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Genomic medicine holds great promise for personalized care; however, it comes with a risk to privacy. In order to max-
imize the benefit, detailed information about individual genomes will need to be accessed by various healthcare providers,
thus increasing the potential for such sensitive data to be accessed by a malicious third party. Ensuring that only those
experts that need access to such data can obtain it, and that they themselves can only access the subset of data they require,
is an open area of research. In this perspective, we present techniques stemming from information security, to illustrate
how such data can be protected while still allowing accurate and easy access for authorized individuals.

There has been intense attention to the ethical, legal and organizational issues related to human genomic research.
The emphasis has been on issues of subject re-identification in anonymous genetic databases, and aggregate data analysis
in studies involving large samples. Here, we focus on the protection of genomic information - privacy control - at the level
of the individual customer (or patient), in a post-research setting, in the field of genomic medicine.

Privacy control is defined as the ability of individuals to determine when, how, and to what extent information about
themselves is revealed to others. Genomics appears as the next significant challenge for privacy control. As a result of the
fast evolution in genomic research, substantial progress is expected in terms of better predictive medicine and improved
diagnosis. Medically indicated genome sequencing is developing at a rapid pace, notably in oncology, to the point that it
could be routinely used in the near future. On the other hand, direct-to-consumer (DTC) genomic companies offer genome
profiling services that eliminate the classic physician/patient conduit concerning medical data: genome-wide genotyping
now costs less than $200, and the price of a complete genome sequence is quickly decreasing.

The widespread availability of genomic information is an opportunity for interested individuals and for medicine, but
the impact on privacy is unprecedented. The companies and hospitals that perform DNA sequencing have to store the
genomic data of their customers and patients. Of course, tight legislation regulates their activities, but it is difficult for
them to protect themselves against the misdeeds of a hacker or a disgruntled employee. Indeed, in 2007, Vint Cerf (one
of the fathers of the Internet and VP at Google) stated that 25% of all online computers are compromised. This means
that among 600 million computers that were connected to the Internet at that time, around 150 million were part of
botnets, and in most cases, the owners of these computers were unaware of this fact. Even today, this situation has not
been improved much. On the other hand, in a non-adversarial scenario, making use of genomic data requires facilitated
access to data by legitimate professionals (e.g., physicians and pharmacists). Therefore, new architectures, databases
(e.g., Hippocratic databases [1]) and Privacy-Enhancing Technologies (PETs) are needed to store, manage and process
genomic data while still enabling its utilization by the healthcare providers.

PETs generally protect users’ privacy by either breaking the link between individuals’ identities and the data they
provide (e.g., removing user’s identities from published genomic data), or by decreasing the information provided (e.g.,
by using cryptographic tools or obfuscation techniques). However, both techniques may reduce the reliability and the
accuracy of the interpretation of the genomic data. Thus, it would be of great benefit to develop technologies that protect
the privacy of a users’ genomic data while preserving its reliability (i.e., enabling accurate test results without disclosing
more information than is required) and minimizing the complexity of the privacy-preserving algorithms.

Developing PETs for genomic data presents challenges that arise from the architecture of the human genome (existing
privacy-preserving methods do not scale to the size necessary to accommodate the large genomic data sets) and from
the evolving knowledge in the field of genomics, which produces many new discoveries every year. This accelerated pace
of innovation results in the need for significant flexibility in data access, management and interpretation. Encrypting
genomic data in such a way as to allow the necessary flexibility is challenging. Furthermore, integration of genomic data
with other privacy-sensitive data (e.g., location, ancestry and other Online Social Network - OSN - data) increases privacy
risk through the potential for cross-layer attacks.
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We can categorize previous research on genomic privacy into three main categories: i) private string searching and
comparison (e.g., for paternity test) [2–5], ii) private release of aggregate data [6–10], and iii) private read mapping [11].
Different from these, in this work, we focus on “privacy of conducting medical tests in the framework of personalized
medicine using genomic data”. In the next section, focusing on leakage of the genomic data, we address the main threats
in genomic privacy and their potential consequences. Then, we present our proposed privacy-preserving algorithm in
detail.

