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ABSTRACT

Automatic service composition is an active research area
in the field of service computing. This paper presents a
distributed approach to automatically discover a composi-
tion of services based on the desired input to and output
from the process. The algorithm makes use of the content-
based publish /subscribe model, with service inputs modeled
as subscriptions, and outputs as advertisements. Service in-
terfaces are mapped to publish/subscribe messages in such
a way that publish/subscribe matching is used to evaluate
service compatibility. In this way, large-scale distributed
service composition and process discovery is achieved with
a distributed publish/subscribe network. Evaluations in a
distributed environment of a real implementation of the sys-
tem demonstrate the scalability of the distributed approach,
especially with respect to the number of services, the com-
plexity of the discovered processes, and the number of con-
current searches.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distrib-
uted Systems— Distributed applications

General Terms

Algorithms, Design, Experimentation, Performance

Keywords

Automatic service composition, process discovery, publish/
subscribe, multi-agent systems, routing, distributed system

1. INTRODUCTION

Service computing is a computing paradigm that is widely
used to realize distributed applications based on loosely cou-
pled, reusable services [1, 7, 19]. There is much industry
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support for service composition as evidenced by the popu-
larity of service oriented architecture (SOA) platforms, and
process execution languages such as BPEL and DAML-S.
However, the composition of services into a process is still
typically a labor-intensive task, only made worse with wider
adoption of service computing and proliferation of the num-
ber of available services that may be composed. What is
needed is a way for the user to search for processes, or service
compositions, that meet some functional criteria, allowing
the user to then examine the results and select appropriate
processes for direct use or further tuning. This problem is
known as automatic service composition, and has been an
active field of research [3, 4, 9, 11, 14, 16, 17, 18, 21, 23] and
has garnered interest in industry [15, 20].

With automatic service composition, a repository of avail-
able services is searched, and compositions of services that
meet some user defined criteria are found. Often the criteria
indicates some input and output requirements. For exam-
ple, a user wishing to print an HTML page, may search for
a process that accepts as input an HTML document, and re-
turns as output the status of the print job. However, it may
be that the printer service, W), only accepts a PostScript
file as input, but there is another service, W¢, that can con-
vert an HTML document into a PostScript file. In this case,
the search result would be a process consisting of the two
services W, and W, executed in series. A more complex ex-
ample is a property developer who wants to obtain a permit
to build a condominium in a city. While this is a common
process, the developer may not be familiar with the city’s
laws, and does not want to manually examine the many
Web Services offered by the municipality. Instead, the de-
veloper searches for a composition of services whose input
is a request for a permit, and whose output is a building
permit. A process may be found that composes services to
first obtain zoning clearances, followed by an environmen-
tal assessment, and only then request electricity, water, and
sewage approvals (perhaps in parallel). Finally, a service
collects the approvals from the various utilities, and returns
a building permit to the user.

Many algorithms have been proposed to solve the problem
of automatic service composition, or process search, using
techniques such as Al planning and theorem proving [10].
Most of them are able to discover a sequential composition
of services by searching the repositories and selecting suc-
cessors recursively.

This paper proposes using a publish/subscribe model [5,
6, 8] to solve the process search problem. Pub/Sub is a
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Figure 1: Example services and requests

messaging paradigm in which one or more brokers support
decoupled interaction among information sources and sinks.
It turns out that determining the interaction relationships
among the data senders and receivers in a pub/sub system
bears some similarity to discovering possible service com-
positions. Therefore, with an appropriate mapping of the
problem space, the data structures and algorithms used by
a pub/sub broker for pub/sub matching can be exploited
for process search. This is a unique use of a pub/sub infras-
tructure and allows us to take advantage of existing work on
efficient and scalable pub/sub algorithms.

To the best our knowledge, existing automatic service
composition algorithms are centralized, and may have diffi-
culty scaling to large service repository sizes, many concur-
rent searches, or distributed repositories. Distributed pro-
cess search seems to be a more appropriate architecture since
service computing systems are typically already distributed,
with services scatted geographically, administered by dis-
parate administrative domains, and registered with several
autonomous registries. Moreover, distributed search has the
potential to address certain shortcomings of centralized al-
gorithms, including scalability, parallelism, and the ability
to more efficiently utilize the resources available in a dis-
tributed environment.

This paper presents a distributed architecture for auto-
matic service composition. By observing the similarity be-
tween finding compatible services in a process and pub/sub
matching, and representing the former problem as the latter,
the distributed process search is optimized using state of the
art distributed pub/sub matching and routing techniques.

The key contributions of the paper are as follows.

1. The problem of automatic service composition is ad-
dressed by modeling services using content-based pub/
sub messages. A mapping from one problem domain
to the other is done in a way that the matching of
pub/sub messages also indicates service composition
relationships.

2. A distributed process search algorithm is developed
that uses the relationships discovered above to com-
pose services into a process that satisfies the user’s
input and output interface criteria.

3. An evaluation and detailed analysis of the algorithm is
performed using a real implementation in a distributed
environment. The sensitivity of the distributed pro-
cess search algorithm compared to a centralized one is
investigated with respect to various factors.

The paper continues with Section 2 introducing some ter-
minology and background on the automatic service compo-

sition problem and the pub/sub model. Then, Section 3
presents a distributed process search architecture including
the mapping of the problem to pub/sub terms and an al-
gorithm to realize distributed, parallel process search. An
evaluation of the algorithm in analyzed in Section 4. Sec-
tion 5 puts this work in the context of related research in
the area, with concluding remarks outlined in Section 6.

