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STRUCTURE THEOREMS FOR BASIC ALGEBRAS

CARL FREDRIK BERG

Abstract. A basic finite dimensional algebra over an algebraically closed field
k is isomorphic to a quotient of a tensor algebra by an admissible ideal. The
category of left modules over the algebra is isomorphic to the category of
representations of a finite quiver with relations. In this article we will remove
the assumption that k is algebraically closed to look at both perfect and non-
perfect fields. We will introduce the notion of species with relations to describe
the category of left modules over such algebras. If the field is not perfect, then
the algebra is isomorphic to a quotient of a tensor algebra by an ideal that is
no longer admissible in general. This gives hereditary algebras isomorphic to
a quotient of a tensor algebra by a non-zero ideal. We will show that these
non-zero ideals correspond to cyclic subgraphs of the graph associated to the
species of the algebra. This will lead to the ideal being zero in the case when
the underlying graph of the algebra is a tree.
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It is well known that a basic finite dimensional algebra Λ over an algebraically
closed field k is isomorphic to a quotient of a path algebra kΓ of a finite quiver Γ.
Moreover the path algebra kΓ is isomorphic to a tensor algebra [ARS, Theorem
III.1.9]. This was first outlined by Gabriel in [Ga1], and he gave a concise proof in
[Ga2, Section 4.3]. From now on we will call this result Gabriel’s structure theorem

for basic finite dimensional algebras over an algebraically closed field, or just the
structure theorem.

In this article we will discuss what happens if the field k is not algebraically
closed. If one tries to follow the proof of Gabriel, two assumptions on the algebra
Λ arise; the first is that Λ splits, i.e. the natural projection onto the quotient
algebra π : Λ → Λ/ radΛ splits as a k-algebra homomorphism. Hence there exists
an ǫ : Λ/ radΛ → Λ such that π ◦ ǫ ≃ idΛ/ radΛ. Via ǫ all Λ-modules can be viewed
as Λ/ radΛ-modules. The second assumption is that for any ǫ : Λ/ radΛ → Λ such
that π ◦ ǫ ≃ idΛ/ radΛ the short exact sequence

0 → (radΛ)2 → radΛ → radΛ/(radΛ)2 → 0

splits when it via ǫ is viewed as a sequence of Λ/ radΛ−Λ/ radΛ-bimodules. If both
these assumptions are fulfilled, we get a generalization of the structure theorem; Λ is
isomorphic to a quotient of a tensor algebra, and this tensor algebra is constructed
from a species associated to the algebra Λ [Ben, Proposition 4.1.10].
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The main topic of this article is investigating what happens if we remove the
second assumption above. We will show that Λ is still a quotient of a tensor
algebra associated to a species, however not the same species as was used before:
To get a morphism from a tensor algebra onto the algebra Λ we have to take the
tensor algebra over a larger bimodule than the one used when both assumptions
were fulfilled. Therefore the kernel of this morphism is no longer an admissible
ideal in the tensor algebra, which gives some interesting observations in the case
Λ is hereditary, e.g. the hereditary algebra Λ need no longer be a tensor algebra.
Examples of such algebras are already known, and we will use an example from
[DR2] to highlight this property.

In the first section we will introduce notions used throughout this article. Read-
ers experienced with finite dimensional algebras will likely be familiar with all the
notions introduced.

The second section introduces species with relations. Since the existing literature
does not treat this concept in detail, we will give a fairly thorough discussion of it
here.

In the third section we will give the structure theorem for finite dimensional
basic split algebras for which the sequence

0 → (radΛ)2 → radΛ → radΛ/(radΛ)2 → 0

splits, using species with relations. Most results in this section are similar to well
known results, but the usage of species with relations is however not common. We
will also show that finite dimensional basic algebras over perfect fields satisfy the
assumptions above.

The fourth section gives a structure theorem for finite dimensional basic split
algebras. This structure theorem is a generalization of Gabriel’s structure theorem,
however it is not a generalization of the structure theorem given in section three.

In the last section we will describe hereditary basic finite dimensional split al-
gebras. In contrast to the case for algebras over algebraically closed fields, the
species of these hereditary algebras might have non-zero relations corresponding to
subquivers for which the underlying graph contains cycles.

1. Preliminaries

This first section will be used to introduce notions we will need in the rest of
this article.

Throughout this section we will assume that Λ is an indecomposable finite di-
mensional algebra over a field k. Since Λ then is artinian, we know Λ/r is semisimple
[La1, Theorem 4.14], where r = radΛ is the Jacobson radical of the algebra Λ. Since
the algebra is finite dimensional, the radical r is nilpotent, i.e. rn = (0) for a large
enough n ∈ N.

When we view Λ as a left module over itself, it can be written as a direct
sum of indecomposable projective left Λ-modules ΛΛ = ⊕i∈IPi. When the Pi are
pairwise non-isomorphic projective Λ-modules we say that Λ is basic. A finite
dimensional algebra Λ is always Morita equivalent to a basic finite dimensional
algebra. Thus, if we are interested in the module category of an algebra, we can
always reduce the question to a basic algebra. If we assume that Λ is basic, then
Λ/r ≃ ⊕i∈IPi/ radPi ≃ ⊕i∈IDi, where Di are division rings [DK, Theorem 3.5.4].
Since Λ was assumed to be a k-algebra, k will act centrally on the division rings Di,
i.e. for all λ ∈ k and all λ′ ∈ Di we have that λλ′ = λ′λ. The direct sum ⊕i∈IDi

contains k as a subfield.
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We say that a finite dimensional k-algebra Λ is elementary if Λ/r ≃ ⊕n
i=1k, i.e.

isomorphic as a k-algebra to a finite direct sum of copies of k. If k is algebraically
closed, i.e. k has no proper algebraic extension, then the only finite dimensional
division algebra over k is k itself, so basic implies elementary when k is algebraically
closed and Λ is finite dimensional.

Let R be a ring. An element e ∈ R is called an idempotent if e2 = e. We call
two idempotents e and f orthogonal if ef = 0 = fe, and we call an idempotent e
primitive if e 6= f + g where f and g are nonzero orthogonal idempotents. A set of
pairwise orthogonal primitive idempotents {e1, e2, . . . en} in a ring R will be called
complete if e1 + e2 + · · · + en = 1R, where 1R is the multiplicative identity of R.
Let Λ be a finite dimensional algebra and let 1Λ be the multiplicative identity in
Λ. Since ΛΛ = ⊕i∈IPi, we will have 1Λ = Σi∈Iei, where ei ∈ Pi. It is easy to
see that the elements {ei}i∈I are pairwise orthogonal idempotents, and it can be
shown that they are primitive [AF, Corollary 7.4]. Hence we have a complete set
of pairwise orthogonal idempotents {ei}i∈I in Λ, and we have ΛΛ = ⊕i∈IΛei where
Λei ≃ Pi [AF, Corollary 7.3].

The quotient r/r2 has a natural Λ/r-bimodule structure by letting (λ + r)(r +
r
2)(λ′ + r) = λrλ′ + r

2, where λ, λ′ ∈ Λ and r ∈ r. Obviously r/r2 =
(Λ/r)(r/r2)(Λ/r). By using the decomposition Λ/r ≃ ⊕i∈IDi, we get a decom-
position r/r2 ≃ ⊕i,j∈IDjr/r

2Di = ⊕i,j∈I(jMi).

Let V be a Σ − Σ-bimodule, where Σ is a ring. We write V (n) for the n-fold
tensor product V ⊗Σ V ⊗Σ · · · ⊗Σ V , and we let V (0) = Σ. The tensor ring of Σ
and V is defined as the graded ring T (Σ, V ) = V (0) ⊕ V (1) ⊕ V (2) ⊕ · · · , where
multiplication V (n) × V (m) → V (n+m) is given using the tensor product over Σ:
For Σi∈Iai,1 ⊗ · · · ⊗ ai,n ∈ V (n) and Σj∈Jbj,1 ⊗ · · · ⊗ bj,m ∈ V (m) we let (Σi∈Iai,1 ⊗
· · ·⊗ai,n)(Σj∈Jbj,1⊗· · ·⊗ bj,m) = Σi∈I,j∈Jai,1⊗· · ·⊗ai,n⊗ bj,1⊗· · ·⊗ bj,m. If Σ is

a k-algebra and k acts centrally on V , then k acts centrally on all V (n), and we can
view T (Σ, V ) as a k-algebra by letting l(Σi∈Iai,1⊗· · ·⊗ai,n) = Σi∈I lai,1⊗· · ·⊗ai,n
for l ∈ k and Σi∈Iai,1 ⊗ · · · ⊗ ai,n ∈ V (n), where the multiplication lai,1 is taken
using the k-algebra structure of V . When we view the tensor ring T (Σ, V ) as a
k-algebra, we call it the tensor algebra of Σ and V .

A morphism between two k-algebras is called a k-algebra homomorphism if it is
a ring homomorphism when the algebras are viewed as rings, and at the same time
a k-homomorphism when the algebras are viewed as k-modules.