Threats in Genomic Privacy

The main threats to human genomic data are the identification of the individual the DNA comes from and leakage of
genomic data. These types of attacks may reveal privacy-sensitive data about the patient (e.g., predisposition to disease,
ethnicity, paternity or filiation, etc.), which can have serious consequences such as denial of access to health insurance,
mortgage, education, or employment.

With the evolving technology, a service provider may sequence a patient’s genome and share it with other individuals
or institutions without the patient’s consent. For example, employers may (indirectly) test their employees, insurance
companies may obtain the genomes of their clients, or college officials may access the genomes of their students. Such tests
may lead to genetic discrimination (e.g., ancestry discrimination or discrimination due to geographic mapping of people).
Even though Genetic Information Non-discrimination Act (GINA), which prohibits the use of genomic information in
health insurance and employment, attempted to solve some of these problems in the US, these types of laws are very
difficult to enforce.

Even more severe, and currently not widely considered, a malicious party may initiate a cross-layer attack by utilizing
privacy-sensitive information belonging to a victim retrieved from different sources (e.g., genomic data, location, OSN,
etc.), creating the opportunity for a large variety of fraudulent uses of such data. For example, as stated in the Personal
Genome Project (PGP) consent form [12], a malicious party may make synthetic DNA of a victim and plant it at a crime
scene to falsely accuse him. In this hypothetical situation, the attacker can make his accusation stronger if he has the
location patterns of the victim to be blamed, and hence, knows that the victim was close to the crime scene at the time of
the crime. Similarly, an attacker can easily learn information on close relatives of a target from OSN data, thus effectively
increasing the potential access to privacy sensitive information if the relatives have also been sequenced. That is, even if
the victim has perfect privacy on his own genome, if the attacker has access to the DNA sequence of the parents, he can
obtain significant information about the victim’s DNA sequence.

BOX 1 PAILLIER CRYPTOSYSTEM AND HOMOMORPHIC CRYPTOGRAPHY

We describe a modification of the Paillier cryptosystem (de-
scribed in detail in [13,14]) for the proposed privacy-preserving
scheme.
The public key of patient P is represented as (n, g, h = gx) with
the strong secret key is the factorization of n = pq (where p, q
are safe primes), the weak secret key is x ∈ [1, n2/2], and g of
order (p−1)(q−1)/2. Such a g can be easily found by selecting
a random a ∈ Z

∗
n2 and computing g = −a2n.

Encryption of a message: To encrypt a message m ∈ Zn, we
first select a random r ∈ [1, n/4] and generate the ciphertext
E(m,r, gx) = (T1, T2) as below:

T1 = gr mod n2 and T2 = hr(1 +mn) mod n2. (1)

Decryption of a message: The message m can be recovered
as follows:

m = D((T1, T2) mod n2) = L(T2/T
x
1 ), (2)

where L(u) = (u−1) mod n2

n
, for all u ∈ {u < n2 | u = 1

mod n}.

Homomorphic properties: Assume two messages m1 and
m2 are encrypted using two different random numbers r1 and
r2, under the same public key, (n, g, h = gx), such that
E(m1, r1, g

x) = (T 1
1 , T

1
2 ) and E(m2, r2, g

x) = (T 2
1 , T

2
2 ). Fur-

ther, assume that k is a constant number. Then, below homo-
morphic properties are supported by Paillier cryptosystem:
• The product of two ciphertexts will decrypt to the sum of

their corresponding plaintexts.

D(E(m1, r1, g
x) · E(m2, r2, g

x)) =

D(T 1
1 · T 2

1 , T
1
2 · T 2

2 mod n2) = m1 +m2 mod n. (3)

• An encrypted plaintext raised to a constant k will decrypt to
the product of the plaintext and the constant.

D(E(m1, r1, g
x)k) =

D((T 1
1 )

k, (T 1
2 )

k mod n2) = km1 mod n. (4)

These homomorphic operations are conducted at the Trusted
Third Party (TTP) to compute the predicted susceptibility of
patient P for disease X as will be discussed next.

