, following early
work of Kohn [26], who probed that, for an isolat-
ed band in a 1-D crystal with inversion symmetry,
the Wannier functions decay exponentially for a
system with a gap, and only as a power law for a
metal. In the insulator case, he further showed that
the exponent of the decay is related the band gap,
so that a larger gap implies a faster decay. Al-
though much work has been done, a general proof
for 3-D crystals with composite bands (i.e., a
group of bands that are degenerate at some point
of the Brillouin zone) is still missing. Nevertheless,
there is evidence that exponential localization is a
general property of insulators, even for systems
with no periodicity (like clusters, disordered solids,
defects or surfaces). We will refer to these localized
functions in nonperiodic systems as generalized
Wannier functions (GWF). The interested reader
can ®nd details in an excellent review of the cur-
rent status of the issue, in the context of a method
to obtain maximally localized Wannier functions,
by Marzari and Vanderbilt in Ref. [27].

2.3. Density matrix

Another manifestation of locality in electronic-
structure is the decay of the DM in real space. For
a system with N � Ne=2 electrons of each spin (we
will assume unpolarized systems throughout the

Fig. 2. The sketch of a procedure to obtain a linear scaling

scheme. The system is split into subsystems of volume xi, and

each one is independently solved, together with some bu�er re-

gion, with hard wall boundary conditions.
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paper; generalization to spin-polarized systems is
straightforward in most cases) the density operator
is de®ned as

q̂ � 2F̂b � 2Fb�Ĥ� � 2
XNb

i

Fb��i�jwiihwij; �1�

where

Fb�E� � �eb�Eÿl� � 1�ÿ1 �2�
is the Fermi±Dirac projection operator at temper-
ature T �b � 1=kT �; l, the chemical potential and
Nb, the basis set size, or the number of orbitals
in the system. The second representation, in terms
of the eigenstates of the Hamiltonian wi makes ex-
plicit the projection character of the density oper-
ator. The real space representation is readily
obtained as

q�r; r0� � 2
XNb

i

Fb��i�w�
i �r�wi�r0�: �3�

The localization properties of the DM for T � 0
are easily veri®ed with the following argument.
At zero temperature, the Fermi function is just
the step function, so that Eq. (1) can be expressed
as a projection onto the occupied space

q̂ � 2
XN
i

jwiihwij: �4�

Note that the sum runs only to the N lowest energy
orbitals. This projection can be computed using
the occupied eigenstates or any other set of func-
tions spanning the same occupied space (i.e., any
unitary transformation of the occupied eigen-
states). One possible choice is to use the GWF
jvii introduced above, instead of the eigenstates
jwii. In this representation, the real space DM is
given by

q�r; r0� � 2
XN
i

v�i �r�vi�r0�: �5�

Since the GWF are localized, q�r; r0� will also de-
cay with the distance jrÿ r0j, exponentially for in-
sulators and with a power law in metals, as
dictated by the behavior of the GWF. For the case
of a periodic insulator in 1-D with an energy gap
d�, the decay was shown by Kohn [26] to be expo-

nential, with a spatial range proportional to d�ÿ1=2.
For metals, the power law decay follows from the
behavior of the GWF. In the simple case of the
free electron 3-D jellium model, the decay of the
density matrix is known analytically. It depends
only on the modulus of the distance s � jrÿ r0j, as

q�s� � 4p
s3
� sin�kFs� ÿ �kFs� cos�kFs��; �6�

where kF is the Fermi vector. The slow (power law)
oscillatory decay is due to the discontinuity of the
Fermi±Dirac distribution (step function) in recip-
rocal space.

The decay rate of the DM in real space is even
more pronounced when the temperature is ®nite.
In this case, even metals show exponential localiza-
tion. For the free electrons case, this can be under-
stood because the Fermi±Dirac function is no
longer discontinuous in reciprocal space. Go-
edecker [28] has recently given an approximate an-
alytical form for the decay in the free electron case
for ®nite temperature, showing that, at large dis-
tances, the DM decays as exp ÿc kBT=kF� �s� �,
where c � 1� ���

2
p

and kB is the Boltzmann con-
stant. It is clear that for metals the localization will
be stronger for higher temperatures. However, we
must note that the localization is noticeably
stronger than for T � 0 only when temperatures
of the order of eV are reached, much higher than
physical ionic temperatures. For systems with an
energy gap between occupied and empty states,
the e�ect of the temperature is much smaller than
for metals, since the DM is already exponentially
localized at T� 0. A noticeable change will only
occur when the electronic temperature is compara-
ble to the energy gap d�.

A general analysis of the DM decay for insula-
tors and metals was presented by Baer and Head-
Gordon [29,30]. The estimates are done on the ba-
sis of a Chebyshev expansion of the DM, as will be
described in Section 4.1. They have shown how the
range of the DM depends on the physical parame-
ters like energy gap d�, temperature, etc. W �q� is
de®ned as the spatial range at which the value of
q�r; r0� may be neglected, to an accuracy of 10ÿD.
For insulators, the predicted behavior is
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W �q� �
����������������������������������
�h2

4med�
3D�Dÿ 1�

s
; �7�

whereas for metals at ®nite temperature the esti-
mate is

W �q� �
�������������������������������
�h2

3med�
�Dÿ 1�b

s
: �8�

Very recently, Ismail-Beigi and Arias [31] have
also studied the decay of the DM in periodic po-
tentials in arbitrary dimensions. Using analytical
and scaling techniques, they have determined the
coe�cient c of the exponential decay of the DM
�q�s� � exp�ÿcs�� in some limits. For insulators
at T� 0, they ®nd that, for the TB limit (large
band gap d� compared to the band width),
c / �����

d�
p

, in agreement with previous results. How-
ever, for the weak binding limit (small band gap
d�, compared to the band width), they ®nd that
the decay behaves as c / d�. They argue that the
case of typical semiconductors falls into this sec-
ond category. For metals, they ®nd a di�erent be-
havior for high and low temperatures. For
T !1, they recover the c / ����

T
p

described above
by Baer and Head-Gordon. However, for T ! 0,
the decay is like the one found by Goedecker in
the free electron case: c / T=kF.

2.4. Divide and conquer approach

The ®rst proposal of `modern' linear scaling
scheme was done by Yang in the beginning of
the decade, with the ``divide and conquer''
(D&C) method [32,33]. The procedure is very sim-
ilar to the one sketched in the discussion of the
nearsightedness principle (Fig. 2). The idea is very
appealing, since it provides a description of a large
system in terms of its constituent parts (chemical
bonds, functional groups, fragments, etc.). The
D&C method was originally developed in the con-
text of Density Functional Theory, although it was
later extended to HF semiempirical QC Hamilto-
nians [34,35]. The method can also be applied to
empirical TB Hamiltonians in a straightforward
manner.

The D&C method intends to describe the
charge distribution of the system in terms of con-

tributions from the di�erent fragments. Each frag-
ment or subsystem has a supplementary bu�er
region, to help reduce truncation e�ects as shown
in Fig. 2. It should be noted here that Dixon and
Merz [34] have proposed a modi®cation of the
D&C scheme, in which the subsystems overlap
with each other (besides having a bu�er region,
as in the scheme of Yang). The presence of over-
lapping regions seems to provide a better conver-
gence, since it facilitates the propagation of
information among subsystems.

In the ®rst few formulations of the D&C meth-
od [32], the basic variable was the electron density
(the diagonal terms of the density operator in real
space: n�r� � q�r; r��, in the context of DFT. How-
ever, later formulations work with the representa-
tion of the DM in the atomic orbitals basis. This
formulation is more general, since it permits the
application of the method to several one electron
Hamiltonians (DFT, HF, semiempirical methods
and empirical TB). Therefore, we will present here
the DM formulation.

The total energy takes di�erent expressions de-
pending on the one-electron Hamiltonian. How-
ever, it can usually be expressed in the general
form

E � EBS ÿ EDC; �9�
where EBS is the band structure energy

EBS � 2 Tr�q̂Ĥ� � 2
XNb

i�1
Fb��i��i; �10�

which is just the sum of the eigenvalues of the one-
electron e�ective Hamiltonian Ĥ multiplied by the
Fermi±Dirac occupations (the factor 2 is for spin).
In the case of DFT, Ĥ is the Kohn±Sham Hamil-
tonian, whereas for HF, it is the Fock operator
F̂ . The second term is a double-counting correc-
tion, which can also be obtained with the know-
ledge of the DM elements [32,34]. In ETB, the
electronic energy would be just EBS. Throughout
this work we will only consider the band structure
term. Inclusion of the double counting, when nec-
essary, is straightforward.

A traditional solution to the total energy prob-
lem would be to solve the generalized eigenvalue
problem for the whole system in order to obtain
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the eigenvalues and calculate EBS by means of
Eq. (10). In the linear combination of atomic or-
bitals (LCAO) approximation, common to all TB
schemes, the eigenstates are expressed as linear
combinations of the basis functions j/li

jwii �
XNb

l�1
Clij/li: �11�

The eigenvalue problem reads

HCi � SCi�i; �12�
where H and S are the Hamiltonian and overlap
matrices in the orbitals basis. An important obser-
vation is that Eq. (10) can be expressed in terms of
the DM elements in the orbitals basis

EBS �
XNb

l;m�1
qlmHml �13�

with

qlm � h/ljq̂j/mi � 2
XNb

i�1
Fb��i�CliCmi: �14�

(Here we have introduced f/lg, the dual basis of
f/lg, which is given by /l �Pm S

ÿ1
lm /m, satisfying

h/lj/mi � dlm and
P

l julih/lj � Î ; the dual basis
and with a tensor representation of operators
[36] allows us to work with nonorthogonal bases;
for orthogonal bases, the dual is just the original
one, and the usual formulation is recovered). This
direct approach requires the solution of the eigen-
value problem for the complete system, which
scales as N 3

b .
The D&C method provides an alternative to

this cubic scaling. The system is split into subsys-
tems, as previously discussed. Each of this subsys-
tems (including its bu�er region) is solved
independently. For subsystem a, an eigenvalue
problem is set up in terms of the Hamiltonian Ha

and overlap Sa matrices between pairs of basis
function within subsystem a and its bu�er

HaCa
i � SaCa

i �
a
i : �15�

Note that the size of these matrices is �Na � Na�,
where Na is the number of basis orbitals within
subsystem a and its bu�er, much smaller than the
total number of basis functions Nb. Therefore,
the solution of Eq. (15) takes an e�ort of the order

N 3
b , independent of the size of the system. In order

to compute the total energy, we need the DM for
the whole system, which has to be expressed as a
sum of contributions from constituent subsystems.
This is made possible by de®ning a partition ma-
trix plma for each subsystem, which satis®es the nor-
malization conditionX
a

plma � 1 �16�

for all l; m. The system DM can be divided into
subsystem contributions according to

qlm �
X
a

plma q
lm �

X
a

qlma : �17�

The explicit form of the partition matrices depends
on the scheme of partition of the system. In the
case of nonoverlapping subsystems, a possible par-
tition matrix is proposed by Lee et al. [35]

plma �
0 if l 2 buffer and m 2 buffer;
1
2

if l 2 a and m 2 buffer �or viceversa�;
1 if l 2 a and m 2 a:

8><
>: �18�

Dixon and Merz proposed a di�erent form, appli-
cable to the case in which the subsystems do over-
lap

plma � 0 if l 2 buffer or m 2 buffer;

1=nlm if l 2 a and m 2 a;

�
�19�

where nlm is the number of di�erent subsystem in
which both /l and /m appear as nonbu�er orbitals.
The partition functions allow us to make an ap-
proximation for the subsystem DM to construct
the system DM by Eq. (17)

qlma � 2plma

XNa

i�1
Fb��ai �Ca

liC
a
mi: �20�

Therefore, the DM of the system is built from the
eigenstates of each subsystem. An important point
here is that there is a common chemical potential l
for all the subsystems, entering in the Fermi±Dirac
function Fb. This assures that information be
shared between subsystems, and allows charge
transfer between them. The value of the chemical
potential is determined by the normalization con-
dition
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N �
XNb

l;m�1
qlmSml �21�

in a self-consistent manner, and the band structure
energy is obtained by means of Eq. (13).