We say that a k-algebra Λ splits or that Λ is a split algebra if the natural
projection π : Λ → Λ/r splits in the sense that there exists a k-algebra homomor-
phism ǫ : Λ/r → Λ such that πǫ = idΛ/r. Observe that ǫ is not unique. By the
Wedderburn-Malcev theorem Λ splits when sup{n | Hn

R(Λ,M) 6= (0) for some Λ-
bimodule M} ≤ 1, where Hn

R(Λ,M) is the n’th Hochschild cohomology module of
Λ with coefficients in M [Pi, p. 209]. This happens in particular when k is a perfect
field, as we will see in Proposition 3.10.

We end this section with an outline of the proof of Gabriel’s structure theorem,
which says that an elementary (or equivalently basic) finite dimensional algebra Λ
over an algebraically closed field k is isomorphic to a quotient of the path algebra
kΓ of a finite quiver Γ [ARS, Theorem III.1.9]. Take the tensor algebra T of the
k-algebra Λ/r and the Λ/r−Λ/r-bimodule r/r2. This is a k-algebra, and there exists

a k-algebra epimorphism f̃ : T → Λ. The tensor algebra T is isomorphic to the path
algebra kΓ of a finite quiver Γ, so we get a k-algebra epimorphism kΓ ≃ T → Λ,
which shows that Λ is isomorphic to a quotient of a path algebra.
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2. Species

In this section we want to introduce the notion of species with relations. Similar
ideas have been used before (e.g. in [As] under the name bounden species), but then
only as an ideal in the algebra corresponding to the species. In contrast, we want
to introduce relations for a species in a similar fashion as was done for relations in
the path algebra. Throughout this article we will work with left modules, there are
dual definitions and proofs in the right module case.

A species (also known as a modulated quiver) S = (Di, jMi)i,j∈I is a set
of division rings Di and Dj − Di-bimodules jMi such that HomDi

(jMi, Di) ≃
HomDj

(jMi, Dj) as Di − Dj-bimodules. We say a species (Di, jMi)i,j∈I is a k-
species if all the division rings Di are finite dimensional over a common central
subfield k, all the bimodules jMi are finite dimensional over k, and λm = mλ for all
λ ∈ k andm ∈ jMi. So for a k-species we have HomDi

(jMi, Di) ≃ HomDj
(jMi, Dj)

as Di −Dj-bimodules, hence our definition of k-species is similar to the definition
of a k-species given in [Ga1] and [Ri]. All species we will work with in connection
with finite dimensional k-algebras are k-species.

To visualize a species S = (Di, jMi)i,j∈I we draw a quiver where we use the
division rings Di as vertices, and for each non-zero bimodule jMi we draw an
arrow starting in Di and ending in Dj and index the arrow using the bimodule

jMi. For example the species given by the division rings D1 = R and D2 = C, and
the bimodules 2M1 = C and 1M2 = (0), will be drawn as

R
C // C

We will call the division rings Di the vertices of S, and when we view Di as a vertex
we will sometimes just call it i.

The underlying quiver QS of S is the quiver with vertices i ∈ I and arrows i → j
for all jMi 6= (0). We say that a species S is finite if the underlying quiver QS if
finite, and we say that S is without oriented cycles if there are no oriented cycles
i → i1 → · · · in−1 → i in QS .

A representation V = (Vi, jφi) over a species S = (Di, jMi)i,j∈I is a set of left
Di-modules Vi together with morphisms

jφi : jMi ⊗Di
Vi → Vj

where jMi ⊗Di
Vi is viewed as a left Dj-module. Composition of morphisms kφj ◦

jφi = kφ
′
i : (kMj ⊗Dj jMi)⊗Di

Vi → Vk is given by kφ
′
i((kmj ⊗Dj jmi))⊗Di

vi) =

kφj(kmj ⊗Dj
(jφi(jmi ⊗Di

vi))), where kmj ∈ kMj , jmi ∈ jMi and vi ∈ Vi.
Let jPi be the set of all paths p in QS which start in the vertex i and end in j,

and let np be the length of the path p. The vertices in the path p will be denoted
p(l) for 0 ≤ l ≤ np in such a way that p is the path i = p(0) → p(1) → · · · →
p(np − 1) → p(np) = j. We then have a Dj −Di bimodule

jMi =
⊕

p∈jPi

jMp(np−1) ⊗Dp(np−1)
· · · ⊗Dp(1) p(1)Mi

Using the composing of morphisms described above, from the morphisms {jφi}i,j∈I

we induce a unique morphism jfi : jMi ⊗Di
Vi → Vj for each pair i, j ∈ I.

The set of representations V = (Vi, jφi) over a species S = (Di, jMi)i,j∈I

gives rise to an abelian category RepS in which a morphism α : V = (Vi, jφi) →
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(V ′
i , jφ

′
i) = V ′ is a set of Di-linear maps αi : Vi → V ′

i such that the diagram

jMi ⊗Di
Vi

jφi

��

1⊗αi //
jMi ⊗Di

V ′
i

jφ
′

i

��
Vj

αj // V ′
j

commutes for all i, j ∈ I. The full abelian subcategory of RepS consisting of all
representations V for which all Vi are finite dimensional as vector spaces over k will
be denoted repS.

For a species S = (Di, jMi)i,j∈I we let the tensor algebra T (S) of S be the
tensor ring T (D,M) = T (⊕i∈IDi,⊕i,j∈I jMi). Here we view M = ⊕i,j∈I jMi as a
D = ⊕i∈IDi bimodule the natural way. Since D is a k-algebra and k acts centrally
on M , we know that T (S) is a k-algebra. Let J denote the ideal ⊕i≥1M

(i) in T (S).
Then T (S)/J ≃ D = ⊕i∈IDi is semisimple.

The relation between representations over a species and the modules over the
corresponding tensor algebra is similar to the correspondence between quiver rep-
resentations and modules over the corresponding tensor algebra, as shown in the
following proposition. Although this next proposition is known, we still include the
proof here since ideas from it will be used repeatedly in the rest of this article.

Proposition 2.1. [DR1, Proposition 10.1] Let S = (Di, jMi)i,j∈I be a finite k-
species. Then the category RepS and the category ModT (S) of left T (S)-modules

are equivalent.

Proof. We want to define two functors

F : RepS ⇄ ModT (S) : G

such that G ◦ F ≃ idRepS and F ◦G ≃ idModT (S).
We start with G. Let V ∈ ModT (S). Since D = ⊕i∈IDi is a subring of T (S),

we can view V as a left D-module. Since 1T (S) ∈ D we have DV = V , therefore
V = (⊕i∈IDi)V = ⊕i∈I(DiV ) = ⊕i∈IVi where Vi = DiV , hence the central
idempotents in D decompose V as a left D-module.

View M = ⊕i,j∈I(jMi) as a D − D-bimodule, then jMiDl = (0) for l 6= i.
Since V is a T (S)-module and M is a subset of T (S), we get a morphism φ′ : M ×
V → V where φ′(m, v) = mv by using the T (S)-module structure on V . This
morphism is D-biadditive, so it gives rise to an additive morphism φ : M ⊗D V →
V where φ(m ⊗ v) = mv. We view φ as a left D-module morphism using that
M is a left D-module. Since jMk ⊗D Vl = jMk ⊗D (DlV ) = (0) for all k 6=
l, we see that M ⊗D V ≃ ⊕i,j∈I(jMi ⊗Di

Vi). Observe that φ(jMi ⊗Di
Vi) =

φ(D(jMi ⊗Di
Vi)) = φ(Dj(jMi ⊗Di

Vi)) = Djφ(jMi ⊗Di
Vi) ⊆ DjV = Vj . Let

jφi = φ |
jMi⊗Di

Vi
: jMi ⊗Di

Vi → Vj . Define G on objects by letting G(V ) =

(Vi, jφi)i,j∈I .
Let α : V → V ′ ∈ ModT (S). Since α is a morphism of left T (S)-modules, it

is also a morphism of left D = ⊕i∈IDi-modules, and then in particular a left Di-
module morphism for every i ∈ I, hence α(Vi) ⊆ V ′

i . Let αi = α |Vi
: Vi → V ′

i , and
let G(α) = {αi}i∈I . To see that {αi}i∈I is a map of S representations, we need to
check that jφ

′
i ◦ (1 ⊗ αi) = αj ◦ jφi for all i, j ∈ I. Using that α is a morphism of

T (S)-modules, we have

jφ
′
i ◦ (1 ⊗ αi)(m⊗ v) = jφ

′
i(m⊗ αi(v)) = mαi(v) = mα(v)

= α(mv) = αj(mv) = αj ◦ jφi(m⊗ v)

for m ∈ jMi and v ∈ Vi. This shows that G : ModT (S) → RepS is a functor.
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We then have to construct a functor F : RepS → ModT (S). For an object
(Vi, jφi)i,j∈I in RepS, let V = ⊕i∈IVi. LetD operate on V the obvious way, namely
using the left Di structure on Vi, and letting DjVi = (0) for all j 6= i. View jφi as
a morphism M ⊗D V → V by letting jφi |lMk⊗Dk

Vk
= 0 for k 6= i and l 6= j where

k, i, l, j ∈ I. Then we can define φ = Σi,j∈I jφi : M ⊗D V → V . Let M operate on
V using φ, hence for m ∈ M and v ∈ V , let mv = φ(m⊗v). By induction we define
M (n) × V = M ⊗D · · · ⊗D M × V → V using the morphism φ(n) : M (n) ⊗D V → V
where φ(n) = φ(1 ⊗D φ(n−1)) and φ(1) = φ. Let F ((Vi, jφi)i,j∈I) = V where V has
this T (S)-module structure.