2. BACKGROUND

This section presents the basic service composition prob-
lem and some introductory content-based pub/sub concepts.

2.1 Service Composition

A service W is defined by input and output interfaces,
(Win, Wout), respectively. Each interface, in turn, consists
of a set of parameters: Win = {I1,...,Im}(m >= 1) and
Wout = {O1,...,0,}(n >=1). For a WSDL Web Service,
an interface may correspond to an individual operation, and
the parameters of the input and output interfaces may cor-
respond to the input and output message schemas of an
operation. Likewise, for a service invoked by an RPC mech-
anism such as Java RMI, the set of argument types of a
method would map to the input interface parameters, and
the method return type to the output interface parameter.
Figure 1 shows a few services with different number of input
and output parameters. For example, the DuplexPrinter
service has two input parameters of type postscript and
duplex_option, and one output parameter that is of type
print_status.

An invocation R of a service is defined by the request
parameters Ri, = {I1,...,Ip}(p >= 1) and expected re-
sponse parameters Rout = {O1,...,04}(¢ >=1). Figure 1
illustrates three requests. For example, Request3 has two
input parameters of type html and duplex_option, and one
output parameter of type print_status.

The sections below define some additional terms.

2.1.1 Successor

In a composition of services, a service W' may succeed
another service W if the expected input parameters of W’
are contained within the set of output parameters from W:
Wout 2 W/,. Equivalently, it can be said that W precedes
w'.

This definition is extended to include the invocation R,
such that service W succeeds R if R, 2 Wi, and R suc-
ceeds W if Wout 2 Rout.-

For example, for the services from Figure 1, service Sim-
plePrinter succeeds service PDFConv, and Requestl pre-
cedes service SimplePrinter.



2.1.2 Compatibility

Two services are said to be compatible if some of the input
parameters of one is available as an output parameter of
another. Formally, W is compatible with W' if Wo,:N\W/,, #
(. Likewise, an invocation R is compatible with service W if
Rin NWin # 0 or Rout M Wout # (). Notice that the definition
of compatibility is weaker than that of successors, and that
a successor relationship implies compatibility.

From the examples in Figure 1, service PDFConv is compat-
ible with (and precedes) service SimplePrinter, whereas the
HTMLConv service is compatible with (but does not precede)
service DuplexPrinter.

2.1.3 Atomic Process

It is possible that a single service W can fully satisfy the
input and output requirements of an invocation R. In this
case, the “process” that fulfills R is an atomic process con-
sisting of the single service W.

Formally, W satisfies R if and only if

o Rin 2 Wi7l7 and
e Wout 2 Rout.

That is, Ri, precedes W which precedes Rouyt.
An atomic process that fulfills Request1 would consist of
the single service SimplePrinter.

2.1.4 Composite Process

It is probably more common that a composition of ser-
vices is required to satisfy an invocation’s input and output
requirements.

A composition of services is represented as a directed
cyclic graph G in which the nodes are services, and edges de-
note compatibility relationships. More precisely, a directed
edge from W to W’ means that W, N W/, # 0.

The directed graph in Figure 2 illustrates all the possible
compatibility relationships among the services in Figure 1
and Request3.

Request3

Simplelsriﬁtér\ ’

W OHTMLCONY  feszmeessszzrzeomonis

WordConv DuplexPrinter

PDFConv

Figure 2: Compatibility graph

The compatibility constraints of the above graph G are
not sufficient for the process defined by the graph to fulfill
an invocation’s requirements. Instead, what is required is a
subset of G that is acyclic and where every service’s input
parameters are fully satisfied by one or more predecessors.
Formally, an invocation R is fulfilled by a composite process
represented by a directed acyclic graph (DAG) D consisting
of a sequence of services {W1,W2,... Waz}(z >=2) if and
only if

e R;, precedes Wiy,

° (Rln UWlouwt U...UW7i— 107“5) D) Wlln(l <1< :E),
and

o (Rin UWlewe U---U Wﬁcout) 2 Rout.

There may be more than one DAG that fulfills an invo-
cation request. For example, Figure 3 illustrates the two
DAGs that result from the compatibility graph in Figure 2.
In the first DAG in Figure 3, note that the DuplexPrinter
service gets one of its inputs directly from the request, and
another from the HTMLConv service. In the second DAG in
Figure 3, the pdf output from the HTMLConv service is passed
to the PDFConv service whose postscript output is then in-
put to the DuplexPrinter service. While both processes in
Figure 3 satisfy Request3, in this case, a user will most likely
favor the first since it avoids an unnecessary invocation of
the PDFConv service.

Request3

4 HTMLConv  f--------smmmmmmemmeoeeas ey DuplexPrinter

Request3

4 HTMLConv (- sl DuplexPrinter

" PDFConv

Figure 3: DAGs resulting from Figure 2

The two DAGs in Figure 3 are the results of the search
for a process for invocation Request3. These two processes
are returned to the user, who will decide which process to
use. In this case, the first one is preferable since it avoids
an unnecessary use of the PDFConv service.

2.2 Content-based pub/sub

Pub/Sub is a push-based messaging paradigm that sup-
ports decoupled and anonymous interaction between pub-
lishers that produce data in the form of publications, and
subscribers who register their interests by issuing subscrip-
tions. One dimension along which to compare pub/sub sys-
tems is the expressiveness of their subscription language.
In channel-based pub/sub, publications are sent to a pre-
defined channel, and subscribers interested in a channel are
notified of all publications on that channel. The approach in
this paper utilizes a more powerful content-based model in
which subscriptions can specify constraints on the content
of publications.