In general, the goal is to compute the ground
state properties of the system at T� 0, which
would correspond to b � 1, and the step function
for the Fermi±Dirac distribution. In practice, how-
ever, this would lead to instabilities in the proce-
dure to compute the chemical potential (Fermi
level), and the calculations are done at a ®nite b.
This yields some errors in the energy, which can
be kept small if b is chosen to be large enough.
In essence, 1=b should be at most of the order of
the energy gap, so that the occupations are not sig-
ni®cantly a�ected. For metals, however, the error
will always be present, and the results will re¯ect
the ®nite temperature used in the calculation. We
will come back to this point in the next few para-
graphs.

The D&C method has been tested and applied
in a variety of systems, most of them molecules
and clusters. Fig. 3 shows the case of a tetrapep-
tide (a 31 atoms linear backbone chain with four
glycine residues; see ®gure 1 in Ref. [37]). The cal-
culations were done by Yang [37] with the non-

self-consistent, Harris functional version of DFT
[38]. The chain was divided into 13 subsystems,
each containing one of the C or N atoms in the
backbone of the chain, and the O and H atoms
bonded to it. The bu�er regions contain from zero
to ®ve shells of neighbors to the atoms in the cor-
responding subsystem. The ®gure shows the di�er-
ence of the total energy computed with D&C
method and the exact diagonalization result with
the same basis, as a function of the number of
shells of neighbors included in the bu�er regions.
Three di�erent atomic orbital bases of increasing
quality were used in the calculation: a Single- f ba-
sis (a single radial function for each occupied or-
bital in the free atom), a Double-f basis (with
two independent radial functions per shell), and
a Double-f + Polarization basis (the Double-f or-
bitals, plus an extra single shell of locc � 1 angular
momentum, where locc is the angular momentum
of the higher occupied orbital of the atom). Here,
and in what follows, we denote these three types of
bases as SZ, DZ and DZP. It can be seen that the
convergence with the number of shells of neigh-
bors is exponential in all cases, as we would expect
from the above considerations on the locality of
the DM. Similar results were obtained by Dixon
and Merz in their study of polyglycine structures.

A few comments on the results of the D&C
method for molecules are in order. (i) The conver-
gence to the diagonalization result is better for the
smaller SZ basis set than for the more complete
DZ and DZP. This fact can be due to two factors.
First, the more delocalized character of the DZ
and DZP bases, which contain orbitals with slowly
decaying tails. Secondly, the smaller gap that re-
sults in the calculation with these larger bases,
what would make the DM to decay more slowly.
(ii) The calculations were done with b � 100 a.u.,
corresponding to a temperature of 3150 K. Fig. 3
also shows the results with the SZ basis, for
b � 200 a.u., which show very little di�erence with
the b � 200 a.u. results. The e�ect of the tempera-
ture is therefore very small, at least in this range of
temperatures, for systems with relatively large en-
ergy gaps. (iii) The use of bu�er functions in essen-
tial to obtain a good accuracy and minimize the
truncation errors. The results with no bu�er region
show errors of the order of several a.u. that are not

Fig. 3. Absolute value of errors in the total energies for a tetra-

peptide molecule for the D&C approach, referred to the exact

diagonalization result. Results for SZ, DZ and DZP bases are

shown as circles, squares and triangles. Continuous lines are re-

sults obtained with an inverse temperature of b � 100 a.u., and

broken lines for SZ correspond to b � 200 a.u.
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acceptable. However, including just a ®rst shell of
neighbors reduces the deviation to values that are
similar to the typical errors coming from the ®nite
basis sets used. (iv) Results with di�erent system
sizes [37,39,34] indicate that, for the same kind of
molecule, the bu�er region size needed to achieve
a given relative accuracy (energy per atom) is inde-
pendent of the size of the molecule. Therefore, the
calculation scales as O�N�, since the number of the
subsystems will be proportional to the number of
atoms, and the size of the subsystems (including
the bu�er) does not increase with the system size.
Examples of this linear scaling can be found in ®g-
ure 4 of Ref. [34] and ®gure 2 of Ref. [35].

An important characteristic of the D&C ap-
proach is that it is not variational: the calculated
total energy can be lower than the exact value.
The exact energy is of course recovered when the
subsystems cover the whole system. Despite the
nonvariational character of the method, atomic
forces can be computed as energy gradients, as
demonstrated by Yang and coworkers [40,39].
They also show that, for linear molecules, the con-
vergence of the forces with the number of atoms in
the bu�er regions is similar to that of the energy.

The application of the D&C method to solid-
state problems has been scarce. Zhu et al. [41] gen-
eralized the method to crystalline systems, and tes-
ted it in a variety of solids with small unit cells,
including metals, covalent semiconductors and in-
sulators and ionic systems. The conclusions of
these studies are similar to those reached in the
molecular cases. The energies and structural prop-
erties of the crystals improve systematically with
the use of bu�er regions containing more shells
of neighbors. However, since the systems are crys-
tals in 3-D, the increase of the number of atoms
with the number of shells is much larger than in
the linear molecules, and the cost of the calcula-
tions increases at a higher rate. Note that the ap-
plication of the D&C approach to solids is
similar to an embedding calculation, in which a
part of the solid is embedded in the bu�er region
to obtain its local properties. The energy and elec-
tronic-structure is computed locally, with no need
to refer to reciprocal space or to k-point sampling
in the calculation. This is a clear advantage if one
wishes to study systems with broken periodicity,

like defects, surfaces, or periodic cells with a very
large number of atoms.

One of the conclusions of the work of Zhu et al.
for crystals is that all the systems under consider-
ation (regardless of the insulating or metallic char-
acter) show the same convergence properties as a
function of the bu�er size. This conclusion is
reached based on the error of the total energies
versus bu�er size (see ®gures 1 and 4 of Ref.
[41]). However, a weak point in the argument is
that the reference energy used to compute the error
is not the exact energy of the system, as would be
obtained by a converged k-point sampling calcula-
tion in the unit cell with diagonalization. Zhu et al.
use as a reference the energy obtained with the
D&C method with a given, large number of shells
of bu�er atoms. Whereas for crystals with a gap
this value is probably very close to the exact k-
point sampling result, it can be signi®cantly di�er-
ent for metallic cases like the lithium and copper
crystals studied in Ref. [41]. Therefore, these con-
vergence results should be taken with caution. In
principle, and given the slower decay in the DM
for metallic systems, we would expect the conver-
gence with bu�er regions to be slower in the case
of metals. Another point to notice is that the calcu-
lations were done with a ®nite temperature (about
1000 K). This can also have a signi®cant e�ect for
the metallic cases, for which the Fermi surface is
being smeared, thus making the DM more local-
ized than the true T� 0 DM. A detailed analysis
of these e�ects, taking the correct reference energy
and the correct zero temperature limit, would be
very relevant to clarify the convergence properties
of this method for metals and insulators.

3. Variational functional methods

An important class of Order-N methods follows
the tradition of Car±Parrinello [2] or iterative min-
imization approaches [3]. In these, the electronic
energy is expressed as a functional that is mini-
mized in terms of the electronic variables. This
method is particularly well suited for MD simula-
tions, since the solution of previous time steps can
be extrapolated to obtain an initial guess for the
functional minimization in the current time step.
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The cost of each MD step is therefore greatly re-
duced. Besides, since the calculation is variational,
accurate forces are obtained as analytical deriva-
tives of the energy functional, by means of the
Hellman±Feynman theorem.

3.1. Conventional energy functionals

If we assume that the calculation is done at
T� 0, the electronic band structure energy can be
expressed in terms of the DM like in Eq. (13), or
equivalently as a trace of the Hamiltonian in the
space of the occupied wave functions

EBS � 2
XN
i�1
hwijĤ jwii: �22�

Therefore, the energy functional can be expressed
either in terms of the elements of the DM as in
Eq. (13) or in terms of the occupied states as in
Eq. (22). The ground state energy can therefore
be computed minimizing the energy with respect
to the values of either qlm or wi, by virtue of the
variational principle.

It should be noted here that functionals based
on the orbital formulations have been the common
choice in the context of PW calculations. In that
case, the number of occupied states N � Ne=2 is
much smaller than the number of plane waves
Nb. The computational cost is therefore reduced
from O�N 3

b � in standard diagonalization or in
DM formulations to O�NeN 2

b � in the occupied
states functionals.

The minimization of the conventional energy
functionals in terms of the DM or electronic orbit-
als requires an important intermediate step: in
both cases the minimization has to be carried out
with respect to variables satisfying some con-
straints. In the case of the orbital formulation,
the wave functions need to be orthonormal

hwijwji � dij; �23�
whereas the density operator has to be idempotent
(since it is the projection operator onto the occu-
pied subspace) and normalized to the correct num-
ber of electrons:

q̂ � q̂2; �24�

Ne � Tr�q̂�: �25�
The conventional minimization procedure is per-
formed in two steps: ®rst, the gradient of the ener-
gy with respect to wi or q

lm is computed, and the
variables are moved in the direction of these gradi-
ents; secondly, the constraints are imposed on new
values of the variables. Imposing the orthonormal-
ity or idempotency constraints is in general an
over-linear operation, even if the system is de-
scribed in terms of Wannier functions [42], or trun-
cated density matrices. Kohn proposed a method
[43] to obtain truncated GWF applying a local
Lowdin orthogonalization procedure coupled with
an energy minimization. Therefore, in order to ob-
tain variational methods which overcome the
O�N 3� scaling, it is not su�cient to use the elec-
tronic localization properties, and one also needs
to construct energy functionals which do not re-
quire to impose the constraints explicitly, or than
handle them in such a way that the linear scaling
is preserved. The development of such functionals
has received much attention in the last few years,
as will be described in Section 3.2.

