
IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 12, NO. 1, FIRST QUARTER 2010 39

Routing Algorithms for Content-Based
Publish/Subscribe Systems
J. Legatheaux Martins, Senior Member, IEEE, Sérgio Duarte

Abstract—In content-based publish/subscribe systems, mes-
sages target a dynamic group of participants whose expressed
interests match the contents of the messages. In this gener-
alization of multicasting communication, also dubbed content-
based networking, naming, binding and communication are
intertwined in the same substrate. Optimal content-based routing
uses dissemination trees dynamically pruned to only cover the
matching subscribers. It is a complex problem that has motivated
significant research efforts.
This paper presents a compilation of the main algorithms for

routing messages in distributed content- based publish-subscribe
systems proposed and published in the last decade. Discussion
is focused on the content-based routing problem in respect to
optimality, complexity and applicability. Moreover, whenever
it is appropriate, the algorithms covered are also matched to
similar algorithms familiar to the networking community, setting
this paper apart from other surveys on the broad topic of
publish/subscribe systems.

Index Terms—Publish/Subscribe, Content-Based Networking,
Overlay Networks, Multicasting, P2P.

I. INTRODUCTION

PUBLISH/subscribe systems allow many parties to com-

municate by way of asynchronous, many-to-many mes-

sage exchanges. Distributed publish/subscribe systems have

been around for several years. However, due to the global

impact of present-day networked systems, they have recently

attracted a lot more attention due to their emergent applica-

bility, from very large-scale scenarios with many thousand of

users and spanning the whole Internet, up to the world of

mobile systems and wireless sensor networks.

One of the main characteristics of distributed pub-

lish/subscribe systems is that they decouple subscribers and

publishers in space and time [33] and do not require any pre-

vious binding. Participants only need to connect to information

spaces associated with their interests and do not need any prior

knowledge of each other.

Publish/subscribe systems can be topic-based or content-

based. In topic-based systems, each information space is

associated with a so called topic, group or channel. Publishers

publish their notifications to a channel. Subscribers subscribe

to the channel(s) they are interested in. For efficiency and

convenience purposes, some systems allow subscribers to

provide a semantic filter over the contents of the notifications.

Systems with this extra functionality are designated as content-

based.

Manuscript received 18 October 2007; revised 8 December 2008.
Authors are with CITI, Departamento de Informática, Faculdade de

Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Ca-
parica, Portugal (e-mail: jose.legatheaux@gmail.com).
Digital Object Identifier 10.1109/SURV.2010.020110.00065

In the presence of large numbers of notifications, filters can

ease the life of the subscribers and make the system overall

more efficient by not delivering useless notifications. Since

the number of different filters in the system may be very

large, matching notifications and subscriptions needs to be

done very efficiently. The centralized version of this problem

has also been addressed by the database community as it is

analogous to the problem of matching database updates with

the triggers they fire [36] and to the problem of matching

arriving events against a large number of persistent queries in

data dissemination systems [20].

Content-based networking is a generalization of the content-

based publish/subscribe model [18], [1]. In content-based

networking, messages are no longer addressed to the com-

munication end-points (e.g. network addresses). Instead, they

are published to a distributed information space and routed by

the networking substrate to the “interested” communication

end-points. In most cases, the same substrate is responsible

for realizing naming, binding and the actual content delivery.

Examples of Content-Based Publish/Subscribe Systems

Internet news feeds and similar bulletin boards are examples

of early and well-known publish/subscribe systems. These are

essentially topic-based systems offering a pull-based interface.

On top of these, some Internet search providers have imple-

mented more sophisticated content-based facilities, which can

deliver alert messages to users, containing newly published

messages matching some user defined filters, in general via e-

mail or SMS. These alerts are generally sent by servers placed

next to the news brokers.

The best known content-based alert systems are, for exam-

ple, stock quote notifications and others like RSS feeds, bib-

liography publication notes, auction systems, etc. In general,

they provide a formal filtering language, since notifications are

often structured or semi-structured. For example, stock quote

notifications allow filtering on “Symbol”, “Volume”, “Price”

etc., i.e., on a set of typed attributes, of which most possess an

order relation. Therefore, it is common for subscription filters

to use expressions based on relational operators involving

these attributes, such as:

{ Symbol = “EDP”, Price < 4, Volume > 100000 }

A filter on the topic “cars for sale” in an auction system

could be:

{ Manufacturer = “BMW”, Type = “SUV”, Kilometers ≤
20000,

Registered ≥ 2000 }

1553-877X/10/$25.00 c© 2010 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 13,2010 at 11:53:22 UTC from IEEE Xplore. Restrictions apply.

www.DownloadPaper.irwww.DownloadPaper.ir

http://www.DownloadPaper.ir

40 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 12, NO. 1, FIRST QUARTER 2010

RSS feeds and bibliography notifications are semi-

structured and encoded in XML. Thus, it is possible to

express filters on the contents of certain fields (tags). For

instance, filters over feeds of news concerning cooking receipts

or scientific publications are exemplified by the following

expressions:

{Country = “India”, Ingredients ∋ “Fish”} and
{Authors ∋ “Duarte”, Keywords ∋ “Event-Based Systems” }

Publish/subscribe systems can also be useful in monitoring

and control scenarios. For example, air-traffic control systems

require the diffusion of relevant events, such as periodic plane

positions, or landing and take-offs. A continent-wide system of

this kind has many different official agencies, as well as private

companies, subscribing to these events for many different

reasons. In this case, latency requirements are critical and a

distributed solution seems the only suitable alternative [56].

This is an extreme example of a very common scenario where

monitoring periodic and abnormal events is the common case.

Other examples include, monitoring networks and all sorts

of grids, wide area systems components state coordination,

distributed games, and so on.

Another scenario where a content-based publish/subscribe

model fits well is in wireless sensor networks [6]. In this

scenario, sensor nodes are the publishers and sink nodes are

the subscribers. Due to the strict power saving requirements

of sensor nodes, they may stay mute as long as no subscriber

seems interested in their sensed data. Directed diffusion [38]

is a protocol allowing sink nodes (subscribers) to publish their

filters (queries) which are flooded in the network. Sensor nodes

(publishers) with readings that match the subscribers filters,

start periodically publishing notifications that are propagated

down to the interested subscribers. The language describing

notifications and filters is also attribute based, as in the exam-

ples above. This is an emergent non-traditional scenario where

the publishers can be orders of magnitude more numerous than

the subscribers.

In more recent content-based systems, attributes in subscrip-

tions can be used to convey contextual or quality of service

indications. For example, a mobile subscriber of a monitoring

system may be interested in events that took place up to a

maximum distance of 4 Km from her. Or, a constrained mobile

subscriber may be interested in at most 10 events per minute.

Finally, content-based networking is also closely related

with attribute-based binding and naming [1]. In general,

content-based communication [18] is an emergent paradigm

ideally suited for a variety of application domains: pub-

lish/subscribe event notification, news and alert distribution,

system monitoring, service discovery, data sharing, distributed

electronic auctions, distributed games, mobile and context-

dependent computing, etc.

Issues and Goals

Distributed publish/subscribe systems can be structured as

client/server systems or as peer-to-peer systems (P2P). In

the client/server model, publishers and subscribers are di-

rectly dependent of servers, known as notification brokers.

Brokers route notifications among themselves and to their

respective clients. These systems can implement a push-based

delivery paradigm. In this case, notifications are immediately

multicasted to the targeted subscribers. Alternatively, systems

following a pull-based paradigm memorize notifications and

allow their deferred retrieval by the intended recipients.

In a centralized client/server system, the critical scalability

issue of the broker server is to determine efficiently which

clients provided filters matching the contents of each of the

incoming notifications. In a distributed system of brokers, a

further requirement is that notifications must also be routed

efficiently among brokers. Whereas in a P2P system there is

yet another complication in that each participant can act as

both a subscriber and as a publisher, in addition to all the

participant nodes being required to route notifications among

themselves.

When it is acceptable to have a large delay (in the order of

tens of minutes) between the moment an event occurs and the

reception of the notifications by the interested subscribers, then

a straightforward centralized solution is a realistic option. To

achieve this, a central server just needs to periodically evaluate

the filters of its clients on the message flow and send matching

notifications by e-mail, for instance. However, as stricter limits

are imposed on the allowed latency of notifications, or the

number of subscribers grows to very large numbers, a network

of brokers will probably become a preferable alternative. In

cases where there is no clear economic incentive to set up an

expensive broker-based solution, a P2P system can become an

interesting architectural alternative.

To summarize, the filtering or matching problem is the

following: given a set of subscribers, with their associated fil-

ters, how to determine efficiently the subset of subscribers, or

filters, that match the contents of a notification? This problem

can be seen as dual to the following search problem: given a

set of items (notifications) which ones have content matching

a specific query (filter)? This is comparable to the problem of

finding the triggers that an update to a database fires. On top of

that, a distributed content-based publish/subscribe system has

to solve the following problem: how to optimally route each

message to the nodes with subscriptions matching its content?

As such, in a distributed topic-based publish/subscribe system,

notification routing is a problem similar to the multicasting

routing problem and uses similar algorithms to determine and

maintain the dissemination trees. In content-based systems, an

extra level of complexity is introduced with the requirement

that useless transmission of notifications be avoided. Usually,

that mandates some way of dynamically pruning the dissem-

ination trees to cover only the set of matching subscribers

of each notification. As a general goal, an optimal routing

solution must minimize routing costs and avoid message

waste. Furthermore, well balanced solutions that do not incur

an excessive burden on particular nodes are also favored.

This paper examines the most relevant work presented in

the last decade for routing notifications in distributed content-

based publish-subscribe systems. It differs from other surveys

published on the broad topic of publish/subscribe systems by

focusing the analysis of the content-based routing problem

on optimality, complexity and applicability [33], [41], [9].

Moreover, when it is pertinent, the algorithms covered are

also likened to similar algorithms developed and used by the

networking community.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 13,2010 at 11:53:22 UTC from IEEE Xplore. Restrictions apply.

www.DownloadPaper.irwww.DownloadPaper.ir

http://www.DownloadPaper.ir

MARTINS and DUARTE: ROUTING ALGORITHMS FOR CONTENT-BASED PUBLISH/SUBSCRIBE SYSTEMS 41

The next section introduces a few definitions needed to

support the discussion. Section III describes an ideal optimal

solution and discusses strategies for approximate solutions.

Sections IV through VIII present and discuss these alternative

solutions. Finally, section IX offers a qualitative comparison

of the reviewed solutions and concludes with some final

remarks regarding the evaluation steps presented in each of

the proposals.

II. TERMINOLOGY AND DEFINITIONS

A notification is a tuple of equality attribute value pairs

(A1 = v1, ..., An = vn) allowed by the language of the

information space schema. It denotes a single point of the

notification space, i.e., it denotes a member of the cartesian

product of the sets of attribute values. A subscription is

predicate made of a conjunction of attribute constraints, or

simply constraints. A constraint can hold with an exact value

(e.g., Ai = v) or a range of values in an ordered type (e.g.,
Ai ∈ [vmin, vmax]). A constraint over a set type attribute holds
if the value belongs to the set (e.g., v ∈ Ai or Ai ∋ v).
If the constraint is of the form Ai =“any”, which is

equivalent to True, the value of this constraint is irrelevant
and it can be omitted from the subscription. A subscription can

have at most one constraint per attribute. Multiple exact values

or multiple ranges over the same attribute can be modeled as

a union of several distinct subscriptions.

In publish/subscribe systems involving mobile nodes, some

constraints can specify context-dependent conditions. One

such example is a WithinRange < 2 Km constraint, whose

evaluation depends on the relative geographical positions of

the publisher and the subscriber. Essentially, this can preclude

some optimizations that are otherwise possible when predicate

evaluation is invariant across all the nodes.

There are several other languages for expressing subscrip-

tions. For example, values can be documents and subscriptions

specify a list of keywords to be matched against the entire

document. Other common used languages are SQL (Structured

Query Language) or X/Path (for XML objects). However, the

simple language sketched just above is popular and allows a

more focused discussion of the specific problems of content-

based routing without compromising generality.

A subscription Si specifies a N-dimensional subspace of

the notification space (due to restricting each attribute with a

single constraint) and, depending on the context, the symbol

Si may denote the formula representing the subscription, or

the subspace it specifies. If a notification n belongs to the

subspace of a subscription Si, i.e., n ∈ Si, the notification

is said to match the subscription. Matching requires each

constraint of Si to hold with the value of the corresponding

attribute of n. Attributes of n not corresponding to constraint
attributes in Si are ignored since they are considered to always

hold.

Some schemas do not require that notifications have values

defined for all possible attributes. This can be modeled as if

the type of each attribute included a special value known as

Any. If a notification n includes Ai = Any, the attribute
is not listed in n and it requires the constraint Ai = Any
to hold. Hence, a subscription with a defined constraint over

Fig. 1. The parallel search tree for subscriptions S1, S2 and S3

attribute Ai never matches a notification where Ai is absent.

