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ABSTRACT: Docking programs that use scoring functions to estimate binding affinities of small molecules to biological targets
are widely applied in drug design and drug screening with partial success. But accurate and efficient scoring functions for
protein−ligand binding affinity still present a grand challenge to computational chemists. In this study, the polarized protein-
specific charge model (PPC) is incorporated into the molecular mechanics/Poisson−Boltzmann surface area (MM/PBSA)
method to rescore the binding poses of some protein−ligand complexes, for which docking programs, such as Autodock, could
not predict their binding modes correctly. Different sampling techniques (single minimized conformation and multiple molecular
dynamics (MD) snapshots) are used to test the performance of MM/PBSA combined with the PPC model. Our results show the
availability and effectiveness of this approach in correctly ranking the binding poses. More importantly, the bridging water
molecules are found to play an important role in correctly determining the protein−ligand binding modes. Explicitly including
these bridging water molecules in MM/PBSA calculations improves the prediction accuracy significantly. Our study sheds light
on the importance of both bridging water molecules and the electronic polarization in the development of more reliable scoring
functions for predicting molecular docking and protein−ligand binding affinity.

1. INTRODUCTION

Molecular docking plays an important role in drug design and
discovery with the universal application of docking programs,
such as Glide,1 Autodock,2 FlexX,3 and GOLD.4 When these
programs are utilized prior to experimental screening, they are
usually considered as powerful computational filters to reduce
labor and cost. All of these docking programs explore various
docked conformations and determine the tightness of
interactions between the protein and the ligand, but the
performance on predicting the experimentally observed binding
poses is not always satisfying. As is widely accepted, the real
bottleneck on obtaining the reliable docking result lies in the
scoring functions.5−10 As a matter of fact, considerable efforts
have been devoted to the development of approximate
computational methods for describing protein−ligand inter-
actions more accurately, but it still lacks a universal scoring
function which works reliably for all or most of protein−ligand
systems.11,12 For some particular protein−ligand systems, most

of the widely used docking programs are incapable of predicting
the correct binding modes, imposing great challenge on the
effectiveness of computer-aided drug design. Therefore,
improved methods for predicting protein−ligand binding
affinities are desperately needed.
Among the approximate methods, the molecular mechanics/

Poisson−Boltzmann surface area (MM/PBSA) approach is
attractive because it does not contain any parameters that vary
for different protein−ligand systems and it involves a set of
physically well-defined energy terms.13−19 The validity of such
an approach has been explored in previous studies.13,20,21 In
particular, Kuhn et al. validated the MM/PBSA approach on
different biological systems by putting forward the idea of using
single-minimized structure instead of MD trajectories.22

Moreover, Hou et al. systematically evaluated the performance
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of MM/PBSA on predicting the absolute binding affinity for
protein−ligand complexes and the accuracy of identifying the
correct binding poses generated from molecular docking
programs.23,24

The accuracy of MM/PBSA approach for predicting
protein−ligand binding affinity relies on the accuracy of force
field, in addition to other factors. It is known that current
nonpolarizable force fields, for example, CHARMM and
AMBER, often fail to give accurate representation of the
electrostatics of the specific protein environment, which is
highly inhomogeneous and protein-specific. Recently, polarized
protein-specific charges (PPC) based on a fragmentation
scheme25−27 for electronic structure calculation of biomolecules
and the continuum dielectric model for the solvent in a self-
consistent fashion was developed.28 Since PPC correctly
describes the polarized electrostatic state of a protein at a
given structure, it is able to give a more accurate description of
the mutual electrostatic polarization effect for protein−ligand
binding, resulting in better description of electrostatic
interactions between protein and ligand. It has been
demonstrated in a number of applications that PPC gives
significantly better agreement with experimental data than
standard nonpolarizable force fields in protein−ligand binding
affinity calculations using MM/PBSA.29 Previous studies by
Tong et al. highlight that the electronic polarization of protein
plays a critical role in stabilizing the β-sheet (Thr113−Arg122)
at the binding site and makes a substantial contribution to the
binding free energy of avidin−biotin.30 In this work, we apply
the PPC charge model for MD simulations and MM/PBSA
calculations on ranking the protein−ligand binding poses
generated from molecular docking.
The effect of bridging water molecules between the protein

and ligand attracts more and more attention recently. These
water molecules are considered to play an important role in
mediating the interaction between protein and ligand.5,31−38