3.2. New energy functionals

Several functionals, which do not require ex-
plicitly imposing the constraints, have been devel-
oped in the last few years. The functionals should
have the correct minimum (i.e., the correct ground
state energy), even if the variables of minimization
are not forced to satisfy the constraints. A clear ex-
ample of this kind of functionals is given in the or-
bital approach: the band structure energy Eq. (22)
is the trace of the Hamiltonian in the occupied
space. This trace can also be computed if the states
wi are nonorthogonal, in which case the correct ex-
pression involves the inverse of the overlap matrix
between the electronic states: Sij � hwijwji

EBS � Tr0�Ĥ� �
XN
ij

Sÿ1ij Hji; �26�

where the prime in the trace indicates that it is ta-
ken on the occupied subspace, and
Hij � hwijĤ jwji. The unconstrained minimization
of this functional with respect to wi yields the cor-
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rect ground state energy. At the minimum, the so-
lutions do not need to be orthonormal, but the en-
ergy is the correct one. If the wave functions are
orthogonalized, the energy would coincide with
that of Eq. (22), since the overlap would be the
unit matrix. This re¯ects the fact that the trace is
a property of the subspace, and not of the basis
that is used to compute it (either orthonormal or
not). Another consequence of the invariance of
the trace is that eigenvectors are not necessary to
compute the energy, since any other combination
of the occupied states would produce the same val-
ue. In particular, GWF can be used. Similarly, the
density matrix can be evaluated using the nonor-
thogonal states and the inverse overlap matrix

q̂ � 2
XN
ij

jwiiSÿ1ij hwjj �27�

and the representation in real space

q�r; r0� � 2
XN
ij

Sÿ1ij wi�r�wj�r0�: �28�

The functional of Eq. (26) has indeed been used in
electronic-structure calculations [44,45] in context
of Galli and Parrinello [7] who used it in the ®rst
proposal of Order-N functional methods. They
proposed the minimization of the energy function-
al in Eq. (26) with respect to localized wave func-
tions which are nonzero only within certain
localization region around their center, with radius
Rc. These wave functions were expanded in terms
of PW. Although the use of a PW basis makes
the calculation di�cult to carry out in practice
(specially in imposing the localization constraints
and in making the procedure to be scaled linearly,
because of the delocalized character of PW), Galli
and Parrinello showed a path that has been subse-
quently explored by several groups using localized
basis sets. One of the di�culties of the functional
in Eq. (26) is that, although no orthonormaliza-
tion is required, one has to calculate the inverse
of the overlap matrix Sÿ1, of dimension N � N ,
which is a O�N 3� operation. In the work of Galli
and Parrinello this was only a small part of the cal-
culation, compared with those involving the PW
basis, of size Nb � N . However, in TB approaches,
it would require a signi®cant amount of time, in

fact quire similar to the one required by a diago-
nalization of the full Hamiltonian Ĥ . Therefore,
other functionals have been developed in which
Sÿ1 does not appear.

The ®rst few forms of the functionals which
were proposed to avoid the problem of the explicit
constraints and the calculation of Sÿ1 were cast ei-
ther in the language of the DM, such as the meth-
ods proposed by Li et al. (LNV) [46] and Daw [47],
or in terms of orbitals, such as the local orbital
(LO) method developed independently by Mauri
et al. [48] and Ordej�on et al. [49]. However, it soon
became apparent that both kinds of energy func-
tionals could be expressed in the language of the
DM [50,42]. In fact, it was later shown that they
belong to a common, broader class of functionals
that has been developed further by di�erent au-
thors. We will describe here this general formula-
tion, and will give the details of the LNV and
LO methods in the next few sections.

Hernandez et al. [9,10] developed a scheme that
has later served to classify many of the di�erent
functionals developed in the last few years. The as-
sumption of Hernandez et al. is that the DM in
real space is representable in the form

q�r; r0� �
XM
ab

Labua�r�ub�r0�; �29�

where ua�r� are called ``support functions'' and are
in general overlapping orbitals. M is the number of
these support functions, and is equal or larger than
the number of occupied states N � Ne=2. Note that
the assumption in Eq. (29) is quite plausible. For
instance, in an LCAO formulation the DM in real
space takes exactly that form, with ua�r� being the
basis functions (atomic orbitals), and Lab the repre-
sentation of the DM operator in the dual basis

qab � huajq̂jubi � 2
XN
i�1

CiaCjb: �30�

Eq. (29) can be however more general, since sup-
port functions might be themselves expressed in
terms of a basis set, in which case Eq. (29) repre-
sents an assumption on the form of the DM. This
latter approach was followed by Hernandez et al.
in their Order-N scheme [9,10].
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In order to avoid imposing explicitly the con-
straints on the DM, the functionals are construct-
ed not in terms of the trial density matrix q�r; r0�,
but in terms of a puri®ed density matrix ~q�r; r0�.
If the transformation from q to ~q is properly cho-
sen, the puri®ed DM will be more idempotent than
the trial DM. The puri®ed DM is also assumed
representable as

~q�r; r0� �
XM
ab

Kabua�r�ub�r0�; �31�

where the relation between K and L de®nes the pu-
ri®cation transformation.

As shown by Galli in a recent review [51], a
whole class of energy functionals can be de®ned
by the above puri®cation transformation. The en-
ergy is given by

~EBS �
XM
ab

KabhuajĤ ÿ gjubi � gNe: �32�

The di�erences among functionals consist of the
di�erent choices of the transformation between L
and K, the meaning of variable g and of the sup-
port functions and the number of them M. Galli
has given a complete classi®cation of the function-
als in terms of these variables [51].

3.3. The Li±Nunes±Vanderbilt method

Li et al. [46] developed an energy functional
based on the DM, which falls in the general class
described in the former section. Daw [47] devel-
oped a closely related scheme, based in evolving
the DM in temperature from T � 1 to T� 0. In
the original implementation, the method was for-
mulated in the context of orthogonal TB. Subse-
quent work by Nunes and Vanderbilt [52] and
Ordej�on et al. [42] generalized the functional to
nonorthogonal basis sets. This more general for-
mulation is the one we describe here.

3.3.1. The LNV functional
In the LNV method, the functional equation

(32) is de®ned as follows. The support functions
are simply the basis set orbitals /l, and therefore
their number is M � Nb. In this case, the matrix
L corresponds to the contravariant elements of

the DM: qlm, which are the variational parameters
of the minimization. The puri®cation transforma-
tion corresponds to the McWeeny transformation
[53]

~̂q � 3q̂2 ÿ 2q̂3: �33�
The matrix K, which corresponds to the contra-
variant representation of ~̂q, is given by

K � 3LSL ÿ 2LSLSLSL �34�
(where K and L are the matrices Klm � h/lj~̂qj/mi
and Llm � h/ljq̂j/mi). The parameter g corre-
sponds in this case to the chemical potential l
(or Fermi level, since the calculations are done at
T � 0). The LNV functional therefore takes the
form

~EBS � tr�K�Hÿ lS�� � lNe; �35�
where tr is the trace of the product of matrices
(which has to be distinguished from the trace of
the operators, denoted by Tr). The interpretation
of the functional is quite straightforward [46,42].
We ®rst note that the Hamiltonian is shifted by
the chemical potential l. Doing this is equivalent
to working with the grand potential
X � E ÿ lNe � Tr�q̂�Ĥ ÿ l��, which ensures that
the normalization condition Eq. (25) will be satis-
®ed at the solution. This is so because, after the en-
ergy shift, the occupied states (below the Fermi
level) have negative energy, and their occupation
will be maximized, whereas the empty states
(above the Fermi level) have positive energy, and
their occupation will be minimized. The position
of the chemical potential must therefore be adjust-
ed a priori or during the minimization, so that it
lies within the energy gap, using the condition

Ne � tr�KS� �
XNb

lm

KlmSlm: �36�

To see how the idempotency constraint is satis®ed
as the minimization proceeds, we notice that, if the
functional is freely minimized with respect to K
(i.e., without using the construction from L), the
eigenvalues of ~q corresponding to states below l
would be driven to �1, and those corresponding
to states above l would evolve to ÿ1, and the en-
ergy would decrease inde®nitely. However, if ~q is
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constructed from q by the puri®cation transforma-
tion, the eigenvalues of ~q are automatically re-
stricted to the interval [0,1], since the function
f �x� � 3x2 ÿ 2x3 has a minimum at f �0� � 0, and
a maximum at f �1� � 1 (see ®gure 1 in Ref.
[46]). Eigenvalues of ~q with negative energy will
evolve to �1 and those with positive energy to 0,
and therefore ~q will be driven to idempotency at
the solution of the minimization, without imposing
idempotency explicitly.

It is clear, however, that the minimization pro-
cedure has runaway solutions, since the eigenvalues
of ~q can be outside the [0,1] interval if those of q
are outside [±0.5, 1.5]. The physical minimum is
therefore a local, and not a global one. In practice,
this does not represent a problem, and the local
minimum is reached without di�culty if the initial
guess in the minimization process is chosen reason-
ably (the usual choice is a diagonal L matrix, with
0.5 in the diagonal [46]). We also note that an al-
ternative derivation of the LNV functional, with-
out any reference to the McWeeny puri®cation
transformation, was given by Ordej�on et al. [42],
in terms of Lagrange multipliers for the idempo-
tency constraints.

In the practical implementation of the method,
the energy functional Eq. (35) is minimized with
respect to the values of Llm. This minimization
can be done by standard techniques like steepest
descents or conjugate gradients (CG), since the en-
ergy gradients with respect to the degrees of free-
dom are readily calculated

d ~E
dL

� 3�SLH0 �H0LS� ÿ 2�SLSLH0 � SLH0LS

�H0LSLS� �37�
(where H0 � Hÿ lS is the shifted Hamiltonian).
The minimization is done along the line given by
the gradient (or the conjugate gradient, in the
CG approach). The line minimization can be done
exactly, since the functional is a polynomial of
third order in the parameter de®ning the line. It
should be noted here that White et al. [54] have re-
cently shown that the gradients in Eq. (37) are not
tensorially consistent for the case of nonorthogo-
nal bases, and have proposed an alternative form
which satis®es the correct tensor properties. This

gradients provide a more e�cient minimization
in the case of strongly nonorthogonal bases, but
with the complication that it involves the Sÿ1 ma-
trix.

The calculations can be performed at constant
chemical potential l, which in MD simulations
can yield to a variation of the total number of elec-
trons by Eq. (36) (since the position of l can
change with the movement of the atoms). One
can also ®x the number of electrons, and adjust
l during the simulation. Qiu et al. [50] discussed
a procedure to perform this adjustment e�ciently,
during the minimization of the energy functional.

The calculation of forces within the LNV
scheme is also straightforward, as analytical deriv-
atives of the energy functional. In general, the de-
rivatives of ~E with respect to a parameter k (like,
for instance, an atomic coordinate) is given by

d ~E
dk

� Tr L
dH0

dk

" #
� tr KH0K�3ÿ 4SK� dS

dk

� �
: �38�

An important extension of the LNV method has
been done by Hernandez et al. [9,10], who used
the concept of support functions discussed above
to produce an ab-initio technique (within DFT)
with Order-N scaling. They introduce the value
of the support functions ul�r� at the points of a
real-space grid as additional variables in the ener-
gy functional, besides the matrix L. The minimiza-
tion of the energy therefore produces the
simultaneous optimization of the DM and the sup-
port functions. This real-space grid approach
shows a lot of potential [55] because it is not biased
by the choice of a particular basis set as in LCAO
approaches. The drawback is that the cost is signif-
icantly larger, since the number of variables (value
of each support function at each point of the grid)
is very large.

We ®nally note that Corkill and Ho [56] have
proposed a method to include fractional occupan-
cy of electronic states in the LNV formalism,
which allows to perform calculations with a ®nite
electronic temperature. The method consists in
using the Mermin free energy [57] X � E ÿ TS,
with an appropriate polynomial approximation
for the entropy S. Carlsson [58] has also used the
LNV formulation together with a particular repre-
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sentation of the trial density matrix in terms of
``traveling'' basis orbitals.