Formally treating notifications not containing all attributes is

more elaborate than what has been presented and is out of the

scope of this paper. A schema is said open if it allows new

attributes to be introduced dynamically.

A subscription Si is said to cover a subscription Sj if Sj ⊆
Si
1. Two subscriptions Si, Sj intercept if Si ∩ Sj �= ∅.
The matching test is performed by a filtering or match-

ing algorithm. The matching algorithm is a critical one in

publish/subscribe systems. Chapter 3 of [45] presents a brief

survey of the most relevant approximations developed by

the database and publish/subscribe communities. Matching is

outside of the scope of this paper. However, for illustration

purposes we will briefly discuss one of the approaches, based

on Parallel Search Trees - PST [5], [11].

In a PST, each leaf is associated with one subscription, an

interior node represents a test over a single attribute and edges

are labeled with constants or the value “*”, meaning “Absent”

or “Don’t care”. PSTs are rooted and organized in such a

way that nodes of the same level concern the same attribute.

Paths from the root to each leaf cross all the constraints that

characterize the subscription associated with the leaf.

Figure 1 is an example of a PST representing the subscrip-

tions S1 = {Symbol = “EDP”, Price < 4, Volume > 10000

}, S2 = { Price < 2, Volume > 1000000 } and S3 = {
Symbol = “PT”, Price = 10.4 }, where the attribute “Symbol”
appears in the first level, “Price” in the second and “Volume”

in the third. Given a notification n, it matches all subscriptions
reached by a tree traversal that only follows an edge if n
matches the constraint denoted by the attribute of the level,

followed by the node and edge labels. Intuitively, the data

structure factorizes tests common to several subscriptions and

thus favors scalability, since it allows a sub-linear matching

complexity in respect to the number of different subscriptions.

In a distributed publish/subscribe system, publisher and

subscriber applications are represented by pure clients of a

distributed client/server broker service, or by peers partici-

pating in a P2P system. In general, notifications are routed to

subscribers by intermediate computing components of the pub-

1In a formal context, one should preferably say ”if the corresponding
specified subspaces verify the relation ⊆”.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 13,2010 at 11:53:22 UTC from IEEE Xplore. Restrictions apply.

www.DownloadPaper.irwww.DownloadPaper.ir

http://www.DownloadPaper.ir

42 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 12, NO. 1, FIRST QUARTER 2010

TABLE I
EXAMPLE OF AN HYPOTHETICAL PUBLISH/SUBSCRIBE SYSTEM API.

Operation Description

publish (n) Publishes notification n
subscribe (S) Subscribes with subscription S
advertise (S) Advertises that future notifications will match

subscription S
unsubscribe (S) Unsubscribes a subscription S
feedback (m, n) Sends message m to the publisher of notification n

lish/subscribe system (servers or peers) known as notification

routers. In general, brokers behave as cooperating peers among

themselves. In a pure P2P system without brokers, peers

behave simultaneously as clients and routers, thus fulfilling

the functions of brokers. In what concerns the algorithms for

routing notifications, the distinction between brokers and peers

is not generally relevant; reflecting that, participants will be

called router nodes or simply nodes.

Nodes are associated or interested in subscriptions, either

their own, or the ones of their clients. In both cases, without

distinction, we will call them the node’s subscriptions. Pure

brokers are responsible for the subscriptions of their clients

and for the routing of their notifications. When the broker

serving a client is not important, the “closest” one is the

usual choice. In this case, brokers are responsible for a set

of arbitrary subscriptions. Alternatively, to cluster clients by

a criterion other than network proximity, clients can be redi-

rected to specific brokers. Subscribers in a pure P2P system

are responsible for their own subscriptions and cooperate with

other peers to route notifications.

Applications tap into the functionality provided by a pub-

lish/subscribe system through a wrapper interface that hides

the concrete distributed architecture of the system. An hy-

pothetical example of such API (Application Programming

Interface) is presented in Table I.

The advertise and feedback operations are optional and

often missing in concrete systems. The advertise operation

is used to increase the efficiency of certain matching and

routing algorithms. While, the feedback operation allows a

subscriber to send an unicast message back to a publisher. Its

main purpose is to avoid the need to fall back to an addressing

mechanism outside the publish/subscribe system.

III. OPTIMAL AND APPROXIMATE NOTIFICATION

ROUTING SOLUTIONS

A notification n must be routed to the group of all nodes

with matching subscriptions, by a tree rooted at the publisher,

preferably a shortest paths one. A correct routing solution

must ensure that no false negatives exist, i.e., each subscriber

receives all notifications that match its subscription(s). An

optimal routing solution should also deliver no false positives

or spam, i.e., a subscriber should only receive notifications

matching its subscription(s).

A trivial solution of the routing problem consists in broad-

casting notifications to all nodes. Broadcasting can be imple-

mented by flooding which, in regard to routing, is stateless,

adapts smoothly to configuration changes, increases fault

tolerance and reliability and only requires a duplicate detection

cache in each node if the network has cycles. Notification rout-

ing by broadcasting is the benchmarking algorithm regarding

simplicity. Moreover, in a system based on a small number of

brokers, each serving many clients with a dense distribution

of matching subscriptions for most notifications, broadcasting

is near optimal in what concerns false negatives.

However, when nodes are very numerous and a sparse

distribution of matching subscriptions among different nodes

is observed, network bandwidth waste and processing capacity

usage (to discard false positives) can be significant. Therefore,

in this scenario, the algorithm is far from being scalable and

there is ample motivation to find an optimal one.

A. An Idealized Optimal Solution

Under certain idealized circumstances, namely, if nodes

could rely on an optimal multicasting facility (IP Multicasting

[25], [26] or an equivalent optimal multicasting overlay facility

[55], [12], [21], [39]), an idealized optimal solution can be

based on multiple multicasting trees, each suited for a different

group of subscribers, as explained below.

Let S = ∪ Si be the set of all subscriptions and let

η = ∪ nj be the set of all notifications subscribed and

published by network nodes. There is a mapping ψ : η → S∗,

which maps each notification in the subset of subscriptions

that match it, Si ∈ ψ(n) ≡ Match(Si, n). Mapping ψ
allows a set of different overlapping clusters of subscriptions

C = {C1, C2, ..., CM}, with Ci ∈ S∗, to be determined, such

that each notification nj ∈ η matches all the subscriptions

of exactly one of the clusters Ck ∈ C, or no subscription at
all, and all subscriptions matching the same notification will

belong to the same cluster.

As a subscription specifies a subspace of the notification

space, the clustering above associates a specific subspace Sck

with each cluster Ck . Each subspace Sck is contained in the

subspaces of all the subscriptions belonging to cluster Ck, i.e.:

∀ 1 ≤ k ≤ M, ∀ Si ∈ S : [Sck ∩ Si �= ∅] ⇒ [Sck ⊆ Si] (1)

Figure 2 introduces, in a two-dimensional attribute space,

four subscriptions S1, . . . , S4 and the corresponding notifica-

tion subspaces. A subscription is represented by a rectangle

with a label at the upper left corner. Subscriptions S1 and S3,

as well as S1 and S2 intercept; S2, S3 and S4 do not intercept,

nor do S1 and S4.

Figure 3 introduces the 6 subspaces corresponding to the

set of subscriptions clusters C = {C1 = {S1}, C2 =
{S2}, C3 = {S3}, C4 = {S4}, C13 = {S1, S3}, C12 =
{S1, S2}}. Each Ci corresponds to the subspace of notifica-

tions that match simultaneously all the subscriptions belonging

to Ci. Therefore, a notification will belong to exactly one

of these subspaces or none at all, meaning that they are all

disjoint.

Finally, a multicasting group Gi = groupOfCluster(Ci)
(and a corresponding optimal dissemination tree) is associated

with each of the M clusters of C, each node joins as

many groups as clusters containing its subscriptions, and each

publisher publishes a notification n via the group groupOf-

Cluster(ψ(n)). Since each notification is sent to only one
group, and assuming an optimal multicast delivery path, this

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 13,2010 at 11:53:22 UTC from IEEE Xplore. Restrictions apply.

www.DownloadPaper.irwww.DownloadPaper.ir

http://www.DownloadPaper.ir

MARTINS and DUARTE: ROUTING ALGORITHMS FOR CONTENT-BASED PUBLISH/SUBSCRIBE SYSTEMS 43

Fig. 2. Subscriptions S1 . . . S4 and their matching notification subspaces

Fig. 3. Subscriptions clusters and the associated subspaces

solution is optimal in terms of network costs, it is correct since

there are no false negatives, and it introduces no waste since

there are no false positives. Figure 4 shows the algorithm in

progress. It assumes that each node knows the subscriptions

of all other nodes, computes the set of subscriptions matching

the notification – (A = 3) matches the subscription of nodes
n2 and n3 – and selects the multicasting group optimally

delivering the notification to the interested nodes.

In a N node system, this algorithm requires: O(|S|) space
for subscriptions in each node, computation of the clusters

C1, C2, C3, ..., an optimal multicasting facility providing a
maximum of 2N different groups and that each node sub-

scribes the groups corresponding to its subscriptions. In a

dynamic system, the information concerning subscriptions

must be replicated and the clusters and groups dynamically

calculated and maintained. As each multicast group has a non

negligible cost, due to the potential huge number of required

groups, the algorithm just presented is dubbed Ideal Multicast

[46].

B. Optimal Solutions Not Requiring Multicasting Support

In order to find solutions for the content-based routing

problem, researchers have tried to find practical variants of the

Fig. 4. Optimal routing of notification (A = 3) via the multicasting group
of {n2, n3}. Every node (n1, n2, ..., n5) knows every subscription in the
system. This enables the computation of the groups that each node has to
belong to. For publishers, it also allows them to select the multicast group
implied by any given notification.

ideal solution. Some of these variants dynamically compute,

for each notification, the required diffusion group.

The first alternative, still optimal, computes shortest paths

spanning trees (SPT) of the nodes with matching subscriptions,

rooted at the publisher. This can be done by dynamically

pruning to the matching subscribers, a SPT rooted at the

publisher and spanning all nodes [11]. This solution requires

all nodes to have complete knowledge of the network topology

(nodes and links) and subscriptions. It uses some techniques

of the same nature of the ones used by link-state unicast and

multicast routing algorithms [42], [43]. Another alternative

[15], also optimal, requires each publisher (but not all nodes)

to know all the subscriptions. As the matching algorithm

provides an implementation of the mapping ψ, each publisher
can compute the set of matching nodes and then use explicit or

stateless multicasting [24], [4], [40] to route the notification,

as will be further discussed later.

C. The Channelization Problem

As the computation and pruning of the dissemination tree

for each notification can be quite expensive, researchers, still

inspired by the ideal multicasting algorithm, have tried to find

approximate solutions based on a bounded number of multi-

casting groups, reused across notifications. If IP Multicasting

or an equivalent overlay multicasting facility is available,

one can try to use it with a bounded number of different

groups. This is defined as the channelization problem in large

scale data dissemination which consists in finding an optimal

mapping of several information flows to a bounded number of

multicast groups. This is a computationally hard problem and

therefore only approximate solutions are known [2].

D. Optimal Routing Solutions Based on Subscription Propa-

gation

Another path to the optimal solution, not requiring so much

global state available in all nodes, is based on subscription

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 13,2010 at 11:53:22 UTC from IEEE Xplore. Restrictions apply.

www.DownloadPaper.irwww.DownloadPaper.ir

http://www.DownloadPaper.ir

44 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 12, NO. 1, FIRST QUARTER 2010

propagation among nodes. With this approach, each node only

possesses information about the subscriptions “reachable” by

each of its links [17], [45]. Propagation of subscription Si is

used to build a path leading to it, which is of the same nature

as of “learning by the reverse path” [24], as is commonly

used by several network routing protocols (e.g., IEEE 802

networks). In this approach, a node takes routing decisions by

computing the set of its links leading to nodes with matching

subscriptions for each notification. Assuming the subscriptions

reachable by a link can be summarized, i.e., replaced by one

or a small set of subscriptions covering them, one hopes that

the number of locally known subscriptions be much smaller

than the number of all subscriptions present in the network.

In these algorithms, summarization plays the same role as IP

address prefix aggregation in shrinking the routing tables size

and therefore improving scalability.
Algorithms based on this strategy perform optimally in

what concerns routing costs, but are required to propagate and

summarize subscription announcements, as well as to repeat

the execution of the matching algorithm in every node that

each notification reaches.

E. Approximate Solutions

Besides the approaches presented above, there are ap-

proximate solutions concerning optimal routing, whose main

motivations are scalability or exploiting alternative overlay

network organizations. A common starting point for several

approximate solutions consists in reducing the number of the

clusters C1, C2, C3, ... used by the ideal solution by relaxing
the constraint that a notification should be diffused via only

one group and accepting that each group may deliver false

positives, as in the channelization problem presented above.

For example, semantically similar clusters, or clusters with low

density of notifications can be grouped to reduce their number

and therefore the number of required multicast groups.
A systematic way of reducing the number of needed clusters

uses notification space partitioning [69]. It reduces the size of

the problem by dividing the notification space in several cells.