Let {αi}i∈I : (Vi, jφi)i,j∈I → (V ′
i , jφ

′
i)i,j∈I be a morphism in RepS. View αi as

a morphism on V by letting αi |Vj
= 0 for j 6= i ∈ I, and let α = Σi∈Iαi : V =

⊕i∈IVi → ⊕i∈IV
′
i = V ′. Since all αi are left Di-linear, we only need to show that

α(mv) = mα(v) form ∈ ⊕i≥1M
(i). Since multiplication by an element in ⊕i≥1M

(i)

is induced by the multiplication of elements in M , this is true if α(mv) = mα(v)
for m ∈ M . Invoking that α is D-linear and M = ⊕i,j∈I jMi as a D−D-bimodule,
what one needs to show is that α(mv) = mα(v) for m ∈ jMi. Using that {αi}i∈I is
a morphism in RepS we see that α(mv) = αj(jφi(m⊗v)) = jφ

′
i ◦ (1⊗αi)(m⊗v) =

jφ
′
i(m⊗ αi(v)) = mα(v). This shows that F : RepS → ModT (S) is a functor.
Observing that G ◦ F ≃ idRepS and F ◦ G ≃ idModT (S), we have proven the

proposition. �

Corollary 2.2. Let S = (Di, jMi)i,j∈I be a finite k-species. Then the category

repS and the category modT (S) of finite dimensional left T (S)-modules are equiv-

alent.

Proof. From Proposition 2.1 we have two functors

F : RepS ⇄ ModT (S) : G

such that G ◦F ≃ idRepS and F ◦G ≃ idModT (S). We want to show that F |repS⊂
modT (S) and G |modT (S)⊂ repS.

Therefore let (Vi, jφi) ∈ repS. Then dimk Vi < ∞, and since S is finite we
get that V = ⊕i∈IVi is finite dimensional over k too. Hence F ((Vi, jφi)) = V ∈
modT (S).

Now let V ∈ modT (S). Then dimk V < ∞, therefore Vi = DiV is finite dimen-
sional over k too, so G(V ) = (Vi, jφi) ∈ repS. �

A relation σ of a species S = (Di, jMi)i,j∈I is a sum σ = g1+ · · ·+gn of elements
gl = gl,nl

⊗· · ·⊗gl,1 ∈ i(nl,l)
Mi(nl−1,l)

⊗Di(nl−1,l)
· · ·⊗Di(l,1)

i(l,1)Mi(l,0) where i(l,nl) = b

and i(l,0) = a for all 1 ≤ l ≤ n. We will write the relation σ as bσa when we want to
emphasize that it starts in a and ends in b. Let ρ = {σt}t∈T be a set of relations,
where the different elements σt possibly start and end in different vertices. We call
the pair (S, ρ) a species with relations . Define T (S, ρ) = T (S)/〈ρ〉 where 〈ρ〉 is
the ideal in T (S) generated by the elements {σt}t∈T . Also, define Rep(S, ρ) as the
category of representations V ∈ RepS for which jfi |〈jσi〉⊗Di

Vi
= 0 whenever there

is an element jσi ∈ ρ, where 〈jσi〉 is the subspace of jMi generated by jσi as a
Dj −Di-bimodule. Let rep(S, ρ) = Rep(S, ρ) ∩ repS.

The next proposition is a generalization of [ARS, Proposition 1.7].

Proposition 2.3. Let S be a finite k-species, and ρ a set of relations. Then the

category Rep(S, ρ) and the category Mod(T (S)/〈ρ〉) of left T (S)/〈ρ〉-modules are

equivalent.

Proof. Recall from Proposition 2.1 that we have mutually inverse equivalences

F : RepS ⇄ ModT (S) : G
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We want to show that these functors induce an equivalence between Rep(S, ρ) and
Mod(T (S)/〈ρ〉).

Let (Vi, jφi)i,j∈I ∈ Rep(S, ρ). Since jfi |〈jσi〉⊗Di
Vi
= 0 for every element jσi ∈ ρ,

we have 〈jσi〉F ((Vi, jφi)i,j∈I) = (0), where in the last equation 〈jσi〉 is the ideal in
T (S) generated by jσi. Therefore 〈ρ〉F ((Vi, jφi)i,j∈I) = (0), so F ((Vi, jφi)i,j∈I) ∈
Mod(T (S)/〈ρ〉).

On the other hand, let V ∈ Mod(T (S)/〈ρ〉). For jσi ∈ ρ, we have that (0) =
〈jσi〉V = 〈jσi〉Vi, which implies that jfi |〈jσi〉⊗Di

Vi
= 0 for the morphism jfi : jMi⊗

Vi → Vj in G(V ), where 〈jσi〉 in the last equation is the subset of jMi generated
by jσi as a Dj −Di-bimodule. Hence G(V ) ∈ Rep(S, ρ). �

Corollary 2.4. Let S be a finite k-species, and ρ a set of relations. Then the cate-

gory rep(S, ρ) and the category mod(T (S)/〈ρ〉) of finite dimensional left T (S)/〈ρ〉-
modules are equivalent.

Proof. This follows from Corollary 2.2 and Proposition 2.3. �

Let Λ = (T (S)/〈ρ〉) where S = (Di, jMi)i,j∈I . In the category of left Λ-modules,
the projective modules are Pi = ΛDi for i ∈ I, where Λ/r ≃ ⊕i∈IDi. Observe that
there is a one-to-one correspondence between the vertices I and the indecomposable
projective representations of (S, ρ).

3. Basic Algebras over Perfect Fields

In this section, let Λ be a finite dimensional basic algebra over a field k (not
necessarily algebraically closed). We want to investigate algebras Λ that are split,
i.e. the natural projection onto the quotient algebra π : Λ → Λ/r splits in the sense
that there exists a k-algebra homomorphism ǫ : Λ/r → Λ such that πǫ = idΛ/r.

Assume an algebra Λ is split. Recall that the k-algebra homomorphism ǫ : Λ/r →
Λ such that πǫ = idΛ/r is not unique. Using ǫ : Λ/r → Λ we can view Λ/r ≃ ⊕i∈IDi

as a subalgebra of Λ, and we can identify the division rings Di with their image in
Λ under ǫ. Observe that the subalgebra structure of Λ/r and the identification of
Di with a subset of Λ is dependent on the choice of ǫ.

We say that a split algebra Λ is r-split if for any k-algebra homomorphism
ǫ : Λ/r → Λ such that πǫ = idΛ/r, the short exact sequence

0 → r
2 → r → r/r2 → 0

splits when we via ǫ view the sequence as a sequence of Λ/r− Λ/r-bimodules.
In this section we will give a structure theorem for finite dimensional r-split basic

algebras. At the end of this section we will show that all finite dimensional basic
k-algebras over perfect fields k are r-split, hence they give rise to a large class of
examples of r-split algebras.

To reach this goal we need a slight reformulation of [ARS, Lemma III.1.2]:

Lemma 3.1. Let Σ be a k-algebra and V a Σ−Σ-bimodule. Let Λ be a k-algebra and

f : Σ⊕V → Λ a morphism such that f |Σ : Σ → Λ is a k-algebra homomorphism and

f |V : V → Λ is a Σ−Σ-bimodule morphism when Λ is viewed as a Σ−Σ-bimodule

via f |Σ. Then there exists a unique k-algebra homomorphism f̃ : T (Σ, V ) → Λ

such that f̃ |Σ⊕V = f .

Proof. Let φ : V × V → Λ be given by φ(v1, v2) = f(v1)f(v2). Then for r ∈ Σ we
have φ(v1r, v2) = f(v1r)f(v2) = f(v1)rf(v2) = f(v1)f(rv2) = φ(v1, rv2) since f |V
is a Σ − Σ-bimodule morphism. Also since f |V is a Σ − Σ-bimodule morphism
we get that φ(v1 + v2, v3) = φ(v1, v3) + φ(v2, v3) and φ(v1, v2 + v3) = φ(v1, v2) +
φ(v1, v3), so φ is a Σ-biadditive morphism. Hence we get an induced additive
morphism f2 : V ⊗Σ V → Λ where f2(v1 ⊗ v2) = f(v1)f(v2). Using again that
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f |V is a Σ − Σ-bimodule morphism, we see that for r ∈ Σ we have f2(rv1 ⊗
v2) = f(rv1)f(v2) = rf(v1)f(v2) = rf2(v1 ⊗ v2) and f2(v1 ⊗ v2r) = f(v1)f(v2r) =
f(v1)f(v2)r = f2(v1 ⊗ v2)r, hence f2 is a Σ−Σ-bimodule morphism. By induction
we construct a Σ−Σ-bimodule morphism fn : V

(n) → Λ where fn(v1⊗v2⊗· · ·⊗vn) =
f(v1)f(v2) · · · f(vn).