Proxy encryption: Patient’s weak secret key x is randomly
divided into two shares: x1 and x2 (such that x = x1⊕x2). x1 is
given to the TTP and x2 is given to the MU. x2 can be provided
to the MU once the patient is registered to the medical unit or
through patient’s digital ID card using attribute-based cryptog-
raphy [15]. Further details about the distribution of shares are
out of the scope of this paper.
TTP does the homomorphic operations on P’s encrypted ge-
netic variants (via P’s public key) and obtains the end-result
(i.e., predicted disease susceptibility of P for the disease X).
Then, TTP partially decrypts the end-result by using its share
x1 and sends the partially decrypted end-result to the MU.
Finally, MU completes the decryption process using its share
x2 and recovers the end-result (this process will be discussed in
detail in Box 2).

Even though, at this stage, the field of genomics looks generally well-intentioned (i.e., free from serious attacks), it is
likely that the above threats will become more serious as the number of sequenced individuals become larger. Such was
the case of the Internet that was initially run and used by well-intentioned researchers. However, once it became more
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widely used, it became plagued by uncountable attacks such as spyware, viruses, spam, botnets, Denial-of-Service attacks,
etc. Therefore, the need to adapt PETs to personal genomic data will only grow with time.

Solutions

Our views in genomic privacy stem from our background in information security [16–20]. Strong analogies can be made
between protecting the privacy of users’ OSN (or smartphone) data and protecting the privacy of users’ genomic data.

Most medical tests and personalized medicine techniques suffer from common privacy threats. For the simplicity of
the presentation, in the rest of this section, we will focus on a particular medical test (i.e., computing genetic disease
susceptibility).

In a typical disease susceptibility test, a medical unit (MU, i.e, the family doctor, a specialized physician, a pharmacist,
or a medical center) wants to check the susceptibility of a patient (P) against a particular diseaseX . This would be realized
by measuring an individual’s genotype at one or a combination of disease associated variants [21, 22]. For example, it is
reported that 3 genes bearing a total of 10 variants can be queried to analyze a patient’s susceptibility for Alzheimer’s
disease [23]. Our goal is to build a mechanism such that the patient preserves the privacy of his genomic sequence (his
variants) while the MU accurately conducts a disease susceptibility test using the genomic data of the patient.

In this study, we consider a malicious MU as the potential attacker trying to obtain private information about the
patients. Even if the MU is non-malicious, it is extremely difficult for MUs to protect themselves against the misdeeds of
a hacker or a disgruntled employee. Thus, we propose to use a Trusted Third Party (TTP) between the patient and the
MU to store and process the genomic data. The TTP can be embodied as a private company (e.g., cloud service provider),
the government, or a non-profit organization. Further, we assume that TTP is an honest organization, but it might be
curious (e.g., existence of a curious party at TTP), and hence, genomic data should be stored at TTP in encrypted form
(i.e., TTP should not be able to access the content of patients’ genomic data). We illustrate and summarize our proposed
approach for this application in Fig. 1.

We assume that the whole genome sequencing is done by a certified institution with the consent of the patient. Further,
the genomic data of the patient is encrypted by the same certified institute (using the patient’s public key) and uploaded
to the TTP (see Fig. 1 and Box 1) so that only the patient can decrypt the stored variants, and the TTP cannot access
the variants of the patient. We emphasize that TTP stores the contents of all the potential variant locations (on the DNA
sequence) of the patient instead of only his actual variants. Since the locations of the patient’s variants are stored in
plaintext, if TTP only stored the actual variants of the patient (e.g., around 4 million SNPs), it could easily determine the
genomic sequence of the patient. Therefore, TTP stores the contents of all potential variant locations (around 40 million
according to the NCBI dbSNP) of the patient in order to preserve the privacy of the patient. Because the number of
known variant sites increases with time, the complete DNA sequence is also encrypted (as a single vector file) and stored
at the TTP, and hence, when new variants are discovered, these can be included to the pool of previously stored variants
of the patient. Obviously, this increases the storage cost at the TTP, however, this is a requirement for the privacy of
the patient. Further, this storage cost can be optimized via using advanced storage techniques (which will not hurt the
privacy of the patient). However, for simplicity, we do not dive into the details of such techniques. From now on, we refer
to these encrypted potential variants as the patient’s encrypted variants (even though not all of them are actual variants,
as discussed). We also assume the TTP does not have access to the real identities of the patients and data is stored at
the TTP using pseudonyms.