3.3.2. Localized density matrices
The elimination of the need to explicitly impose

the normalization and idempotency constraints in
the energy functional is the ®rst step to achieve a
linear scaling. The second one is to use the local-
ization properties of the DM. Since the DM (either
in real space q�r; r0� or in the matrix representation
L decays with the distance exponentially for insu-
lators and as a power law for metals, a good ap-
proximation to the exact solution can be
obtained by restricting the minimization to strictly
localized DMs. This is done by searching for the
minimum over DMs such that

Llm � h/lj~qj/mi � 0 if jRl ÿ Rmj > Rc; �39�
where Rl is the position of the atom in which the
orbital /l is centered. Rc is a real-space cuto� radi-
us which depends on the decay properties of the
DM for each particular system, and on the desired
accuracy of the calculation, but not on the size of
the system. If this truncation of the DM is im-
posed, the calculations necessary to evaluate the
energy functional equation (35) scale as O�N�. In-
deed, if L is truncated at distances larger than Rc it
will be a sparse matrix and the number of nonzero
elements in each row (or column) will be small,
and independent of the size of the system. The
Hamiltonian and overlap matrices H and S are
also sparse in a local orbital representation. The
calculation of K and ~E involve products of these
sparse matrices. If the system is large enough, in
each of the products, a new sparse matrix results
(although with a longer range in real space than
the matrices entering in the product). Since each
product takes a computational e�ort proportional
to the size of the system, the calculation of ~E is an
Order-N operation.

Since the energy functional is variational, the
minimization of the functional with respect to
truncated DMs yields an energy which is always
higher or equal to the exact energy: for a given lo-
calization range Rc, we obtain a variational upper
bound to the exact energy: ~EPEexact: For larger
values of the localization range Rc, the variational
freedom increases, and therefore the energy con-

verges monotonically to the exact one with
Rc : ~E ! Eexact as Rc !1.

Fig. 4 shows the linear scaling of the method,
for an MD simulation of diamond cells with di�er-
ent numbers of atoms, done with the ETB model
of Ref. [59]. The crossover with the standard diag-
onalization is achieved for about 60 atoms in this
particular case (although that depends critically
on the value of Rc chosen, the range of the Hamil-
tonian model and the degree of packing of the sys-
tem). It should be noted here that the application
of the LNV formulation to nonorthogonal Hamil-
tonians is considerably more expensive than for
orthogonal cases. This is due to the form of the pu-
ri®cation transformation, in which the overlap ma-
trix between basis orbitals S enters multiplying the
trial density matrix L. This makes the resulting
matrix product less sparse, with the consequent in-
crease of the computational cost. Therefore, the
sizes of systems for which the LNV formulation
is faster than the standard diagonalization tech-
niques are much larger for nonorthogonal Hamil-
tonians than for orthogonal ones. This problem
does not arise in the case of the orbital formula-
tions presented in the Section 3.4.

Fig. 4. . Comparison of the CPU for the LNV method (full cir-

cles) and the direct diagonalization (open circles) for 10 MD

steps in crystalline carbon, for cells with di�erent numbers of at-

oms. The calculations were done using an ETB model with ®rst

neighbor interactions; taken from Ref. [50].
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3.3.3. Accuracy and applications
The LNV method has been tested in a variety of

systems by di�erent authors. Li et al. [46] have tes-
ted the convergence of the calculated physical
properties with the cuto� Rc for a ETB model of
crystalline Si. Fig. 5 shows the relative error in sev-
eral physical quantities as a function of Rc. The er-
ror in the energy decreases monotonically as
corresponds to a variational calculation. Other
properties also converge to the exact value, but
showing some oscillations. In general, errors smal-
ler than 2% are achieved in all properties with the
inclusion of the ®fth shell of neighbors. An impor-
tant consequence of imposing localization on the
DM and that is clearly seen in Fig. 5, is that, at
the solution, the number of electrons computed
by means of Eq. (36) is not the exact one. How-
ever, it converges very quickly to the correct value.

The localization range Rc to achieve a given ac-
curacy depends on the degree of localization of the
DM. This depends on whether the system is metal-
lic or an insulator, and on the value of the energy
gap. This point is illustrated in Fig. 6, which shows
the cohesive energies of several phases of carbon,
versus the nearest-neighbor distance. All the re-
sults were obtained including a similar number of
atoms in the localization regions (about 45), and

are compared with the exact diagonalization re-
sult. It is clearly seen that the accuracy for metallic
phases is much poorer than for diamond and
graphite (even if this later has a vanishing gap), re-
¯ecting the fact that the DM is less localized for
metallic systems. Similar conclusions were drawn
by Bowler and coworkers [60] in a recent compar-
ative study between di�erent Order-N schemes.
The LNV method performed very well compared
to other linear scaling methods for nonmetallic
systems, whereas for metallic systems, recursion
related approaches would be preferred (see, for in-
stance, ®gures 9 and 10 of Ref. [60]).

The LNV method has been extensively applied
to MD simulations. An important advantage of
the method is that, at any level of truncation Rc,
the forces are analytic derivatives of the approxi-
mate energy ~E, and therefore the quality of the
generated MD trajectories is preserved. This is
not true for other nonvariational methods, which
show discrepancies between the forces and the de-
rivatives of the computed forces, making it di�cult
to perform high quality MD simulations. This
point has been thoroughly discussed by Bowler
et al. in their comparative study. Another point,
of course, is how the forces converge to the exact
result as a function of Rc. This was also studied
by Bowler et al., showing similar conclusions as
for the cohesive energies. Qiu et al. [50] have done
extensive tests on the quality of the MD trajecto-
ries for di�erent crystalline, amorphous and liquid
carbon systems. These tests show that the LNV
method with truncated DM provides trajectories
with a good energy conservation, and which follow
closely those obtained with exact diagonalization.
They have also discussed possible schemes to opti-
mize the extrapolation of the DM between di�er-
ent time steps.

Vanderbilt and coworkers [61±63] have applied
the LNV method to the study of dislocations in sil-
icon. The possibility of studying systems with sizes
up to 103 is essential in dealing with such extended
defects in materials, allowing the determination of
formation energies, migration barriers and kink-
solition reaction pathways. Morris et al. [64] have
studied the structure and energetics of tilt grain
boundaries. They considered boundaries with dif-
ferent angles. For small angles the calculation re-

Fig. 5. Relative error (in percent) of the LNV density matrix

method versus the localization range of the DM Rc. Results

are for Si in the diamond structure, and were obtained using

an empirical orthogonal TB model; taken from Ref. [46].
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quires several thousand atoms, due to the large pe-
riodicity, which is only possible with an Order-N.
Kahn and Lu [65] also applied the LNV scheme
to the calculation of structural properties and vi-
brational modes in silicon calthrates. The study
of the structure and vibrations of large, complex
systems is also a natural ground for application
of these approaches.

Goringe et al. [66] have implemented the meth-
od of Hernandez et al. in parallel machines, ob-
taining excellent performances with systems
containing several thousands of atoms. It should
be noted, however, than the parallelization of
these methods is more di�cult than in the projec-
tion technique of Goedecker, since more informa-
tion needs to be passed between processors in the
matrix multiplications during the functional mini-
mizations.

3.4. The local orbitals methods

The method of Localized Orbitals (LO) was
®rst introduced independently by Mauri et al.

[48] and by Ordej�on et al. [49]. As in the case of
the LNV functional, the idea was to derive a func-
tional which, when minimized, would lead to the
correct ground state energy, but for which the con-
straints would not need to be explicitly imposed.
In the LO formulation, the variables of the func-
tional minimization are the coe�cients Cli of the
expansion of the wave functions in an atomic or-
bitals basis (Eq. (11)). The derivations of Mauri
et al. and Ordej�on et al. are quite di�erent. The
®rst authors start with the functional of Eq. (26),
which is valid for nonorthogonal states, and derive
a new functional form by substituting the inverse
overlap matrix by a truncated polynomial expan-
sion in terms of powers of �1ÿ S�. Ordej�on et
al., however, derive the same family of functionals
by considering the form Eq. (22), which is only
valid for orthonormal states, and introduce the
constraints within the functional by means of a La-
grange multipliers term. A ®rst approximation to
the Lagrange multipliers yields the functional orig-
inally derived by Ordej�on et al. which corresponds
to the ®rst order in the polynomial expansion of

Fig. 6. Cohesive energy versus nearest-neighbor distance for di�erent carbon structure. Full and broken curves are the results from

exact diagonalization calculations and for the LNV density matrix approach, respectively; taken from Ref. [50].
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Mauri et al. As was later shown by Ordej�on et al.
[42], successive approximations to the Lagrange
multipliers yield the same family of functionals
as those generated by the di�erent polynomial ap-
proximations of the inverse overlap matrix in the
derivation of Mauri et al.

3.4.1. The family of orbital energy functionals
The successive approximations to the inverse

overlap matrix or to the Lagrange multipliers yield
a family of functionals that can be expressed as

~E�N��v� � 2
XN
ij

Qij�Hji ÿ gSji� � gNe; �40�

where vi �
P

l Cli/l are the wave functions which
are the variables of the minimization,
Hij � hvijĤ jvji; Sij � hvijvji; and

Q �
XN
n�0

�Iÿ S�n: �41�

Di�erent functionals are obtained with di�erent
orders N in the expansion of Q. We will refer to
these as the Mauri±Ordej�on functionals. It can
be shown [67,42] that, if N is an odd integer,
and the constant g is such that the shifted Hamil-
tonian �Ĥ ÿ g� is negative de®nite in the space
spanned by the basis set fwlg, then the energy
functional ~E�N� has two important properties: (i)
the global minimum with respect to the wave func-
tions (or the coe�cients Cli� is the correct ground
state energy, and (ii) the wave functions are or-
thogonal at the minimum: Sij � dij. Therefore, an
unconstrained minimization of the energy function-
al will yield the correct energy and an orthogonal
solution. Note that no orthogonality constraints
need to be explicitly imposed, and that orthogo-
nality will only be achieved at the end of the min-
imization.

The charge density of the system can be com-
puted consistently with the energy functional. Ac-
cording to Eq. (27) and with the approximation of
Sÿ1, a the DM in real space will be given by

~q�r; r0� � 2
XN
ij

Qijvi�r�vj�r0�: �42�

It is easy to show that this corresponds to a puri-
®cation transformation from the trial DM

q�r; r0� � 2
XN
i

vi�r�vi�r0�: �43�

In terms of operators, we have

~̂q � q̂
XN
n�0

�1ÿ q̂�n: �44�

Therefore, the Mauri±Ordej�on functionals belong
to the general class of functionals introduced in
Section 3.2. Eq. (40) can be expressed in the form
of Eq. (32). In this case, L � I is ®xed, K � Q;u
are the wave functions v, and M � N � Ne=2.

The energy functionals of Eq. (40) only have a
global minimum if the spectrum of the shifted
Hamiltonian is negative. Since calculations are
done with a ®nite basis set, this is always possible
choosing an appropriate value for g. However, this
is not necessary in practice, and a weaker condi-
tion can be imposed on g. It was shown [67,42]
that the functionals have a local minimum if g is
chosen to be larger than the highest occupied ei-
genvalue of Ĥ . Therefore, there are runaway solu-
tions, like in the LNV functional, but this does not
cause problems in practice.

In practical applications, it is common to use
the lowest order �N � 1� functional, for which
Q � 2Iÿ S. This minimizes the number of matrix
products, and yields the same correct energy when
no localization constraints are imposed on the
wave functions vi. We will discuss in the next sec-
tion what the consequences of imposing localiza-
tion are.

The minimization of the Mauri±Ordej�on func-
tional follows the same lines of the LNV method.
The gradients of the energy functional with respect
to the degrees of freedom (the coe�cients Cli, and
the energy is minimized along the line de®ned by
the gradients. The explicit formulas for the gradi-
ents as well as details on how to perform the line
minimization can be found in Ref. [42].