While only a few scoring functions explicitly take the water-
mediated protein−ligand interactions into consideration,39−42

explicitly including the bridging water molecules in molecular
docking and scoring function may be crucial for correctly
predicting the binding poses. Hence, in this study, we treat the
bridging water molecules as part of the receptor in the docking
process and MM/PBSA calculation of binding affinities.
In this work, we applied the MM/PBSA method using both

Amber ff99SB and PPC charge models to rescore the docking
conformations of some protein−ligand systems, for which
Autodock is not able to predict their experimentally observed
(native) binding poses. In those cases, the best-scored
conformation (rank one) whose predicted binding affinity is
most favorable, has a root-mean-squared deviation (RMSD)
value larger than 2.0 Å with respect to the experimentally
observed bound structure.5 Our aim is to find a rigorous
method to correctly rank the native structure, which in
principle, should have higher binding affinity than the rank
one binding pose predicted by Autodock. The MM/PBSA
calculations are carried out for both the rank one and native
structures. We also explicitly treat the bridging water molecules
as part of the receptor in the molecular docking and MM/
PBSA calculations, and compare with the results by neglecting
the structural water molecules. Finally, new physical insights
into accurate prediction of protein−ligand binding affinity will
be discussed.

2. COMPUTATIONAL APPROACH

A. Preparation of the Protein−Ligand Complexes. The
test set used in this study consists of eight protein−ligand
complexes (PDB id 1FJS, 1ETR, 1RPW, 1RKW, 3CLA, 4CLA,
1PPH, 7EST, respectively). For each of the protein−ligand
systems, the ligand molecule binds to the target protein
noncovalently, and no metal ions were found in the binding
pocket. Coordinates of all the complexes were downloaded
from the Protein Data Bank (PDB). The structures of protein
and ligand were then extracted from each complex separately.
Hydrogen atoms were added to the protein using the Leap
module in AMBER11.43 The amine groups were fully
protonated (Lys and Arg residues and N-terminal), and the
carboxylic groups were deprotonated (Asp and Glu residues
and C-terminal). All His residues were left neutral and
protonated at the ND1 or NE2 position base on the local
electrostatic environment. Partial charges of the protein are
assigned with the Amber ff99SB force field.44 For each ligand,
hydrogen atoms were added using Discovery Studio. The
geometry of ligand was optimized at the HF/6-31G* level.
Subsequently, force field parameters of ligand were obtained
using ANTECHAMBER module45 based on the generalized
Amber force field (GAFF)46 with the HF/6-31G* RESP
charges.47,48 (See Table S1 of the Supporting Information.) All
the ab initio calculations were carried out using Gaussian09
program.49 For five complexes (namely, 1FJS, 1ETR, 3CLA,
4CLA, 1PPH), there are bridging water molecules mediating
the protein−ligand interaction in the binding pocket. We also
keep them as part of the receptor in the molecular docking and
MM/PBSA calculations, and compare with the corresponding
results obtained without structural waters.

B. Docking and Geometry Optimization of Protein−
Ligand Complexes. Autodock program2 (version 4.2) was
employed to generate an ensemble of docked conformations
for each ligand bound to its target. We use the genetic
algorithm (GA) for conformational search. To explore the
conformational space of the ligand as completely as possible, we
perform 100 individual GA runs to generate 100 docked
conformations for each ligand. The size of the docking box is
60 Å × 60 Å × 60 Å, which is centered at the mass center of the
experimentally observed position of the ligand. The box with
grid spacing of 0.375 Å, is large enough to enclose the largest
binding pocket observed in the entire test set. The protein
structure is kept fixed during molecular docking.
For each complex, the rank one docking pose and the native

binding pose were optimized in the binding pocket, while the
receptor was kept fixed. Geometry optimization was performed
with 1500 steps of the steepest descent algorithm followed by
1500 steps of a conjugated gradient method using the Sander
module of AMBER11.43 The cutoff for the nonbonded
interaction was set to 200 Å.