This technique introduces false positives. For example, figure 5

shows the same partitioning of the notification space shown in

figure 2 using a regular grid. Assuming that each subscription

in the figure represents a node, if we associate each node

with the cells its subscription intercepts, we can determine

the different subsets of nodes, i.e., the groups, needed. G1 =
{S1, S3, S4}, G2 = {S1, S2} and G3 = {S1} in the example.
A notification must be diffused via the group corresponding

to the cell it belongs to. This approximation replaces the set

of all possible notifications by the set of all cells, and the

mapping ψ by a mapping that maps each cell in the list of

nodes with subscriptions matching it. Each cell is associated

with exactly one group and each group is associated with at

least one cell.
When a grid of contiguous and non overlapping cells is

used to partition the notification space, each cell can be

mapped to a key (seen as some sort of encoding of the cell

coordinates). Subscriptions can also be mapped to one or more

keys corresponding to the cells they intercept. Notifications

can then be routed to keys where they should meet the poten-

tially matching subscriptions. This suggests that nodes can be

Fig. 5. Grid partitioning of the notification space

organized as a structured overlay network and that subscription

and notification routing solutions can be expressed in terms of

routing in that network. Some authors call this approximation

rendezvous-based since notifications and subscriptions find

each other by way of common keys.

Another alternative way to mitigate the problem consists

of using subscription partitioning instead of notification space

partitioning [66]. This is the natural way to proceed in a net-

work where it is possible to group subscriptions by semantic

similarity, which is the case of a P2P overlay where each node

represents at most one subscription, or when clients can be

redirected to nodes responsible of subscriptions semantically

close to their own. Organizing the network, driven by the

semantic relations among nodes, can be a good starting point

to achieve better notification diffusion paths.

F. A Taxonomy of Known Solutions

The surveyed solutions found in the literature can be

grouped according to the strategy they use, in the following

approximations:

1) Centralized Matching and On-Demand Multicasting

Groups. All nodes, or at least the publishing ones,

have full knowledge of the subscriptions present in

the system. Therefore, if they also know the network

topology and know how to route unicast messages, they

can compute the links required to reach the nodes with

matching subscriptions.

2) Use of a Bounded Number of Multicasting Groups.

Subscriptions are clustered and a bounded number of

multicasting groups is used.

3) Learning by the Reverse Path. Subscriptions are

flooded using an underlying pre-existent overlay net-

work, and subscription based routing tables are popu-

lated. Notifications are diffused to the neighbors in the

routing table that have matching subscriptions.

4) Mappings of Notification Subspaces to Keys Spaces.

Notifications and subscriptions are mapped to one or

more keys from a large key space. Nodes are organized

into a structured overlay in charge of this key space.

Nodes with subscriptions are connected to the nodes in

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 13,2010 at 11:53:22 UTC from IEEE Xplore. Restrictions apply.

www.DownloadPaper.irwww.DownloadPaper.ir

http://www.DownloadPaper.ir

MARTINS and DUARTE: ROUTING ALGORITHMS FOR CONTENT-BASED PUBLISH/SUBSCRIBE SYSTEMS 45

charge of their keys, and notifications are routed in the

overlay routing substrate in such a way that they reach

the nodes with the matching subscriptions.

5) Semantic Neighborhood. Nodes, in a full-mesh net-

work, can freely establish links among themselves based

on some semantic neighborhood metric of their sub-

scriptions. This semantically structured overlay is then

used to support notification routing.

In the following sections these algorithms will be presented

and discussed.

IV. CENTRALIZED MATCHING AND ON-DEMAND

MULTICASTING GROUPS

This section presents optimal algorithms based on global

and replicated state. These algorithms dynamically compute

the dissemination trees required to diffuse each notification

based on the complete knowledge of the subscriptions, which

may be replicated in all or in a subset of nodes of the network;

and, in some cases, by also taking advantage of replicated

information about the network topology.

To diffuse a notification, authors of [11] use a shortest paths

spanning tree rooted at the publisher’s node. However, to per-

form better than flooding in a shortest paths tree encompassing

all nodes of the network, this tree is dynamically pruned to

only reach nodes with subscriptions matching the notification.

To compute the shortest paths tree, as well as its pruning in

respect to each received notification, a complete description of

the network and of the list of all subscriptions in the system

is replicated in each node, see Fig. 6.

Authors of [11] do not detail the method they propose for

state replication. However, the maintenance of this replicated

information can be based on the flooding of “link-states”, as

performed by the protocol OSPF [42], and on the flooding of

subscriptions and unsubscriptions, the same way the protocol

MOSPF [43] floods group joins and leaves. Links of the local

node belonging to the shortest paths spanning tree rooted

at the publisher, can be lazily computed by the Dijkstra

algorithm [29] whenever a notification published by a new

node is received. This algorithm has computational complexity

bounded by O(L log K) in a network ofK nodes and L links.
Every time a notification is received, the tree corresponding

to its publisher must be pruned, that is, the set of local links

used to flood n must be restricted to the ones leading to

nodes with subscriptions matching n. In [11], an algorithm
is presented that uses a parallel search tree (PST), see sec-

tion II, that has been previously annotated with information

concerning local links leading to the nodes corresponding to

the subscriptions of each subtree. The algorithm is called link

matching by their authors. Thus, the handling of a notification

is based on the PST traversal in order to find local matching

subscriptions, as well as to restrict the set of local links

through which it must be flooded. This traversal takes place

with sub-linear complexity on the number of subscriptions.

The algorithm is correct since it introduces no false neg-

atives in a stable network, routes optimally and delivers no

false positives. However, it requires each node to know the

complete network and all the subscriptions to compute a

Fig. 6. An example of overlay on-demand multicast routing with matching in
every node. A notification (A = 3), published by node n5 is propagated along
a dynamically pruned SPT to reach the nodes with matching subscriptions,
n3 and n2

PST for each subscription, to update this PST for every

new subscription and unsubscription, and to perform a PST

traversal for every notification received. There are as many

diffusion trees as there are publishers, meaning that nodes

must redo their computation whenever there is a change in

the network configuration and a new notification is received

from a publisher.

MEDYM [15] is an algorithm with a similar starting point

but using a different way of multicasting a notification to

the list of matching nodes. In this algorithm, all publishers

have a replicated copy of all the subscriptions and use a

matching algorithm to compute the list of matching nodes

of each published notification. With this list, the publisher

then uses stateless multicast routing to diffuse the notification.

Stateless or explicit multicast is a technique of implementing

multicasting initially proposed in [24], that has been revisited

in several contexts [4], [40]. It is usable in contexts where

a node knows the list of members of a group in addition to

some form of optimal unicast routing.

The algorithm requires the header of each multicast message

to convey a list of receiving nodes. The initial publisher selects

a set of neighbors that are the start of shortest paths to reach

subsets of the receivers. Each of these neighbors will receive

a copy of the notification annotated with the list of receivers

for which the neighbor is the start of a shortest path to reach

them all. Each neighbor node will proceed recursively with

this process, until each destination list is empty.

The two algorithms just presented compute similar routes

to diffuse notifications. The former requires subscription repli-

cation and the matching algorithm execution in all nodes,

while the latter only requires the matching computation by the

publishing nodes. However, it also demands each notification

to carry an explicit list of destination nodes, which limits its

scalability.

Both algorithms perform an on-demand computation of the

dissemination tree for each notification. Alternatively, these

trees can be setup and reused as needed. This is what can be

done using some multicast groups, previously or dynamically

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 13,2010 at 11:53:22 UTC from IEEE Xplore. Restrictions apply.

www.DownloadPaper.irwww.DownloadPaper.ir

http://www.DownloadPaper.ir

46 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 12, NO. 1, FIRST QUARTER 2010

setup. As the required number of different groups is in general

huge, an alternative is to limit their number to a practical value.

V. USE OF LIMITED NUMBER OF MULTICASTING GROUPS

IP Multicasting, as an example of a facility providing an

optimal path to deliver a notification to a group of nodes, can

support an optimal solution, see section III. The number of

different required groups can be very high (greater than 106

with just 20 nodes). This huge number poses problems in what

concerns the IP Multicast address space administration and the

required state in routers, since in IP Multicasting there is no

way to aggregate routing entries. Thus, viable ways of using

IP Multicasting must rely on a limited number of groups.

In [46], several alternatives to reduce the number of needed

groups are discussed. All of them require the publisher of

a notification to know all the subscriptions of all nodes, be

able to compute the list of matching subscription nodes and

select the IP Multicasting groups required to disseminate the

notification. Therefore, these algorithms suppose that there is a

consistent way of mapping groups to their identifiers and that

nodes join the groups they belong to. Of the several algorithms

presented, the following are based on node clustering.

The fist proposal is dubbed CGM or Clustered Group

Multicast and requires the publisher of a notification to send

more than one multicast. If k nodes are divided in c mutually
exclusive clusters, each cluster only needs 2k/c different

groups, for a total of c ∗ 2k/c groups. For example, 20 nodes

in one cluster will require at most 220 nodes, while the same

20 nodes divided in 5 clusters will only require 5 ∗ 24 = 80
groups. The publisher will send at most c multicasts instead
of just one.

The second proposal complements the first one by reducing

group precision. It is dubbed TCGM or Threshold Clustered

Group Multicast. For each of the previously proposed clusters,

a threshold T is established. If a notification matches more

than T nodes in a cluster, it is sent instead to the group of

all members of the cluster, in an attempt to further reduce the

number of needed IP Multicasting groups. With this algorithm,

a node receiving a notification must test if it matches its

subscriptions since the algorithm delivers false positives.

A third alternative consists of using a limited total number

of groups, for example g groups. Given the available set of
subscriptions, the algorithm starts by computing the disjoint

subspaces required by the ideal solution. Then, the probability

of each subspace receiving notifications is established. If

this probability is initially unknown, it can be estimated

as proportional to the subspace volume. Finally, as long as

there are more than g subspaces, the subspaces with lower
probability are merged. In fact, if several groups have relative

low probability of receiving a notification, mergers of such

groups also have a relatively low probability of introducing

wasted notifications.

These approximate solutions require a variable number of

groups. At first sight, it seems that the gains obtained should

grow as the number of available groups also grows. In fact,

this is far from being exact in the frequent scenario where

there is a small number of brokers, with a large number of

subscriptions scattered among them. In this setting, there is

a high probability that each broker has at least one subscrip-

tion matching each notification and, therefore, ideal multicast

would cost the same as flooding in terms of communication

messages, but a lot more in computing complexity.

Paper [52] presents an extensive analysis of this matter.

Their results show that in networks with one hundred bro-

kers but thousands of subscriptions, ideal multicast does not

lower significantly the communication costs. Higher gains are

obtained when: the brokers are numerous (in the thousands),

the number of subscriptions is at most one order over the

number of brokers and there is a heterogenous distribution

of subscriptions among brokers in terms of the targeted

notification content. For scenarios like that, their work presents

a set of clustering algorithms that obtain efficiency gains of

60% to 80% with multicast groups in the tens. They use a

grid-based clustering framework that partitions the notification

space in cells and associates a feature vector with each cell,

to deduce the subscriptions interested in each one. The cells

are then clustered to minimize the expected waste of traffic.

Authors of [69] present a solution that uses a fixed grid-

based partition of the notification space to compute the re-

quired groups. Overlay diffusion trees are then established for

each of these groups.

The algorithms discussed in this section are valid and de-

serve attention if a multicasting facility is available, regardless

of the level it is provided: network or overlay. Mapping a

cluster of nodes to an identifier and being able to optimally

multicast a notification to the cluster, in a single operation, is

a powerful building block for content-based routing.

In the next section, we will return to a class of solutions

based on the dynamic pruning of dissemination trees. How-

ever, these solutions clearly separate the tree computation

from its pruning and use a different approach to the pruning

computation: sets of subscriptions are replicated in each node

and associated with local links, instead of their issuing nodes.

VI. LEARNING BY THE REVERSE PATH

This section presents a group of algorithms based on the

propagation of subscriptions announcements among nodes to

populate routing tables using the principle of “learning by the

reverse path” – if a node Y receives a message originated

at node X , the receiving link of Y is the beginning of

a (optimal) path leading to X . In the context of content-
based routing, announcements represent subscribers interests.

They allow each node to build routing tables associating

interests (subscriptions) to the paths leading to them (links).

Notifications are routed to the nodes in the routing tables [45]

that have matching subscriptions.

Each node has a routing table with entries of the form

(Si, Lj), where Si stands for a subscription and Lj for a link.

Besides entries of this form, the nodes routing table also has

entries for local application (in a P2P system) or client (in a

broker) notification delivery. Without loss of generality, unless

otherwise stated, we will assume that there is one only such

local subscription, announced by link “Local”.