This paper assumes a content-based pub/sub language
based on predicate expressions and attribute-value pairs [5].
Exploiting more expressive languages such as XPATH ex-
pressions on XML documents [12] or location-based con-
straints [22] is left for future work.



Subscription s Advertisement a Intersection Relation

(product = “computer”, brand = “IBM”, price < 1600) | (product = “computer”, brand = “IBM”, price < 1500) | a intersects s

(product = “computer”, price < 1600) (product = “computer”, brand = “IBM”, price < 1600) | a intersects s

(product = “computer”, brand = “IBM”, price < 1600) | (product = “computer”, brand = “Dell”; price < 1500) | a does not intersect s

Table 1: Examples of subscriptions, advertisements and intersection relations

Formally, a publication is defined as {(a1,val1), (a2, valz),
..+, (an,valy)}. Subscriptions are expressed as conjunctions
of Boolean predicates of the form (attribute_name relation-
al_operator value). A predicate (a rel_op val) matches an
attribute-value pair (a’,val’) if and only if the attribute
names are identical (a = a’) and the (a rel_op val) Boolean
relation is true for value val’. A subscription s is matched by
a publication p if and only if all its predicates are matched
by some pair in p.

Some systems use advertisements to let publishers an-
nounce the set of publications they are going to publish.
Both subscriptions and advertisements have the same repre-
sentation, but the predicates in a subscription are conjunc-
tive, while those in an advertisement are disjunctive.

An advertisement a matches a publication e if and only if
all attribute-value pairs match some predicates in the adver-
tisement. Formally, an advertisement a = {p1,p2,...,pn}
determines a publication e, if and only if V(attr,val) € e,
there exists a predicate py € a where (attr,val) matches pg.

An advertisement a intersects a subscription/advertise-
ment s if and only if the intersection of the set of the publi-
cations determined by the advertisement a and the set of the
publications that match s is a non-empty set. Formally, at
the predicate level, an advertisement a = {a1,az,...,a,} in-
tersects a subscription/advertisement s = {51, S§2y .,y sn} if
and only if Vs, € s,3a; € a and there exists some attribute-
value pair (attr,val)' such that (attr,val) matches both sy
and aj. Table 1 presents some examples of subscriptions
and advertisements and the corresponding intersection rela-
tions.

In a distributed content-based pub/sub system [5, 6, &],
advertisements are flooded through the overlay network of
pub/sub brokers forming a spanning tree rooted at the pub-
lisher. Subscriptions that intersect the advertisement are
routed toward the root of the advertisement tree, forming
a tree rooted at the subscriber whose leaves terminate at
publishers with potentially interesting data. Finally, pub-
lications that match subscriptions are routed back up the
subscription trees and delivered to interested subscribers.

3. DISTRIBUTED SERVICE COMPOSITION

This paper presents a distributed architecture for auto-
matic service composition consisting of service agents and
request agents connected to a distributed content-based pub/
sub broker network as illustrated in Figure 4. Services are
assigned to service agents which register the service by trans-
lating service input and output interfaces into pub/sub ad-
vertisement and subscription messages. Request agents, on
the other hand, manage the requests and results of process
searches. Both service and request agents connect to the
broker network as ordinary pub/sub clients and do not need
to be concerned with the internal details of the pub/sub
matching and routing algorithms.

sy, and a; refer to the same attribute attr.

Search
Request

7

Service
Agent

Request
Agent

Figure 4: System architecture

The system and algorithm are fully distributed with no
centralized data structures or control nodes. Service and re-
quest agents can connect to arbitrary brokers, and brokers
and agents can be added or removed at any time. Fur-
thermore, the decoupling properties of the pub/sub network
allow the agents to coordinate a distributed process search
among themselves without being aware of one another.

Section 3.1 describes how the broker network indirectly es-
tablishes the compatibilities among registered services, and
Section 3.2 presents a distributed algorithm whereby the ser-
vice agents collaborate to discover service compositions that
satisfy a user’s search request.

3.1 Mapping to Pub/Sub model

This section outlines how the service composition prob-
lem can be expressed in terms of content-based pub/sub
messages.

Recall that a service W is defined by its input and output
interfaces, Win, = {I1,...,Im} and Wour = {O1,...,0,},
respectively. The input interface is mapped to a set of sub-
scriptions and the output interface into an advertisement,
such that a service is now defined as W = {Wybs, Waaw }-

Wsubs is a set of m subscriptions, each of which contains
a single predicate corresponding to a parameter in the in-
put interface: Wiups = {s1,...,8m} (1 < i < m) where
s; corresponds to I;. The representation of a parameter
by a subscription will depend on the expressiveness of the
subscription language. For a predicate-based language that
supports string comparisons as described in Section 2, the
subscription may simply specify a globally unique string rep-
resentation of the parameter type. For a WSDL Web Ser-
vice, this may be the URI associated with the input message
schema definition of an operation. For a Java RMI method,
this may be the fully qualified class name of the method’s
argument types.