Denote an element in T (Σ, V ) by Σ∞
i=0vi, where vi ∈ V (i) for all i ∈ N and vi

is zero for all but a finite number of i ∈ N. If we let f0 = f |Σ and f1 = f |V , we
can define f̃ : T (Σ, V ) → Λ by letting f̃(Σ∞

i=0vi) = Σ∞
i=0fi(vi). For two elements

v = Σ∞
i=0vi and w = Σ∞

i=0wi in T (Σ, V ) we see that

f̃(v + w) = f̃(Σ∞
i=0vi + wi)

= Σ∞
i=0fi(vi + wi)

= Σ∞
i=0(fi(vi) + fi(wi))

= f̃(Σ∞
i=0vi) + f̃(Σ∞

i=0wi) = f̃(v) + f̃(w)

f̃(vw) = f̃(Σ∞
i=0Σ

i
j=0vjwi−j)

= Σ∞
i=0Σ

i
j=0fi(vjwi−j)

= Σ∞
i=0Σ

i
j=0fj(vj)fi−j(wi−j)

= (Σ∞
i=0fi(vi))(Σ

∞
i=0fi(wi))

= f̃(Σ∞
i=0vi)f̃(Σ

∞
i=0wi) = f̃(v)f̃(w)

This shows that f̃ is a ring homomorphism. It is easy to see that f̃ is a k-module
homomorphism, hence f̃ is a k-algebra homomorphism. Since {Σ, V } generates

T (Σ, V ), the morphism f̃ unique. �

Since Λ is finite dimensional over k we know that r/r2 is finitely generated as a
Λ/r−Λ/r-bimodule. We can therefore find elements {r1, r2, . . . , rm} in r such that
their images {r̄1, r̄2, . . . , r̄m} in r/r2 generate r/r2 as a Λ/r−Λ/r-bimodule. We let
rl(Λ) denote the Lowey length (radical length) of Λ, i.e. the smallest number n ∈ N

such that rn = (0).
The following result is a generalization of [ARS, Theorem III.1.9 (a)(b)]. The

proof of part (a) follows the lines of [ARS, Theorem III.1.9 (a)], and can be found
in [Li, Lemma 3.1 (i)]. We include the proof here for completeness. Part (b) could
have been proven similarly to the proof of [ARS, Theorem III.1.9 (b)]. We will use
another proof since ideas from it will be used later in Proposition 4.1.

Proposition 3.2. Let Λ be a finite dimensional basic r-split k-algebra.

(a) Let {r1, r2, . . . , rm} be elements in r such that their images

{r̄1, r̄2, . . . , r̄m} in r/r2 generate r/r2 as a Λ/r − Λ/r-bimodule. Then

{D1, D2, . . . , Dn, r1, r2, . . . , rm} generate Λ as a k-algebra, where

Λ/r ≃ ⊕n
i=1Di is viewed as a k-subalgebra of Λ using a k-algebra

homomorphism ǫ : Λ/r → Λ such that πǫ = idΛ/r.

(b) There is a surjective k-algebra homomorphism f̃ : T (Λ/r, r/r2) → Λ such

that ⊕j≥rl(Λ)(r/r
2)(j) ⊂ ker f̃ ⊂ ⊕j≥2(r/r

2)(j).

Proof. (a) We will prove this by induction on the Lowey length of Λ. So assume
rl(Λ) = 1. Then r = (0), so Λ = ⊕n

i=1Di, and Λ is obviously generated as
a k-algebra by the set {D1, D2, . . . , Dn}.

When rl(Λ) = 2, then r
2 = (0). Since Λ/r ≃ ⊕n

i=1Di we have Λ =
〈D1, . . . , Dn〉 + r. Moreover r ≃ r/r2, so we see that Λ is generated by the
set {D1, . . . , Dn, r1, . . . , rm}.

Assume (a) is true for algebras with Lowey length m, and as-
sume rl(Λ) = m + 1. Let A be the k-subalgebra of Λ generated by
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{D1, D2, . . . , Dn, r1, r2, . . . , rm}, and let x ∈ Λ. Since rl(A/(A ∩ r
m)) =

rl(Λ/rm) = m, we have by induction that A/(A ∩ r
m) ≃ Λ/rm. There-

fore there exists some y ∈ A such that x + r
m = y + (A ∩ r

m). Then
x − y ∈ r

m, hence x − y = Σs
i=1αiβi where αi ∈ r

m−1 and βi ∈ r.
Since r

m−1/rm ≃ (A ∩ r
m−1)/(A ∩ r

m), we get αi + r
m = ai + (A ∩ r

m)
where ai ∈ A ∩ r

m−1. This yields αi = ai + a′i, where ai ∈ A ∩ r
m−1

and a′i ∈ r
m. Similarly, since r/rm ≃ (A ∩ r)/(A ∩ r

m), we get that
βi+ r

m = bi+(A∩ r
m) where bi ∈ A∩ r. Hence βi = bi+b′i where bi ∈ A∩ r

and b′i ∈ r
m. Then αiβi = (ai+ a′i)(bi+ b′i) = aibi since aib

′
i ∈ r

2m−1 = (0),
a′ibi ∈ r

m+1 = (0), and a′ib
′
i ∈ r

2m = (0). This shows that x − y ∈ A, and
since y ∈ A we get that x ∈ A. Hence Λ = A, so Λ is generated by the set
{D1, . . . , Dn, r1, . . . , rm}.

(b) Let f |Λ/r= ǫ : Λ/r → Λ be a lifting of the natural projection π : Λ → Λ/r,
and view Λ/r as a k-subalgebra of Λ via ǫ. Since Λ is r-split, the sequence

0 → r
2 → r → r/r2 → 0

splits as a sequence of Λ/r−Λ/r-bimodules. Let f |
r/r2 : r/r

2 → Λ be given

by the splitting map r/r2 →֒ r composed with the inclusion r →֒ Λ viewed
as a Λ/r− Λ/r-bimodule morphism via ǫ.

Using Lemma 3.1 we get induced a k-algebra homomorphism
f̃ : T (Λ/r, r/r2) → Λ, and by (a) this morphism is surjective. Since

f̃ |Λ/r⊕r/r2 is a monomorphism, and the image intersects trivially with

r
2, we see that ker f̃ ⊂ ⊕j≥2(r/r

2)(j). On the other hand, f̃((r/r2)(j)) ⊂ r
j ,

and since r
rl(Λ) = (0), we get that ker f̃ ⊃ ⊕j≥rl(Λ)(r/r

2)(j).
�

As mentioned, the result [ARS, Theorem III.1.9 (a)(b)] is a special case of
Proposition 3.2. In [ARS, Theorem III.1.9 (a)(b)] it is assumed that Λ is a fi-
nite dimensional basic k-algebra where k is an algebraically closed field, and we
will show in Corollary 3.11 that this implies that Λ is r-split. The main differ-
ence between Proposition 3.2 and [ARS, Theorem III.1.9 (a)(b)] is that we have
replaced the complete set of pairwise orthogonal idempotents {e1, e2, . . . en} with
the set {D1, D2, . . .Dn}. The reason for this change is that in the algebraically
closed case ei would have generated Di as a k-algebra, but in our non-algebraically
closed case this is no longer true.

Let Λ be a finite dimensional basic k-algebra. Then Λ/r = ⊕i∈IDi = D, and

r/r2 = (Λ/r)(r/r2)(Λ/r) = (⊕i∈IDi)(r/r
2)(⊕i∈IDi)

= ⊕i,j∈I(Dj(r/r
2)Di) = ⊕i,j∈I(jMi) = M

Since k sits inside the center of Λ, we have k ⊂ D. Moreover λλ′ = λ′λ and
λm = mλ for all λ ∈ k, λ′ ∈ Di and m ∈ jMi for all i, j ∈ I. Since Λ is finite
dimensional, we know that Di and jMi are finite dimensional over k for all i, j ∈ I.
Hence SΛ = (Di, jMi)i,j∈I is a k-species, and it will be called the species of Λ.
Observe that we do not assume Λ is r-split to define the species of Λ.

Remember that we denote the ideal ⊕i≥1M
(i) in T (S) by J , where S is the

species (Di, jMi)i,j∈I and M = ⊕i,j∈I(jMi).

Proposition 3.3. Let Λ be a finite dimensional basic r-split k-algebra. Then Λ ≃
T (SΛ)/〈ρ〉 with J rl(Λ) ⊂ 〈ρ〉 ⊂ J2, where SΛ is the species of Λ and ρ is a set of

relations.

Proof. Observe that T (SΛ) = T (D,M) = T (Λ/r, r/r2). From Proposition 3.2

we have an epimorphism f̃ : T (SΛ) = T (Λ/r, r/r2) → Λ with ⊕j≥rl(Λ)(r/r
2)(j) ⊂

ker f̃ ⊂ ⊕j≥2(r/r
2)(j). Let ρ′ = {σ′

t}t∈T ′ be a set of generators for ker f̃ as an ideal
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in T (SΛ). Since r/r
2 = M and ker f̃ = 〈ρ′〉, we have J rl(Λ) = ⊕j≥rl(Λ)M

(j) ⊂ 〈ρ′〉 ⊂

⊕j≥2M
(j) = J2.