With this class of algorithms, whenever a notification is

received by a node (locally originated or received from a peer

node) it is sent through links with an associated matching

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 13,2010 at 11:53:22 UTC from IEEE Xplore. Restrictions apply.

www.DownloadPaper.irwww.DownloadPaper.ir

http://www.DownloadPaper.ir

MARTINS and DUARTE: ROUTING ALGORITHMS FOR CONTENT-BASED PUBLISH/SUBSCRIBE SYSTEMS 47

Fig. 7. The flooding of the subscription {A < 10} initiated by node n3

and the routing of the notification (A = 3) issued by node n5

subscription, except the one from which it was received.

Accordingly, if the notification came from a peer and matches

the local subscription, it is also locally delivered. When all

routing table entries take the form (True, Lj) for all links of
each node, the algorithm behaves the same as broadcast.

These algorithms have similarities with those that bridges

and ethernet switches, in tree-shaped networks, use to learn

how to route frames to the address of their original sender

[60]. Interest announcements propagation also bear some

similarities with reachability announcements propagation in

distance-vector routing protocols [60].

For clarity and simplicity, we will initially assume that

nodes are organized in an acyclic graph. Later we will discuss

other network configurations.

A. Maintenance of the Subscriptions Routing Tables

When a node receives a new local subscription Si (from

the application or a client), it inserts the entry (Si, Local) in
its routing table and floods a message announcing Si to all its

neighbors. Each peer receiving, by link Lj , an announcement

of Si, inserts an entry of the form (Si, Lj) in its routing table,
if an equivalent entry does not exist already and continues

the announcement flooding, or stops it otherwise. Figure 7

illustrates the flooding of the subscription {A < 10} initiated
by node n3 and the routing of the notification (A = 3) issued
by node n5.

If routing table entries are maintained by soft-state, unsub-

scriptions may be dealt with by timers, but spam will be intro-

duced during some periods. Otherwise, unsubscriptions must

also be propagated like subscriptions. Each peer receiving an

unsubscription of Si by link Lj , deletes a pre-existing entry

of the form (Si, Lj) of the routing table and, if there are no
more entries of the form (Si, ∗) in the routing table, continues
the unsubscription flooding.

Compared to flooding in a loop-free network, this algorithm

avoids notification propagation waste at the expense of routing

table maintenance and by executing the matching algorithm in

each node every time a notification is received. In a network

with N nodes, the routing table space complexity is O(|N |),
assuming each node only generates a single subscription.

If nodes can supply multiple subscriptions, the worst-case

complexity is O(|S|.|L|), where S stands for the set of

different subscriptions in the network and L stands for the set

of links of the node. For each notification received, the worst-

case execution times of the matching algorithm is O(|S|).
In what concerns management of subscriptions and match-

ing tests execution times, the algorithm has the same space

and computing complexities of the algorithms presented in

section IV. The main difference relates to the fact that there

is no global isolated view of the network in each node, and

routing is not based in minimum cost paths but in a spanning

tree shared by all publishers.

In the following subsections different possible optimizations

and variations of this base algorithm are presented.

B. Using advertisements

If publishers publish advertisements, cf. section II, these can

be used to prevent subscriptions to propagate to regions of the

network that will not produce relevant notifications. Their only

usefulness is to make subscriptions routing tables smaller and

thus speedup the execution of the matching algorithm.

Advertisements must be propagated in the network exactly

by the same way subscriptions are propagated. In each node,

advertisements stay associated with the links from where their

announcements came. Moreover, advertisements can also be

canceled.

The condition allowing subscription Si to be propa-

gated through link Lj , in a node with entries (Adv1, Lj),
(Adv2, Lj), . . . (AdvM , Lj) in its advertisement routing table,
is

∃ 1 ≤ m ≤ M : [Advm ∩ Si �= ∅] (2)

This propagation takes place whenever new subscriptions or

new advertisements are received. However, there is a race

condition, since subscriptions not intercepting any known

advertisement could have been forgotten. One way to deal

with this issue is to record subscriptions not intercepting

any known advertisement and reconsider them whenever new

advertisements are received.

Advertisements introduce extra complexities that are only

justified if the expected set of subscriptions not served by any

publisher is significant.

C. Subscriptions Routing Table Compression or Summariza-

tion

In order to reduce the number of routing table entries, it

is possible to aggregate or merge some of them. This can

be achieved in two different ways. First, it is possible to

replace entries (S1, Lj) and (S2, Lj) by (S1, Lj) whenever
S2 ⊆ S1. Second, it is possible to replace entries (S1, Lj)
and (S2, Lj) by an entry with a new subscription (S3, Lj)
such that S3 ⊇ (S1∪S2), that is, notifications matching S1 or

S2 also match S3, but it may exist other notifications matching

S3. The first method is a precise compression, introducing no

false positives or negatives, the second one is an imprecise

one, enlarging the notification subspace associated with the

link, since it introduces false positives. Figure 8 illustrates

subscription summarization.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 13,2010 at 11:53:22 UTC from IEEE Xplore. Restrictions apply.

www.DownloadPaper.irwww.DownloadPaper.ir

http://www.DownloadPaper.ir

48 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 12, NO. 1, FIRST QUARTER 2010

Fig. 8. An example of subscription summarization. Node n1, n2 and n3

issued subscriptions {A < 2}, {A < 5}, {A < 10}, respectively. Then,
nodes n4, n5 and n6 only need to retain subscription {A < 10} since it
covers the other two

The main motivation to reduce the number of routing entries

with imprecise compression is to trade computing complexity

for network bandwidth. For example, {A1 = v1, A2 = v2}
and {A1 = v1, A2 = v3} can be imprecisely merged in {A1 =
v1}. Used in an aggressive manner, imprecise compression can
degenerate in flooding when routing entries reduce to the form

(True, Lj).
Precise summarization is an optimization that plays the

same role as IP prefix summarization with classless routing.

There is no parallel technique in the IP routing world for

imprecise summarization, but default routing.

Reasoning about routing table compression can be made

more rigorous in terms of summaries [67]. Given a set of

subscriptions S, a summary of S is a set of subscriptions,

not necessarily belonging to S, that covers2 S. A subscription
Si ∈ S is maximal if there is no Sj ∈ S such that Si ⊆ Sj . The

set of all maximal subscriptions of S covers S. Let Sl denote

the set of subscriptions associated with a link l and Suml

some summary of Sl. The summary Suml is precise if the

subspaces denoted by Suml and Sl are the same, otherwise,

Sl ⊂ Suml and it is called an imprecise summary. The set of

all maximal subscriptions of Sl forms a precise summary of

Sl. The most imprecise summary is True since it covers the
full notification space.

A precise summary of S formed with all the maximal

subscriptions of S is also called a covering subscription set

(CSS) in [17], where this subject is discussed. To efficiently

compute the CSS, one realizes that the cover relation is a

partial order one and a partially-ordered set (poset) is used.

A poset is a directed acyclic graph where each subscription is

represented as a node and nodes can have parents and children

nodes. Parent nodes have a subscription subspace that is a

superset of its children nodes, while subscriptions that partially

intercept or are disjoint will appear as siblings. The CSS is

the set of immediate children of the imaginary root node.

2In a more rigorous context we should say, a summary of S is a set of
subscriptions denoting subspaces whose union contains the union of subspaces
denoted by subscriptions of set S.

Which type of compression is the best, based on precise

or imprecise summaries, is determined by subscription and

notification statistics, as well as the relative costs of computing

power and bandwidth. Article [67] presents an algorithm ca-

pable of dynamically changing the precision of the summaries

to maintain bandwidth usage within a certain budget, at the

expense of greater cpu usage. The more precise the summaries

are the less bandwidth is consumed, but greater effort is

required to compute them.

Whatever the type of summarization used, precise or im-

precise, for each new subscription received, a summarization

algorithm is executed. If it leads to the creation of a new sum-

mary, it must also be propagated. Otherwise, the propagation

of the previously received subscription stops.

In general, this requires some modifications to the base

algorithm presented in the previous subsections. A naive

implementation, without taking into consideration unsubscrip-

tion messages, only allows the precision of the installed

summaries to decrease, by always enlarging their scope. To

correctly deal with this, a node is required to maintain a set

of unused routing entries describing all previously received

subscriptions. Whenever a subscription (or unsubscription) is

received, these entries are used to recompute the routing table

entries as well as the new subscription (or unsubscription) to

propagate. In fact, a node needs to maintain an history of all

still valid subscriptions previously received, and propagate to

its neighbors all modifications of the summaries it is using.

These more complex data-structures and computations can be

avoided by periodically flooding all current subscriptions from

their originating nodes and by calculating new routing tables

to replace the old ones, see [18] for a complete algorithm

using this approach.

As advertisements are only tested when subscriptions are

propagated, their compression is, in general, less interesting

and would increase the complexity even more.

D. Using Rooted Trees

To further reduce the size of the routing table, it is possible

to use rooted trees. Algorithms using this approach are often

called hierarchical. If the network is organized as a rooted

tree, subscriptions and unsubcriptions are only propagated,

as explained in subsection VI-A, upwards to the root of

the tree, where their propagation stops. Subscriptions will

be only associated with the downward links leading to the

subtree of the correspondent subscriber. This ensures that

every subscription will be known from the issuing node up

to the root of the tree. Notifications are propagated starting

from the root downwards to every subtree with matching

subscriptions.

If the tree is well balanced, this organization of the network

and the modified algorithm permits a significant routing table

reduction. Each node is only required to know the subscrip-

tions of its subtree. Thus, leaf nodes have smaller routing

tables, while the root node will know all the subscriptions

of the network, as before.

In a system with n nodes, each with a different specific

subscription, organized as a well balanced binary tree with

O(log n) levels, the root node will know n subscriptions, and

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 13,2010 at 11:53:22 UTC from IEEE Xplore. Restrictions apply.

www.DownloadPaper.irwww.DownloadPaper.ir

http://www.DownloadPaper.ir

MARTINS and DUARTE: ROUTING ALGORITHMS FOR CONTENT-BASED PUBLISH/SUBSCRIBE SYSTEMS 49

Fig. 9. Propagation of subscriptions and notifications using rooted trees

nodes of level k will only know O(n/2k) subscriptions, while
leaf nodes, i.e., O(n/2) nodes, will just have to know their

own individual subscriptions. Each individual subscription is

only present in at most O(log n), instead of O(n), routing
tables.

As the space and computational complexities of the match-

ing algorithm are proportional to the number of routing table

entries, this alternative has a significant impact from this point

of view. The price to pay stems from the particular way of

routing notifications, which is only optimal if the tree is a

shortest paths one and publishers are coincident with its root.

This hierarchical organization also introduces a significant

unbalance in the work load. In particular, the root node can

become a critical congestion point.

Notifications can be directly sent from the publisher to

the root node, and then from the root to every subtree with

matching subscribers, as shown in figure 9. Alternatively,

notifications can follow the tree upwards from the publisher

to the root and, on each intermediate node visited, downwards

on all other subtrees with matching subscribers. In the latter,

the tree is used bidirectionally to diffuse notifications, while

in the former the tree is used unidirectionally for the same

purpose.

Subscription messages follow a path that resembles the path

of join messages in multicast tree building algorithms, used by

IP Multicasting routing protocols, based on a shared tree, and

rooted at a rendezvous node [32]. Notifications are also treated

in a way resembling the multicast packet diffusion methods

used by the same protocols, or by their more recent variants

(e.g., BIDIR-PIM).

Up to now, we have not discussed how nodes join the

overlay and form the network. One possibility is to do it

manually. The administrators of broker nodes can structure

them in a tree by choosing a root broker and the set of suitable

overlay links. However, this process can be automated. In

general, the algorithms most often used have a root/rendezvous

node as input, and then organize nodes in a spanning tree of

shortest paths, as in PIM-SM [32].

If there is an easy way of partitioning the notifications space

into disjoint spaces, one way to promote scalability is to spread

the load of the dissemination of these different notification sets

across several trees, one per set.

In the system Hermes [49], the notification universe is

partitioned according to the language type of the notifications.

A node subscribing several different notification type streams

will join as many trees as different streams it subscribes.

Hermes uses the P2P structured overlay routing substrate3

Pastry [54], a variant of a Plaxton tree [50], to build diffusion

trees as pioneered by the system Scribe [55]. The root node of

each tree is the node in charge of the key associated with its

type. Each tree supports the execution of a different instance

of a version of the routing algorithm presented above to build

routing tables, and to route the notifications of its type.

It is also possible to spread the load using a different routed

spanning tree per publisher. In a network of n nodes, there will
be n such trees, each rooted at a different node. Paper [61]

proposes this method of routing notifications in an overlay

network of publish/subscribe nodes organized around the DHT

Chord [57]. Building several trees is also further discussed in

the next subsection.

Methods required to deal with unsubscriptions and adver-

tisements, as well as summarization of subscriptions, can also

be adopted in algorithms using rooted trees.

E. Networks with cycles

If the network has cycles and subscriptions are flooded,

a node will receive duplicates of the same subscription an-

nouncement, coming from different links. One way to avoid

these duplicates is to only propagate subscriptions issued by

node n through a SPT rooted at n. These SPTs can be

previously built by a suitable broadcast algorithm, or may be

dynamically built by the subscription dissemination process

itself.