Notice that the input interface is mapped to a set of sub-
scriptions each with one predicate instead of a single sub-
scription with a conjunction of predicates. This is required
so that the input to a service can be matched by the outputs



Service or request | Subscriptions Advertisement
SimplePrinter s0 : (postscript = “¥7) ao : (print_status >= 0)
DuplexPrinter s1 : (postscript = “¥7) ay : (print_status >= 0)
s2 : (duplex_option >= 0)
HTMLConv s3 @ (html = “*7) az : (postscript = “*7, pdf = “*7)
WordConv s4 @ (word = “*7) aq : (postscript = “*7)
Request1 s5 : (print_status >= 0) as : (postscript = “*”)
Request3 s¢ : (print_status >= 0) ag : (html = “*”, duplex_option = 0)

Table 2: Subscriptions and advertisements for services in Figure 1

of a set of services instead of a single service.

The output interface of service W is mapped to a single
advertisement W4, with n predicates, each corresponding
to a parameter in the output interface: Woq, = {On, ..
As with the subscriptions, the representation of an output
interface parameter as predicates in an advertisement will
depend on the advertisement language supported by the
pub/sub system.

For an invocation R = {Rin7 Rout}7 the input is mapped
to an advertisement, and the expected output to a sub-
scription in a similar manner to the service interfaces: R =
{Radv7 Rsubs}7 where Rsubs = {317 EEE) Sq}-

Table 2 lists the subscriptions and advertisements issued
for each service in Figure 1. Notice that the two input pa-
rameters of service DuplexPrinter are mapped to two sub-
scriptions with one predicate each, but the two output pa-
rameters of the HTMLConv service are represented by one ad-
vertisement with predicates.

The sections below continue the mapping of the problem
by redefining the terms from Section 2.1 in terms of pub/sub
primitives.

3.1.1 Successor

Service W’ succeeds service W if every subscription in
Wi, intersects Woan: Vi € {1,...,m}, s; XX Wyay, where
> is the intersection operator between subscriptions and ad-
vertisements.

For example, in Table 2, SimplePrinter succeeds Word-
Conv because every subscription by SimplePrinter (s¢ in
this case) intersects WordConv’s advertisement ag.

3.1.2 Compatibility

Service W is compatible with service W’ if at least one
subscription in Wys intersects Wyap: Ji € {1,...,m}, s; X
Wadv-

From Table 2, DuplexPrinter is compatible with HTML-
Conv, because the former contains at least one subscription
(s1) that intersects the latter’s advertisement (as).

3.1.3 Atomic Process

As before, a service W fully satisfies an invocation R, iff
Raav precedes Wsyps, and Wog, precedes Rsyps-

For the services in Table 2, service SimplePrinter satisfies
invocation Request1 since Request1 precedes SimplePrinter
(as > s0), and SimplePrinter precedes Requestl (ao < s5).

3.1.4 Composite Process

An invocation R is fulfilled by a composite process rep-
resented by a DAG D consisting of a sequence of services
W1, w2,... Wa}l(z >=2) iff

., On}.

® Ruqy precedes Wilgyps;

e For every subscription s € Wisups(1 < 7 < x), there
is an advertisement a € {Raav, Wladv, ..., Wi—1lgdu}
where a < s; and

e For every subscription s € Rsups, there is an advertise-
ment a € (Radv, Wladv, - .., WZadw) where a < s.

It can be shown that following the above rules will result
in the same DAG results as in Figure 3.

3.2 Process Search Algorithm

As described earlier, a service agent registers services in
the system by issuing appropriate advertisement and sub-
scription messages into a pub/sub broker (network). This
section outlines how the relationships maintained by the
pub/sub system among subscriptions and advertisements is
exploited to discover a composition of services that satisfy
an invocation’s input and output requirements.

Before a search for processes fulfilling invocation R, it is
assumed that every service W is associated with a service
agent, and that the agent has issued the corresponding W4,
and Ws,ps messages, and as part of the initialization of the
search, the search request agent has issued Rgqn and Rsyps.

Recall that by issuing the above messages, the pub/sub
system routes the advertisements and subscriptions in such
a way the intersection relationships among them form a di-
rected (possibly) cyclic graph G. The objective of the pro-
cess search algorithm is to discover DAGs within G that
satisfy the atomic or composite process properties defined
in Section 3.1.

At a high level, the search algorithm works by injecting a
publication into the system that is successively delivered to
compatible service agents. At each step, a DAG is built by
appending a compatible service to the DAG until a DAG is
found that originates and terminates at the request agent.

e The request agent issues a publication p, where ev-
ery predicate constraint in advertisement R,q, occurs
as an attribute-value pair in p. The publication also
includes a representation of a DAG D as a payload.
This DAG is successively built as the publication prop-
agates, as described below. At this point, the DAG
consists of the single node R.

e Publication p is delivered to all service agents with
compatible services. An agent for service W creates
a new DAG D’ by appending W to the DAG in p,
constructs a new publication p’ that corresponds to its
advertisement W,q4,, includes D" in p’, and injects p’
into the pub/sub system.



e If a process fulfilling invocation R is found, a publica-
tion p from services compatible with Rgyps is delivered
to the request agent, which appends R to the DAG in
p. The resulting DAG describes a process that fulfills
the requirements in R, and the DAG is then returned
to the user that requested the search.

The algorithm described above omits certain details of the
service agent functionality. In particular, the process DAG
should consider the successor relation among neighboring
services, not compatibility relations. The service agent is
responsible for aggregating compatibility relations into suit-
able successor relations as described below.