The calculation of the forces is done by analyt-
ical derivation of the energy functional with re-
spect to the atomic positions. The resulting
expressions are given by Ordej�on et al. in Ref.
[42], in terms of the derivatives of the Hamiltonian
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and overlap matrix elements in the atomic orbitals
basis, as in the LNV case.

A generalization of the Mauri±Ordej�on func-
tionals was suggested by Kim et al. [68]. The idea
is to use a number M of wave functions vi larger
than the number of occupied states N � Ne=2,
while keeping the same functional form. The ener-
gy functional and DM take the same form as in
Eqs. (40) and (42), but the sum now runs over
theM wave functions. The properties of the Kim's
functional are the same as those of that of Mauri±
Ordej�on, except that the correct ground state ener-
gy is now obtained only if the value of g is within
the gap between the highest occupied molecular
orbital (HOMO) and the lowest unoccupied mo-
lecular orbital (LUMO). Since the number of wave
functions is larger than the number of occupied
states, g serves now to select which levels will be
occupied or empty. One consequence is that the
minimum is always local, and there is no global
minimum. The minimization is nevertheless stable,
unless the energy gap is too small, in which case
some problems with runaway solutions may ap-
pear. Yang [69] has recently proposed a further
generalization of this kind of functionals, for
which there is an absolute global minimum, and
that may have better stability properties in trou-
blesome cases.

We should note that the family of Mauri±Or-
dej�on functionals yield solutions that are orthogo-
nal, so that the ®nal overlap matrix is the unit
matrix. For the Kim's case, however, the solution
can be reached for a set of orbitals that do overlap.
It can be shown that the overlap is such that N ei-
genvalues of the matrix Sij have value equal to one,
and the other M ÿ N are zero. Therefore, the solu-
tion is equivalent (by a unitary transformation) to
N orthonormal wave functions andM ÿ N orbitals
with zero norm [68].

In the same line as the orbital functionals de-
scribed so far, Hierse and Stechel [70] have ex-
plored the possibility of using di�erent forms of
the relation between the wave functions vi and
the trial DM. Instead of using the simple choice
of L � I, they have proposed to use a more general
expression of the form Eq. (29) (with u � v), and
use L as variational parameters, besides the wave
functions. They choose to use the same number

of wave functions as the number of occupied states
�M � N�. The advantage of such a formulation is
that the wave functions vi that minimize the energy
functional can be nonorthogonal. This can have
favorable consequences when electronic localiza-
tion is imposed, since nonorthogonal Wannier
functions are more localized than orthogonal ones
[71].

In contrast with the LNV method, the orbital
methods presented in this section are well suited
to the application in the context of nonorthogonal
TB Hamiltonians. The overlap of the basis is nat-
urally included, and the numerical e�ort is not sig-
ni®cantly increased with respect to orthogonal
bases. Nonorthogonal bases are inescapable for
AITB calculations, and therefore the possibility
of handling the overlap without a signi®cant in-
crease of the required e�ort is an important prop-
erty of LO methods. Ordej�on and coworkers
[11,12,16] have developed an ab-initio LCAO
scheme with linear scaling, using the LO approach.
The method allows calculations with arbitrarily
complete atomic basis sets, and within di�erent
fully self-consistent functionals of DFT (both
within the local density approximation and with
the inclusion of gradient corrections).

3.4.2. Localized orbitals
Once we have a series of functionals which can

be minimized without any explicit implementation
of the orthogonality constraints or the inversion of
the overlap matrix, we introduce the second ingre-
dient to achieve an Order-N scaling: the localiza-
tion of the electronic states. In this case, the
minimization of the functionals is done with re-
spect to a set of spatially truncated wave functions
vi. Each of these LO is restricted to be nonzero
only in an appropriate region of space, which we
call the localization region (LR). The LO is al-
lowed to vary freely within the LR, in order to
minimize the energy functional. The LO resulting
in the energy minimization procedure will there-
fore resemble the generalized Wannier functions
described in Section 2.2, but truncated besides
some real-space cuto�. In an LCAO approach,
the localization is easy to impose: a given LO vi
centered at position R will be expanded only as a
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function of the atomic orbitals /l whose center Rl

is closer than Rc:

vi �
XNb

l

Cli/l; Cli � 0 if jRi ÿ Rlj > Rc:

�45�
Once the localization has been imposed, the meth-
od automatically scales as O�N�, since, as in the
case of the LNV functional, all the matrices be-
come sparse.

The localization constraints would not intro-
duce any error in the energy if the LO could be ob-
tained as a unitary transformation of the occupied
eigenfunctions. However, since the Wannier func-
tions contain tails which decay but are not strictly
zero, the truncation within the LR will produce
certain errors in the computed energy. The local-
ization approximation will be expected to work
better for insulators than for metals, since the
Wannier functions are exponentially localized.

An important feature in the present LO func-
tionals is that the errors produced by the trunca-
tion of the LO are always positive, because the
energy is variational. This is essential for the reli-
ability of the method. It has been recognized
[42,72] that in a nonvariational calculation with
the standard functionals (Eq. (22) or Eq. (26)),
the truncation of the LO within the LR produces
large, uncontrolled errors in the computed total
energy. The errors come from the approximate or-
thonormalization procedure necessary to apply the
functional of Eq. (22), or in the calculation of the
truncated Sÿ1 matrix entering in the functional of
Eq. (26). The variational character of the new en-
ergy functionals is essential to maintain the errors
under control. Again, as in the case of the LNV
functional, the calculated energy monotonically
converges to the exact value when Rc is increased.
For in®nite localization range, the functional ener-
gy is exact.

The localization imposed on the wave functions
has some e�ect in the behavior of the energy func-
tional. For the Mauri±Ordej�on and Kim's func-
tionals, the solution is no longer completely
orthogonal for the ®rst case and with 0 or 1 eigen-
values of the overlap matrix for the second case.
There is a slight deviation, which is stronger for

shorter localization ranges. In consequence, simi-
larly to the LNV case, the computed number of
electrons at the solution is not the exact one, al-
though it approaches it rapidly when the localiza-
tion range is increased. This is also the case for the
functional of Hierse and Stechel.

A main e�ect of the localization in the Mauri±
Ordej�on functional is that it introduces a multi-
tude of local minima in the functional. The mini-
mization is therefore signi®cantly more di�cult,
since the procedure can be trapped in one of these
local minima. This problem is severe if the minimi-
zation is started from a random initial guess. If,
however, some physical information is used to ini-
tiate the minimization, the procedure converges to
a better ®nal solution (although there still are
many local minima with very similar energy).
One such way [42] is to build initial wave functions
from bonding combinations of atomic orbitals.
This approach was taken successfully in the appli-
cations presented in Refs. [73,74]. However, in
cases where high disorder is present, this is not
possible and the local minima produce severe
problems. These local minima are also the cause
that the energy conservation is poor during MD
simulations [67,42]). Ordej�on and coworkers [42]
have studied strategies to improve the conserva-
tion of the energy and the quality of the trajecto-
ries during MD runs.

The problem of local minima was solved by the
introduction of the functional of Kim et al. [68].
They showed that including a number of functions
larger than the number of occupied levels eliminat-
ed the existence of local minima, and the depen-
dence of the ®nal solution on the initial guess
(see ®gures 2 and 3 in Ref. [68]. The use of this
functional is therefore recommended in cases
where it is not possible to use physical information
to build the initial wave functions.

In Fig. 7 we show the CPU time required by the
LO scheme with the functional of Kim, compared
to standard diagonalization. The results were ob-
tained with the ab-initio LCAO method or Or-
dej�on and coworkers [11,12,16], for a fully self-
consistent LDA calculation for di�erent Si super-
cells in the diamond structure. A minimal SZ basis
was used in the calculation. The ®gure shows the
CPU time per MD step in a dynamical simulation
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done with an average temperature of 200 K. For
comparison, we also show the typical CPU re-
quirements of a PW calculation for the same sys-
tem. We see that the �O�N� solution is faster
than the standard diagonalization for relatively
small system sizes, and that the present ab initio
LCAO approach performs several orders of mag-
nitude faster than PW calculations, at the cost of
introducing some errors due to the small size of
the LCAO basis set used.

3.4.3. Accuracy and applications
Ref. [42] shows several examples of the accuracy

of the Mauri±Ordej�on functional for the calcula-
tion of total energies, lattice constants, bulk mod-
uli, phonons and MD simulations for silicon and
carbon. Fig. 8 shows the accuracy of several prop-
erties for silicon in the diamond structure, as a
function of the LR cuto� Rc. The results were ob-
tained with the ab-initio Harris functional TB
Hamiltonian of Sankey and Niklewski [75]. In this
calculation, the center of the LR was chosen in the
middle of the bonds between Si atoms. Each local-

ized function includes all the atomic orbitals of at-
oms which are closer than Rc to either of the two
atoms forming the bond. The convergence proper-
ties are quite similar to those of the LNV function-
al (Fig. 5). Small relative errors are obtained as
soon as the third shell of neighbors are included
in the LR, and with the ®fth shell the errors are de-
creased below 3%. We note that in this calculation,
the Hamiltonian and overlap between atomic or-
bitals extends up to the third shell of neighbors.
This does not seem to have any e�ect on the qual-
ity of the solution in terms of localized orbitals.

The use of the functional of Kim improves the
variational estimate of the energy for a given Rc,
as shown in Table III of Ref. [68]. The reason is
that the number LO is larger than in the Mauri±
Ordej�on functional, increasing the variational free-
dom. However, it requires the knowledge of the
position of the chemical potential, which has to
be determined during the calculation as in the
LNV approach.

The functional of Hierse and Stechel gives a
more accurate value of the energy than the other
functionals, for a given localization range (see Ta-
ble II in Ref. [70]. The reason is that nonorthogo-

Fig. 8. Relative error (in percent) of the LO method of Mauri±

Ordej�on versus the localization range of the LR Rc. Results are

for Si in the diamond structure, and were obtained using an the

ab-initio TB model of Sankey and Nikleski; taken from Ref.

[42].

Fig. 7. Comparison of the CPU per MD time step with the LO

functional of Kim and the direct diagonalization method. The

results are obtained with the ab-initio LCAO method of Or-

dej�on and coworkers. The point labeled PW denotes the typical

CPU time required in a PW calculation in the same system.
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nal Wannier functions are more localized than or-
thogonal ones, and therefore the truncation has a
less strict e�ect in the computed energy. This, how-
ever, is achieved at the cost of introducing a larger
number of minimization variables, through the
matrix L, which is kept constant in the Mauri±Or-
dej�on and Kim's functionals. As discussed by Hie-
rse and Stechel [70], the most attractive feature of
their functional is that the solution is more trans-
ferable than the orthogonal solution, since orthog-
onality between neighbor local orbitals means
some degree of mixture that makes them less trans-
ferable between di�erent environments.

The Mauri±Ordej�on and Kim's functionals
have been thoroughly applied to MD simulations.
The properties of the generated dynamics were an-
alyzed by several papers [67,42,68].

The application of the present functionals to
metals has been very scarce. The reason is the slow
decay of the Wannier functions in metals. Mauri
and Galli performed an MD simulation of liq-
uid-C, obtaining quite good results, even though
it is a metallic system. However, the metallic char-
acter is quite special, and the electronic states are
localized because of disorder. For normal metals
with delocalized states, the performance of the
method is not satisfactory.