There are several ways of implicitly propagating the sub-

scriptions issued by node n on a SPT rooted at n. For example,
messages containing subscriptions announcements can carry

the total cost of the path already traversed. Assuming that

links have symmetrical costs, a receiving node can compute

the total cost of the path up to the subscriber, allowing it

to just retain the subscription that arrived by a shortest path.

This technique of selecting shortest paths is used by standard

802.1D (Spanning Tree Protocol), which also has methods to

deal with paths of equal cost. Alternatively, if the nodes of the

network know the unicast shortest paths to each destination,

the reverse path forwarding test [24] can be used to detect

duplicates: a subscription originated at node B, arriving at
node A, is not a duplicate if it came from a link of the shortest
path from B to A.
Propagation of subscriptions by SPTs, explicitly or implic-

itly, builds paths linking potential publishers to the interested

nodes. Routing of notifications using these paths promotes

a more balanced use of the available links, than what is

afforded by a single spanning tree shared by all publishers.

However, notification routing based in the routing entries built

by subscription propagation over these SPTs will introduce

duplicate notifications.

3Often dubbed a Distributed Hash Table (or DHT).

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 13,2010 at 11:53:22 UTC from IEEE Xplore. Restrictions apply.

www.DownloadPaper.irwww.DownloadPaper.ir

http://www.DownloadPaper.ir

50 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 12, NO. 1, FIRST QUARTER 2010

A complete approach is the following. First, subscriptions

are broadcasted by spanning trees rooted at each subscriber

node. Second, each notification is also disseminated using a

spanning tree rooted at the publishing node. Both trees are

implicitly or explicitly build by a broadcasting algorithm.

Third, dissemination of notifications by SPTs is restricted

to the links leading to nodes with matching subscriptions,

using the subscriptions associated with links to restrict the

propagation. See [18] for a complete description of the algo-

rithm. This algorithm will correctly route notifications, i.e.,

without introducing false negatives, neither false positives,

if the network and the broadcasting algorithm ensures that

all paths are symmetrical, which in [18] is called all-pairs

path symmetry. Spanning trees with the previous property will

guarantee correctness, while shortest paths ones will achieve

optimal routing.

F. Network organization, dynamics and reliability

The several variants of the base algorithm, presented so

far, use one or more trees to diffuse notifications and routing

tables subscriptions updates. Algorithms used to build trees

have been extensively studied in IP Multicasting protocols

and in overlay networks used for multicasting [55], [12], [39],

[21], [51], [48]. Two main methods were devised for overlay

networks: mesh-first systems and tree-first systems.
With mesh first systems, the overlay is initially structured

as a graph that provides nodes with the means to route unicast

messages to a destination. In this scenario, algorithms used by

IP multicasting routing protocols [32] to build diffusion trees

rooted at a rendezvous node, can be used to build overlay

diffusion trees. This method can be used independently of the

overlay routing substrate, be it an unstructured mesh [21], [30]

or a structured overlay [57], [54], [51]. For example, Hermes

[49] uses the Pastry [54] structured overlay as the routing

substrate. A structured overlay is well suited to build rooted

trees because nodes joining the tree can route join messages

to a previously agreed key denoting its root [55], [10]. Other

ways of building trees on top of a unicast routing substrate

have been suggested in the previous subsection.
Tree-first overlays [12], [39], [48] build the tree directly.

They require special algorithms to avoid introducing cycles

during tree reorganization. The system NaradaBrokering [47]

is a publish/subscribe system that also adopts a tree-first

approach.
Besides the problems related to tree building and mainte-

nance that must be dealt with, it is also necessary to manage

the subscription routing tables in response to nodes joining or

leaving the network, or crashing.
When a node crashes or a link becomes unavailable, all

routing entries pointing to a now unavailable link must be

deleted. When a new node is connected to a tree, or a new link

becomes available, the new neighbors are required to exchange

subscription messages for all the subscriptions found in their

routing tables. If explicit unsubscriptions or advertisements

are used, these must also be dealt with. During these recon-

figurations, notifications can be lost or duplicated. Recovering

from these errors is the responsibility of a reliability protocol

which is orthogonal to the routing and network maintenance

ones, see [22] for an example.

In systems where a significant percentage of nodes or links

exhibit an high rate of instability, the impact of reconfigu-

rations can be devastating, preventing the system from ever

stabilizing. This is more probable in large-scale P2P systems

with high churn rate and in wireless mobile ad-hoc networks.

System reconfigurations in these extreme scenarios is a chal-

lenging problem well behind the routing one. Nevertheless, it

is worth noting that directed-diffusion [38], a protocol solving

a problem resembling the content-based routing one in a

wireless sensor network scenario, is based on periodic floods

of subscriptions.

G. Conclusion

Routing using routing tables made of subscriptions sum-

maries is one of the oldest methods for dealing with content-

based routing. Examples of content-based research prototypes

like Siena, Jedi, Rebeca and Hermes [17], [23], [44], [49] were

sophisticated key testbeds for the proposal and evaluation of

many of the algorithms based in the principle “learning by

the reverse path”. In the previous subsections, where these

algorithms have been presented, many references were given

to several contributions allowing their deeper development and

understanding.
All the algorithms presented in this section are based on

a clear separation between the buildup of diffusion trees

and their pruning. These algorithms are correct and with

precise summaries introduce no spam. In terms of notification

delivery, the algorithms will perform as optimally as the

overlay routing trees used.
The variants based on rooted trees do not require every

node to know all subscriptions and perform better than some

variants of dynamic multicasting, see subsection IV, in what

concerns space and computing complexity. Reduction of the

size of the routing tables by summarization of subscriptions al-

lows an extra speedup of the matching algorithm. However, its

management introduces increasing complexity and therefore is

only a clear win if the notification rate is high compared to

the rate of subscription and unsubscription events. There is

also room for load distribution and routing cost optimizations

if several rooted trees are used, instead of a shared one.

VII. MAPPINGS OF NOTIFICATION SUBSPACES INTO KEYS

SPACES

In this section we will consider systems organized around

the use of mappings from notifications and subscriptions to

key spaces. These mappings allow publishers and subscribers

to ”meet” each other, whenever the key or keys associated

with a notification belong to the set of keys associated with

the matching subscriptions.
Routing in a system around the above idea achieves progress

in several steps:

1) A node must be registered with the nodes in charge of

the keys to which its subscription maps to.

2) A notification is routed from the publisher node to the

node or nodes in charge of the key or keys to which the

notification maps to.

3) While being routed in the overlay, the notification will

cross or will be transmitted to all nodes possibly inter-

ested in it.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 13,2010 at 11:53:22 UTC from IEEE Xplore. Restrictions apply.

www.DownloadPaper.irwww.DownloadPaper.ir

http://www.DownloadPaper.ir

MARTINS and DUARTE: ROUTING ALGORITHMS FOR CONTENT-BASED PUBLISH/SUBSCRIBE SYSTEMS 51

Fig. 10. An example of routing notifications with keys and intervals. Node
n2 being in charge of key K acts as the rendezvous point for the subscription
{A = 3}, issued by n1 and notification (A = 3), published by n4, as result
of both being mapped to K

This approach is often called rendezvous based, since no-

tifications and subscriptions “meet” in the node in charge of

the keys that both are mapped to.

Using keys to represent notifications and subscriptions has

been pioneered by the system EDN [66]. For every event and

subscription, EDN uses a subset of the attributes to generate

a signature string. The signature string must be formed with

constrains only containing equality operators, which poses

some limitations on EDN’s applicability. This signature is

hashed, by a function H , to obtain a key. So, if notification
n matches a subscription S, then match(n, S) ⇒ H(n) =
H(S), where H denotes the hash of the signature. Therefore,

a supplementary matching test is still needed to verify if

match(n, S) since the hash function acts as an imprecise
summary of an already imprecise summary (the signature

string).

EDN is mainly intended for load balancing. Broker nodes

are in charge of different intervals of the key space. A node

with subscription S must be connected to the node in charge of
the interval to which H(S) belongs to. A notification n is sent
to the node in charge of the interval to which H(n) belongs
to and from there to all nodes interested in that interval, as

illustrated in figure 10. When a hot spot appears, the system

globally redefines the intervals and their assignment to nodes

to redistribute the load more evenly.

With this solution, there is some control over the way

the notification subspace is partitioned, since the greater the

number of attributes used to generate keys, the better the parti-

tioning. However, as this number grows, less subscriptions are

legal because legal subscriptions (as well as legal notifications)

must only have equality constraints over all the attributes used

to generate the signature string. The same idea cannot be

directly applied when range subscriptions are determinant to

spread the load. Moreover, the diffusion of notifications to

all nodes linked to an interval is based on a point-to-point

communication with each of theses nodes. This can also be

optimized.

A. Using Structured Overlays to Deal with Range Subscrip-

tions

Structured overlay networks have emerged as routing sub-

strates which are scalable, decentralized and self-organizing

(i.e., they adapt, automatically, to node arrival, departure and

crash when the churn rate is below a certain threshold). In

a structured overlay, nodes are in charge of key sets, and

the main functionality that is provided is the ability to route

a message to the node in charge of a key in a bounded

number of steps. On top of this basic functionality, structured

overlays have been used to implement distributed hash tables

(DHT), file-systems, content networks, multicasting, broad-

casting, topic-based publish/subcribe systems, etc.
Choosing an Index: Paper [59] describes a proposal, based

on the structured overlay Pastry [54], that supports range

queries over a predefined set of attributes, dubbed an index by

their authors. The system is able to deal with subscriptions ad-

hering to an index, i.e., subscriptions having valid constraints

over all the attributes of the index.
A valid notification has an index digest which is, by

definition, the subset of the attributes of the notification

concerning the set of attributes of the index. As exemplified

in [59], if a notification schema over an information space

related with desktop computers has the attributes Price, CPU,

Clock, RAM, HDD and Monitor and the index selects the

attributes CPU, RAM and HDD, the notification [USD :
Price = 1000, String : CPU = PIII, MHz : Clock =
650, Mbyte : RAM = 512, Inch : Monitor : 15], will
have the index digest [String : CPU : PIII : MHz :
Clock : 650 : Mbyte : RAM : 512]. Given an index digest,
it is possible to define a function to compute a key of this

string. The node in charge of that key in the overlay is its

home node.
Partitioning of the Index: In order to deal with range

queries, the range of values of each attribute of the index

is divided into intervals. The different attributes and intervals

determine a partitioning of the notification space in several

subspaces or parts, see figure 5 in section III for an example.

The key of the index digest denoting an agreed point of each

part is used as the key of that part.
Partitioning is easy for attributes with a limited number of

different values (e.g. CPU), since each different value induces

a different interval. For attributes with many different values

(e.g. Price, RAM), designers of the index must use a small

number of interval indicators as values for partitioning and

computing keys. As can be seen, an index with its intervals is

a way of reducing the number of attributes and values relevant

for the notification space partitioning and clearly determines

the shape of this partitioning.
Computing Keys: Given a notification n, it is then possible

to compute the part containing n, which will associate a key
with n, denoted K(n). Using the same approach, a subscrip-
tion can be associated with a sequence of keys, the keys of

the parts needed to completely cover the subspace denoted

by the subscription. If a subscription Si only has equality

constraints over the attributes of the index (in addition, Si

can have any constraints over other attributes), it intersects a

single part whose key (K(Si)) can be computed from the

equivalent of an index digest [59]. This is quite similar to the

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 13,2010 at 11:53:22 UTC from IEEE Xplore. Restrictions apply.

www.DownloadPaper.irwww.DownloadPaper.ir

http://www.DownloadPaper.ir

52 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 12, NO. 1, FIRST QUARTER 2010

approach used by the system EDN with its signature strings. If

Si contains range subscriptions, it is possible to compute the

index digests and the keys of parts of the notification space

that completely cover Si. Therefore, given a subscription, it

is possible to compute K(Si), which denotes one or more
keys identifying the same number of subspaces or parts of the

notification space.

If we associate a multicasting group with each key, and

each node joins all the groups associated with the keys

covering its subscriptions, we have just built one approximate

solution of the content-based routing problem along the lines

introduced in section III. Recall that this solution introduces

false positives since the index partitioning method and the key

generating function are imprecise summarization methods, as

in EDN.

Paper [8] is an attempt to generalize the above approach to

compare the performance of alternative methods of generating

keys. The paper introduces the mapping Ns which maps each

subscription to a set of keys and nodes where it should be

registered, and a mapping Nn which maps each notification

to a set of keys and nodes willing to deliver it to the set of

locally registered matching subscriptions. These two mappings

will allow the correct delivery of a notification, if and only if,

Ns(S) ∩ Nn(n) �= ∅ ∀S, n : Match(S, n).
Multicasting the Notifications: There are several ways of

using a structured overlay to build the multicasting groups al-

lowing the final delivery of notifications to the nodes interested

in them. An initial approach consists of connecting directly a

node to all the home nodes of the keys of its subscriptions.