TTP may i) check patient’s encrypted variants via homomorphic encryption techniques [13] (Box 1) to compute Pr(X),
the probability that the patient will develop disease X , given his genotype across one or several variants, or ii) provide
the relevant variants to the MU, depending on the access rights of the MU. These access rights are defined either jointly
by the MU and the patient or by the medical authorities.

Homomorphic encryption allows a potentially curious third-party to perform computations on private information
without having direct access to the information itself. In our case, it lets TTP to compute Pr(X) using encrypted
variants of patient P (i.e., without accessing P’s variants) via a pre-determined function. In [21], focusing on one example
of many diseases which require a susceptibility test involving multiple variants, the authors proposed to count the number
of risk alleles across implicated loci (to compute the predicted disease susceptibility). Similarly, in [22], the authors
proposed to multiply the Likelihood Ratios (LRs) of the most important variants for a particular disease in order to
compute a patient’s predicted susceptibility. Further, a weighted averaging function can also be used (as a generalization
of [21]), which computes the predicted susceptibility by weighting the contributions of variants by their contributions
(e.g., LR of the variants). In Box 2, we discuss how to compute the predicted disease susceptibility at the TTP using
a toy example to show how the homomorphic encryption is used at the TTP. It is important to note that our proposed
privacy preserving mechanism is not limited by the types functions (used to test the disease susceptibility). It is expected
that these functions will evolve over time, and hence, the proposed algorithm is developed to keep up with this evolution.

To evaluate the practicality of the proposed privacy-preserving algorithm, we assessed its storage requirements and
computational complexity on AMD Opteron 8354 with 2.2 GHz processor under Linux. We assumed that i) the size of
the security parameter is 4096 bits, ii) there are 1 million patients in the database, iii) contents of 40 million potential
variant (e.g., SNP) locations are stored per patient, and iv) weighted averaging is used at the TTP (as in Box 2). We
computed that at the patient side, the individual encryption of all his variants requires 200 minutes, which is a one-time
operation and is significantly faster than sequencing (which takes more than a day). Further, the time required to check
the disease susceptibility of a single patient at the TTP (using 10 variants) is 1.6 ms., and the decryption of the end result
at the MU takes 0.04 ms. Furthermore, conducting a statistical test for one disease (requiring 10 genetic variants) on 1



Protecting Personal Genome Privacy: Solutions from Information Security 4

• (Step 0) Cryptographic keys (public and secret keys) of each patient are generated and distributed to the patients by a
trusted entity during the initialization period. We note that distribution, update and revocation of cryptographic keys are
handled by a trusted entity (similar to e-banking platforms).

• (Step 1) The patient (P) provides his sample (e.g., his saliva) to the certified institution for sequencing.

• (Step 2) The certified institution sequences P, and encrypts the contents of potential variant locations using P’s public key.

• (Step 3) The certified institution sends the encrypted (potential) variants of P to the TTP (so that TTP cannot access to
P’s variants).

• (Step 4) Patient provides a part of his secret key to the TTP.

• (Step 5) MU wants to conduct a susceptibility test on P for a particular disease X. P provides the other part of his secret
key to the MU.

• (Step 6) MU provides genetic variant markers along with their individual contributions (to the disease susceptibility) to
the TTP (encrypted with the public key of the TTP).

• (Step 7) If the disease susceptibility can be interpreted by homomorphic operations, TTP computes P’s total susceptibility
of disease X from the individual effects of (potential) variants using the homomorphic properties of the Paillier cryptosystem
as described in Box 1. Otherwise, TTP provides the relevant (potential) variants to the MU based on MU’s access rights.

• (Step 7) TTP partially decrypts the end-result (or the relevant variants) using a part of P’s secret key following a proxy
encryption protocol (discussed in Box 1 and Box 2).

