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Abstract

This paper describes a novel technique for decoupling

two of the main sources of variation in 3-D facial structure,

subject’s identity and expression. Decoupling and control-

ling independently these factors is a key step in many practi-

cal applications and in this work it is achieved by modeling

the face manifold with a bilinear model. Bilinear model-

ing, however, can only be applied to vectors, and therefore

a vector representation for each face is established first.

To this end, we use a generic face model that is fitted to

each face under the constraint that anatomical points get

aligned. The effectiveness and applicability of the proposed

method is demonstrated with an application to facial ex-

pression recognition.

1. Introduction

Visual inspection of the face allows humans to recognize

multiple characteristics of the individual, such as his/her

identity, cognitive and psychological state. Although this

seems trivial for humans, it is quite challenging for comput-

ers, both in the 2-D and 3-D case, due to the integration of

unwanted variation in facial appearance and 3-D structure

(e.g. changes in lighting conditions, head pose e.t.c).

To deal with this problem, many researchers try to de-

vise descriptors robust to unwanted variation. For in-

stance, geodesic polar representations [7], spherical canon-

ical forms [1] and adapting geometric attributes [4] are de-

scriptors that allow expression-invariant face recognition.

An alternative approach is modeling the face manifold with

appropriate models, most famous of which (e.g. Active

Appearance Models [2]) are based on Principal Compo-

nents Analysis. The advantage of this approach is that the

model may be used not only for the recognition of face at-

tributes but also in a variety of applications such as data

compression and so on. The disadvantage however of the

models used so far is that usually they are linear and they

cannot separate the sources of variation. To this end, a

few researchers have recently proposed non-linear models

able to handle multiple sources of variation. For instance,

Vasilescu et al. [11] proposed using the N-mode SVD

tensor decomposition to separate the influence of identity,

pose, illumination and expression in face appearance, while

Wang et al. [12] proposed the Higher-Order SVD (Singular

Value Decomposition) in order to recognize and synthesize

facial expressions in 2-D images.

Motivated by the successful application of the aforemen-

tioned models to 2-D images, this paper describes a novel

technique for modeling 3-D facial geometry and decoupling

two of the main sources of variation, subject’s identity and

expression, by means of a bilinear model. Bilinear mod-

els were introduced by Tenenbaum and Freeman [10] to

describe two-factor observations, where concepts like the

“content” and “style” of observations should be analyzed

and manipulated separately from each other. They are linear

in either factor when the other is held constant and therefore

they are simple in structure, computation and implementa-

tion; they can be trained with well known algorithms and

they can model subtle interactions between factors. How-

ever, the bilinear decomposition may only be applied to vec-

tor representations of faces. Thus a deformable face model

is fitted to each face and then the parameters of this model

are used for the bilinear decomposition.

In the following, we describe the technique for fitting the

deformable face model to a face surface using their geodesic

polar representations [7], while in Section 3, we present the

bilinear model and its training. Its use is finally demon-

strated in Section 4 with an application to facial expression

recognition.



2. Vector representation of faces

Vector representation of faces is achieved by fitting a

parameterized deformable 3-D face model to each sample

surface. Its parameters define bijectively its configuration

and therefore they can be used for its vector representation.

However, this is true only if the fit of the model satisfies the

constraint of anatomical correspondence.

Fitting begins by defining a 3-D mesh M0 with N ver-

tices vi (see Fig. 1). This base-mesh is subdivided using

the Loop subdivision scheme [5] to give a more smooth and

dense mesh. At each subdivision step, the vertices of the re-

sulting 3-D mesh may be written as a linear combination of

the vertices of the previous level mesh and eventually of the

initial mesh M0. After a few levels of subdivision (3 in our

experiments) we result in a dense mesh, called subdivision-

mesh, that serves as the deformable model, while the ver-

tices of the base-mesh that define its form comprise the vec-

tor representation of the face.