This may be a poor solution for the home nodes of the keys

corresponding to very popular subspaces. Several alternative

solutions have been proposed. Authors of [59] use the Scribe

protocol [55] over the Pastry structured overlay. Authors of

[8] introduce their own multicasting protocol on top of the

Chord [58] structured overlay.

The overall quality of the proposals discussed above de-

pends of:

• The characteristics of the partitioning induced by the

index and the key mapping function.

• The quality of the dissemination tree provided by the

multicasting protocol on top of the structured overlay.

In what concerns the first aspect, the evaluations presented in

paper [59] show that a poor index induces a poor partitioning

and a significant increase in false positives, thus wasting many

messages. It can also increase the probability of hot spots,

leading to some nodes overloading. Ideally, more keys should

be allocated to parts of the notification space with a higher

load, but devising a good index seems to be a challenge

that is very dependent of the schema used. Moreover, these

evaluations are based on uniform synthetic distributions of

notifications and subscriptions, while real world data sets tend

to be skewed and hence will cause a non-uniform distribution

of node’s load, thus aggravating the problems observed.

In respect to the second issue, evaluations only show that the

system is scalable when a good index is used, since the number

of exchanged messages grows sub-linearly with the number

of nodes. However, this is far from an evaluation comparing

the dissemination solution to the performance of an optimal

multicasting routing substrate.

Improving Load Balancing Issues: Meghdoot [35] is an

alternative design that deals with the load balancing issue.

This system uses the CAN overlay [51], which maps keys

into points or volumes in a cartesian space of N dimensions.

Meghdoot uses a CAN with as many dimensions as twice

the number of attributes of the schema. It introduces two

mappings: Kn, mapping a notifications into one key, and Ks,

mapping a subscription into a key. A node with subscription

Si is connected to an unique node, the node Home(Ks(Si)).
A notification n is routed through the CAN to the node

Home(Kn(n)).
The two mappings have the property that all nodes with

subscriptions matching n stay in a well defined volume that

includes node Home(Kn(n)). As the CAN overlay allows

for a simple form of multicasting a message to all nodes of

a volume in the key space, a notification n is routed to the

node Home(Kn(n)), and from there to the volume where all
nodes with matching subscriptions should have been linked.

To promote load balancing, newly arrived nodes are as-

signed keys such that they will become responsible for the

most loaded regions of the key space. This technique may also

be used in the previous approaches, but face greater difficulties

there due to their dependance of the indexes used.

The scheme used by Meghdoot to multicast a notification

to all nodes with matching subscriptions, based on the CAN,

seems less interesting than using a multicast dissemination tree

as in the previous methods. However, it is difficult, in general,

to compare these approaches in terms of their cost and per-

formance. That comparison is dependent of the characteristics

of the different overlays, of their actual performance in terms

of real physical network costs and also depends on the use of

common data sets and common test suites. To the best of our

knowledge, these studies remain unavailable in the literature.

Optimizing for Special Cases: The works presented in [62]

and [3] are attempts of leveraging the Chord and Pastry

structured overlays routing properties to deal more efficiently

with range and substring subscriptions. In the second proposal,

a subscription is registered in at least as many nodes of the net-

work as constraints it has, since it requires that each attribute

of a subscription be separately processed and registered. A

constraint over a string type is, in general, registered in one

only node. However, a range constraint will be registered in a

number of nodes depending of the range. Thus, a subscription

will be registered in as many nodes as the sum of nodes

required to register each of its constraints.

Both proposals, given a constant value (a string or a

number), allow efficient ways of locating in the overlay all

subscriptions registrations matching that value in one of its

constraints. This is done using order preserving hash func-

tions with Chord [62], or specific string prefix based routing

tables over Pastry [3]. Finding all subscriptions matching a

notification n is then easy if n has one only attribute value.

However, if the notification has several attribute values, a

list of subscriptions must be found for each one of them.

Subscriptions found in as many attribute lists as constraints

they have, are the subscriptions that match n. This means that
these proposals can only be competitive for situations where

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 13,2010 at 11:53:22 UTC from IEEE Xplore. Restrictions apply.

www.DownloadPaper.irwww.DownloadPaper.ir

http://www.DownloadPaper.ir

MARTINS and DUARTE: ROUTING ALGORITHMS FOR CONTENT-BASED PUBLISH/SUBSCRIBE SYSTEMS 53

most subscriptions and notifications only concern a single

attribute. Otherwise, the simpler notification space partition

approaches presented above seem preferable.

B. Conclusions

The use of keys spaces and structured overlays for content-

based routing tries to solve a multifaceted problem with two

tools: mappings from some semantic space to a space of

keys and a structured routing substrate built around keys.

The systems presented above exhibit simple solutions or very

elegant algorithms for some specific contexts. However, it is

hard to figure out a winning algorithm, valid for a broad class

of content-based routing contexts.

First, no solution is clearly orthogonal to the schema used

and all referred solutions introduce spam. Second, unicast

key based routing and load balancing are too intertwined

and generally also dependent of the schema. This makes the

systems fragile to deal with certain contexts and data sets.

Third, final notification delivery depends on a multicasting

framework that is, in general, a by-product of the structured

overlay. Large-scale systems where many facets are too in-

terdependent, are likely to only have success in very specific

scenarios, being harder to adapt and evolve. Knowing precisely

the winning contexts, the advantages, the drawbacks, limits

and more precise costs, would be very important.

Furthermore, significant and reproducible evaluations are

missing. In fact, evaluation of the content-based routing prob-

lem is lacking well-accepted standard workloads and settings

[16]. Evaluation of systems based on structured overlays is, in

general, also quite difficult. Together, both difficulties make

it really hard to have a reasonable judgement on the usage

of keys mappings and structured overlays to support content-

based routing in very large-scale scenarios.

The ideas behind structured overlays and their use for

content-based routing are appealing from the algorithmic point

of view. However, it is difficult to accept their real relevance

without more exhaustive evaluations than those presented in

any of the referred papers.

VIII. ROUTING SOLUTIONS BASED ON SEMANTIC

OVERLAYS

In previous sections, nodes of the network were organized

in an overlay network whose structure was driven by criteria

like network or key proximity, geographic distribution, dis-

tribution of functions among clients and servers and so on.

In this section, we will consider solutions based on network

organization driven by semantic similarity.

Establishing the overlay network in a way that facilitates

content-based routing may be a way of incrementing perfor-

mance. For example, with a rooted tree, when notifications

are disseminated to subtrees, notifications paths are shorter if

nodes are organized in such a way that the paths taken by a

notification will flow through nodes associated with a sequence

of subspaces S1, S2, S3, ... such that

∀i : Si ⊇ Si+1 (3)

If this could be the case, each notification would only flow

through matching nodes. This suggests that if we could group

together equivalent subscriptions and establish an overlay

based on semantic relations among these groups, there is room

for improvements on the routing costs.

This approach ignores network costs in favor of flexibility

and requires that nodes be able to freely establish links among

themselves, what also implies that all nodes must be visible

from each other. This system model is best suited for a pure

P2P system oblivious of network proximity costs and using

a full-mesh network, where subscribers represent a single

subscription and play also the role of notification routers for

other nodes.

One of the simplest attempts in this direction is best suited

for cases where the schema has a single ordered attribute

and all constraints are based on the operators >, < and =.
Paper [7] proposes the distribution of these subscriptions in a

semantic tree, organized in such a way that most paths from

the root to the leaves cross nodes associated with constraints

satisfying equation 3. To use the proposal with schemas not

restricted to one attribute, each subscription must be associated

with the tree of just one of its constraints, arbitrarily chosen,

and each notification should be disseminated through the set

of trees associated with all its attributes values. Thus, com-

puting nodes with subscriptions with more than one simple

constraint will potentially receive waste and must run the

matching algorithm on each received notification. This again

strongly confines the applicability of the proposal to scenarios

where most subscriptions and notifications have few attributes.

Despite of that, this line of work is still noteworthy as an

example of a semantically driven networking approach.

A. Examples of Semantic Proximity Functions

In a more general setting, different subscriptions, represent

different notifications spaces that can be inter-related by

relations, other then the cover and intercept ones. In an attempt

to find a more general solution, we will now introduce the

functions affinity and distance.

Given T notifications, of which M match a subscription Si,

the area of the subspace of subscription Si in respect to T ,
or simply the area of Si, is defined by Area(Si) = M/T .
In [31], the affinity function (φ) of subscriptions Si and Sj is

defined as

φ(Si, Sj) = Area(Si ∩ Sj)/min(Area(Si), Area(Sj)) (4)

If Si ⊇ Sj , i.e., one subscription covers the other, their

affinity is 100%. If Si ∩ Sj = ∅, i.e. subscriptions do not
intercept, their affinity is 0%.

When the area of a subscription cannot be statically com-

puted, function φ can be, for example, computed by a counting
method using a matrix H : whenever a notification is received
and matches Si and Sj , H [i, j], H [i, i] and H [j, j] are
incremented. That is,H [i, j] counts all notifications that match
Si and Sj and H [i, i] counts all notifications that match Si.

This allows affinity to be computed even in the presence

of opaque subscriptions, materialized by “binary” executable

filtering programs.

When the semantic definition of subscriptions is available it

is, under certain circumstances, possible to compute a distance

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 13,2010 at 11:53:22 UTC from IEEE Xplore. Restrictions apply.

www.DownloadPaper.irwww.DownloadPaper.ir

http://www.DownloadPaper.ir

54 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 12, NO. 1, FIRST QUARTER 2010

function between subscriptions, which can be interpreted as a

kind of inverse of the affinity function. For example, given

subscription Si denoting the Euclidean subspace of N dimen-

sions [li1, r
i
1]× ...× [liN , ri

N], the distance (d) of subscriptions
Si and Sj is defined as

d(Si, Sj) =

√

√

√

√

N
∑

k=1

(min(ri
k, rj

k) − max(lik, ljk))2 (5)

Affinity and distance are useful functions that can be used to

link subscriptions according to a criteria of semantic proximity

in a more more flexible way than the presented in the previous

subsection.

In [31], an algorithm is presented to generate a tree of

subscriptions with the following properties:

1) the root of the tree is the source;

2) the subscription with largest area of each subtree is its

root;

3) subscription subtrees are clusters of related subscrip-

tions, and are built with the help of the affinity function.

This tree is suitable to disseminate notifications through

paths crossing “close” subscriptions, from the highest to

lowest matching probability. This optimizes the total cost

of routing. However, waste is introduced since these paths

can cross subscriptions not matching the notification. The

algorithm is a centralized one and requires the knowledge

of all subscriptions, as well as, their affinity. In the next

paragraphs, we will illustrate other approaches based on the

distance function as well as in other semantic relations.

B. Semantic Proximity and Gossip-based Algorithms

Epidemic or gossip-based algorithms have been initially

proposed as a way of implementing data replication [27] and

have been recently extensively studied as a scalable means

to support reliable multicasting [13], [34], [28]. A node in a

epidemic-based system has a dynamic view of part of the state

of a number of other peer nodes. Peers periodically exchange

their views to allow state convergence. Random selection of

peers is essential for fault-tolerance and reliability, however,

view and peer selection biasing has been used as a means of

dealing with an heterogeneous network [53], [14], in addition

to a means of clustering nodes with related interests [65].

System “Sub-2-Sub (S2S)” [64] is a gossip-based proposal

for content-based networking. For network organization, S2S

uses the protocol introduced in [63]. This protocol allows a

node to have a dynamic view of a random number of other

nodes, independently of their subscriptions. To dynamically

cluster nodes according to the similarity of their subscriptions,

the protocol presented in [65] is used, on top of the previous

one, using the distance function introduced by equation 5 as a

criterion for node preference. This second view, allows a node

to know a dynamic subset of other nodes with overlapping or

close subscriptions.

Finally, using all the nodes it knows, a node periodically

recomputes a third set of links pointing to as many clusters

as the optimal delivery clusters introduced in section III.

These clusters are reachable by the links of bidirectional

rings associated with each one. To build these rings, each

node periodically exchanges all its views with their members

and does a computation by which the following invariant is

enforced: a node keeps a link to another node with an higher

identifier and subscribing to a common part of the subscription

space not yet covered by any other of its links.

A publisher must find an initial matching node using all

its views, or gossips, as fast as it can, until it locates one

or a given small number of gossip steps is exceeded, in

which case the notification is dropped since with very high

probability there are no matching subscribers. When a node

with a matching subscription receives a new notification, it

delivers it, locally, and propagates it to the next member of the

relevant ring and, to speedup the propagation, propagates it as

well to a number of other random matching subscribers. Due

to the random nature of this propagation, nodes are required

to detect and discard duplicate notifications. Except for the

inconsistencies that arise in the rings maintenance (churn or

node subscription changes), the method delivers notifications

to all the matching subscribers without introducing spam (false

positives).

[19] introduces an algorithm that partially resembles the

two first protocols of S2S. Yet, it introduces a not negligible

percentage of false positives but, more serious than that, it

also introduces a percentage of false negatives (misses), i.e.,

it cannot guarantee the delivery of a notification to all its

matching subscribers.

