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Chapter 1

Introduction

1.1 Overview

The problem of approximating the vector

y = exp(A)v (1.1.1)

for a square matrix A and a given vector v is an important topic in numerical
analysis and it has been largely investigated, starting from the 1960’s.
The interest in this problem is mainly motivated by the occurrence of the vec-
tor in (1.1.1) in several applications. This aspect justifies the rich literature
available for this topic and the variety of contributions given by researchers
from physics or engineering communities, as well as numerical analysts.
One of the most important applications in which (1.1.1) appears is the solu-
tion of ordinary differential equations or of time dependent partial differential
equations; to give an example we consider the following linear parabolic Partial
Differential Equation (PDE)





∂u(x,t)
∂t = Lu(x, t) x ∈ Ω

u(x, 0) = u0, x ∈ Ω
u(x, t) = σ(x), x ∈ ∂Ω, t > 0

(1.1.2)

with L second order partial differential operator of the elliptic type and Ω
open, bounded, connected set.
By discretizing (1.1.2) with respect to space variables the problem is reduced
to the following ordinary differential equation

dw(t)

dt
= Aw(t), w(0) = w0
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whose solution is readily obtained as

w(t) = exp(tA)w0

which has exactly the form described in (1.1.1).
There are several other cases in which the computation of (1.1.1) is required
and we list some of them: the vector (1.1.1) is fundamental to describe dy-
namical systems, see e.g. [3], or for applications in nuclear magnetic reso-
nance spectroscopy [50], in control theory [24], in Markov chain analysis [61],
in chemical physics [51].

A first fundamental remark is that computing exp(A) and computing
exp(A)v are two completely different tasks. When only the vector exp(A)v
is needed it is useless and impractical computing exp(A) and consequently
applying it to the vector v; several techniques are indeed available to compute
the vector in (1.1.1) in a much cheaper way. As stressed in [29], this principle
is the same that the one used when solving a linear system of the form Ax = b,
for which it would be wasteful to compute A−1 and then to multiply it by b.
In this thesis we only address the problem of computing vectors of the form
(1.1.1).

A milestone in the literature on the matrix exponential operator was the
paper by Moler and van Loan [45] published in 1979; it described 19 ways
for computing exp(A) classified into five categories: series methods, Ordinary
Differential Equations methods, polynomial methods, matrix decomposition
methods and splitting methods. The authors defined them “dubious” refer-
ring to their numerical quality; however this adjective referred also to the
impossibility to detect a single method which works well in all applications.
Twenty five years later an updated version of the paper was published [46]
with an additional twentieth one, the Krylov subspace method; in the de-
scription of this method, tailored to the computation of (1.1.1), the authors
stressed the advantage of directly computing this vector without passing from
the evaluation of exp(A) which in general is full, even if A is sparse.
From the publication of [45] important results have been reached in the con-
text of the matrix exponential operator, both from a theoretical and from an
algorithmic point of view. We will describe the theoretical results in the fol-
lowing, while we cite the Sidje’s paper [60] as one of the most complete work
for the implementation aspects; there the software package EXPINT was pre-
sented, with the aim of helping all researchers who need to evaluate the matrix
exponential.
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As mentioned before, the matrix A is often the result of a discretization
or of the modelling of real problems and for this reason its dimension is very
large; moreover a remarkable sparsity is often present and in several cases A
is symmetric negative semidefinite, as we will assume throughout the thesis.
These features of A make mandatory the use of specific numerical methods
to evaluate (1.1.1) which keep computational costs and memory requirements
under control. In these situations two commonly strategies are applied:

1) find a matrix H such that exp(H)v is simpler to compute than (1.1.1)
and approximates it;

2) approximate the exponential with a suitable function, say g, such that
g(A)v is simpler to compute than (1.1.1).

A rich literature is available for both approaches; for the first class in this
thesis we restrict our analysis to Krylov subspace methods, that we will de-
scribe in details in Section 2.1. Their basic idea is to project the matrix A
and the vector v onto a space Km; once the projected and restricted matrix
Hm is computed, then its exponential is (easily) evaluated and, by projecting
back, a suitable approximation to exp(A)v derives, as summarized in (2.1.5).
The papers [29] by Gallopoulos and Saad and [58] by Saad, both published in
1992, were among the first important contributions to the theoretical analysis
of Krylov subspace methods; indeed, till their publication, Krylov subspace
methods were largely used by chemical physicists, starting from Nauts and
Wyatt who introduced them in 1983 [51], the only motivation being their
satisfactory performance. After [29] and [58] several authors devoted their
attention to Krylov subspace methods and interesting results describing their
behavior were presented by Druskin and Knizhnerman in [19], [20] and [21],
and by Hochbruck and Lubich in [36] and [37].
Variants to these methods have been proposed in the recent years, due to
the increased size of the matrices A stemming from the applications; Moret
and Novati [49], for example, combined the use of the Restricted Denominator
rational forms proposed by Nørsett [52] with Krylov subspace methods; in-
terestingly van den Eshof and Hochbruck [68], independently of [49], resorted
exactly to the same technique by trying to compute exp(A)v by means of an
auxiliary matrix, as described in (2.4.3). This approach, known as shift and
invert , will be a key element of our analysis and we will describe it in details
in Section 2.4.
Another strategy to make Krylov subspace methods effective for large matri-
ces was presented by Eiermann and Ernst in [22], with the name of Restarted
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Krylov and we will describe it in Section 2.3; also Hochbruck and Hochsten-
bach proposed in [35] a new approach whose key ingredient are the Krylov
subspace methods.
Among the other techniques belonging to the first class mentioned above, we
cite the approach proposed by Castillo and Saad in [15], dating back to 1998.
The strategy consists in approximating A by means of a preconditioner M
such that exp(M)v is simpler to compute and two strategies were proposed
to recover exp(A)v from the computed vector exp(M)v, one involving Krylov
subspace approximations to integrals, the other based on a Generalized Runge
Kutta method.
Among the methods of the first class not involving Krylov subspace approx-
imations we cite the approach proposed by Lu in [43]. The idea is to reduce
A to a tridiagonal matrix T by an orthogonal similarity transformation Q, to
evaluate exp(T ) by means of Chebyshev approximation and then to recover
exp(A) by suitable multiplications with the matrix Q; however, due to com-
putational costs which are O(10/3n3), where n is the dimension of A, this
approach may be applied only when n is modest.