• (Step 8) TTP sends the partially decrypted end-result (or the relevant variants) to the MU.

• (Step 9) MU decrypts the message received from TTP using the other part of P’s secret key and recovers the end-result
(or the relevant variants).

Figure 1: Privacy-preserving protocol for disease susceptibility test.

million patients takes around 27 minutes at the TTP, and scales linearly with patients and variants. Finally, the storage
of all the (encrypted) genetic variants of 1 million patients at the TTP requires 20 GB disk space per patient. All these
numbers show that our proposed algorithm is very realistic and could be implemented with current computing technology.

Conclusions and Future Work

While much attention has been paid to the generation, storage, sharing, and protection of collective genome data, the
personal use of genome data, by the individual and by accredited personnel, represents a profoundly different scenario.
In this paper, we have identified the problem of privacy protection of genomic data once genomics has moved into clinical
practice.



Protecting Personal Genome Privacy: Solutions from Information Security 5

BOX 2 COMPUTING DISEASE SUSCEPTIBILITY VIA HOMOMORPHIC OPERATIONS

Here, we discuss how to compute the predicted disease sus-
ceptibility at the TTP i) via weighted averaging (which is a
generalization of the function proposed in [21]), and ii) via the
function proposed in [22] (i.e., multiplication of LR values) us-
ing Single Nucleotide Polymorphisms (SNPs) as genetic variants
(although the proposed techniques are directly applicable to all
types of genetic variation, we refer to SNPs for simplicity).

Weighted Averaging

Assume that (for simplicity) the susceptibility for disease X is
determined by only two SNPs in the set Ω = {SNPm,SNPn},
which occur at locations m and n of the DNA sequence. Also
assume that the base corresponding to SNPi at patient P is rep-
resented as SNPP

i and the set of alleles corresponding to SNPi

are Λi = {λ1
i , λ

2
i }, respectively.

The contributions of the two alleles (λ1
i and λ2

i ) for every SNPi

to the susceptibility for disease X are computed via previous
studies (on case and control populations) and they are already

known by the MU. That is, pi
λ1

i
(X) , Pr(X|SNPP

i = λ1
i ) and

pi
λ2

i
(X) , Pr(X|SNPP

i = λ2
i ) (i ∈ {m,n}) are determined and

known by the MU. Further, the contribution (e.g., OR or LR of
the SNPs) of SNPi to the susceptibility for disease X is denoted
by CX

i .

TTP stores the set of SNPs of patient P, encrypted by P’s
public key (n, g, h = gx) using the modified Paillier cryptosys-
tem as discussed in Box 1. Thus, TTP uses E(SNPP

m, gx) and
E(SNPP

n , g
x) to compute the predicted susceptibility of P for

disease X. From now on, we drop the r values in the above
encrypted messages for the clarity of the presentation (r values
are chosen randomly from the set [1, n/4] for every encrypted
message, as discussed in Box 1).

MU provides the following to the TTP in plaintext: i) the
markers for disease X (SNPm and SNPn) along with their
corresponding alleles, ii) corresponding probabilities (pi

λ
j
i

(X),

i ∈ {m,n} and j ∈ {1, 2}), and iii) the contributions of each
SNP (CX

i , i ∈ {m,n}). For simplicity, we assume that CX
i val-

ues are normalized (i.e., CX
m + CX

n = 1). Next, TTP encrypts

λj
i (i ∈ {m,n} and j ∈ {1, 2}) using P’s public key in order to

conduct the homomorphic computations. Thus, TTP obtains
E(λ1

m, gx), E(λ2
m, gx), E(λ1

n, g
x), and E(λ2

n, g
x).