3.3 Service Agent

A service agent represents a service, and is responsible for
registering the service with the system, and participating in
the process search algorithm. A service agent for service W
consists of the following components.

e Pub/Sub client: This component performs pub/sub
messaging, including issuing publications, subscriptions,
and advertisements, and receiving matching publica-
tions.

e Publication cache: Publications from services that are
compatible with W but do not precede W are stored
in a cache until a set of publications is accumulated
that together precede W. This is described in more
detail below.

e Successor matching: This component executes the al-
gorithm in Figure 5, and is responsible for finding ser-
vices in the publication cache that precede W.

As outlined above, a service agent waits until it receives
a set of publications P; from services W; that cumulatively
precede the local service W. The algorithm to determine
this is given in Figure 5.

Algorithm Search(pub)
* Find a composition of services to append W to. %)
pubCache <+ pubCache U pub
md «— ()
if for each s € Wsyups : s matches pub
then dag < pub.payload
md «— dag.append(W)
else if there exists a minimal set P C pubCache
such that Vs € Wiyups : 3p € P that matches s
then for p € P
do dag «+ p.payload
dag < dag.append(W)
md «— md.merge(dag)

—

O ot

—_
e

11. if md # 0

then p <« generatePub(Wqqv, pub)
p.payload <+ md
send(p)

— = =
-

Figure 5: Incrementally search for a process

If a single service W’ precedes W, W is simply appended
to W’ in the DAG, representing a sequence relationship
between W' and W.

On the other hand, when a set of publications P; are re-
quired to precede W, this represents an and-join relationship
between the services W; and W. Therefore, there must be

a corresponding split relationship in the DAG. The merge
function in the algorithm in Figure 5 creates these split
points by merging the largest common prefixes of the DAGs
in P;. The merge function can be implemented by a modified
topological sort algorithm.

Not shown in Figure 5 is that the publications cached
by the service agent expire after some preset time. The
publications cannot be removed after a match is found for
them because they may be used as part of another result
for the same search request. For example, suppose that as
part of the search, DuplexPrinter’s service agent in Figure 2
receives publications from Request3 and HTMLConv, finds a
match, publishes the resulting DAG (in this case the first
one in Figure 3), and discards the two publications from
its cache. Then when it receives a search publication from
PDFConv it would no longer discover the second DAG result
in Figure 3 because it has discarded the publication from
Request3.

3.4 Discussion

Some additional details about the distributed automatic
service composition algorithm deserve some attention.

3.4.1 Deadlocks

It is possible that there is no composition of services that
fulfills an invocation request, that is there are no results.
Because the search algorithm is distributed, it is difficult to
determine when the search has completed.

A process search with no results has two implications: the
requester waits indefinitely, and cached publications at ser-
vice agents are never flushed. A simple way to resolve these
problems is to expire the cached publications after some
time, and for the request agent to wait for some bounded
time for results. The timeout periods must consider the
potential complexity of results (processes that are a compo-
sition of many services will typically take longer to find), the
distribution of service agents (communication among agents
imposes an overhead), and the complexity of the interface
representations (interfaces represented by parameter type
names can probably be matched quicker by the distributed
pub/sub broker network than complex XML schema defini-
tions).

- S
= fl " ‘\ ~
N1 17 e
""""

Figure 6: Dead search paths

Note that even in the case where results are found for a
process search request, the distributed nature of the search
algorithm may still leave unused publications in the pub-
lication caches in service agents. This is because not all
branches of the search tree reach back to the request agent.
For example, consider the compatibility graph in Figure 6
where, for simplicity, it is assumed that every service has ex-
actly one input and output parameter thereby making each
compatibility relation a successor relation as well. In this ex-
ample, a result for the invocation is found as R;, — W2 —



W4 — We — Rout. However, there was also a search path
Rin, — W7 — Wis that did not terminate at Rowt. The
publications along these dead paths need to be expired.

3.4.2 Livelock

The graph of service compatibility relationships may have
cycles, and therefore, the search algorithm may traverse
these cycles. For example, for the compatibility graph in
Figure 7, an infinite number of DAGs can be found, with
zero or more instances of Wy. To avoid this case, a condi-
tion is added to the successor matching algorithm in Figure 5
so that the service agent for service W drops publications
whose payload contains a DAG that already includes W.

Rin e WA Lo WO oo SR Rout

Figure 7: Composition with loop

3.4.3 Concurrent searches

There may be multiple requests for a process search, from
one or more request agents, occurring simultaneously in the
system. To distinguish these searches, the request agent in-
cludes a unique request identifier to the publication it sends
to trigger the search, and all publications sent by service
agents include this identifier. The algorithm in Figure 5 only
considers sets of publications with the same identifier when
determining predecessor relations. In this way, concurrent
searches do not affect one another.

3.4.4 Reusesearchresults

It is possible that processes found as a result of a search
may fulfill another search in its entirety or as a part of it. To
facilitate these cases, the request agents, can register the re-
sulting processes of a search for invocation R = {Rin, Rout},
as another service W = {Rin, Rout}. In this case, W is a
composite service, and the service agent will append the en-
tire composite process (as opposed to a single service) to the
DAG as part of the successor matching algorithm.

3.4.5 Process constraints

Process search can be restricted to find processes with con-
straints such as the maximum depth or maximum number of
service compositions. The former can be implemented by us-
ing a time-to-live (TTL) field in the search publications that
is decremented at every service agent. When the TTL field
reaches zero, the publication is discarded, and the search
terminates along that path. Another approach is for the
service agents to count the number of composed services in
the DAG included in the search publication payloads. DAGs
with more than the desired services are discarded.