Many practical applications of these functionals
have been presented since they were proposed.
Lewis and coworkers [73,74] have used the Ma-
uri±Ordej�on functional for the study of large bio-
logical molecules. They studied for the ®rst time
the structure, electronic and vibrational states of
a DNA helix using electronic-structure methods
[73]. The segment contained a whole turn of the
helix, with a total of 644 atoms. Galli and cowork-
ers [76±78] have done extensive studies of the de-
position of C60 and C28 fullerenes on
semiconductor surfaces, and the formation of ®lms
of amorphous solids during the deposition. The
calculations were done using the functional of
Kim, by MD simulations of the impact of the
fullerenes on the surface, which reveals the process
of formation of the thin ®lm. Kim et al. [79] stud-
ied the structure of extended f3 1 1g defects in sil-
icon, Itoh et al. [80,81] presented a study of the
structure and energetics of giant fullerenes, and
its evolution with size.

The LO method has also been parallelized by
various groups [82,83], with results similar to those
obtained with the DM approaches. Again, the
main di�culty arises in the need to share informa-
tion between processors in the matrix multiplica-
tions.

3.5. Functionals based on penalty functions

Two functional forms have been proposed in
the literature which do not ®t in the classi®cation
scheme discussed so far. In these functionals, the
constraints are not forced by a puri®cation trans-
formation which changes the functional form in
di�erent ways depending on the choice of the
transformation and the variables. Instead, a penal-
ty function is added to the total energy functional.
The penalty is a positive function that increases
with the deviation from the constraints, and there-
fore forces the minimization toward a solution
that satis®es them.

The method of Wang and Teter [84] is based on
an orbital approach, in which a penalty function is
added to the total energy of Eq. (22) to force the
wave functions towards orthogonality. The func-
tional takes then the form

Q�w� � 2
XN
i

hwijĤ jwii � k
XN
ij

jhwijwjij2; �46�

where k is a constant which has to be large enough
so that the penalty wins over the possible decrease
in the ®rst term which can derive from nonorthog-
onal solutions. Wang and Teter have analyzed
how the results can be a�ected by the choice of k.

Kohn [6] has recently proposed a functional
based on the DM that also uses a penalty function
to achieve the constraints (in this case, the idempo-
tency of the DM). The total energy functional
takes the form

Q�~q� � E�~q2� ÿ lN �~q2� � aP �~q� � lNe; �47�
where ~q is the trial DM, l, the chemical potential,
E�~q2�, the standard energy functional evaluated
with the square of the trial DM, N �~q2�, the total
number of electrons resulting from the square of
the trial DM, and P, the following penalty func-
tion:
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P �~q� �
Z

dr ~q2�1ÿ ~q�2jr0�r
� �1=2

: �48�

The penalty is zero if the DM is idempotent, and
positive otherwise. The normalization of the DM
to the corrected number of electrons is achieved
by the chemical potential as in the LNV case.
The last term �lNe� is a constant shift to compute
the energy from the grand potential X � E ÿ lN :
Kohn has shown that, for a given chemical poten-
tial l, if a is larger than a certain critical value ac,
the unconstrained minimization of the functional
provides the exact ground state energy. At the so-
lution, the trial DM is idempotent. The value of ac
is of the order of the spectral width of the occupied
levels times N�l�1=2.

To date there have been no applications of these
two functionals to large scale systems, and there-
fore we will not discuss them further.

3.6. Focusing of small parts of large systems

Ordej�on et al. [85] presented a method to com-
pute the dynamical matrix and the phonons of
large systems from electronic-structure calcula-
tions, with an e�ort proportional to the number
of atoms. The method was implemented with the
local orbital scheme of Mauri±Ordej�on, but could
be adapted to any of the functionals presented
above. The idea is to compute the change in the to-
tal energy with the displacement of a given atom
by allowing to change only those LO which are
near the atom that is moving. This will yield the
dynamical matrix elements coupling that atom
with the rest, and is an O�1� operation. The calcu-
lation of the whole dynamical matrix will therefore
be proportional to the number of atoms in the sys-
tem. The method was applied to determine the vi-
brational spectra of giant fullerenes with up to
3840 atoms.

This approach points to a possible use of linear
scaling techniques based on electronic localization
which has not been much explored. It would con-
sist on focusing on local parts of a large system,
like in local relaxations, chemical reactions in large
molecules, surface problems, etc. The calculation
would concentrate on the electronic variables near
the region of interest, producing an algorithm that

would scale as the size of that region, and not of
the whole system. The electronic variables in other
regions would be maintained ®xed, providing an
optimal boundary condition for the part of inte-
rest. The advantage of this scheme in conjunction
with the variational energy functionals is that the
local optimization is easy to do in terms of only
a few variables (those included in the region of in-
terest), and the energy is still variational (an upper
bound to the exact energy). Therefore, the errors
are kept under control, and will diminish if the re-
gion in which the variables are allowed to change
is large enough.

4. Projection methods

The Projection Methods (PM) are another al-
ternative for the computation of total energies
and forces in large systems with an Order-N scal-
ing. The basic idea of these methods is to use an
approximation to the DM to compute the energy
by means of Eq. (10). The calculation is not varia-
tional, and it therefore does not involve a minimi-
zation. The DM (which, at T� 0 is the projector
operator into the occupied subspace) is approxi-
mated by a polynomial expansion in terms of pow-
ers of the Hamiltonian. In order to achieve linear
scaling, the localization properties of the DM are
again invoked.

In Section 4.1 we will discuss the method to ap-
proximate the Fermi±Dirac projection operator.
In Section 4.2 we discuss the PM as applied to
the calculation of the total energies and forces,
whereas in Section 4.3 we describe recent propos-
als for other uses of the PM, like obtaining gener-
alized Wannier functions, and providing general
proofs of the localization of the DM.

4.1. Chebyshev expansion of the Fermi±Dirac pro-
jector

In order to calculate the Fermi±Dirac projector
operator or DM in Eq. (1), it is approximated by a
polynomial expansion in terms of the Hamiltoni-
an. Sankey et al. [86] proposed to make the expan-
sion in terms of Chebyshev polynomials, which
provide an optimal representation in the minimax
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sense (minimal largest error in the interpolation in-
terval, for a given polynomial order). Other au-
thors have also used the same Chebyshev
expansion [87±90,29], which has to be done at a ®-
nite temperature, to avoid the discontinuous be-
havior of the Fermi±Dirac function. Since the
Chebyshev polynomials provide an interpolation
in the interval [±1, 1], we ®rst need to shift and
scale the Hamiltonian so that its eigenvalues are
within that interval. The Fermi±Dirac function is
therefore approximated by a polynomial of degree
Npl

F̂pl�Ĥ� � c0
2
�
XNpl

j�1
cjTj�Ĥ�; �49�

where the coe�cients ci, which depend on the
chemical potential l and the inverse temperature
b, are calculated numerically [91]. The Chebyshev
polynomials satisfy recursion relations that are of
utility:

T0�Ĥ� � Î ; �50�

T1�Ĥ� � Ĥ ; �51�

Tj�1�Ĥ� � 2ĤTj�Ĥ� ÿ Tjÿ1�Ĥ�: �52�
We note that these are equalities between opera-
tors. The expressions as matrices in a basis set de-
pend on the orthogonality or nonorthogonality of
the basis. In what follows, we will assume that the
basis is orthogonal, although the formulation for
nonorthogonal bases has been described by Baer
and Head-Gordon [29] and by Stephan and Dra-
bold [90].

The projection method can be considered as a
moments method. The Fermi operator is described
as a polynomial series of powers of the Hamiltoni-
an. These are just the moments of Ĥ , as will be
seen in Section 5.1. Unlike other moments based
methods, the projection technique does not relay
on the spectral information (density of states,
Green's functions, etc.), but it serves to compute
the energy in a direct way, as we describe in Sec-
tion 4.2.

Let us now discuss the choice of the inverse
temperature b and the order of the polynomial ex-
pansion Npl. Calculations usually aim at the zero

temperature properties of the system, and there-
fore a large enough value of b should be chosen.
However, the Fermi±Dirac distribution varies
more abruptly with increasing b, a higher order
polynomials would be required to represent it ac-
curately. However, if the system has a gap d� this
is fortunately not needed: one can chose b in such
a way that the Fermi±Dirac distribution only
changes appreciably from the zero temperature
value at energies within the energy gap. The
smooth variation within the gap does not have
any e�ect on the computed properties, since no
states are present at those energies. Once b has
been chosen with this criterion, the order of the
polynomial is chosen so as to represent the result-
ing Fermi±Dirac function accurately. Goedecker
has given an estimate of Npl � 4��max ÿ �min�=d�.
If the system is metallic, b is the physical inverse
temperature, and the result of the calculation will
be sensitive to its value. For calculations of metals
at low temperature, a high value of b will be re-
quired, which will imply a higher order polynomial
and the consequent increase of the calculation
cost.

4.2. The projection method for total energies and
forces

Sankey et al. [86] developed a scheme that used
the above polynomial expansion, combined with
random vectors and recursion, to determine the
occupied eigenstates of the Hamiltonian. Total en-
ergies and forces are therefore available from the
knowledge of the occupied states. The scaling of
the method was still cubic with the size of the sys-
tem, and therefore we will not discuss it further
here.

The full potential of the projection technique
for Order-N calculations was uncovered by Go-
edecker and coworkers [87,88]. These authors have
used the Chebyshev expansion of Eq. (49) to eval-
uate the total energy given by Eq. (10). If the last
equation is expressed in terms of an orthogonal
basis of localized atomic orbitals /l, one obtains
Eq. (13), in which the matrix elements of the Fe-
rmi±Dirac operator between basis set vectors ap-
pear. However, since the DM is localized in real
space, these matrix elements will be small for dis-
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tant orbitals. As an approximation, as in the pre-
vious section, they can be neglected beyond certain
localization region LR de®ned by a radius Rc, lead-
ing to an Order-N scaling. The details of the pro-
cedure are as follows. We de®ne the wave
functions fl which result from applying the Fe-
rmi±Dirac operator on each atomic orbital /l.
The energy can be expressed as

E �
XNb

l

h/ljĤ jfli: �53�

Using the Chebyshev expansion for F̂ , we have

jfli � F̂ j/li � F̂pl�Ĥ�j/li �
c0
2
jt0li

�
XNpl

j�1
cjjtjli; �54�

where the functions jtjli are computed using the re-
cursion relations:

jt0li � j/li;

jt1li � Ĥ j/li;

jtj�1l i � 2Ĥ jtjli ÿ jtjÿ1l i; �55�
jfli corresponds to a column of the Fermi±Dirac
matrix, and therefore will show exponential or

power law localization in insulators and metals, re-
spectively. This is illustrated in Fig. 9 for the cases
of carbon and aluminum. The slower decay in Al is
clearly observed.

Truncation within Rc is now imposed. To
achieve that, and since jfli is computed by apply-
ing the Hamiltonian successively on the vectors
jtjli, Goedecker propose to apply ``re¯ecting''
boundary conditions: whenever such a multiplica-
tion of H by a vector is done, the resulting vector is
truncated within Rc. In this way, the calculation of
each of the vectors fl is an O�1� operation, and the
calculation of the energy scales linearly with the
number of orbitals, and therefore with the number
of atoms.

A great advantage of the present formulation is
that the calculation of each of the vectors fl is in-
dependent of all the others, which makes the meth-
od very easy to parallelize [87]. A disadvantage, on
the other hand, is that, in MD simulations, a given
time step can not use any information of the solu-
tion of the previous time steps, as can be done in
the functional methods. The solution has to be
computed from scratch.