C. Derivation of PPC Charges. The PPC charges are fitted
to electrostatic potentials by fragment quantum-mechanical
calculations using an iterative approach as described in ref 28.
Specifically, for each protein structure, a series of minimizations
using the Amber ff99SB force filed was carried out to remove
close contacts. The minimized structure was then used to
calculate PPC charges by the MFCC-PB computational
protocol: the Poisson−Boltzmann (PB) solver Delphi50 is
first used to calculate the induced charges on the solute−
solvent interface which is defined using a probe radius of 1.4
Å.51 The polarization of each protein fragment due to the rest
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of the protein fragments and the solvent are explicitly included
as external point charges in the fragment quantum calculation.
The electrostatic potentials are saved and a standard two-stage
RESP fitting procedure is used to fit effective point charges of
protein.52,53 The newly fitted atomic charges are passed to the
next round of the fragment quantum calculation. The calculated
corrected reaction field energy from Delphi using the fitted
charges is taken as the convergence criterion and this process is
iterated until its variation is smaller than a certain threshold.
Usually the criterion will be reached within five iterations. The
solvent dielectric constant is set to 80, and a grid density of 4.0
grids/Å is used in numerically solving the PB equation. The
quantum-chemical calculations on the protein fragments are
performed using density functional theory at the B3LYP/6-
31G* level.
D. MD Simulations. Two separate MD simulations were

performed for each system using the standard Amber ff99SB
and PPC charge models, respectively. In the simulation using
PPC, the atomic charges of the Amber ff99SB force field are
simply replaced by PPC, while the rest of the ff99SB parameters
are retained. In MD simulations, each complex is immersed in a
periodic rectangular box of TIP3P water molecules. The
distance from the surface of the box to the closest atom of the
solute is set to 10 Å. Counterions are added to neutralize the
system. The detailed number of TIP3P waters added along with
the number and type of counterions added to each complex are
shown in Table S2 of the Supporting Information. The particle
mesh Ewald (PME) is employed to treat the long-range
electrostatic interactions.54 Two steps of minimizations are
carried out to optimize the initial structure. In the first step,
only the solvent molecules and hydrogen atoms of the protein−
ligand complex are optimized using the steepest descent
algorithm followed by the conjugate gradient method. In the
second step, the entire system is energy-minimized until
convergence is reached. After the two-step minimization, the
system is then gradually heated from 0 to 300 K in 100 ps
(NVT ensemble), followed by 1 ns NPT simulation at 300 K
and 1 atm with a time step of 2 fs.30 The SHAKE algorithm is
employed to restrain all bonds involving hydrogen atoms.55 A
10 Å cutoff for the van der Waals interactions was adopted.
Langevin dynamics56 was applied to regulate the temperature
with a collision frequency of 2.0 ps−1. The pressure was
controlled by the isotropic position scaling protocol. All the
MD simulations were performed with AMBER11 program.43

E. MM/PBSA Calculation of the Protein−Ligand
Binding Affinity. The binding free energy of protein−ligand
complex is calculated using MM/PBSA method16,57

Δ = − −

=Δ + Δ + Δ − Δ

G G G G

E G G T S

(1)

(2)

bind complex receptor ligand

MM PB nonpolar

where ΔEMM is the gas-phase interaction energy between
protein and ligand, including the electrostatics and van der
Waals energies; ΔGPB and ΔGnonpolar are the polar and nonpolar
components of the desolvation energy, respectively; and TΔS is
the change of conformational entropy upon ligand binding. In
this study, the change of conformational entropy is not
included in the MM/PBSA calculations because of the large
fluctuation of this term. A large number of snapshots are usually
required for reliable evaluation of the conformational entropy.
In addition, since we focus on the relative binding affinity
between the native and rank one structure other than the
absolute value, the contribution of conformational entropy

upon binding is approximately treated to be equal, when a
ligand is bound to the same target with different binding
conformations. In MM/PBSA calculation, the value of the
exterior dielectric constant is set to 80, and the solute dielectric
constant is set to 1. The nonpolar solvation term is calculated
from the solvent-accessible surface area (SASA):58 ΔGnonpolar =
γ × ΔSASA. [where γ = 0.0072 kcal/(mol·Å2), and the unit of
ΔSASA is Å2.] When the bridging water molecules are explicitly
included in the binding affinity calculation, they are treated as
part of the receptor. To obtain the ensemble-averaged binding
free energies, 50 snapshots were evenly extracted along the MD
simulation after the systems were well equilibrated.
For MM/PBSA calculations using PPC, the electrostatic