We want to transfer ρ′ into a set of relations. Let {ei}i∈I be a complete set of
pairwise orthogonal primitive idempotents in Λ. Let σ′

t ∈ ρ, then σ′
t = 1Λσ

′
t1Λ =

(Σi∈Iei)σ
′
t(Σi∈Iei) = Σi,j∈Iejσ

′
tei = Σi,j∈I(jρti) where jρti = ejσ

′
tei. All jρti are

sets of relations, so letting ρ = ∪t∈T ′ ∪i,j∈I (jρti), we see that 〈ρ〉 = 〈ρ′〉 where ρ is
a set of relations.

Using T (SΛ)/〈ρ〉 ≃ T (Λ/r, r/r2)/ ker f̃ ≃ Λ, we have proven the proposition. �

Observe that the set of relations ρ = {σt}t∈T in Proposition 3.3 can be cho-
sen to be finite: The rl(Λ)-fold tensor product M (rl(Λ)) = (r/r2)(rl(Λ)) is finite
dimensional over k, so there exists a finite set {σt}t∈T ′ of generators, and this
set of generators can be chosen to consist of relations. Since (r/r2)(rl(Λ)) gener-
ates ⊕j≥rl(Λ)(r/r

2)(j), the finite set {σt}t∈T ′ also generates ⊕j≥rl(Λ)(r/r
2)(j). Since

ker f̃/(⊕j≥rl(Λ)(r/r
2)(j)) is finite dimensional, there exists a finite set of elements

{σt}t∈T ′′ in ker f̃ such that the corresponding elements in ker f̃/(⊕j≥rl(Λ)(r/r
2)(j))

is a generating set, and also {σt}t∈T ′′ can be chosen to consist of relations. Then,
letting T = T ′∪T ′′, we know {σt}t∈T to be a finite set of relations which generates

ker f̃ .
Using Corollary 2.4 and Proposition 3.3 we get the following corollary.

Corollary 3.4. Let Λ be a finite dimensional basic r-split k-algebra, and let SΛ be

the species of Λ. Then the category modΛ of finite dimensional left Λ-modules is

equivalent to rep(SΛ, ρ) where ρ is a set of relations such that J rl(Λ) ⊂ 〈ρ〉 ⊂ J2.

We now want to investigate finite dimensional hereditary algebras , i.e. finite
dimensional algebras where all left ideals are projective. Hereditary algebras have
been studied thoroughly, in particular the rest of the results in this section are either
well known or similar to well known results. The next two lemmas are restated for
completeness.

Lemma 3.5. [ARS, Lemma III.1.11] If Λ is a basic finite dimensional hereditary

algebra and a is a non-zero ideal of Λ contained in r
2, then Λ/a is not hereditary.

Lemma 3.6. [ARS, Lemma III.1.12] If Λ is a basic finite dimensional hereditary

algebra, and f : P → Q is a non-zero morphism between indecomposable projective

Λ-modules, then f is a monomorphism.

Proposition 3.7. Let Λ be a basic finite dimensional hereditary r-split k-algebra,
let SΛ be the species of Λ, and QSΛ the underlying quiver of SΛ. Then QSΛ is finite

and without oriented cycles, and Λ is isomorphic to T (SΛ).

Proof. We know from Proposition 3.3 that Λ ≃ T (SΛ)/〈ρ〉 with 〈ρ〉 ⊂ J2. Since Λ
is hereditary, Lemma 3.5 implies that 〈ρ〉 = (0), hence Λ ≃ T (SΛ). Since Λ is finite
dimensional, the underlying quiver QSΛ of SΛ must be finite.

Assume there is an oriented cycle in QSΛ . Using Lemma 3.6, this will give rise
to a proper monomorphism from an indecomposable projective P into itself, which
contradicts that the algebra Λ is finite dimensional. �

From the proposition above we see that a basic finite dimensional hereditary
r-split k-algebra is a tensor algebra. Let us prove the opposite direction.

Lemma 3.8. Let S be a k-species with underlying quiver QS . If QS is a finite

quiver without oriented cycles, then T (S) is a hereditary finite dimensional basic

k-algebra.
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Proof. We know that T (S) ≃ ⊕i∈IT (S)Di ≃ ⊕i∈IPi is a decomposition of
T (S) into a direct sum of indecomposable projectives, and that radT (S) =
⊕i∈I(⊕jMi 6=0(dimDj jMi)Pj). Hence the radical of T (S) is projective, which implies
that T (S) is hereditary [La2, Theorem 2.35].

Since QS is finite and without oriented cycles, T (S) is finite dimensional. �

We summarize the previous two results in the following theorem.

Theorem 3.9. Let Λ be a basic finite dimensional r-split k-algebra, then the fol-

lowing are equivalent:

(i) Λ is hereditary

(ii) Λ is isomorphic to a tensor algebra T (S) of a species S where the underlying

quiver QS is finite and without oriented cycles

We now proceed to show there is a large class of finite dimensional basic k-
algebras which are r-split, namely finite dimensional basic k-algebras where k is a
perfect field.

Proposition 3.10. If k is a perfect field and Λ is a finite dimensional basic k-
algebra, then Λ is r-split.

Proof. When k is perfect, Λ is split [Pi, Corollary 11.6]. We therefore only need to
show that the sequence

0 → r
2 → r → r/r2 → 0

splits as a sequence of Λ/r − Λ/r-bimodules via any morphism ǫ : Λ/r → Λ for
which πǫ ≃ idΛ/r where π : Λ → Λ/r is the natural projection morphism. Using the
decomposition Λ/r ≃ ⊕i∈IDi, this is equivalent to showing that the sequence splits
as a sequence of Di −Dj-bimodules for every pair i, j ∈ I.

A Di−Dj-bimodule M is given by an operation Di×M ×Dj → M . By duality
we get an equivalent operation φ : Di ×Dop

j ×M → M . If k acts centrally on M

and Dj , we have φ(dir, dj ,m) = (dir)mdj = dim(rdj) = dim(djr) = φ(di, rdj ,m).
Hence the operation φ is k-biadditive on Di ×Dop

j , so it gives rise to an additive

morphism Di⊗k D
op
j ×M → M . This way we can view M as a Di⊗k D

op
j -module.

Since k acts centrally on all the objects in the short exact sequence and also on
Di and Dj , the sequence of Di − Dj-bimodules can be viewed as a sequence of
Di ⊗k D

op
j -modules.

Since k is perfect and Dop
j is a finite extension of k, we know that Di ⊗k Dop

j

is a semisimple k-algebra [DK, Theorem 5.3.6]. Therefore Di ⊗k Dop
j -modules are

projective [Ro, Theorem 4.13], so the sequence splits as a sequence of Di ⊗k Dop
j -

modules, hence it splits as a sequence of Di −Dj-modules. �

Corollary 3.11. If k is an algebraically closed field, and Λ is a finite dimensional

basic k-algebra, then Λ is r-split.

Proof. A field that is algebraically closed is in particular perfect, so this is a direct
consequence of Lemma 3.10. �

We will now summarize what we know about basic finite dimensional algebras
over perfect fields.

Theorem 3.12. Let Λ be a finite dimensional basic k-algebra where k is a perfect

field, let SΛ be the species of Λ, and let QSΛ be the underlying quiver of SΛ. Then

the following holds:

(a) Let {r1, r2, . . . , rm} be elements in r such that their images

{r̄1, r̄2, . . . , r̄m} in r/r2 generate r/r2 as a Λ/r − Λ/r-bimodule.

Then {D1, D2, . . . , Dn, r1, r2, . . . , rm} generate Λ as a k-algebra, where

Λ/r ≃ ⊕n
i=1Di.
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(b) There is a surjective k-algebra homomorphism f̃ : T (Λ/r, r/r2) → Λ such

that ⊕j≥rl(Λ)(r/r
2)(j) ⊂ ker f̃ ⊂ ⊕j≥2(r/r

2)(j).

(c) Λ ≃ T (SΛ)/〈ρ〉 with J rl(Λ) ⊂ 〈ρ〉 ⊂ J2, where ρ is a set of relations on SΛ.

(d) The category modΛ is equivalent to a category rep(SΛ, ρ), where ρ is a set

of relations on SΛ such that J rl(Λ) ⊂ 〈ρ〉 ⊂ J2.

(e) Λ is hereditary if and only if QSΛ is finite without oriented cycles and Λ is

isomorphic to T (SΛ).

Example 3.13. As we know, not all finite dimensional algebras are split, and we
will now give an example of such an algebra built on an example in [Ben, p. 99].

Let F2 be the Galois field consisting of two elements, and let k = F2(x) = { f
g |

f, g ∈ F2[x], g 6= 0} be the field of rational functions over F2 with indeterminate
x. Observe that k is not a perfect field. We want to investigate the ring Λ =
k[y, z]/(z2, y2−x−z). Note that this is a finite dimensional algebra over k, actually
dimk Λ = 4, where {1, y, z, yz} is a basis for Λ as a k-algebra. The Jacobson radical
r of Λ is the ideal 〈z〉. This shows Λ/r ≃ k[y]/(y2 − x) ≃ F2(t) where in the last
ring we have t2 = x. Now F2(t) is a finite field extension of k, and dimk F2(t) = 2
when we view F2(t) as a k-algebra.