The forces can be obtained as derivatives of the
polynomial expansion, and the explicit formulas
are given by Goedecker et al. [87,88]. We stress
that the formulation presented here is only valid

Fig. 9. Decay of the projected orbitals fl in C (full circles) and Al (open circles); taken from Ref. [88].
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for orthogonal bases. The nonorthogonal case is
considerably more complicated [29,90], since in-
volves the inverse of the overlap matrix between
atomic orbitals. Interested readers are referred to
Ref. [90] for details on how to solve the inverse
overlap matrix problem in an Order-N way.

Goedecker and Teter [88] have analyzed the ac-
curacy and the performance of the method in MD
simulations with empirical TB Hamiltonians.
Fig. 10 shows the absolute error in the total ener-
gies and forces for crystalline carbon. Both quan-
tities converge rapidly to the exact value with the
localization range Rc. They ®nd that, although
the method is not variational, the quality of the
forces is satisfactory for MD simulations. They
have applied the method to liquid-C, obtaining
similar results to those of Mauri and Galli with
the variational LO method [67].

Stephan and Drabold [90] have made a careful
analysis of the possible sources of error in the pro-
jection method: (i) the use of a ®nite value for b,
(ii) the truncation of the Chebyshev expansion,
(iii) the use of a ®nite Rc and (iv) the approxima-
tions involved in the calculation of the inverse
overlap matrix in the nonorthogonal formulation.

They give explicit formulas to estimate these er-
rors, and conclude that, at least for insulators,
the most crucial parameter is the localization Rc

of the orbitals: for reasonable values of b and
Npl, the choice of Rc determines the accuracy of
the calculation. They also show that the conver-
gence of the energy with Rc is not monotonic, in
contrast with the variational schemes. This indi-
cates that careful convergence tests are needed
for speci®c applications.

4.3. Other applications: Generalized Wannier func-
tions and localization theorems

Besides providing an e�cient Order-N tech-
nique for computing total energies and forces,
the projection method also can be used to obtain
generalized Wannier functions. These can be use-
ful for a variety of applications, like the calcula-
tion of polarization and e�ective charges (see, for
instance, the discussions in Refs. [27,92], and refer-
ences therein). They can also be used as an optimal
initial guess for the variational LO methods de-
scribed in Section 3.4. Stephan and coworkers
[90,93] have explored this approach.

Fig. 10. Results of projection method of Goedecker for carbon, as a function of the localization range Rc. Full circles show the error in

the total energy (in eV), for an ordered diamond structure; open circles show the same quantity for a slightly randomly disordered

diamond crystal; squares show the relative error of the forces for the same disordered crystal; taken from Ref. [88].
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The orbitals fl obtained by applying the Fermi±
Dirac operator over a given atomic orbital /l are
localized functions which live in the occupied sub-
space (because of the projection, only the compo-
nent within the occupied space survives). To
obtain linearly independent functions, we there-
fore select the desired number of initial orbitals
at random, and apply the projection operator on
them. If the number of electrons is Ne, we will need
N � Ne=2 such functions. The resulting localized
states, however, will be highly nonorthogonal. In
order to obtain the orthogonal generalized Wan-
nier functions, an orthogonalization procedure is
required. Stephan and Drabold [90] describe possi-
ble ways of achieving this, preserving the linear
scaling.

Another application of the projection technique
has been explored by Baer and Head-Gordon
[29,30]. Since the degree of the polynomial in the
Fermi±Dirac expansion depends directly on the
energy gap of the system, they have given argu-
ments to show what are the localization properties
of the DM as a function of the gap for insulating
systems, and as a function of the electronic tem-
perature for metals. The conclusions seem to be
of general validity, and serve as a general proof
of localization in electronic systems.

5. Spectral methods

In this section we will describe methods that are
intended to provide information about the spec-
trum of the Hamiltonian, or that use this informa-
tion to compute other properties like total
energies, forces, etc. These methods are comple-
mentary to those described in the previous sec-
tions, which are very well suited for total energy
and forces calculations but do not provide any
spectral information. Many properties of interest
in materials depend on the spectrum, and therefore
methods which provide such information are of
very high value.

In contrast to total energy approaches, which
only have ¯ourished in the last decade after the
ideas of Car±Parrinello, spectral methods have a
very long tradition in electronic-structure calcula-
tions. Green's functions have been used to com-

pute electronic properties since many decades.
They provide a natural form to describe the elec-
tronic states in terms of the local environment,
and have therefore been widely applied to systems
with broken periodicity [94] like defects [95], sur-
faces [20], amorphous solids [21], etc.

We do not intend to provide here a detailed
overview of the subject, and we will restrict our-
selves to describing in general terms those recent
approaches that intend to solve the electronic-
structure problem of systems with large number
of atoms with an Order-N e�ort. We will ®rst des-
cribe in Section 5.1 the general concepts involved
in these methods. Section 5.2 treats di�erent
schemes to obtain approximate moments, and Sec-
tion 5.3 describes ways to reconstruct the physical
information from the moments. Finally, in Sec-
tion 5.4 we will mention a method to obtain exact
eigenvectors and eigenvalues at selected energies
with an Order-N e�ort.

5.1. Moments of the density of states

The normalized density of states (DOS) of a
system is an energy dependent quantity de®ned
by the following equation:

n��� � 1

Nb

XNb

i�1
d��ÿ �i�; �56�

where Nb is the size of the basis, which is equal to
the total number of eigenstates, and �i are the ei-
genvalues. The band structure energy can be ex-
pressed in terms of the DOS, as

EBS � 2Nb

Z�F
�n��� d�: �57�

The DOS is a global property of the system. It can,
however, be decomposed into local densities of
states (LDOS) [94] associated to the di�erent basis
orbitals /a

n��� � 1

Nb

XNb

a

na��� �58�

with
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na��� �
XNb

i�1
jCaij2d��ÿ �i�: �59�

Cai are the coe�cients of the eigenstates in the ba-
sis (Eq. (11)). We have assumed that the basis set
is orthonormal. The generalization of the moments
methods to nonorthogonal bases is also possible
(see, for instance, Ref. [96]), but we will not con-
sider it here for simplicity. The DOS and the
LDOS can be represented in terms of their mo-
ments. The pth moment of the LDOS na is de®ned
as

l�p�a �
Z

�pna��� d� �60�

with a similar de®nition for the moment of the to-
tal DOS. The moments can be expressed in a more
useful way as powers of the Hamiltonian:

l�p�a � h/ajĤ pj/ai

�
XNb

b1b2...bpÿ1

Hab1Hb1b2 . . .Hbpÿ1a �61�

and, for the moments of the total DOS

l�p� � 1

Nb

XNb

a

h/ajĤ pj/ai

� 1

Nb

XNb

b1b2...bp

Hb1b2Hb2b3 . . .Hbpÿ1bp : �62�

The knowledge of a the moments up to a certain
order should allowed us to reconstruct the DOS
or LDOS, since the moments bear the information
about the center, spectral range and shape of these
functions. From the densities of states, one can ob-
tain the rest of the physical properties. In the next
few sections, we describe how to obtain approxi-
mate moments, and how to reconstruct the densi-
ties of states from them.

Eqs. (61) and (62) provide a clear picture of
why moments based methods can easily be made
to scale linearly with the size of the system. In both
equations, a moment of order p is obtained by a
process of hopping around the lattice along closed
paths of length p. Therefore, to obtain a given mo-
ment, only a ®nite cluster is necessary. Truncation
of the moment expansion to a given order means

that only clusters up to a given size are required.
Computing the LDOS of each orbital is therefore
an O(1)operation, provided that the system size is
larger than the maximum cluster size. Therefore,
obtaining the total DOS and the energy is an
O�N� operation. The procedure can be further op-
timized in the following way: for a given order of
the polynomial, one can restrict the hops to a clus-
ter of a size smaller than the one that would be in
principle required. This would allow only paths of
p hops that remain close enough to the site under
consideration, which will be more important than
those exploring farther regions. This approach is
very similar to the re¯ecting boundary conditions
in the Hamiltonian multiplications of the Go-
edecker method described in Section 4.2.

5.2. Methods to obtain approximate moments

A large number of methods have been devel-
oped to obtain estimates of the moments. Here
we review some of them, which have shown poten-
tial for application in large-scale calculations.

5.2.1. The Lanczos method
One of the most widely used methods to obtain

information on the moments of the LDOS is the
Lanczos recursion algorithm [97]. The moments
are not obtained directly, although the computed
quantities contain the same information. The
method is an e�cient scheme for tridiagonalizing
a matrix. Given an initial state jU0i, a recursion re-
lation is generated by successive application of the
Hamiltonian:

Ĥ jU0i � a0jU0i � b1jU1i;
Ĥ jU1i � a1jU1i � b1jU0i � b2jU2i;
..
.

Ĥ jUmi � amjUmi � bmjUmÿ1i � bm�1jUm�1i:
..
.

�63�

The states jUmi generated by the recursion series
are orthonormal �hUmjUni � dmn�, and therefore
the Hamiltonian, in the representation of those
states, is tridiagonal. Starting from a known state
jU0i, the recursion coe�cients am and bm are com-
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puted using Eq. (64) successively and imposing
normalization of the states. The procedure there-
fore provides with the series of states jUmi and
the recursion coe�cients am and bm.

If the initial state for the recursion is chosen to
be one of the orbitals of the basis, let us say j/a,
the recursion coe�cients have a close relation with
the moments of the LDOS na���, by virtue of
Eq. (61) and the completeness of the states jUmi:
l�0�a � 1;

l�1�a � a0;

l�2�a � a20 � b21;

l�3�a � a30 � 2a0b21 � a1b21:

..

.

�64�

Therefore, carrying out the Lanczos recursion to
an order m provides us with the ®rst m moments
of the LDOS, Note, however, that the inversion
from recursion coe�cients to moments can be nu-
merically unstable. Therefore, in most common
cases, the Lanczos scheme is used to obtain the re-
cursion coe�cients, which are then used directly to
obtain the Green's functions and the density of
states, as will be described in Section 5.3.1.

We note that the Lanczos method provides the
exact recursion coe�cients up to the order in
which the recursion is carried out, unless approxi-
mations based on the truncation of the cluster over
which the Hamiltonian hops are allowed are ta-
ken. In this case, the linear scaling is preserved,
but errors are involved in the calculated recursion
coe�cients (see Ref. [60]).

5.2.2. The local truncation approach
Silver and coworkers [98±103] have developed a

method to compute approximate moments of the
LDOS in an Order-N way. The procedure follows
quite closely the comments made at the end of Sec-
tion 5.1, and is very much related to the D&C
scheme of Yang [32] and the projection method
of Goedecker [87]. The basic idea is to compute
the moments of the LDOS for a given orbital by
using Eq. (61), but restricting the Hamiltonian to
a subspace containing only orbitals which are in
a localization region around the orbital. The cost
of the calculation of the moments of each orbitals

is therefore independent of the size of the system,
and therefore obtaining the moments for all the or-
bitals scales as O�N�. In their work, they use
Chebyshev moments instead of raw power mo-
ments, because they yield an algorithm numerical-
ly more stable

lTpa �
Z1
ÿ1

Tp����na���� d��; �65�

where �� is the energy shifted and scaled so that the
eigenvalues of the Hamiltonian are in the interval
�ÿ1; 1�. Once the approximated moments are com-
puted, the density of states can be reconstructed
with one of the methods of Section 5.3. Silver
and coworkers have used this scheme in combina-
tion with di�erent procedures for the reconstruc-
tion of the DOS. In Fig. 11 we show results of a
calculation of the atomic relaxations in a vacancy
in silicon [99]. The ®gure shows the convergence in
the two di�erent atomic distances originated by
the Jahn±Teller distortion, as a function of the
number of moments included in the calculation.
The results were obtained imposing truncation be-
yond the third shell of neighbors. The di�erence

Fig. 11. Results for the structure of a vacancy in Silicon (the

two di�erent interatomic distances), obtained by the local trun-

cation approach and the Kernel polynomial method (circles), as

a function of the number of moments included. The dashed

lines are the exact results. The residual error for large number

of moments is the result of the local truncation; taken from

Ref. [99].
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between the Order-N result for high number of
moments and the exact one (dashed lines) is due
to this truncation.