interaction energy in ΔEMM of eq 2 is calculated using the
following equation as derived in ref 59
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where ΔEele is in kcal/mol. i, j represent the atom in protein
(P) and ligand (L), respectively. Rij is the distance between
atoms i and j. qi0 and qj0 are the PPC charges of atom i and j in
the unbound state (protein and ligand are infinitely separated),
while qi and qj are their PPC charges in the bound state of
protein−ligand complex. ΔGPB of eq 2 is calculated as

Δ = Δ − Δ − ΔG G G GPB PL,PB P,PB L,PB (4)

where ΔGPL,PB denotes the solvation energy of protein−ligand
complex calculated using PPC charges of the bound state with
the PB model and ΔGP,PB and ΔGL,PB represent the solvation
energy of protein and ligand calculated using PPC charges of
the unbound state, respectively. Since the van der Waals
interaction energy and ΔGnonpolar of eq 2 do not depend on the
point charges, these two terms for PPC calculations are the
same as those for Amber ff99SB calculations.

3. RESULTS AND DISCUSSION
A. Molecular Docking without Structural Water. In the

first round of molecular docking, all the structural water
molecules were removed. As shown in Table 1, the Autodock
program was unable to pick out the native binding
conformation as the most favorable pose for the eight systems
we have chosen in this study. All the rank one binding poses
have RMSDs greater than 2.0 Å with respect to the native

Table 1. Rank for the First Binding Pose Whose RMSD is
Less than 2.0 Å Using Autodock Program with Respect to
the Native Structurea

system without bridging waters with bridging waters

3CLA >100 96 (1.77)
4CLA 100 (1.08) 82 (1.06)
1PPH 12 (1.20) 22 (1.99)
1FJS 59 (1.29) 1 (1.67)
1ETR 21 (0.93) 1 (0.60)
1RKW 3 (1.40) b
1RPW >100 b
7EST 8 (0.81) b

aThe molecular docking was performed with and without bridging
water molecules, respectively. The RMSD (Å) of the pose is given in
parentheses. bNo bridging water molecules exist in the crystal
structure.
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structures. Wang et al. have made an extensive test of eleven
scoring functions for molecular docking, and none of them was
able to predict the top-rank conformation for 3CLA and 4CLA
within an RMSD threshold of 2.0 Å.5 Moreover, Hou et al. also
reported that Autodock and MM/PBSA failed to identify the
correct binding mode for these two systems.24 In their studies,
structural water molecules mediating the protein−ligand
interactions were all removed in docking and MM/PBSA
calculations.
B. Rescoring of Binding Free Energies Using MM/

PBSA without Structural Waters. For the eight systems, we
applied the MM/PBSA method to rescore the rank one and

native structure for each protein−ligand complex. We first
calculate the binding free energies based on the single
minimized structure. Figure 1a−1c shows the free energy
differences between the native and rank one structures. As one
can see from the figure, MM/PBSA successfully identifies the
native conformations for 5 (1RKW, 4CLA, 1PPH, 1FJS, 1ETR)
of the 8 complexes using Amber ff99SB charges. The
performance of PPC is slightly worse than Amber ff99SB.
PPC predicts that the rank one structures are more favorable
than the native structures for 1ETR and 4CLA, while the
Amber ff99SB identifies the correct binding poses. But for
7EST, PPC successfully picks out the correct binding pose,

Figure 1. Free energy difference between the native binding structure and the rank one pose predicted by Autodock (ΔGNative − ΔGRank one). The
results obtained from Autodock are shown in panels a and f; panels b−e and g−j present the results calculated using MM/PBSA. Panels b, c, g, and h
are based on the single minimized conformation. Panels d, e, i, and j are an ensemble averaging over 50 snapshots selected from MD simulation. The
MM/PBSA calculations with Amber ff99SB charges are shown in panels b, d, g, and i, while the MM/PBSA calculations with PPC charges are shown
in panels c, e, h, and j, respectively. The notation “(w)” represents that the bridging water molecules are explicitly included in calculations and treated
as part of the receptor.