We want to check if Λ splits, hence we want to try to construct a k-algebra
homomorphism ǫ : Λ/r → Λ. Since Λ/r as a k-algebra is generated by {1, y}, we only
need to define ǫ on the element y. To get a morphism we need x = ǫ(x) = ǫ(y2) =
ǫ(y)ǫ(y). Since there are no solutions to the equation u2 − x for an indeterminate
u in the ring Λ, this is impossible. Hence there are no k-algebra homomorphisms
ǫ : Λ/r → Λ, so Λ does not split. △

4. Basic Finite Dimensional Split Algebras

In this section we want to give a structure theorem for finite dimensional basic
split k-algebras. The proof of this result will have many similarities with the proof
for the structure theorem for finite dimensional basic r-split k-algebras (Proposition
3.3), but there are at the same time important differences. Even though r-split
algebras in particular are split algebras, the structure theorem we are about to give
for split algebras is not a generalization of the structure theorem for r-split algebras.
On the other hand, it is a generalization of Gabriel’s structure theorem for finite
dimensional basic k-algebras where k is algebraically closed.

In contrast to the case when Λ was r-split, it is in general no longer true that
the sequence

0 → r
2 → r → r/r2 → 0

splits when viewed as a sequence of Λ/r− Λ/r-bimodules via any k-algebra homo-
morphism ǫ : Λ/r → Λ such that πǫ ≃ idΛ/r for the natural projection π : Λ → Λ/r
(we know that such a k-algebra homomorphism ǫ exists since Λ is assumed to be
split). The splitting of the above sequence is used in the construction of a tensor
algebra mapping onto Λ. We will use a similar construction in this section, but we
will only need a free Λ/r−Λ/r-bimodule F such that F maps onto r/r2. Using that
F is free we get a lifting as shown in the following commutative diagram.

F

����~~
0 //

r
2 // r //

r/r2 // 0

We will replace the splitting morphism r/r2 → r with the morphism F → r given
by this lifting, we can use an argument similar to the one in the r-split case to
construct a tensor algebra mapping onto Λ.
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One natural choice for a free Λ/r−Λ/r-bimodule mapping onto r/r2 could have
been Λ/r⊗k r/r2 ⊗k Λ/r, but this module will turn out to be unnecessarily large.
Since we have Λ/r ≃ ⊕Di we only need to find a free Dj −Di-module jFi mapping
onto Dj(r/r

2)Di = jMi for all i, j ∈ I. Using that jFi is free, we will get a lifting
resulting in the follwing commutative diagram of Dj −Di-modules.

jFi

����xx
0 // Dj(r

2)Di
// Dj(r)Di

// Dj(r/r
2)Di

// 0

A natural choice for such a module is jM̃i = Dj ⊗k Dj(r/r
2)Di ⊗k Di =

Dj ⊗k (jMi) ⊗k Di, where r/r2 ≃ ⊕i,j∈I(jMi). An onto Dj − Di-module mor-

phism jgi : jM̃i → jMi is given by jgi(dj ⊗ jmi ⊗ di) = dj(jmi)di. Taking the

direct sum we get the Λ/r − Λ/r-bimodule M̃ = ⊕i,j∈I(jM̃i). Let g : M̃ → r/r2

be given by g = Σi,j∈I(jgi) where we extend the functions jgi to M̃ by letting

jgi |
lM̃k

= 0 for k 6= i and l 6= j in I. Then g maps onto r/r2 and factors through r,
as shown in the diagram below.

M̃

������
0 //

r
2 // r //

r/r2 // 0

We define the enlarged species of Λ to be the species S̃Λ = (Di, jM̃i)i,j∈I . Since

M̃ is a Λ/r-bimodule we are able to define the enlarged tensor algebra of Λ as

T̃ (Λ/r, r/r2) = T (Λ/r, M̃). The tensor algebra of the species S̃Λ will then be the

same as the enlarged tensor algebra of Λ since T (S̃Λ) = T (⊕i∈IDi,⊕i,j∈I(jM̃i)) =

T (Λ/r, M̃) = T̃ (Λ/r, r/r2). The n-fold tensor product M̃ (n) can be simplified the
following way:

M̃ (n) = M̃ ⊗Λ/r · · · ⊗Λ/r M̃

= (⊕i,j∈IDi ⊗k iMj ⊗k Dj)⊗Λ/r · · · ⊗Λ/r (⊕i,j∈IDi ⊗k iMj ⊗k Dj)

≃ ⊕i0,i1,...,in∈I(Di0 ⊗k i0Mi1 ⊗k Di1 ⊗k i1Mi2 ⊗k · · · ⊗k Din−1 ⊗k in−1Min ⊗k Din)

If k is an algebraically closed field then Di ≃ k for all i ∈ I, hence

M̃ = ⊕i,j∈IDj ⊗k jMi ⊗k Di ≃ ⊕i,j∈Ik ⊗k jMi ⊗k k ≃ ⊕i,j∈I(jMi) = M = r/r2

Hence in the algebraically closed case S̃Λ = SΛ and T̃ (Λ/r, r/r2) = T (Λ/r, r/r2).
The next proposition is similar to Proposition 3.2.

Proposition 4.1. Assume that Λ is a finite dimensional basic split k-algebra.

(a) Let {r1, r2, . . . , rm} be elements in r such that their images

{r̄1, r̄2, . . . , r̄m} in r/r2 generate r/r2 as a Λ/r − Λ/r-bimodule.

Then {D1, D2, . . . , Dn, r1, r2, . . . , rm} generate Λ as a k-algebra, where

Λ/r ≃ ⊕n
i=1Di.

(b) There is a surjective k-algebra homomorphism f̃ : T̃ (Λ/r, r/r2) → Λ such

that ⊕j≥rl(Λ)M̃
(j) ⊂ ker f̃ ⊂ ⊕j≥1M̃

(j).

Proof. (a) Similar to Proposition 3.2.
(b) Fix a map ǫ : Λ/r → Λ such that πǫ ≃ idD for the natural projection

π : Λ → Λ/r, and let g be as described above this proposition. From the

earlier discussion g lifts to a composition ph where h : M̃ → r is a Λ/r−Λ/r-
bimodule morphism and p is the natural projection r ։ M viewed as a
Λ/r− Λ/r-bimodule morphism via the fixed lifting ǫ.
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Construct the morphism f : Λ/r ⊕ M̃ → Λ by letting f |Λ/r= ǫ and
f |M̃= ih where i is the inclusion r →֒ Λ viewed as a Λ/r − Λ/r-bimodule
morphism via the lifting ǫ. Then, since ǫ is a k-algebra homomorphism and
ih is a Λ/r− Λ/r-bimodule morphism via ǫ, we can use Lemma 3.1 to find

a k-algebra homomorphism f̃ : T̃ (Λ/r, r/r2) ≃ T (Λ/r, M̃) → Λ. By part (a)
this morphism is surjective.

Since f̃ |Λ/r= f |Λ/r= ǫ is a monomorphism the image intersects trivially

with r. Using f̃(M̃) ⊂ r, we then get ker f̃ ⊂ ⊕j≥1M̃
(j). On the other hand,

since f̃(M̃ (j)) ⊂ r
j and r

rl(Λ) = (0), we get that ker f̃ ⊃ ⊕j≥rl(Λ)M̃
(j).

�

Even though this result is similar to Proposition 3.2, and then also to [ARS,
Theorem III.1.9], there is an important difference. In [ARS, Theorem III.1.9 (b)]
one assumes Λ to be a finite dimensional basic k-algebra where k is algebraically
closed, and shows there is a surjective k-algebra homomorphism f̃ ′ : T (Λ/r, r/r2) →
Λ with ⊕j≥rl(Λ)(r/r

2)j ⊂ ker f̃ ′ ⊂ ⊕j≥2(r/r
2)j . This is a special case of Proposition

3.2(b), where one assumes that Λ is a finite dimensional basic r-split k-algebra,

and shows there is a surjective k-algebra homomorphism f̃ ′′ : T (Λ/r, r/r2) → Λ

with ⊕j≥rl(Λ)(r/r
2)j ⊂ ker f̃ ′′ ⊂ ⊕j≥2(r/r

2)j . Hence Proposition 4.1 differs from

these two results since the kernel of f̃ ′ and f̃ ′′ sits inside ⊕j≥2r/r
2, while ker(f̃) ⊂

⊕j≥1M̃
j (note which sets the direct sum is taken over). This difference is not

surprising, since M̃ usually is a larger module than r/r2. If k is an algebraically

closed field, then M̃ ≃ r/r2, so f̃ |M̃= f̃ ′ |
r/r2 : r/r

2 → f(r/r2) = f(M̃) is a
Λ/r − Λ/r-bimodule monomorphism intersecting trivially both with the image of

f̃ |D and r
2, so we get ker(f̃) ⊂ ⊕j≥2M̃

j. This shows that [ARS, Theorem III.1.9
(b)] is a special case of Proposition 4.1(b). On the other hand, Proposition 3.2(b)
is not a special case of Proposition 4.1(b).

The following proposition is similar to Proposition 3.3.

Proposition 4.2. Let Λ be a finite dimensional basic split k-algebra, let S̃Λ be the

enlarged species of Λ, and let J̃ be the ideal ⊕j≥1M̃
j of T (S̃Λ). Then Λ ≃ T (S̃Λ)/〈ρ〉

for a set of relations ρ such that J̃ rl(Λ) ⊂ 〈ρ〉 ⊂ J̃ .