Let M̃ denote the subdivision-mesh and ṽi, i = 1 . . . S

its vertices. If also hij are the coefficients of the linear

combinations between the vertices of the base-mesh and the

subdivision-mesh, then altogether we have

ṽi =

N∑

j=1

hijvj . (1)

A common approach to model fitting (e.g. [8, 6]) is for-

mulating it as an energy minimization problem. The energy

is comprised of the Euclidean distances between the points

of the model and their nearest counterparts on the surface.

Considering (1) and defining the function mc(i) that returns

the index k of the facial point pk nearest to the M̃ vertex i,

this energy term can be written as

Emc =

S∑

i=1




N∑

j=1

hijvj − pmc(i)




2

. (2)

However, this energy term alone leads to an under-

constrained problem whose solution may not represent a

plausible human face (e.g. vertices may be set to disparate

points and fold the triangles of the mesh). Therefore, a

smoothness term that tries to prevent the model from dis-

torting is also added to the energy formulation. Smoothness

is defined as a measure of the elastic energy of the base-

mesh that penalizes non-parallel displacements of the edges

and is given by

Ee =

N∑

i=1

1

Ni

∑

j∈Ni

(
vi − vj − v0

i + v0
j

)2
(3)

where Ni is the set of vi’s neighbors, Ni is its cardinality

and v0
i , v0

j are the initial positions of the vertices.

a b c

Figure 1. Fitting the deformable model to a

surface. a: base-mesh, b: target surface, c:

subdivision-mesh fitted to the surface.

Emc gives rise to forces that attract model vertices to-

wards their nearest points on the surface instead of the

anatomically corresponding points. This is not a problem

if the model is relatively close to the surface, since nearest

points and anatomically corresponding points almost coin-

cide. But if the model is relatively far from the surface, ver-

tices may be displaced so that anatomically erroneous cor-

respondence is established. To overcome this problem, first

we define a dense correspondence field between the model

and the face taking into account their geodesic polar param-

eterizations [7]. That is, we add an extra energy term

Ec =

S∑

i=1

(
ṽi − pc(i)

)2
(4)

where we assume that surface points pc(i) correspond to

model vertices ṽi, if they have the same geodesic polar

coordinates. (Correspondence is given by function c(·).)
Again, this may result to poor anatomical correspondence

if the model is too different from the face. To handle both

this problem and the similar one regarding nearest points

above, we adopt an iterative approach to perform fitting.

In each iteration, we compute the geodesic polar coor-

dinates of the surface points and the subdivision-mesh ver-

tices and we form the couples with the same coordinates.

We also form the couples of vertices and their nearest points

on the surface. Model parameters are then estimated by

minimizing the energy function

Edef = λ1Ec + λ2Emc + λ4Ee . (5)

Edef is quadratic with respect to the unknown model pa-

rameters and therefore its minimization can be achieved

easily by solving a simple linear system. Let v̂[k] =[
v̂1[k]T . . . v̂N [k]T

]T
stand for the base-mesh vertices that

minimize (5) in the k-th iteration and η be a step chosen in

(0, 1). Then, the base-mesh vertices v = [vT
1 . . .vT

N ]T that

are used for the vector representation of the surface may be



found using the following update rule

v[k] = (1 − η)v[k − 1] + ηv̂[k] (6)

upon convergence to a final position.

3. Modeling expression and identity variation

Using the vector representation described above, we may

now model the face manifold by means of a bilinear model.

Let vxp be the K-dimensional stacked column vector of

the N base-mesh vertices of the facial surface of person p

with expression x (K = 3N ). Then each component vxp
k is

given by the general bilinear form [10]

vxp
k =

I∑

i=1

J∑

j=1

wijkax
i b

p
j (7)

where ax
i and b

p
j are the control parameters that control ex-

pression and identity respectively, while wijk are the coef-

ficients that model the interaction of the factors. Equation

(7) shows that coefficients wijk are weighted symmetrically

by ax
i and b

p
j and thus this model is called symmetric in the

literature.