Table 2. Calculated MM/PBSA Free Energies (in kcal/mol) with Amber ff99SB and PPC Charges Based on Single Minimized
Structure and Comparison with Autodock Scoresa

MM/PBSA

Amber ff99SB PPC Autodock

system native rank one native rank one native rank one

1RKW −49.30 −42.36 −49.08 −39.60 −5.36 −7.44 (2.27)
7EST −34.62 −35.01 −36.49 −30.50 −5.21 −6.70 (4.65)
4CLA −19.04 −17.58 −11.82 −12.53 −1.53 −3.99 (6.25)
1PPH −54.86 −51.60 −60.83 −53.21 −8.03 −9.58 (2.80)
1RPW −49.81 −53.82 −45.51 −63.85 −2.63 −7.67 (3.21)
3CLA −12.28 −14.86 −7.24 −9.96 −0.61 −4.56 (6.47)
1FJS −67.17 −55.54 −74.19 −62.05 −7.89 −9.46 (2.23)
1ETR −48.66 −45.73 −48.70 −49.25 −8.62 −10.33 (4.41)

aThe RMSD (Å) of the rank one structure (with the highest score given by Autodock) with respect to the corresponding native structure is given in
parentheses. The bridging water molecules were excluded in MM/PBSA calculations. The numbers are in bold face if the free energy of native
structure is lower than that of the rank one structure.
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while Amber ff99SB fails. For two systems (1RPW and 3CLA),
both Amber ff99SB and PPC give lower binding free energy for
the rank one structure than the native structure. The calculated
binding energies by Autodock and MM/PBSA based on the
single minimized structure are shown in Table 2. The detailed
contributions to the total binding free energies from electro-
statics, van der Waals interaction, polar and nonpolar
desolvation energy are shown in Table S3 of the Supporting
Information. Although MM/PBSA calculation based on the
minimized structure does not correctly predict the binding
modes for all eight systems, it shows a significant improvement
over Autodock scores.
MM/PBSA calculations over 50 snapshots from MD

simulation were also carried out to calculate binding free
energies for these eight systems. As shown in Figure 1d, the
ensemble-averaged free energies based on the Amber ff99SB for
7EST, 1RPW, and 3CLA are able to recognize the native
structure as opposed to the results based on the single
optimized conformation. For 7EST, the ensemble-averaged
binding free energies using Amber ff99SB charges are −27.07
and −24.82 kcal/mol for the native and rank one
conformations, respectively (see Table 3). As for 1RPW and

3CLA, they are −44.75 (native) versus −35.60 (rank one) kcal/
mol and −12.91 (native) versus −10.65 (rank one) kcal/mol,
respectively. However, MM/PBSA with Amber ff99SB charges
gives lower binding free energies for the rank one structures
than the native structures for other four systems (1RKW,
4CLA, 1PPH, 1FJS). On the contrary, MM/PBSA with PPC
charges improves the successful rate of identifying the correct
binding poses, with three complexes (4CLA, 3CLA, 1FJS, see
Figure 1e) that MM/PBSA with PPC fails to recognize the
native binding mode. Thus, we conclude that MD simulation
does not always improve the performance of MM/PBSA
predictions on the binding free energy based on the
nonpolarizable Amber ff99SB charge model. In contrast, for
the PPC charge model, the ensemble-averaged binding free
energy over multiple snapshots generally gives more reliable
result than that calculated on the single optimized structure.
C. Molecular Docking with Structural Water Mole-

cules in the Binding Pocket. There are five protein−ligand
complexes (1ETR, 1FJS, 1PPH, 4CLA, 3CLA) containing
bridging water molecules. Neglecting the bridging water
molecules may lead to the failure of predicting the binding
mode. Hence, we redock these systems by keeping the
structural water molecules in the binding site as part of the

receptor. As shown in Table 1, Autodock identified the correct
binding conformations for two systems: 1ETR and 1FJS (see
Figure 2). For 1ETR, the RMSD of the best-scored

conformation generated with bridging water molecules is 0.60
Å, which is much smaller than that (4.41 Å, see Table 2) of the
best-scored conformation generated without structural waters.
The result is similar for 1FJS, with the RMSD of 1.67 Å with
structural waters versus 2.23 Å without structural waters. Figure
3 shows the ligand binding poses for the native and rank one