Proof. The proof is similar to the proof of Proposition 3.3. First recall that
T (S̃Λ) = T (Λ/r, M̃) = T̃ (Λ/r, r/r2). From Proposition 4.1 we have an epimor-

phism f̃ : T (S̃Λ) = T̃ (Λ/r, r/r2) → Λ with ⊕j≥rl(Λ)M̃
j ⊂ ker f̃ ⊂ ⊕j≥1M̃

j . It

is possible to find a set of relations ρ = {σt}t∈T in ker f̃ which generates ker f̃

as an ideal in T (S̃Λ). Then J̃ rl(Λ) = ⊕j≥rl(Λ)M̃
j ⊂ 〈ρ〉 ⊂ ⊕j≥1M̃

j = J̃ . Since

T (S̃Λ)/〈ρ〉 ≃ T̃ (Λ/r, r/r2)/ ker f̃ ≃ Λ, we are done. �

Using Corollary 2.4 and Proposition 4.2 we get the following corollary.

Corollary 4.3. Let Λ be a finite dimensional basic split k-algebra. Then the cat-

egory modΛ is equivalent to the category rep(S̃Λ, ρ) where ρ is a set of relations

such that J̃ rl(Λ) ⊂ 〈ρ〉 ⊂ J̃ .

In the case when Λ is r-split, then Λ ≃ T (SΛ)/〈ρ〉 where 〈ρ〉 is an admissible

ideal, i.e. there exists a natural number n ≥ 2 such that Jn ⊂ 〈ρ〉 ⊂ J2. On the
other hand, if Λ is only split the ideal 〈ρ〉 is no longer admissible in general. This
difference will play an important role when investigating hereditary algebras in the
next sections.
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5. Hereditary basic finite dimensional split algebras

In this section we will continue looking at basic finite dimensional split algebras
that are not assumed to be r-split, but with the extra assumption that they are
hereditary. In contrast to the r-split algebras, the species of these hereditary al-
gebras might have non-zero relations. However, the relations are corresponding to
subquivers for which the underlying graph contains cycles. We start by introducing
these subquivers.

A quiver consisting of an arrow i → j together with a finite number (possibly
zero) of paths between i and j of length greater than one will be called a canonical

quiver .
◦ // . . . // ◦

��-
--

--
--

--
--

--
--

◦ // . . . // ◦

��1
11

11
11

11
11

1

...
...

◦ // . . . // ◦

''NNNNNN

i //

88pppppp

FF













HH���������������
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We call the arrow i → j in a canonical quiver the specifying arrow of the canonical

quiver . If Q is a finite quiver without oriented cycles or double arrows, and i → j
is the specifying arrow of a canonical quiver Q′ ⊂ Q, then there exists a largest
canonical quiver Q′′ ⊂ Q having i → j as its specifying arrow. We say that Q′′

is the canonical quiver corresponding to i → j in Q. Note that a canonical quiver
can be equal to its specifying arrow. If QS̃ is the quiver of an enlarged species S̃Λ

of a finite dimensional hereditary basic split algebra Λ, then QS̃ is finite without
oriented cycles and without double arrows, so in this setting we always have a
largest canonical quiver corresponding to any given arrow.

Let S = (Di, jMi)i,j∈I be a species for which the underlying quiver QS is finite
and without oriented cycles, and let jσi = g1 + · · ·+ gn ∈ jMi = DiT (S)Dj be a

relation. If jσi 6∈ J2 where J = ⊕i≥1M
(i), there must be an arrow i → j ∈ QS and

at least one gl ∈ jMi. If there is a set {gl} in jMi, say {g1, . . . gm} where gi ∈ jMi

and m ≤ n, letting σ′ = g′1 + gm+1 + · · · gn where g′1 = g1 + · · · gm we see that
T (S)/〈σ〉 ≃ T (S)/〈σ′〉 since σ = σ′. Hence we can always reduce to the case with
only one gl ∈ jMi

If S = (Di, jMi)i,j∈I is a species, where the underlying quiver QS is finite and
without oriented cycles, and jσi = g1 + · · ·+ gn is a relation where gl ∈ jMi while
gk 6∈ jMi for all k 6= l, then we call the relation jσi a canonical relation. By
renumbering we will always assume l = 1 for a canonical relation. If n > 1 we
call σ a strong canonical relation. We call ρ a canonical set of relations and 〈ρ〉 a
canonical ideal of T (S) if ρ = {σt}t∈T such that

(i) all σt are canonical relations
(ii) if {σt}t∈T ′ is the set of relations in ρ which start in i and end in j, and

{gt1}t∈T ′ is the corresponding set of summands which are elements of jMi,

then 〈gt1〉 ∩ 〈gt
′

1 〉 = (0) for all t 6= t′

If all the canonical relations are strong, we call ρ a strong canonical set of relations

and 〈ρ〉 a strong canonical ideal .

Lemma 5.1. Let S be a species for which the underlying quiver QS is finite and

without oriented cycles, and let ρ be a canonical set of relations. Then T (S)/〈ρ〉 is
hereditary.

Proof. Let Λ = T (S)/〈ρ〉 be as described in the lemma, then every indecomposable
projective Λ-module is of the form Pi ≃ ΛDi where Λ/r ≃ ⊕i∈IDi. We want to show
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that the radical rDi of every projective module ΛDi is again projective. Assume
{jσt

i}t∈jTi
is the complete set of (canonical) relations starting in i and ending in j,

and let jNi = jMi/〈{gt1}t∈jTi
〉 where jσ

t
i = gt1 + gt2 + . . . gtnl

and gt1 ∈ jMi. Let I ′

be the set of vertices j ∈ I for which jMi 6= (0), and let I ′ = Ic ∪ In be the disjoint
union where j ∈ Ic if there exists a (canonical) relation jσi, and j ∈ In if no such
relation exists. Then

rDi = (radT (S)Di)/(〈ρ〉Di)

≃ (⊕j∈Ic(T (S)jNi)/(〈ρ〉jNi))⊕ (⊕j∈In(T (S)jMi)/(〈ρ〉jMi))

≃ (⊕j∈Ic(dimDj jNi)(T (S)Dj)/(〈ρ〉Dj))⊕ (⊕j∈In(dimDj jMi)(T (S)Dj)/(〈ρ〉Dj))

= (⊕j∈Ic(dimDj jNi)ΛDj)⊕ (⊕j∈In(dimDj jMi)ΛDj)

≃ (⊕j∈Ic(dimDj jNi)Pj)⊕ (⊕j∈In(dimDj jMi)Pj)

This shows that rDi is projective, hence r = ⊕i∈IrDi is projective, which implies
that Λ is hereditary [La2, Theorem 2.35]. �

Let Λ be a finite dimensional hereditary basic split k-algebra, where Λ ≃
T (S̃Λ)/〈ρ〉 and QS̃Λ

is the underlying quiver of S̃Λ. From the discussion after

Proposition 3.3 we see that we can choose the set of relations ρ = {σt}t∈T finite,
therefore we can find a finite minimal set of relations which generate 〈ρ〉. The next
proposition reveals that even in the non r-split case we find interesting information
on the ideal 〈ρ〉.

Proposition 5.2. Let Λ be a finite dimensional hereditary basic split k-algebra,
where Λ ≃ T (S̃Λ)/〈ρ〉 and ρ is a finite set of relations. If ρ = {σ1, . . . , σm} is a

minimal set, then ρ is a canonical set of relations.

Proof. Let ρ = ρ′ ∪ ρ′′ where ρ′ is the subset of ρ consisting of canonical relations,
and ρ′′ = ρ\ρ′. If there exists a pair σt, σt′ ∈ ρ′ of relations starting in i and ending

in j such that 〈gt1〉 ∩ 〈gt
′

1 〉 6= (0), then gt
′

1 = djg
t
1di for di ∈ Di and dj ∈ Dj , so by

substitution we can find σ′
t′ ∈ J̃2 such that T (S̃Λ)/〈ρ〉 ≃ T (S̃Λ)/〈σ′

t′ , ρ \ σt′〉. By
repeating this process we find a set ̺ = ̺′ ∪ ̺′′ of relations where every element of
̺′ is canonical, every element of ̺′′ sits inside J̃2, and for every pair σt, σt′ ∈ ̺′ we
have 〈gt1〉 ∩ 〈gt

′

1 〉 = (0), i.e. ̺′ is a canonical set of relations. Let Λ′ ≃ T (S̃Λ)/〈̺′〉,
then Λ′ is hereditary from Lemma 5.1.