C. A Distributed Implementation of a Parallel Search Tree

Brushwood [68] is another proposal based on semantic

similarity. It builds a parallel search tree (PST), cf. section II,

and distributes it across a variable number of broker nodes.

Each broker takes care of a set of similar subscriptions and

is related to other brokers by a network based on a similarity

relation among subscriptions. Client subscribers are redirected

and connect to the best broker according to their subscriptions.

The specific PST used is dynamically built and maintained in

a way that promotes load and tree balancing.

Each broker node is responsible for a subtree (subPST) and

manages the subscriptions associated with its subtree leafs.

All brokers know enough of the PST, and of enough other

broker nodes, to route notifications to all brokers in charge

of subtrees with matching subscriptions. Client subscriptions

are identically redirected to the adequate broker. In fact,

all brokers are able to initiate the handling of notifications

and subscriptions and route them to suitable nodes, without

necessarily resorting to a root broker. For this purpose each

subtree receives a specific key or Tree ID and a the SkipNet

[37] structured overlay is used.

Brushwood demonstrates that it is possible to distribute

a PST in a flexible way across a variable number of bro-

kers. New broker nodes joining the system will receive new

subtrees, relieving the previously most loaded ones. Paper

[68] claims that this is independent of a specific or a closed

subscription schema, and also claims that it can scale to a

large number of brokers, since in a network with n brokers,

each one has links to O(log n) other ones, and each subtree
can be reached in at most O(log n) hops.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 13,2010 at 11:53:22 UTC from IEEE Xplore. Restrictions apply.

www.DownloadPaper.irwww.DownloadPaper.ir

http://www.DownloadPaper.ir

MARTINS and DUARTE: ROUTING ALGORITHMS FOR CONTENT-BASED PUBLISH/SUBSCRIBE SYSTEMS 55

TABLE II
CLASSIFICATION OF ROUTING METHODS VIS-À-VIS THEIR USAGE

CONTEXT

Method Schema Data set Network
independent independent requirements

Flooding yes yes acyclic network
(or duplicate
detection)

Ideal yes yes multicast
Multicast support
Dynamic yes yes none
Multicast
Bounded yes no multicast
Multicast support
Learnin by yes yes none
Reverse Path
Key-based no structured

overlay

Semantic yes full-mesh
Affinity network

D. Conclusions

All presented algorithms in this section use a network sys-

tem model oblivious to network proximity and communication

constraints, where nodes can freely communicate with each

other, i.e., a full-mesh network.

In a network of nodes with full knowledge of all sub-

scriptions of each other, the publisher node can compute the

group of nodes with matching subscriptions, cf. section IV. If

nodes are interconnected by a full-mesh network, it is possible

to compute a bounded degree tree to optimally deliver the

notification. This optimal solution has scalability problems and

requires the publisher to fully execute the matching algorithm.

The systems presented in this section present several pos-

sible ways of dealing with this scalability issue. We have

seen a gossip-based approximation and a system based on a

distributed implementation of a parallel search tree. Semantic

proximity is an extra research direction added to the toolbox

of methods and algorithms available to deal with the content-

based routing problem.

IX. BRIEF COMPARISON OF THE APPROACHES AND

CONCLUSIONS

Content-based routing algorithms must be evaluated by tak-

ing into consideration several aspects concerning their context

of usage and their characteristics:

1) independence of the schema language;

2) independence of the notification and subscription distri-

butions (content data sets);

3) independence of the network configuration;

4) nodes in charge of the execution of the matching algo-

rithm;

5) nodes in charge of routing notifications;

6) state replication requirements;

7) routing with or without false positives (spam);

8) optimality of the dissemination in terms of network

costs.

Some of these issues are necessarily qualitative and are only

suitable to select the usable solutions in some contexts. This

is mainly the case of aspects 1, 2 and 3, which expose the

dependence or the orthogonality of a solution vis-à-vis some

characteristics of its context of usage, namely the schema,

notifications and subscriptions distributions (data sets) and

network characteristics. The second aspect is very important

since some proposals perform better if notifications or sub-

scriptions are uniformly distributed, while others excel when

these distributions are highly skewed. Table II presents the

dependence/independence of each routing method in relation

to these three aspects. The gossip-based algorithm has been

selected as representative of the semantic affinity method.

The remaining aspects characterize the routing method in

a context independent way. Table III presents a qualitative

characterization of the presented routing schemes according

to these remaining issues. The presence of a bold-face text-

style highlights a case in which the method performs well.

Italic signals the opposite and performance of the method

is poorest. While, a regular text is used for aspects that are

neutral and have little impact on performance of a method. The

hierarchical version of the learning by reverse path method

has been selected to highlight the methods characteristics. The

semantic affinity method characteristics were again established

with the gossip-based version.

Clearly, only the ideal multicast and dynamic multicast

methods ensure optimal routing in terms of network costs,

since these methods are backed by algorithms that compute or

use shortest paths trees (SP trees), rooted at each publisher and

only covering the nodes with matching subscribers. All other

methods are not optimal in what concerns this criterion. The

hierarchical version of the learning by reverse path method

routes optimally when all notifications come from the root

of the tree. Otherwise, it is dependent of the position of

the publishers in the network. A tree per publisher with this

method will also be optimal.

State replication and matching load seem to be the main

sources of complexity of almost all methods. Ideal, bounded

and a version of dynamic multicast only require the publisher

to execute the matching algorithm. Hierarchical learning by

the reverse path only executes matching in half of the nodes.

Additionally, most methods, but flooding, require some degree

of state replication in what concerns subscriptions. In this

respect, hierarchical learning by the reverse path, key-based

and semantic affinity are methods that do not require full

subscription replication in every node, or in the publishing

nodes.

All in all, methods routing by optimal paths require a

great deal of state replication, which constitutes their main

drawback and prevents their scalability. Ideal and bounded

multicast also require the availability of a (network or over-

lay level) multicasting facility optimal and supporting many

nodes. In addition to this aspect, which promotes separation of

concerns between matching and routing, they have the same

characteristics as the other optimal delivery methods. Key-

based and the semantic affinity methods seem to require less

state replication and appear to be more scalable. However, it

is very difficult to characterize these methods in terms of the

costs of routing and state replication. Hierarchical learning

by the reverse path solutions are a compromise between state

replication and bounded routing costs.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 13,2010 at 11:53:22 UTC from IEEE Xplore. Restrictions apply.

www.DownloadPaper.irwww.DownloadPaper.ir

http://www.DownloadPaper.ir

56 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 12, NO. 1, FIRST QUARTER 2010

TABLE III
QUALITATIVE CHARACTERIZATION OF THE IDENTIFIED ROUTING

METHODS

Method Matching Routing Subscription Spam / Optimal
in nodes replication duplicates

Flooding all flooding none spam and no

duplicates

Ideal publisher network in none yes
Multicast SP tree publishers

Dynamic path nodes overlay in none yes
Multicast / publisher SP tree all nodes

Bounded publisher network in spam no
Multicast SP tree publishers

Hierarchical path nodes overlay in none tree root
Learning by tree path nodes dependent
Rev. Path
Key-based path nodes overlay in spam no

key-based home nodes
Semantic path nodes gossip- in nodes duplicates no
Affinity -based views

This kind of analysis suggests that a successful and scalable

system needs to be built by combining the strengths of several

approaches. For example, one could try to use a hierarchical

learning by the reverse path algorithm, with aggressive sum-

marization, to meet large scale requirements, and resort to a

full state replication approach for smaller clusters of nodes.

Paper [15] presents an attempt in that direction. It is quite clear

that the selection of a specific algorithm for a specific context

must be done taking into consideration a deep understanding

of the way the presented algorithms perform. Unfortunately, at

present, this choice can hardly be based on rigorous analytical

comparisons.

Many of the presented algorithms have been mostly eval-

uated by their authors using custom based simulators, and in

several cases, using only synthetic data sets. The real value

of these evaluations depends on the following factors: good

network and overlay models, number of participants and their

dynamism (number of servers and clients, churn and sub-

scription evolution in general), and relevant notification and

subscription data sets, models and distributions. In general,

these issues are treated very differently from evaluation to

evaluation. In certain cases, they are addressed in an incom-

plete manner. For example, claims of scalability are sometimes

backed by evaluations where the number of nodes used is

very small, even in P2P settings. Another common example

of possibly incomplete evaluation pertains to the use of data

sets with uniform distributions when this distribution favors

the behavior of the proposed algorithm. With the exception

of some quality evaluations based on real and representative

notifications data sets (mostly stock quote or alert feeds), most

data sets are synthetically generated. The same is true for most

of the network and overlays models and configurations used.

Only a few systems have been evaluated in a real network

setting or considering real system logs as input for the model

of churn and network configurations.

This state of affairs of the content-based communication

evaluation is a consequence of the difficulties of the problem

at hand. It is very multi-faceted problem, having a broad

spectrum of configurations, contexts and applications. But,

also, because we are still lacking well-accepted standard

workloads and settings to drive evaluations and comparisons.

In situations like these, the number of under evaluated and

not comparable approaches tends to explode. That seems to

be happening already, if the diversity of key-based and the

semantic affinity proposals appearing in the literature is an

indication. This is a real challenge for the community working

in the content-based networking, as it poses a major obstacle

to any serious intent to judge the relevance and the progress

of the field.

ACKNOWLEDGEMENTS

The authors want to thank the anonymous reviewers by their

helpful comments. This work has been partially supported

by the Portuguese Ministry of Science, Technology and Uni-

versity Teaching under grant PTDC/EIA/76114/2006, Project

LiveFeeds – P2P Dissemination of Web Syndication Content.

REFERENCES

[1] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley. The
design and implementation of an intentional naming system. In
SOSP ’99: Proc. seventeenth ACM symposium on Operating systems

principles, pages 186–201, New York, NY, USA, 1999. ACM Press.
[2] M. Adler, Z. Ge, J. Kurose, D. Towsley, and S. Zabele. Channelization

problem in large scale data dissemination. Network Protocols, 2001.

Ninth International Conference on, pages 100–109, 2001.
[3] I. Aekaterinidis and P. Triantafillou. PastryStrings: A Comprehensive

Content-Based Publish/Subscribe DHT Network. ICDCS’2006: Proc.
26th IEEE International Conference on Distributed Computing Systems,
2006.

[4] L. Aguilar. Datagram routing for internet multicasting. SIGCOMM
Comput. Commun. Rev., 14(2):58–63, 1984.

[5] M. Aguilera, R. Strom, D. Sturman, M. Astley, and T. Chandra. Match-
ing events in a content-based subscription system. Proc. eighteenth

annual ACM symposium on Principles of distributed computing, pages
53–61, 1999.

[6] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A survey
on sensor networks. Communications Magazine, IEEE, 40(8):102–114,
2002.

[7] E. Anceaume, M. Gradinariu, A. Datta, G. Simon, and A. Virgillito.
A Semantic Overlay for Self-Peer-to-Peer Publish/Subscribe. Proc.

26th IEEE International Conference on Distributed Computing Systems,
2006.

[8] R. Baldoni, C. Marchetti, A. Virgillito, and R. Vitenberg. Content-based
publish-subscribe over structured overlay networks. ICDCS’2005: Proc.
25th IEEE International Conference on Distributed Computing Systems,
5:437–446, 2005.

[9] R. Baldoni and A. Virgillito. Distributed event routing in pub-
lish/subscribe communication systems: a survey. Technical re-
port, Technical Report TR-1/06. Dipartimento di Informatica e Sis-
temistica, Universitá di Roma ‘La Sapienza’. http://www. dis. uniroma1.
it/midlab/publications. php, 2006.

[10] T. Ballardie, P. Francis, and J. Crowcroft. Core based trees (CBT):
An architecture for scalable inter-domain multicast routing. Proc. ACM
SIGCOMM, 93:85–95, 1993.

[11] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. Strom, and
D. Sturman. An efficient multicast protocol for content-based publish-
subscribesystems. Distributed Computing Systems, 1999. Proc. 19th

IEEE International Conference on, pages 262–272, 1999.
[12] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable application

layer multicast. In ACM Conference on Applications, Technologies,

Architectures, and Protocols for Computer Communication (SIGCOMM

2002), pages 205–217, 2002.
[13] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and

Y. Minsky. Bimodal multicast. ACM Trans. Comput. Syst., 17(2):41–88,
1999.

[14] M. Brahami, P. T. Eugster, R. Guerraoui, and S. B. Handurukande. Bgp-
based clustering for scalable and reliable gossip broadcast. In C. Priami
and P. Quaglia, editors, Global Computing, volume 3267 of Lecture
Notes in Computer Science, pages 273–290. Springer, 2004.

[15] F. Cao and J. Singh. Medym: Match-early with dynamic multicast for
content-based publish-subscribe networks. Proc. ACM/IFIP/USENIX 6th
International Middleware Conference (Middleware 2005), 2005.