structures of 1FJS. The native structure has four structural
water molecules bridging between the ligand and protein. In
contrast, there are only three structural waters acting as
bridging water molecules in the binding site for the rank one
binding pose. However, Autodock is still unable to correctly
predict the binding poses for the other three systems (1PPH,
3CLA, and 4CLA) by including the bridging water molecules
(see Table 1). Furthermore, as shown in Table 4 and Figure 1f,
although some of the binding poses are correctly identified, all
the binding free energies of rank one poses are predicted to be
lower than the native structures by Autodock score. It clearly
shows that the deficiency of the scoring function is the main
cause for the failure of identifying the correct binding poses.
The estimated binding free energies by Autodock are also

affected significantly after considering the bridging water
molecules. These structural water molecules enhance the
tightness of interactions between protein and ligand, especially
in the native structure. As can be seen from Tables 2 and 4, the
Autodock scores for the native and rank one structure of 1ETR
is −9.98 and −10.72 kcal/mol with considering the bridging

Table 3. Calculated MM/PBSA Free Energies (in kcal/mol)
with Amber ff99SB and PPC Charges Based on 50 Snapshots
Selected from MD Simulationa

Amber ff99SB PPC

system native rank one native rank one

1RKW −20.43 −49.44 −32.30 −29.14
7EST −27.07 −24.82 −43.36 −20.63
4CLA −9.51 −17.32 −7.79 −11.34
1PPH −49.21 −53.41 −54.13 −44.76
1RPW −44.75 −35.60 −43.27 −36.51
3CLA −12.91 −10.65 −13.55 −13.81
1FJS −43.14 −54.03 −60.17 −60.62
1ETR −45.47 −36.63 −53.58 −41.68

aThe bridging water molecules were excluded in MM/PBSA
calculations.

Figure 2. Superposition of best-scored conformations generated by
Autodock with and without the bridging water molecules for (a) 1ETR
and (b) 1FJS, respectively. The conformations generated with and
without bridging water molecules are shown in red and blue sticks,
respectively. The experimentally observed conformation is colored in
green.

Figure 3. Protein−ligand binding modes for (a) the native structure
and (b) the best-scored pose predicted by Autodock for 1FJS,
respectively. The hydrogen bonds are shown in dashed lines. The
ligand and residues are shown in sticks and lines, respectively. The red
spheres represent the bridging water molecules.
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water molecules, compared to the corresponding values of
−8.62 and −10.33 kcal/mol without bridging water molecules,
respectively. These bridging water molecules increase the
binding free energy for the native structure by 1.36 kcal/mol,
which is more than 0.39 kcal/mol for the rank one structure.
The same tendency is also found for 4CLA, 1PPH, and 3CLA.
Nevertheless, for 1FJS, the bridging water molecules contribute
more to the binding free energy for the rank one structure than
that for the native structure. To summarize, structural waters
play an important role in the protein−ligand binding. Explicitly
including the effect of bridging water molecules is critical to
improving the accuracy of scoring functions.
D. Rescoring of Binding Free Energies Using MM/

PBSA with Structural Water Molecules. As discussed in
previous sections, when we utilize the ensemble-averaged MM/
PBSA binding free energy as the scoring function, the failure of
identifying the correct binding poses happens to the protein−
ligand complexes, which mostly have bridging water molecules
in the binding site. For 1ETR, 1FJS, 1PPH, 4CLA, and 3CLA,
which contain bridging water molecules in the crystal
structures, we recompute their binding free energies using
MM/PBSA by assigning the structural waters as part of the
receptor. The MM/PBSA results calculated using Amber
ff99SB and PPC for the single minimized conformation and
ensemble averaging are shown in Table 4 and 5, respectively.