Other constrains include restrictions on the monetary cost
of a process (assuming each service imposes some price to in-
voke it), security restrictions (perhaps processes should not
include services from certain combinations of service pro-
vides), parallelism (processes with wide split and join nodes
require more computation by process execution engines to
collect and aggregate results from services executing in par-
allel), or search time (a search can be terminated if it is

Figure 8: Broker topology

taking longer than the requester is willing to wait for it).
Such constraints will be explored in more detail in future
extensions to this work.

Including such constraints in the distributed search al-
gorithm prunes unnecessary search trees early and avoids
delivering invalid results to the requester. This benefits the
user and reduces the overhead of the search on the system.

4. EVALUATION

This section experimentally evaluates the automatic ser-
vice composition algorithm presented in this paper under
various scenarios and workloads in order to determine the
strengths and weaknesses of the algorithm.

4.1 Setup

The distributed process search algorithm has been imple-
mented over a distributed content-based pub/sub system [3].
The experiments are run in a 14 node cluster of 1.86 GHz
machines each with 4 GB of RAM. At most one pub/sub
broker is deployed on each machine, and one or more ser-
vice agents are connected to each broker.

Three deployments, described below, are evaluated.

e Centralized: One pub/sub broker is deployed on one
machine, with one service agent connected to the bro-
ker. This deployment attempts to simulate a central-
ized process search architecture.

e Distributed: One broker is deployed on each of the 14
machines, for a total of 14 brokers forming the overlay
shown in Figure 8. As well, 14 service agents are de-
ployed, one per machine, and connected to their local
broker. This deployment represents a truly distributed
environment and process search algorithm.

e Hybrid: One broker is deployed on one machine, and
14 service agents are deployed, one per machine, and
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Figure 9: Search result structures
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Figure 10: Search frequency (Section 4.2.1)

connected to the single broker in the system. This
deployment, when compared to the above two, is used
to isolate the performance impact on a process search
by the pub/sub brokers and service agents.

In all cases above, one request agent is deployed on one
machine and connected to the local broker. Unless otherwise
specified, 250 services are randomly assigned to the available
service agents.

The processes that are results of searches are either a com-
plex DAG shown in Figure 9(a), or a chain of services of
variable length illustrated in Figure 9(b). These two pro-
cess structures are used to study effects such as parallelism,
and control factors such as the process length.

The metrics of interest are the search latency and message
overhead. The search latency is measured as the duration
from when a process search is issued by a request agent to
when the agent receives a response. In the results, the la-
tency is typically averaged over a number of search requests.
The message overhead counts every hop that every publica-
tion traverses in the overlay network, and is normalized to
the number of search requests issued to ease comparisons
across different experiments. The focus is on publication
messages because advertisements and subscriptions are only
issued during service registration and are not propagated as
part of the search algorithm. The latency measure is proba-
bly of more importance to the user, while the message count
may be interesting to an administrator of the system.

4.2 Results

The experiments are grouped in terms of the parameter
that is varied, and the results are analyzed in detail for each
set of experiments.

4.2.1 Search frequency

This experiment studies the impact of the number of con-
current process search requests. Each request results in a
single result that looks like the process in Figure 9(a). Two
hundred requests are issued in total, but the interval be-
tween successive requests is varied from 10 ms to 1000 ms.

Figure 10(a) plots the average search latency (on a log
scale) for the various request intervals and shows that when

the request rate is very low (i.e., large request intervals)
the centralized and hybrid deployments outperform the dis-
tributed one, and all of the searches take approximately
200 ms to 250 ms. As the request rates are increased, how-
ever, the performance of the centralized and hybrid schemes
degrade significantly, whereas the distributed deployment
remains relatively stable. This is because as the request
rates increases, the number of concurrent searches increase
as well, and the distributed scheme is able to process the
searches in parallel.

It is interesting to note in Figure 10(a), that the sharp
increase in search latency for the centralized and hybrid
approaches occurs when the request interval is less than
250 ms, which is roughly the average time it takes to pro-
cess a single request. In other words, when the request rate
exceeds the rate of search evaluation, the system becomes
overloaded, queuing delays increase, and search performance
degrades drastically. The distributed scheme, however, by
parallelizing the search processing, is able to maintain stable
search performance even when the request rate exceeds this
threshold of 250 ms, but does eventually become overloaded
when the request interval is less than 10 ms. Incidentally,
note that as there are 14 brokers, an optimal parallelization
of the search should take about 250 ms / 14 brokers = 18 ms.
Therefore it is expected that a request interval of 10 ms will
overwhelm the system.

Figure 10(a) shows that by distributing the service agents
(but not the brokers), the hybrid deployment achieves slightly
better search latency than the centralized case, but the sim-
ilarity of their results indicates that the matching done at
the pub/sub brokers dominates the processing at the service
agents. The similarity between the hybrid and centralized
deployments is consistent across all the evaluations.

The message overhead of the three deployments is pre-
sented in Figure 10(b). Comparing the three cases, the dis-
tributed approach experiences the highest message overhead
compared to the centralized and hybrid schemes, which is
an intrinsic tradeoff with any distributed algorithm. Notice
that there is almost no variance in the message overhead in-
dicating, as expected, that the request interval has no effect
on the steps taken by the search algorithm. This supports
the argument above that the variations in search latency in
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Figure 10(a) are due to queuing delays (as the system be-
comes overloaded) and not because of increased matching
time or parallelism effects.