The symmetric model is able to generalize equally on

both directions, identity and expression. In practice how-

ever, this is true only if the model is trained with approx-

imately equal number of samples with respect to identity

and expression. But this is not valid for the majority of

face databases, since most of them contain hundreds of in-

dividuals displaying few expressions, usually the 6 proto-

typical expressions proposed by Ekman [3]. To overcome

this problem and achieve better generalization with respect

to expressions, we may use an asymmetric model by letting

mixing coefficients wijk vary with the expression control

parameters ax
i , that is

ax
kj =

I∑

i=1

wijkax
i . (8)

Using the above definition and (7), the vector representation

of the face is now given by

vxp
k =

J∑

j=1

ax
kjb

p
j vxp = Axbp (9)

where now matrix Ax controls expression. The identity of

the face is still controlled by vector bp.

Let us assume that there exist T faces in our database be-

longing to Tp individuals and depicting one of Tx possible

expressions. Let also hxp[t] be a zero-one function that is

one if the t-th face v[t] belongs to individual p with expres-

sion x. Unknown coefficients arise from the minimization

of the total squared error [9]

Ea =

T∑

t=1

Tx∑

x=1

Tp∑

p=1

hxp(t) (v(t) − Axbp)
2

. (10)

By differentiating Ea with respect to Ax and bp and set-

ting the partial derivatives equal to zero, we end up with

equations

Ax =




Tp∑

p=1

mxpb
pT






Tp∑

p=1

nxpb
pbpT




−1

(11)

bp =

(
Tx∑

x=1

nxpA
xT

Ax

)−1(
Tx∑

x=1

AxT
mxp

)
(12)

where nxp =
∑T

t=1 hxp[t] and mxp =
∑T

t=1 hxp[t]v[t].
Matrices Ax and vectors bp may now be found by iter-

ating equations (11) and (12) according to an update rule

similar to (6) 1.

4. Facial expression recognition

In this section, we present an application of the de-

formable and bilinear model to facial expression recogni-

tion using the BU-3DFE face database [13]. BU-3DFE con-

tains 2,500 face scans of 100 subjects, who display the 6

prototypical expressions of anger, fear, disgust, happiness,

sadness and surprise.

First, the base-mesh M0 is built by selecting N = 169
vertices lying on an average facial surface and then the vec-

tor representation of every face is established by fitting the

deformable model as described in Section 2.

Then, in order to obtain statistically safe experimental

results, we follow the 10-fold cross-validation approach. In

each experiment, BU-3DFE subjects are divided randomly

in two sets, a training set consisting of 90 subjects and a test

set consisting of the rest 10 subjects. The training set is used

to train the asymmetric bilinear model. That is, we estimate

the 6 matrices Ax corresponding to the Tx = 6 possible

expressions and the Tp = 90 identity control vectors bp

corresponding to the subjects of the training set. The num-

ber of columns of Ax and the dimension of bp is set to 80

while the number of rows K is equal to the triple of vertices

number, K = 507. Entries of Ax and bp are initialized

randomly and then they are computed by iterating (11) and

(12) until the relative change in their Frobenius norm gets

below a threshold (0.01).

1Convergence is guaranteed if J , the dimensionality of vector bp , is

less than or equal to Tp, the number of individuals



Table 1. Expression recognition based on

asymmetric bilinear model.

In\Out Anger Disgust Fear Happiness Sadness Surprise

Anger 82.5 0.0 0.0 0.0 17.5 0.0

Disgust 0.0 100.0 0.0 0.0 0.0 0.0

Fear 0.5 0.0 98.0 0.0 1.5 0.0

Happiness 0.0 1 0.0 99.0 0.0 0.0

Sadness 33.0 0.0 3.5 0.0 63.5 0.0

Surprise 0.0 0.0 0.0 0.0 0.0 100.0

Estimated matrices Ax and vectors bp are then used to

build a Maximum Likelihood classifier. We assume that

the vertex vector v defining the facial surface of person p

with expression x is a random vector with spherical gaus-

sian probability density function (p.d.f.) centered at the pre-

diction of the asymmetric bilinear model. That is

f(v|p, x) =
1

(√
2πσ

)K e−
1

2σ2
||v−A

x
b

p||2
(13)

where σ2 = 105 is the error variance. Using the Total Prob-

ability Theorem, the conditional p.d.f. of v assuming ex-

pression x may now be written as

f(v|x) =

Tp∑

p=1

1

Tp

f(v|p, x) . (14)