For MM/PBSA calculations on the single minimized
conformation, it was still unable to predict the correct binding
mode of 3CLA for both Amber ff99SB and PPC charge models
(compare Figure 1g and 1h with Figure 1b and 1c); however,
the MM/PBSA binding free energy of the native structure
becomes lower than the rank one structure for 4CLA and
1ETR, based on the PPC model after the bridging water
molecules are explicitly included. It is worth noting that, unlike
MM/PBSA, the linear interaction energy (LIE)60,61 and linear

response approximation (LRA) methods62,63 do not require the
explicit treatment on the bridging water molecules. Never-
theless, the LIE and LRA approaches usually need a large
training set to fit the coefficient for each individual energy term
empirically.
Figure 1i and 1j shows the relative binding free energies

based on ensemble averaging over 50 snapshots selected from
MD simulation with Amber ff99SB and PPC, respectively. As
can be seen from the figure, by including the bridging waters,
MM/PBSA with Amber ff99SB recognizes the correct binding
modes for 3CLA and 1ETR, but it is still incapable of
identifying the correct binding poses for three systems (4CLA,
1PPH, and 1FJS). However, MM/PBSA with the PPC model
correctly recognizes the native binding poses for all the studied
systems after including the structural waters, whereas it was
unable to identify the correct binding poses for three systems
(4CLA, 3CLA, and 1FJS) using the same approach without the
structural waters (compare Figure 1j and 1e). Since the
polarized protein-specific charges correctly represent the
electronically polarized state of the protein and provide
accurate electrostatic interaction near the native structure, the
electronic polarization effect not only influences the direct
calculation of the MM/PBSA binding free energy for protein−
ligand complexes but also offers a better conformational
sampling for proteins, which is an essential prerequisite for
obtaining any ensemble-averaged property of proteins.
Including the effects of both bridging water molecules and
the electronic polarization of protein gives perfect prediction
for MM/PBSA calculations.
As shown in Tables 3 and 5, for 1FJS, which has 4 bridging

water molecules, the total binding free energy of the native
structure is −75.76 kcal/mol when bridging water molecules
are explicitly included in the MM/PBSA calculation with PPC,
as compared to −60.17 kcal/mol without considering the
structural waters. As one can see from Figure 3, each bridging
water molecule forms a stable hydrogen bond with the ligand
and mediates the interactions between the protein and ligand.
These structural waters have a contribution of −15.59 kcal/mol
to the total binding free energy, which makes the protein−
ligand binding more attractive. For 1FJS without structural
waters, the electrostatics, van der Waals interaction and polar
desolvation energy contributions to the binding of the native
structure using PPC are −243.34, −40.30, and 230.17 kcal/mol,
respectively, as compared to −150.14, −37.38, and 133.44 kcal/
mol for the rank one structure (see Table S4 of the Supporting
Information). By including bridging water molecules, the three
corresponding energy terms for the native structure are
−251.69, −43.69, and 226.47 kcal/mol, as compared to
−173.60, −40.45, and 166.50 kcal/mol for the rank one

Table 4. Comparison of the Calculated MM/PBSA Free Energies (in kcal/mol) Based on Single Minimized Structurea

MM/PBSA

Amber ff99SB PPC Autodock

system native rank one native rank one native rank one

4CLA(w) −18.55 −16.66 −15.73 −15.06 −1.94 −4.03 (8.45)
1PPH(w) −57.73 −56.95 −68.70 −61.54 −8.22 −9.62 (2.73)
3CLA(w) −14.36 −16.38 −2.51 −10.04 −0.70 −4.34 (2.90)
1FJS(w) −78.17 −63.35 −90.62 −69.84 −8.38 −10.65 (1.67)
1ETR(w) −61.40 −55.63 −62.88 −58.19 −9.98 −10.72 (0.60)

aThe notation “(w)” represents that the bridging water molecules are explicitly included in calculations. The bridging water molecules are treated as
part of the receptor. The RMSD (Å) of the rank one structure (with the highest score given by Autodock) with respect to the corresponding native
structure is given in parentheses.