TTP computes the encrypted disease susceptibility, E(SX
P , gx),

using the homomorphic properties of the Paillier cryptosystem
(as discussed in Box 1) using the encrypted SNPs of the patient
via weighted averaging as below:

E(SX
P , gx) =

{

∏

i∈{m,n}

{[

E(SNPP
i , g

x) ·E(λ2
i , g

x)−1
]∆1

i

×

[

E(SNPP
i , g

x) · E(λ1
i , g

x)−1
]∆2

i
}CX

i

}

, (5)

where ∆1
i =

pi

λ1

i

(X)

λ1

i
−λ2

i

and ∆2
i =

pi

λ2

i

(X)

λ2

i
−λ1

i

. We note that the end-

result in (5) is encrypted by P’s public key and (5) corresponds
to the below computation in plaintext:

S
X
P =

∑

i∈m,n

CX
i

{

pi
λ1

i

(λ1
i − λ2

i )

[

SNPP
i − λ2

i

]

+
pi
λ2

i

(λ2
i − λ1

i )

[

SNPP
i − λ1

i

]

}

.

(6)

Then, TTP partially decrypts the end-result E(SX
P , gx) using

its share (x1) of P’s secret key (x) as discussed in Box 1 to
obtain E(SX

P , gx2) and sends it to MU. Finally, MU decrypts

E(SX
P , gx2) using its share (x2) of P’s secret key to recover the

end-result SX
P .

In some genetic tests, genotypes of the patients are used instead
of single SNPs. In this particular scenario, SNP pairs are con-
sidered from both strands of patient’s DNA, and hence, there
are 3 potential variations (i.e., major, minor and hetero geno-
type) for each SNP of a patient. In this case, in order to apply
the weighted averaging function on encrypted SNPs via homo-
morphic operations, TTP should store the squared values of the
SNPs. That is, for each SNPi of patient P, TTP should store
E((SNPP

i )
2, gx). Depending on the types of genomic tests that

would be supported by the TTP (and the functions required
for these tests), the format of storage (of patient’s SNPs) can
be determined beforehand, and SNPs can be stored accordingly
just after the sequencing process.

Likelihood Ratio Test

In this approach, the predicted disease susceptibility is com-
puted by multiplying the initial risk of patient (e.g., for disease
X) by the LR value of each SNP related to that disease (LR
value depends on the value of patient’s SNPs) as in [22]. Initial
risk of patient P for the disease X is represented as IPX , which
is determined considering several factors (other than patient’s
genomic data) such as patient’s age, gender, height, weight, en-
vironment, etc. Thus, this initial risk can be computed directly
by the MU.

We assume that the susceptibility for disease X is determined
by the set of SNPs Ω = {SNPm,SNPn}, each with two possible

alleles, for simplicity. We denote the LR value due to jth allele
(j ∈ {1, 2}) of SNPi for disease X as Li

X(λj
i ).

TTP stores the SNPs of patient P, encrypted by P’s public
key. Further, MU sends the following to TTP: i) Li

X(λj
i ) values

(i ∈ {m, n} and j ∈ {1, 2}) in plaintext, and ii) the markers
for disease X along with their corresponding alleles. MU also
encrypts the log of initial risk value, ln(IPX), by P’s public key
and sends E(ln(IPX), gx) to TTP. Alternatively, the contribu-
tion of initial risk to the disease susceptibility can be included
to the end-result at the end, at MU. Next, TTP encrypts λj

i

(i ∈ {m,n} and j ∈ {1, 2}) using P’s public key to conduct the
homomorphic computations as before.

Thus, TTP computes the predicted susceptibility of patient P
for disease X as below:

E(ln(SX
P ), gx) = E(ln(IPX), gx)×

∏

i∈m,n

{

[

E(SNPP
i , g

x)·

E(λ2
i , g

x)−1
]Ξ1

i

×
[

E(SNPP
i , g

x) · E(λ1
i , g

x)−1
]Ξ2

i

}

, (7)

where Ξ1
i =

ln(Li
X (λ1

i ))

(λ1

i
−λ2

i
)

and Ξ2
i =

ln(Li
X(λ2

i ))

(λ2

i
−λ1

i
)
. Further, (7) corre-

sponds to the below computation in plaintext:

S
X
P = IPX×

∏

i∈m,n

{

[

SNPP
i − λ2

i

]

×
Li

X(λ1
i )

(λ1
i − λ2

i )
+

[

SNPP
i − λ1

i

]

×
Li

X(λ2
i )

(λ2
i − λ1

i )

}

.