Now, the expression of a novel test face may be classified

simply to the prototypical expression with the greatest like-

lihood, that is the expression xi for which

f(v|xi) > f(v|xj) ∀ xj 6= xi . (15)

The above experiments are repeated on several randomly

chosen subdivisions of training and test sets, under the con-

straint that all subjects are included at least once in the test

set. The recognition results are averaged and presented in

Table 1 showing a total average recognition rate of 90.5%.

The highest misclassification occurs between the expres-

sions of anger and sadness. The main difference between

these expressions lies mostly on the configuration of the

eyebrows, which means that our deformable face model

cannot localize them accurately enough. Perhaps this prob-

lem may be resolved by the introduction of color informa-

tion to the face model.

5. Conclusion

In this paper, we presented a technique for modeling

face geometry with a bilinear model that allows decoupling

identity and expression. First we proposed a method for

establishing a vector representation of the face, which is

necessary for bilinear decomposition and then we demon-

strated an application of bilinear modeling to facial expres-

sion recognition. This application showed the advantage

of separate control, since the same method could be used

for expression-invariant recognition simply by interchang-

ing the roles of expression and identity.

References

[1] A. M. Bronstein, M. M. Bronstein, and R. Kimmel.

Expression-invariant representations of faces. IEEE Trans.

on Image Processing, 16(1), January 2007.

[2] T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appear-

ance models. IEEE Trans. on Pattern Analysis and Machine

Intelligence, 23(6):681–685, 2001.

[3] P. Ekman and W. Friesen. Facial Action Coding System

(FACS): Manual. CA: Consulting Psychologists Press, Palo

Alto, 1978.

[4] X. Li and H. Zhang. Adapting geometric attributes for

expression-invariant 3D face recognition. In IEEE Int. Conf.

on Shape Modeling and Applications, pages 21–32, 2007.

[5] C. Mandal, H. Qin, and B. C. Vemuri. Novel FEM-based dy-

namic framework for subdivision surfaces. Computer-Aided

Design, 32(8):479–497, 2000.

[6] D. Metaxas and I. Kakadiaris. Elastically adaptive de-

formable models. IEEE Trans. on Pattern Analysis and Ma-

chine Intelligence, 24(10):1310–1321, October 2002.

[7] I. Mpiperis, S. Malassiotis, and M. G. Strintzis. 3D face

recognition with the geodesic polar representation. IEEE

Trans. on Information Forensics and Security, 2(3):537–

547, September 2007.

[8] C. Shelton. Morphable surface models. International Jour-

nal of Computer Vision, 38(1):75–91, 2000.

[9] J. Tenenbaum and W. Freeman. Separating style and con-

tent. In M. Mozer, M. Jordan, and T. Petsche, editors, Ad-

vances in Neural Information Processing Systems, volume 9,

pages 662–668, 1997.

[10] J. Tenenbaum and W. Freeman. Separating style and content

with bilinear models. Neural Computation, 12:1247–1283,

2000.

[11] M. A. O. Vasilescu and D. Terzopoulos. Multilinear sub-

space analysis of image ensembles. In Proc. IEEE Conf.

on Computer Vision and Pattern Recognition, pages 93–99,

June 2003.

[12] H. Wang and N. Ahuja. Facial expression decomposition. In

Proc. Ninth IEEE Int. Conf. on Computer Vision, volume 2,

pages 958–965, October 2003.

[13] L. Yin, X. Wei, Y. Sun, J. Wang, and M. J. Rosato. A 3D

facial expression database for facial behavior research. In

7th International Conference on Automatic Face and Ges-

ture Recognition (FG06), pages 211–216, April 2007.