[16] A. Carzaniga and C. P. Hall. Content-based communication: a research
agenda. In SEM ’06: Proc. 6th international workshop on Software

engineering and middleware, pages 2–8, New York, NY, USA, 2006.
ACM Press.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 13,2010 at 11:53:22 UTC from IEEE Xplore. Restrictions apply.

www.DownloadPaper.irwww.DownloadPaper.ir

http://www.DownloadPaper.ir

MARTINS and DUARTE: ROUTING ALGORITHMS FOR CONTENT-BASED PUBLISH/SUBSCRIBE SYSTEMS 57

[17] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evaluation
of a wide-area event notification service. ACM Trans. Computer Systems,
19(3):332–383, 2001.

[18] A. Carzaniga, M. J. Rutherford, and A. L. Wolf. A routing scheme for
content-based networking. In INFOCOM, 2004.

[19] R. Chand and P. Felber. Semantic peer-to-peer overlays for pub-
lish/subscribe networks. Parallel Processing, 11th International Euro-
Par Conference (Euro-par 2005), pages 1194–1204, 2005.

[20] J. Chen, D. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A Scalable
Continuous Query System for Internet Databases. Proc. 2000 ACM

SIGMOD Intl. Conf. on Management of Data, pages 379–390, 2000.

[21] Y.-H. Chu, S. G. Rao, and H. Zhang. A case for end system multicast.
In ACM SIGMETRICS 2000, pages 1–12, Santa Clara, CA, June 2000.
ACM.

[22] P. Costa, M. Migliavacca, G. Picco, and G. Cugola. Introducing relia-
bility in content-based publish-subscribe through epidemic algorithms.
Proc. 2nd international workshop on Distributed event-based systems,
pages 1–8, 2003.

[23] G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI event-based
infrastructure and its application to the development of the OPSS
WFMS. IEEE Trans. Softw. Eng., 27(9):827–850, 2001.

[24] Y. K. Dalal and R. M. Metcalfe. Reverse path forwarding of broadcast
packets. Communications of ACM, 21(12):1040–1048, 1978.

[25] S. Deering. Host extensions for IP multicasting. RFC 1112 (Standard),
Aug. 1989. Updated by RFC 2236.

[26] S. Deering and D. Cheriton. Multicast routing in datagram internetworks
and extended LANs. ACM Trans. Computer Systems (TOCS), 8(2):85–
110, 1990.

[27] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry. Epidemic algorithms for
replicated database maintenance. In PODC ’87: Proc. sixth annual

ACM Symposium on Principles of distributed computing, pages 1–12,
New York, NY, USA, 1987. ACM Press.

[28] M. Deshpande, B. Xing, I. Lazardis, B. Hore, N. Venkatasubramanian,
and S. Mehrotra. Crew: A gossip-based flash-dissemination system. In
ICDCS ’06: Proc. 26th IEEE International Conference on Distributed

Computing Systems, page 45, Washington, DC, USA, 2006. IEEE
Computer Society.

[29] E. Dijkstra. A note on two problems in connection with graphs.
Numerische Mathematik, 1(269-270):6, 1959.

[30] S. Duarte, J. Martins, H. Domingos, and N. Preguiça. A case study on
event dissemination in an active overlay network environment. Proc.

2nd international workshop on Distributed event-based systems, pages
1–8, 2003.

[31] S. M. Duarte. DEEDS - A Distributed and Extensible Event Dissemi-

nation Service. PhD thesis, New University of Lisbon, Feb 2006.

[32] D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deering, M. Handley,
V. Jacobson, C. Liu, P. Sharma, and L. Wei. Protocol Independent
Multicast-Sparse Mode (PIM-SM): Protocol Specification. RFC 2362
(Experimental), June 1998.

[33] P. Eugster, P. Felber, R. Guerraoui, and A. Kermarrec. The many faces
of publish/subscribe. ACM Computing Surveys, 35(2):114–131, 2003.

[34] P. Eugster, S. Handurukande, R. Guerraoui, A. Kermarrec, and
P. Kouznetsov. Lightweight probabilistic broadcast. In The International
Conference on Dependable Systems and Networks (DNS 2001), 2001.

[35] A. Gupta, O. Sahin, D. Agrawal, and A. Abbadi. Meghdoot:
Content-Based Publish/Subscribe over P2P Networks. Proc. 5th

ACM/IFIP/USENIX international conference on Middleware, pages
254–273, 2004.

[36] E. Hanson, C. Carnes, L. Huang, M. Konyala, L. Noronha,
S. Parthasarathy, J. Park, and A. Vernon. Scalable Trigger Processing.
Proc. 15th International Conference on Data Engineering, pages 266–
275, 1999.

[37] N. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman.
Skipnet: A scalable overlay network with practical locality properties.
In Proc. 4th USENIX Symposium on Internet Technologies and Systems
(USITS ’03), Seattle, WA, March 2003.

[38] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion:
A scalable and robust communication paradigm for sensor networks.
Proc. ACM/IEEE International Conference on Mobile Computing and

Networking, pages 56–67, 2000.

[39] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, and J. W.
O’Toole, Jr. Overcast: Reliable multicasting with an overlay network. In
The Fourth Symposium on Operating System Design and Implementation

(OSDI), pages 197–212, 2000.

[40] L. Ji and M. S. Corson. Explicit multicasting for mobile ad hoc
networks. Mob. Netw. Appl., 8(5):535–549, 2003.

[41] Y. Liu and B. Plale. Survey of Publish Subscribe Event Systems. Indiana
University Computer Science Technical Report TR-574, 2003.

[42] J. Moy. OSPF Protocol Analysis. RFC 1245 (Informational), July 1991.
[43] J. Moy. MOSPF: Analysis and Experience. RFC 1585 (Informational),

Mar. 1994.
[44] G. Mühl, L. Fiege, F. C. Gärtner, and A. Buchmann. Evaluating ad-

vanced routing algorithms for content-based publish/subscribe systems.
In MASCOTS ’02: Proc. 10th IEEE International Symposium on Mod-

eling, Analysis, and Simulation of Computer and Telecommunications
Systems (MASCOTS’02), page 167, Washington, DC, USA, 2002. IEEE
Computer Society.

[45] G. Muhl, L. Fiege, and P. R. Pietzuch. Distributed Event-Based Systems.
Springer Verlag, Berlin, Germany, 2006.

[46] L. Opyrchal, M. Astley, J. Auerbach, G. Banavar, R. Strom, and
D. Sturman. Exploiting ip multicast in content-based publish-subscribe
systems. In Middleware ’00: IFIP/ACM International Conference on

Distributed systems platforms, pages 185–207, Secaucus, NJ, USA,
2000. Springer-Verlag New York, Inc.

[47] S. Pallickara and G. Fox. NaradaBrokering: A Distributed Middleware
Framework and Architecture for Enabling Durable Peer-to-Peer Grids.
Proc. International Middleware Conference, 2003.

[48] D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel. ALMI: An appli-
cation level multicast infrastructure. In Proc. 3rd USENIX Symposium

on Internet Technologies and Systems (USITS ’01), pages 49–60, San
Francisco, CA, USA, Mar. 2001.

[49] P. Pietzuch and J. Bacon. Hermes: A Distributed Event-Based Middle-
ware Architecture. In 1st International Workshop on Distributed Event-
Based Systems (DEBS’02), July 2002.

[50] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing nearby copies
of replicated objects in a distributed environment. In ACM Symposium

on Parallel Algorithms and Architectures, pages 311–320, 1997.
[51] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A

scalable content-addressable network. In SIGCOMM ’01: Proc. 2001

conference on Applications, technologies, architectures, and protocols

for computer communications, pages 161–172, New York, NY, USA,
2001. ACM Press.

[52] A. Riabov, Z. Liu, J. Wolf, P. Yu, and L. Zhang. Clustering algorithms
for content-based publication-subscription systems. Distributed Com-

puting Systems, 2002. Proceedings. 22nd International Conference on,
pages 133–142, 2002.

[53] L. Rodrigues, S. B. Handurukande, J. O. Pereira, R. Guerraoui, and A.-
M. Kermarrec. Adaptive gossip-based broadcast. In DSN, pages 47–56.
IEEE Computer Society, 2003.

[54] A. I. T. Rowstron and P. Druschel. Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems. InMiddleware
2001: Proc. IFIP/ACM International Conference on Distributed Systems

Platforms Heidelberg, pages 329–350, London, UK, November 2001.
Springer-Verlag.

[55] A. I. T. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel.
SCRIBE: The design of a large-scale event notification infrastructure.
In Networked Group Communication, pages 30–43, 2001.

[56] A. Snoeren, K. Conley, and D. Gifford. Mesh-based content routing
using xml. Proc. eighteenth ACM symposium on Operating systems

principles, pages 160–173, 2001.
[57] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.

Chord: A scalable peer-to-peer lookup service for internet applications.
In Proc. 2001 conference on Applications, technologies, architectures,
and protocols for computer communications (SIGCOMM’01), pages
149–160. ACM Press, 2001.

[58] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. IEEE Trans. Netw., 11, 2003.

[59] D. Tam, R. Azimi, and H. Jacobsen. Building Content-Based Pub-
lish/Subscribe Systems with Distributed Hash Tables. Proc. Databases,
Information Systems, and Peer-to-Peer Computing, 3:138–152, 2003.

[60] A. Tanenbaum. Computer Networks — 4th edition, 2004.
[61] W. W. Terpstra, S. Behnel, L. Fiege, A. Zeidler, and A. P. Buchmann. A

peer-to-peer approach to content-based publish/subscribe. In DEBS ’03:
Proc. 2nd international workshop on Distributed event-based systems,
pages 1–8, New York, NY, USA, 2003. ACM.

[62] P. Triantafillou and I. Aekaterinidis. Content-based Publish-Subscribe
Over Structured P2P Networks. 1st International Workshop on Discrete
Event-Based Systems, 2004.

[63] S. Voulgaris, D. Gavidia, and M. van Steen. CYCLON: Inexpensive
Membership Management for Unstructured P2P Overlays. J. Network
and Systems Management, 13(2):197–217, 2005.

[64] S. Voulgaris, E. Riviere, A. Kermarrec, and M. van Steen. Sub-2-sub:
Self-organizing content-based publish and subscribe for dynamic and

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 13,2010 at 11:53:22 UTC from IEEE Xplore. Restrictions apply.

www.DownloadPaper.irwww.DownloadPaper.ir

http://www.DownloadPaper.ir

58 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 12, NO. 1, FIRST QUARTER 2010

large scale collaborative networks. In IPTPS’06: the fifth International
Workshop on Peer-to-Peer Systems, 2006.

[65] S. Voulgaris and M. van Steen. Epidemic-style management of semantic
overlays for content-based searching. In Int’l Conf. on Parallel and

Distributed Computing (Euro-Par 2005), pages 1143–1152. Springer,
2005.

[66] Y. Wang, L. Qiu, D. Achlioptas, G. Das, P. Larson, and H. Wang. Sub-
scription Partitioning and Routing in Content-based Publish/Subscribe
Networks. 16th International Symposium on DIStributed Computing

(DISC’02), 2002.

[67] Y.-M. Wang, L. Qiu, C. Verbowski, D. Achlioptas, G. Das, and
P. Larson. Summary-based routing for content-based event distribution
networks. SIGCOMM Comput. Commun. Rev., 34(5):59–74, 2004.

[68] C. Zhang, A. Krishnamurthy, R. Y. Wang, and J. P. Singh. Combining
flexibility and scalability in a peer-to-peer publish/subscribe system.
In G. Alonso, editor, Middleware, volume 3790 of Lecture Notes in

Computer Science, pages 102–123. Springer, 2005.

[69] R. Zhang and Y. Hu. HYPER: A Hybrid Approach to Efficient Content-
Based Publish/Subscribe. Distributed Computing Systems, 2005. ICDCS
2005. Proceedings. 25th IEEE International Conference on, pages 427–
436, 2005.

J. Legatheaux Martins is a professor of distributed systems and computer
networks and head of the Department of Informatics of FCT/UNL, Univer-
sidade Nova de Lisboa, Portugal. In 1986 he received a PhD in distributed
systems from Université Rennes II, France. From 1983 to 1987 he was with
the Chorus Operating System team at INRIA, Paris, France. From 1988 to
1992 he was an assistant professor at Universidade de Lisboa, Portugal.
In 1993 he joined Universidade Nova de Lisboa as an associate professor.
In 1994 he was the founder of one of the first Internet Service Providers
operating in Portugal, that has been acquired in 2000 by the US based Qwest
Communications Company. His research interests include data management
for mobile systems, and many-to-many communication systems based on
network-level, overlay and peer-to-peer architectures. He is a member of IEEE
and the ACM.

Sérgio Duarte is an assistant professor at DI/FCT/UNL, Universidade Nova
de Lisboa, Portugal, where he received his PhD, in 2006. His main research
interests concern content-based routing and publish/subscribe architectures,
namely solutions based on structured overlays and peer-to-peer networking
principles.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 13,2010 at 11:53:22 UTC from IEEE Xplore. Restrictions apply.

www.DownloadPaper.irwww.DownloadPaper.ir

http://www.DownloadPaper.ir