Now

Λ ≃ T (S̃Λ)/〈̺〉 ≃ Λ′/(〈̺〉/〈̺′〉)

≃ Λ′/(〈̺′′〉/(〈̺′′〉 ∩ 〈̺′〉))

Since 〈̺′′〉 ⊂ J̃2 we have 〈̺′′〉/(〈̺′′〉 ∩ 〈̺′〉) ⊂ J̃2/〈̺′〉 ≃ rad2 Λ′ as left Λ′-modules.
Lemma 3.5 implies 〈̺′′〉 = 0 since Λ was assumed to be hereditary, hence ̺ = ̺′.
Since ρ′′ ⊂ ̺′′ = ∅, we have ρ = ρ′. Moreover the existence of a pair σt, σt′ ∈ ρ′ of
relations starting in i and ending in j such that 〈gt1〉 ∩ 〈gt

′

1 〉 6= (0) implies ̺′′ 6= ∅
since ρ was assumed to be minimal, a contradiction. Hence ρ is a canonical set of
relations. �

Proposition 5.3. Let Λ be a finite dimensional hereditary basic split k-algebra.
Then Λ ≃ T (Sm)/〈ρ〉 where Sm is a species unique up to isomorphism for which

the underlying quiver QSm
is finite and without oriented cycles, and 〈ρ〉 is a strong

canonical ideal.

Proof. From Proposition 4.2 we know that Λ ≃ T (S̃Λ)/〈ρ′〉 where we can choose
the set ρ′ to be finite, and from Lemma 5.2 we know that ρ′ is a canonical set of
relations.
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Let σ = g1 + · · ·+ gn ∈ ρ be a relation where g1 ∈ jM̃i. If the largest canonical

quiver containing i → j is the trivial canonical quiver i → j itself, then jM̃i = jM̃i

and jfi : jM̃i ⊗Di
Vi → Vj is just the morphism jφi : jM̃i ⊗Di

Vi → Vj . This

implies that σ = g1 ∈ jM̃i, so 〈σ〉 generated as a Dj −Di-bimodule is a submodule

of jM̃i. If we let jÑi = jM̃i/〈σ〉, we can define a species Sσ by substituting the

bimodule jM̃i in S̃Λ with jÑi. From the construction of the tensor algebra we see

that T (S̃Λ)/〈ρ′〉 ≃ T (Sσ)/〈ρ′ \ σ〉.
If we use this process repeatedly, we can remove all relations in ρ′ that are not

strong canonical relations, and end up with a unique (up to isomorphism) species
Sm together with a set ρ consisting of the strong canonical relations in ρ′ such that
Λ ≃ T (Sm)/〈ρ〉. �

Theorem 5.4. Let Λ be a finite dimensional basic split k-algebra. Then the fol-

lowing are equivalent

(i) Λ is hereditary.

(ii) Λ ≃ T (S)/〈ρ〉 where S is a species for which the underlying quiver QS is

finite and without oriented cycles and 〈ρ〉 is a canonical ideal.

(iii) Λ ≃ T (Sm)/〈ρ′〉 where Sm is a species unique up to isomorphism for which

the underlying quiver QSm
is a subquiver of QS and 〈ρ′〉 is a strong canon-

ical ideal.

Proof. This follows from Lemma 5.1, Proposition 5.2, and Proposition 5.3. Note
that QSm

might be a strict subquiver if a bimodule jM̃i is replaced by a bimodule

jÑi = (0). �

The next theorem sums up the results in this section similarly to what Theorem
3.12 did for Section 3.

Theorem 5.5. Let Λ be a finite dimensional basic split k-algebra, let S̃Λ =
(Di, jM̃i)i,j∈I be the enlarged species of Λ, let QS̃Λ

be the underlying quiver of

S̃Λ, and let J̃ be the ideal ⊕i≥1M̃
(i) in T̃ (Λ/r, r/r2) where M̃ = ⊕i,j∈I jM̃i. Then

the following hold:

(a) Let {r1, r2, . . . , rm} be elements in r such that their images

{r̄1, r̄2, . . . , r̄m} in r/r2 generate r/r2 as a Λ/r − Λ/r-bimodule.

Then {D1, D2, . . . , Dn, r1, r2, . . . , rm} generate Λ as a k-algebra, where

Λ/r ≃ ⊕n
i=1Di.

(b) There is an onto k-algebra homomorphism f̃ : T̃ (Λ/r, r/r2) → Λ such that

⊕j≥rl(Λ)M̃
(j) ⊂ ker f̃ ⊂ ⊕j≥1M̃

(j).

(c) Λ ≃ T (S̃Λ)/〈ρ〉 where ρ is a set of relations on S̃ with J̃ rl(Λ) ⊂ 〈ρ〉 ⊂ J̃ .

(d) The category modΛ is equivalent to the category rep(S̃Λ, ρ), where ρ is a

set of relations on S̃Λ with J̃ rl(Λ) ⊂ 〈ρ〉 ⊂ J̃ .
(e) Λ is hereditary if and only if QS̃Λ

is finite without oriented cycles and Λ is

isomorphic to T (S̃Λ)/〈ρ〉 for a canonical ideal ρ.
(f) Λ is hereditary if and only if Λ is isomorphic to T (Sm)/〈ρ〉 for a species

Sm and a strong canonical ideal ρ where the underlying quiver QSm
of Sm

is finite and without oriented cycles.

Let Λ be a finite dimensional hereditary basic split k-algebra, and let Λ ≃
T (Sm)/〈ρ〉 where Sm = (Di, jNi)i,j∈I and ρ are as described in Proposition
5.3, hence ρ consists of strong canonical relations. We want to investigate the
species Sm. As before, let Λ/r ≃ ⊕Di = D and r/r2 ≃ ⊕i,j∈I(jMi) = M .
Let i → j be a trivial canonical quiver. We obviously have an isomorphism
DjΛDi ≃ Dj(T (Sm)/〈ρ〉)Di. What is interesting is that Dj〈ρ〉Di = (0) since i → j
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was a trivial canonical quiver and ρ only consists of strong canonical relations.
Therefore DjΛDi ≃ Dj(T (Sm)/〈ρ〉)Di ≃ DjT (Sm)Di.

If the underlying graph of Sm is a tree, i.e. it does not contain any cycles, then
all canonical quivers in Sm must be trivial. This yields the following corollary.

Corollary 5.6. If the underlying graph of Sm is a tree, then Λ ≃ T (Sm) ≃ T (SΛ).

This corollary can also be deduced from the following observation [DR2]: Let
Λ be a finite dimensional hereditary basic split k-algebra, and let QSΛ be the
underlying quiver of the species associated to Λ. Assume QSΛ is a tree. Then for
any pair i, j ∈ I, either Djr

2Di or Djr/r
2Di must be zero. Then obviously

0 → Djr
2Di → DjrDi → Djr/r

2Di → 0

splits as a sequence of Dj−Di-modules via any k-algebra homomorphism ǫ : Λ/r →
Λ such that πǫ ≃ idΛ/r for the natural projection π : Λ → Λ/r. This implies that

0 → r
2 → r → r/r2 → 0

splits as a sequence of Λ/r−Λ/r-bimodule via ǫ. Hence Λ is r-split, so Λ ≃ T (SΛ).

Example 5.7. We will end this article with an example of a hereditary species con-
taining canonical relations. This example is motivated by [DR2]. Let k = F2(t

2) =

{ f
g | f, g ∈ F2[t

2], g 6= 0} be the field of rational functions with indeterminate t2

over the ground field F2, where F2 is the Galois field consisting of two elements.
The field k is not perfect. Let K = F2(t). We define a morphism δ : K → K by
using the usual derivation with respect to t. Now δ(f) = 0 for f ∈ k ⊂ K due
to the fact that charF2 = 2. Let M be the set M = {(f, g) | f, g ∈ K} where
we define a K − K-bimodule structure on M by letting a(f, g) = (af, ag) and
(f, g)b = (fb, gb+ fδ(b)) for (f, g) ∈ M and a, b ∈ K. The species S is given by the
following diagram

K
K

  A
AA

AA
AA

A

K

K

>>}}}}}}}}

M
// K

where the underlying quiver QS of S is

1

��>
>>

>>
>>

2

@@�������
// 0

Let σ be the relation ((1, 0), 0)− (0, 1 ⊗K 1) ∈ 0M2 = M ⊕ (K ⊗K K), and let ρ
be the set of relations consisting only of σ. Then (S, ρ) is a species with relations,
and ρ is a set of strong canonical relations. The tensor ring T (S)/〈ρ〉 is isomorphic
to the matrix ring

Λ =





K 0 0
K K 0
M K K





where multiplication is normal matrix multiplication except for the following




0 0 0
0 0 0
0 a 0









0 0 0
b 0 0
0 0 0



 =





0 0 0
0 0 0

(ab, 0) 0 0




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From [DR2, Corollary 2] we know that this is a hereditary finite dimensional k-

algebra. We have Λ/r ≃





K 0 0
0 K 0
0 0 K



, and since

ǫ :





K 0 0
0 K 0
0 0 K



 →֒





K 0 0
K K 0
M K K





is a k-algebra homomorphism such that πǫ ≃ idΛ/r for the natural projection
π : Λ → Λ/r, we see that Λ is split. Look at the sequence

0 → D0r
2D2 → D0rD2 → D0r/r

2D2

of Λ/r− Λ/r-bimodules via ǫ. This is the sequence

0 → K → M → K → 0

where the first morphism is given by a 7→ (a, 0) for a ∈ K, and the last morphism
is given by (a, b) 7→ b for (a, b) ∈ M . Since M 6≃ K2 this sequence does not split,
hence Λ is not a r-split algebra. Hence Λ is an example of an algebra that satisfies
the assumptions in Theorem 5.4, but not the assumptions in Theorem 3.9. △
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