(8)

As before, TTP partially decrypts E(ln(SX
P ), gx) using x1 (its

share of P’s secret key) to obtain E(ln(SX
P ), gx2) and sends it

to MU. Finally, MU decrypts E(ln(SX
P ), gx2) using x2 (its share

of P’s secret key) to recover ln(SX
P ), and computes e(ln(S

X
P )) to

obtain S
X
P . Similar to weighted averaging, if genotypes of the

patients are used for the test, squared values of the SNPs should
be stored at the TTP for each patient.
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The extension of this work opens the doors for various exciting research opportunities in genomic privacy. Complex
diseases may require information on dozens to hundreds of variants for a clinically useful determination to be made [24].
On the other hand, releasing too many variants is a risk to the privacy of a person. Thus, it is important to determine
the optimal number of variants and the types of variants to be used for the susceptibility test of various diseases. Further,
for the diseases that share some susceptibility factors, the adversary may launch an attack such that once he obtains
the end-result for low-risk (in terms of privacy) disease, he infers the susceptibility of the patient for higher-risk disease.
A good example for this scenario is ApoE4 variation which predicts a lesser medical problem, hyperlipidemia, but also
Alzheimer’s disease. Similarly, patterns of linkage disequilibrium may reveal privacy-sensitive variants even if they are
protected by privacy-enhancing algorithms [25]. Furthermore, a variant currently not associated with disease risk may
become privacy-sensitive in the future due to ongoing research. Thus, we need to answer how we can smoothly adapt the
proposed privacy-preserving algorithms based on new developments in genomics.

Another important research task is to find an optimal point between the accuracy of the medical test, privacy of the
patient, and the complexity of the privacy-preserving algorithm at which the privacy and accuracy is maximized and the
complexity is minimized. It is worth noting that the proposed privacy-preserving algorithm does not reduce the accuracy
of the medical test by obfuscating the genomic data. The number and types of variants that are used in the test (or
provided to the MU), and hence the accuracy of the medical test are determined by the patient, considering his privacy
loss due to the revealed genomic data.

Finally, it is also important to quantify the level of privacy associated with various applications using genomic data
by defining appropriate metrics. In other words, how much information leaks to a third party or to a service provider
during a particular medical test that uses genomic data? A tool to quantify the level of genomic privacy would enable a
patient to monitor his/her privacy loss due to the medical tests he underwent and to determine the level of future tests
(e.g., number and types of genetic variants that will be used in future tests) he will undergo. Tools developed for the
quantification of location privacy [17, 18] could be used to develop a framework to quantify genomic privacy.

In summary, we have established a parallel with privacy protection in computer science and described an operational
and realistic solution based on state-of-the-art homomorphic encryption. In this way, genomic data is always stored in an
encrypted format and each medical unit can access only the subset of genomic data required for healthcare.
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Glossary

Attacker/adversary: Malicious entity whose objective is to infer some privacy-sensitive information about

someone.

Botnet: Collection of computers compromised by an attacker that uses them to send out

spam, spread viruses and attack computers and servers.

Ciphertext: Information encoded by a cryptographic system.

Cryptographic tools/algorithms: Sequences of processes, or rules that protect data by making sure that unwanted

people cannot access it. Cryptographic algorithms are designed around computational

hardness assumptions, making them hard to break in practice by any adversary.

Denial-of-Service: Attack that makes a computer or network resource unavailable to its intended

users (generally launched by a botnet).

Hacker: User who accesses a computer system by circumventing its security system.

Hippocratic databases: Database systems that comply with privacy legislations and guidelines, and fulfill the

following key principles: purpose specification, consent, limited collection, limited use,

limited disclosure, limited retention, accuracy, safety, openness, and compliance.

Plaintext: Input of an encryption algorithm (usually a cleartext).

Privacy-Enhancing Technologies (PETs): General term for a set of computer tools, applications and mechanisms which allow

users to protect the privacy of their personal information provided to and handled

by third party services or applications.

Spyware: Type of malicious software that collects information about users without their

knowledge.