4.2.2 Results per search

This experiment evaluates the effect of the number of
search results per request. A single request is issued each
time, but different number of processes are found to match
this request. To isolate the effect of the number of results,
each result is a simple chain of fourteen services of the struc-
ture shown in Figure 9(b).

Figure 11(a) presents the search latency for a varying
number of results per search. The latencies for all three ap-
proaches are linear with the number of search results. How-
ever, the distributed approach benefits from the parallelism
opportunities when there are more results per search, and
therefore is less sensitive to this parameter.

Notice in Figure 11(b) that although the distributed de-
ployment suffers from the highest message overhead, be-
cause these messages are distributed across the available re-
sources, the distributed scheme is still able to provide the
lower search latencies in Figure 11(a).

4.2.3 Processlength

The size of the processes found to satisfy a search has an
impact on the performance. In this experiment, requests are

Process length (Section 4.2.3)

issued sequentially (no parallelism), each request returning
a process that is a simple chain structure (see Figure 9(b))
but with varying length, so that the number of services com-
posed by the process differs.

The results in Figure 12(a) show that the search latency
increases with the result length. Now, the distributed ap-
proach performs the worst, and the difference between the
distributed and centralized schemes widens with longer paths.
The reason for this is because the results in this experiment
are chains which afford no opportunity for the distributed
approach to parallelize the search; the resulting process is
discovered sequentially one service at a time.

To investigate the effects of parallel searches when the re-
sults are chains, an additional experiment is run for the 70
process length case, but this time the requests are repeat-
edly issued with an interval of 1000 ms between each request.
Note that this interval is less than the average single request
latency of about 3200 ms for the centralized scheme when
the process length is 70, so some searches will be processed in
parallel. The results in Figure 12(c) compare the sequential
and parallel search scenarios, and show that the distributed
approach maintains a stable search latency whereas the hy-
brid and centralized schemes are extremely overloaded (note
the log scale in Figure 12(c)).

The results in Figure 12(c) show that when results are
long processes, the centralized scheme may outperform the



Distributed protocol
6000

T
sequential 5555

5000 - parallel ewssm

4000
3000
2000

1000 -

Average search latency (ms)

alternating
Service deployment

in-order

Figure 13: Service deployment (Section 4.2.4)

distributed one when there are few concurrent searches, but
is not the appropriate deployment choice if many simulta-
neous searches are expected.

Unlike the experiment from Figure 10(b), the message
overhead in this experiment increases with the result length
as shown in Figure 12(b). The almost identical trends in
Figures 12(a) and 12(b) indicates that the latency increases
are primarily due to having to match more messages both
in the pub/sub system and the service agents. However, the
impact of the service agents is minimal because the hybrid
case benefits little from distributing the service agents, and
therefore it can be inferred that the pub/sub matching at
the brokers is the more significant factor.

4.2.4 Service deployment

In the distributed deployment, the location of services in
the network may affect the search performance. This ex-
periment repeats the case in Section 4.2.2 where five results
are found for a search request, but varies the assignment of
services to service agents.

Two extreme service deployment cases are considered: an
in-order one in which services adjacent in the search result
are deployed to service agents at adjacent brokers in the
topology in Figure 8; and an alternating deployment where
consecutive services in the search result chain are assigned to
brokers at opposite ends of the network, specifically, to the
service agents connected to brokers 1 and 13 in the topology
in Figure 8.

As well, two search strategies are used: a sequential one
where only one request is issued at a time, and a parallel
one where requests are issued with an interval of 1000 ms, a
duration small enough to ensure some searches are processed
in parallel.

Figure 13 shows that with sequential requests, the alter-
nating deployment is about 47% worse than the in-order
one, whereas the difference is about 390% when requests
are issued in parallel. The results show that while both se-
quential and parallel searches suffer from a poor deployment
of services, such as the alternating deployment, the parallel
searches are more sensitive to the service distribution be-
cause the impact of the extra publications traversing back
and forth between the ends of the network is amplified by
the number of concurrent searches taking place.
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425 Registered services

Each registered service injects a subscription and adver-
tisement into the pub/sub broker network, and imposes ad-
ditional state at its service agent. Even if a service is not
found as part of a search, it may impact the performance of
the search because of the matching overhead imposed by its
subscriptions and advertisements on the pub/sub brokers.
This experiment investigates the effect of “background” ser-
vices that are registered in the system but are not composed
as part of any process.

A single request is issued (no concurrent requests) with a
resulting process of the structure in Figure 9(a). Figure 14
presents the average search latency for this request with
varying number of “background” services randomly assigned
to service agents. The results indicate a large impact from
these additional services. The centralized approach clearly
does not scale, with more than a 170 fold worse search la-
tency when the number of services is increased from 100 to
900. The distributed deployment scales much better with a
sublinear inflation of only about 265% for the 800% increase
in the number of services.

4.2.6 Servicesimilarity

It is desirable for a process search algorithm to exploit
similarities between registered services to prune the search
space or optimize the search. Fortunately, there has been
much work in pub/sub matching research on exploiting cov-
ering among subscriptions and advertisements [5].

This experiment repeats the one from Section 4.2.5 with
900 additional “background” services and a single search re-
sult of the form in Figure 9(a). However, the similarity of
these additional services is controlled. To achieve % simi-
larity, % of the services are randomly chosen to be identical
to one of five possible services, and the remaining services
are mutually different with no common input or output pa-
rameters.