Table 5. Comparison of MM/PBSA Free Energies (in kcal/
mol) Based on 50 Snapshots Selected from MD Simulationa

Amber ff99SB PPC

system native rank one native rank one

4CLA(w) −8.07 −16.88 −9.77 −7.89
1PPH(w) −50.33 −57.27 −53.52 −50.19
3CLA(w) −5.75 −4.48 −15.50 −9.83
1FJS(w) −53.94 −58.57 −75.76 −54.23
1ETR(w) −51.02 −49.12 −50.85 −48.00

aThe notation “(w)” represents that the bridging water molecules are
explicitly included in calculations. The bridging water molecules are
treated as part of the receptor.
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structure. MM/PBSA successfully recognizes the correct
binding pose in the presence of structural water molecules
with the binding free energy of −75.76 kcal/mol compared
with −54.23 kcal/mol for the rank one structure. On the
contrary, MM/PBSA based on the ensemble averaging without
considering bridging-water molecules fails to predict the correct
binding pose of 1FJS with the PPC model. It is much the same
for 3CLA and 4CLA. After explicitly including bridging waters,
MM/PBSA with PPC achieves success for all the test systems.
Therefore, the protein−ligand binding poses are better
determined by explicitly treating bridging water molecules. It
is of great importance to include the effects of both bridging
water molecules and electronic polarization in MM/PBSA
calculations.
E. Compare Residue-Based Binding Free Energies

between the Amber ff99SB and PPC Charge Models. For
1FJS, after explicitly treating bridging water molecules in MM/
PBSA calculation, the PPC model correctly identifies the
binding pose, whereas the Amber ff99SB charge model fails
(compare Figure 1i and 1j). We further decompose the total
binding free energy of the protein−ligand complex into
contributions from each residue (the bridging water molecule
is taken as a residue of protein). The residue-based free-energy
decomposition has been rigorously established in the free
energy perturbation formalism and represents the foundation of
any quantitative structure−activity relationship.64,65 The
primary residues which make contributions to the binding
free energy larger than 1.0 kcal/mol are shown in Figure 4. For

the Amber ff99SB charge model, except CYS181 and GLY208,
the calculated binding free energies for all other 6 residues in
the rank one structure are more favorable than those in the
native structure, which accounts for the failure of predicting the
correct binding pose based on the Amber ff99SB force field.
On the contrary, the calculated residue-based free energies in

the native structure using PPC are more attractive than those in
the rank one structure for four residues (ARG132, ASP184,
TRP205, and GLY208). For ARG132, the calculated free
energies with the Amber ff99SB charges for the native and rank
one conformations are −0.23 and −4.57 kcal/mol, respectively,
as compared to the PPC results of −8.35 and −1.03 kcal/mol.
As for the other three primary residues (ASP179, GLN182, and
ILE217), although the calculated free energies in the rank one
structure are more favorable than the native structure for both

the Amber ff99SB and PPC charge models, PPC consistently
shrinks the margins of residue-based binding free energies
between the native and rank one structures. For instance, the
calculated free energies of ASP179 are −10.65 and −12.08
kcal/mol for the native and rank one binding poses,
respectively, using Amber ff99SB charges. The gap of 1.43
kcal/mol is considerably larger than 0.23 kcal/mol using PPC
(the corresponding binding free energies are −16.27 and
−16.50 kcal/mol, respectively). The results show that using
PPC in MM/PBSA calculations can better differentiate the
native structure from the decoy structures. The electronic
polarization effect not only impacts the tightness between
residues and ligand during MD simulation, but also provides
more accurate evaluation of binding free energies for the
protein−ligand complexes.

4. CONCLUSIONS

In this work, we employed a systematic study of eight protein−
ligand complexes, for which Autodock could not predict their
binding poses correctly. We incorporate the PPC charge model
into the MM/PBSA method to rescore the top-rank binding
poses of those systems, and compare with the value obtained
from the native binding structure. Different sampling
techniques including single minimized conformation and
multiple MD snapshots are used to test the performance of
MM/PBSA combined with the PPC model. By explicitly
including bridging water molecules in MM/PBSA calculations
using PPC charges, the ensemble-averaged free energy correctly
ranks the binding poses for these eight systems. In contrast,
MM/PBSA calculations with the nonpolarizable Amber ff99SB
charges failed in four systems. Our study underscores that the
effects of bridging water molecules and the electronic
polarization are both crucial to accurately predict the
protein−ligand binding affinity. Furthermore, the free energy
averaging over multiple MD snapshots is a more accurate
approach than that calculated on a single minimized protein−
ligand complex, although much more computational cost is
needed.
The next study will focus on developing a reliable method to

locate the possible position of the bridging water molecules,
and an efficient way to incorporate the electronic polarization
effect in empirical scoring functions. Research along these lines
is currently underway at our laboratory.
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