5.2.3. The statistical approach
Skilling [104] noted the possibility of extracting

moments from the operation of the Hamiltonian
on random vectors, which Drabold and Sankey
[105] developed further into an Order-N scheme.
Somewhat related ideas where proposed by Varga
[106], and used later by Krajc and Hafner [107] in
another Order-N approach. Here we will describe
the method of Drabold and Sankey.

We take a set of nv random normalized states
jnii, from which we compute

m�p�i � hnijĤ pjnii: �66�
It is easy to see that, if a su�ciently large sampling
of such random vectors is taken, then the average
hm�p�i coincides with the moments of the DOS l�p�.
The calculation of each of the m�p�i scales as O�pN�,
if the Hamiltonian is sparse, since it involves p
multiplications of Ĥ over a vector. The average
therefore will be an O�pnvN� operation. Drabold
and Sankey have observed that the number of ran-
dom vectors does not grow with the size of the sys-
tem, and therefore computing the moments will be
Order-N . Stephan et al. [93] have made an analysis
to the relative errors, showing that, for isolated
states in the DOS, they decrease with nv, but do
not depend on the system size, whereas for contin-
uous DOS the errors decrease with both Nv and N .
Therefore, for continuous features in the DOS, the
method requires less random vectors for larger sys-
tem sizes, and its scaling is therefore sublinear.

Random vectors were also used by Iitaka and
coworkers [108,109] to calculate the linear re-
sponse with an Order-N , together with a Cheby-
shev expansion of the projection operator. The
method allows the calculation of the frequency de-
pendent dielectric constants for very large systems,
and was applied to hydrogenated silicon nanoclus-
ters with 13 464 Si atoms. Wang [110] performed
calculations in similar but smaller systems, with
Chebyshev moments obtained from random vec-
tors.

5.3. Reconstructing the density of states from
approximate moments

Once that the moments of the DOS or LDOS
have been obtained, a method is needed to recon-
struct these functions, and compute the physical
properties of the system. Although many possible
schemes have been devised, only some of them
are enough robust and stable to produce results
with arbitrary accuracy. Many of the methods be-
come unstable for large numbers of moments, and
are therefore not well suited for precise calcula-
tions. Here we will describe brie¯y some of the
methods that have proved successful.

5.3.1. Recursion methods
The method of recursion [5,22] is one of the

most widely used to build the density of states
from the moments. The method provides a stable
representation of the DOS in terms of Green's
functions, which is expressed as a continuous frac-
tion. For a given state jU0i, the diagonal element
of the Green's function can be expressed in terms
of the recursion coe�cients am and bm generated
by the Lanczos method from jU0i

G00�Z� � 1

Z ÿ a0 ÿ b2
1

Zÿa1ÿ
b2
2

Zÿa2ÿ
b2
3

. .
.

: �67�

The Green's function allows us to compute the lo-
cal density of states on a particular orbital:

na��� � ÿ 1

p
lim
g!0

ImfGaa��� ig�g �68�

from which the total energy can be computed.
These relations are the basis of many approach-

es. One of them is the Bond-Order Potentials
method [111,112], which has been recently re-
viewed by Hors®eld and coworkers [113]. The
method provides a natural link between electron-
ic-structure and empirical classical potentials,
and presents a series of nice features like the ability
to compute accurate forces, which is a di�cult is-
sue in Green's functions based methods. The inter-
ested readers are referred to the work of Hors®eld
et al. [113], and a recent work by Bowler et al. [60]
where the performance of the method for Order-N
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calculations of total energies, forces and MD is
presented, and compared with others. One of the
main conclusions of that study is that the BOP
method is preferred over other Order-N schemes
like the LNV functional when metallic systems
are studied.

Baroni and Giannozzi [114] developed a scheme
based on the recursion formalism to compute the
Green's function in real space without the use of
orbitals. The method used a discretization of the
Hamiltonian in the points of a grid in real space,
and solved the Green's function by recursion.
The truncation of the continuous fraction after a
®nite number of steps produces the linear scaling
of the method.

The multiple scattering method [115] is also
based on the use of Green's functions of a given at-
om, which are calculated taking into account only
a number of shells around it. The method shows
excellent potential for parallelization, and has
shown to provide a quite accurate description of
the energies of disordered phases of metal.

5.3.2. The maximum entropy method
The maximum entropy (Maxent) method [104]

provides a way to reconstruct original data from
incomplete information. This is exactly the kind
of problem that one faces when trying to obtain
the DOS from a ®nite number of moments, and
therefore Maxent provides a possible solution.
Several authors have tested this possibility [116±
118,105,103,102] with satisfactory results. The de-
tails of Maxent algorithm can be found in [118].
In essence, the method tried to ®nd the DOS n���
which satis®es the constraints that it must repro-
duce the values of the moments computed by some
other method. The Maxent principle requires that
the solution maximizes the ``entropy''

S � ÿ
Z

n��� ln�n���� d�: �69�

The method is stable with very large numbers of
moments, so that considerable spectral resolution
can be achieved (see ®gure 2 in Ref. [119], where
van-Hove singularities are nicely described). In
Fig. 12 shows the density of states computed with
a Maxent reconstruction of the moments obtained

Fig. 12. Density of states of an amorphous carbon periodic cell with 4096 atoms; taken from Ref. [101].
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by the statistical approach described of Sec-
tion 5.2.3. The system is a 4096 atoms cell of
amorphous carbon. The accuracy of the calcula-
tion depends in this case on the number of random
vectors used to obtain the moments, and on the
number of moments used in the reconstruction.
In this case, a very large number (512) was used
to reproduce the localized states within the energy
gap. Smaller numbers of moments provide less res-
olution, since the amount of information for the
reconstruction of the DOS is also smaller. Only
four random vectors were used in the example
shown. Dong and Drabold further applied the
Maxent method with moments obtained from ran-
dom vectors for the study of band tails in amor-
phous silicon and carbon [120,121].

5.3.3. The kernel polynomial method
In the Kernel Polynomial method (KPM) [98±

103], the density of states is approximated by an
expansion in terms of orthogonal polynomials.
Chebyshev polynomials are the most common
choice. Since only a limited number of moments
are available, this is a truncated polynomial expan-
sion, which shows typical Gibbs oscillation phe-
nomena. These can be dumped with appropriate
Gibbs factors gp, so that the approximation to
the density of states is given by

n��� � 1

p
������������
1ÿ �2

p l�T0� � 2
XM
p�1

l�Tp�gpTp���
" #

; �70�

where l�Tp� are the Chebyshev moments de®ned in
Eq. (65), andM , the number of moments in the ex-
pansion. The optimal values of gp can be found in
Ref. [99]. It can be shown that the above estimate
of the DOS is a convolution of the exact DOS with
a Kernel polynomial. The width of the convolu-
tion function is smaller for larger orders M of
the expansion, thus providing with higher spectral
resolution.

5.4. The folded spectrum method

To conclude the description of spectral methods
with Order-N scaling, we will brie¯y describe a
methods that can be used to compute speci®c
eigenstates and eigenvalues for large systems, with

an e�ort proportional to the size of the system for
each computed state. In contrast with the methods
described so far, where the Order-N scaling is
achieved at the cost of doing some approxima-
tions, this method is exact (but the cost of each
state is O�N�).

Several methods enable us to calculate the ext-
remal eigenvalues of a sparse Hamiltonian in Or-
der-N operations. One is the Lanczos method;
another is the minimization or maximization of
the expectation value of the Hamiltonian for all
possible wave functions jwi. However, the calcula-
tion of a state that is not at the extremes of the
spectrum is problematic. The Lanczos procedure
can be used to compute the second low-lying state
once the ®rst is known, by imposing orthogonality
to it. However, the process is unstable as soon as a
few levels have been obtained, due to the loss of
orthogonality between the states in the Lanczos
chain originated from ®nite-precision arithmetic
[122].

A solution to this problem is the folded spec-
trum method, which seems to have been derived
independently by several authors [123±128]. The
central idea is that, if wi is an eigenstate of Ĥ with
eigenvector �i, then it will also be an eigenstate of
�Ĥ ÿ �ref�2, with eigenvalue ��i ÿ �ref�2. This opera-
tor has the same eigenstates as Ĥ , but its spectrum
is folded about �ref . Therefore, the lowest eigenval-
ue of the folded operator can be obtained by Lan-
czos [128] or by minimization of hw�Ĥ ÿ �ref�2jwi
with respect to all possible wave functions
[123,125], and this will provide us with the eigen-
state and eigenvalue of the original Hamiltonian
Ĥ closest to �ref . Hence, we can compute any eigen-
state of the Ĥ which just choosing the reference en-
ergy �ref .

6. Conclusions

We have described a number of methods that
allow us to solve the electronic problem of large
systems with an e�ort which scales linearly with
the number of atoms. The main physical idea be-
hind these methods is the locality in the electronic
structure, which di�erent methods exploit in di�er-
ent manners. The development of these methods is
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proceeding at a very high rate, and new methods
and improvements on existing ones are continu-
ously being proposed. With these techniques, we
are now able to look into the possibility of study-
ing problems which were out of the question a few
years ago. The combination of these methods with
the availability of fast workstations and with mas-
sively parallel computers can represent a revolu-
tion in the applicability and predictive power of
electronic-structure methods in materials and bio-
logical systems.

An interesting e�ect of the appearance and de-
velopment of Order-N techniques has been a re-
newed interest in the TB approach, both
empirical and from ®rst principles. TB provides
an ideal framework to understand the properties
of condensed matter systems from a local perspec-
tive. Since Order-N is based on locality, TB is the
natural languages in which Order-N methods are
formulated. Since larger systems sizes are being ac-
cessible, the interest in developing more accurate
and reliable TB models is increasing.

So far, most of the Order-N methods have been
developed and applied in the context of empirical
or semiempirical model Hamiltonians. This is
manly due to the fact that, in ®rst principle ap-
proaches, the solution of a given Hamiltonian is
only one aspect of the problem. The other side is
the construction of that Hamiltonian from ®rst
principles. Doing so in Order-N operations is not
an straightforward task. However, advances in
that direction are also proceeding fast, and now
there are some schemes that have solved this prob-
lem and allow us to perform ab-initio simulations
with systems of thousands of atoms.

As has been often pointed out, as increasingly
larger sizes are becoming available in our simula-
tions, we start encountering another problem,
which can represent an important barrier for fu-
ture development. It is the issue of the simulation
time. For large systems, the presence of slow de-
grees of freedom makes the time scale increase.
For instance, changes in con®gurations in macro-
molecules, or propagations of cracks in materials
are processes for which the time scale is unattain-
able for the present techniques. Advances in this
®eld would be very much needed.
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