Figure 15 shows that in all three deployments, increasing
similarity of services results in smaller search latencies. Re-
sults show that the message overhead does not vary with
similarity, and therefore the latency savings are primarily
due to the pub/sub matching algorithm’s ability to perform
matching faster when there are more covering subscriptions,
that is, more services with common interfaces.
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5. RELATED WORK

This section puts the work in this paper in context with
related work in the field of automatic service composition
and service computing.

Service modeling: Many models have been developed
to facilitate automatic service composition. In one approach
Web Services are modeled using DAML-S and DAML+OIL,
with a subset of DAML-S defined in first-order logic [17].
Other approaches model services using state transitions as in
Roman [4] or Mealy machines in Colombo [3]. An interesting
approach models services using Petri nets, and constructs a
“service net” with input and output places corresponding to
a service’s initial and final state, respectively [23]. In this
paper, services are modeled using pub/sub messages, map-
ping the task of constructing service relationships to pub/
sub matching, and service composition partly to pub/sub
routing. Future work will investigate the possibility of intro-
ducing a formal model to support validation and verification
of a service composition.

Search techniques: The problem of searching for a com-
position of services is generally mapped to a planning or a
digraph search problem [16]. For example, Bloom filters and
A* algorithms can be used to search for chain structured
service compositions [18]. An approach to integrate service
discovery and automatic service composition has recently
been proposed [11]. This integration is also supported by
the work in this paper: service discovery can be achieved by
performing a process search with the TTL field set to one in
order to retrieve only processes containing a single service.
Amazon has presented an interesting application scenario
for automatic service composition, where two services (Ama-
zon’s e-commerce service and an external payment service)
export complex interaction protocols and handle structured
data in messages, making the composition of services with
many interfaces complex and difficult [15].

To the best of our knowledge, existing research only offer
centralized architectures for automatic service composition.
This paper argues for a potentially more scalable, efficient,
and fault-tolerant distributed architecture that avoids single
points of failure or bottleneck. A peer-to-peer architecture
has been proposed in which the services, a request manager,
a matching engine, and an objective engine are separated,
but ultimately knowledge of service capabilities and service

composition is still centralized [14]. The approach in this
paper, on the other hand, enables distributed matching and
service composition search by using content-based pub/sub
matching and routing.

Search result complexity: The results of an automatic
service composition algorithm may range from a simple chain
of services to arbitrary DAG structures, with the latter able
to return more complex compositions. It has been noted
that chain-only results may be “uncertain” if a service’s pre-
condition can not uniquely determine a postcondition [21].
An approach to achieve a semantic Web Service composi-
tion that can return DAG-like processes as results has been
developed [9]. Such processes are also supported by this
paper.

Process execution: The processes found by an auto-
matic service composition algorithm will eventually be exe-
cuted by a centralized or distributed execution engine. The
distributed execution of processes and workflows is an active
area of research. Self-Serv [2] presents a peer-to-peer archi-
tecture that supports the distributed execution of service
compositions using distributed routing in the peer-to-peer
network. There have also been proposals for using a pub/
sub system to achieve distributed process execution [10, 13].
However, none of these systems have considered automatic
service composition in a distributed environment. Integrat-
ing distributed process search and execution in a unified
architecture is an idea that will be explored in future work.

6. CONCLUSIONS

The ability to automatically compose a set of services into
a process based on some user-defined criteria is an active
area of research that will become more useful as the adoption
of service computing grows.

This paper presents, to the best of our knowledge, the first
distributed algorithm for automatic service composition. In
a novel use of the pub/sub model, service interface specifi-
cations are mapped to content-based pub/sub messages in
such a way that ordinary pub/sub matching reveals possible
service compositions. Based on this mapping, a distributed
process search algorithm is developed that exploits the dis-
tributed matching capabilities of content-based pub/sub sys-
tems. The processing of a search is shared by the pub/sub
broker network, which determines possible service relation-
ships, and a set of service agents that collaborate to prune
this space and find matching processes or service composi-
tions. The benefits of the distributed architecture include
the avoidance of any single point of failure or performance
bottleneck, scalability to large numbers of services, and the
ability to parallelize searches across distributed resources.

Detailed evaluations of an implementation of the algo-
rithm in a distributed content-based pub/sub system are
conducted in a cluster of machines. The distributed algo-
rithm is compared to a simulated centralized one in which
all the brokers and service agents are deployed on one phys-
ical machine. The results indicate that the distributed al-
gorithm typically scales better and is more stable with re-
spect to the time needed to complete a search. This pattern
holds under a variety of conditions, including large num-
bers of concurrent search requests, increasing results per
search, and growing number of registered services. The dis-
tributed approach, however, does impose a larger network
traffic cost arising from communication overhead among the
distributed components. Despite this overhead, the dis-



tributed scheme achieves superior performance by paralleliz-
ing searches among the resources in the system, including
the brokers and service agents. This hypothesis is confirmed
by experiments where there is little parallelism possible,
such as when there are no concurrent search requests, in
which cases the centralized algorithm achieves faster search
processing latency.

This paper expands the space of automatic service compo-
sition research to distributed architectures and demonstrates
the potential benefits of such an approach, but leaves much
more work to be explored. Future research avenues include
evaluating the proposed algorithm with real-world scenar-
ios, adding support for continuous search, investigating the
benefits of integrating process search and process execution
architectures, and developing a more formal service interac-
tion model to support features such as process verification.
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