For the methods in 2) we will describe in details the rational approxima-
tions to exp, specifically Padé and Chebyshev, for which the books by Baker
and Graves-Morris [6] and by Petrushev and Popov [54] gave a complete de-
scription; these approximations were also cited in the survey by Moler and van
Loan [46] and Higham addressed in [34] the problem of efficiently implement-
ing the Padé approximation. In the context of Chebyshev approximation the
results by Carpenter, Ruttan and Varga in [14] and by Cody, Meinardus and
Varga [16] gave important contributions to the detection of the best rational
approximation to exp. Recently Trefethen and coauthors [67] studied connec-
tions among quadrature fomulas and rational approximations to exp, while
Lopez and Simoncini [42] analyzed in depth the connections among Krylov
subspace methods and rational approximations to the exponential. The com-
bined use of rational approximations and Krylov subspace methods allowed
Gallopoulos and coauthors [7] to evaluate an approximation to exp(A)v in
parallel architecture. Recently Frommer and Simoncini addressed in [27] im-
plementation problems related to the use of rational approximations for ap-
proximating matrix functions.
Druskin and Knizhnerman [19] and Tal-Ezer [66] proposed a polynomial ap-
proximation to the exponential based on its Chebyshev expansion with turned
out to be useful to derive error estimates for the Krylov subspace approxi-
mation to exp(A)v; years later Bergamaschi and Vianello in [11] offered nu-
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merical experiments for this approach, with comparisons with other available
algorithms.
Several interpolation procedures have been proposed to approximate the ex-
ponential and the choice of the nodes played an important role in this context:
in [47], for example, Moret and Novati considered a polynomial approximation
based on the zeros of Faber polynomials.

The main result of this thesis is that when g is a rational function and H
is the projection of A onto a Krylov space, then the two classes of methods
described in 1), 2) before are strictly related and behave similarly. This uni-
fying framework allowed us to better analyze the methods of the two classes,
especially the recently acceleration technique shift and invert proposed in [49]
and [68]. We found that this technique may be viewed as a special form of
preconditioning, thus allowing the use of theoretical results on this issue.
On the other hand, in the context of rational approximation to the expo-
nential, we derived an acceleration technique based on a real valued method
proposed in [5] for solving complex systems with only real arithmetic.

The rigorous definition of exp(A) is necessary before addressing all the
practical aspects: several choices are possible, since different definitions of a
generic matrix function have been presented during the years, the first work
being probably the paper by Rinehart [56].
One of the simplest representation for exp(A)v is based on the symmetric
Schur decomposition of A, which results in the expression

exp(A)v = Q exp(Λ)QT v

where Q is a real orthogonal matrix and Λ is the diagonal matrix with the
eigenvalues λ1, . . . , λn of A as diagonal entries; the matrix exp(Λ) is read-
ily computed since it only requires the evaluation of the diagonal entries
exp(λj), j = 1, . . . , n.
Another straightforward formulation for exp(A)v is based on the Taylor series
expansion of exp(z), for a generic scalar z, which in matrix formulation reads

exp(A)v = v + Av +
1

2
A2v +

1

3!
A3v + . . . ;

the convergence of this series is guaranteed for any square matrix. Interest-
ingly, this power expansion justifies, in some sense, the use of the Krylov space
Km(A, v), defined in (2.1.1), which is spanned exactly by v, Av, A2v, . . . , Am−1v.
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When dealing with Krylov subspace methods we will use another definition
for exp(A), which we recall here:

Definition 1.1.1. Assume A ∈ C
n×n has the eigenvalues λ1, λ2, . . . , λp with

multiplicities m1, m2, . . . , mp. Then

exp(A) := r(A),

where r is the unique Hermite interpolating polynomial of degree less than∑p
i=1 mi that satisfies the interpolation conditions

r(j)(λi) = exp(λi), j = 0, . . . , mi − 1, i = 1, . . . , p.

The thesis is organized as follows: in Chapter 2 we describe the Krylov
subspace methods, giving definitions, properties and we introduce the shift
and invert approach proposed in [49] and [68]. In Chapter 3 we describe the
basic facts of rational approximations to the exponential, giving particular
emphasis to the Chebyshev and Padé approximations. In Chapter 4 we de-
scribe some methods for solving linear systems and introduce some concepts
related to preconditioning, used for our numerical experiments. In Chapter 5
we present the real valued method of [5] and we describe the resulting accel-
eration technique; moreover we discuss the relations among rational functions
and Krylov subspace methods, giving a unifying perspective for them. In the
final chapter, Chapter 6, we list some numerical experiments with realistic
situations in which the computation of (1.1.1) is required: we numerically
compare several methods currently employed, giving interesting informations
about their performance, especially when they are compared with the com-
monly used Crank-Nicolson integrator.

We would like to stress the fact that we only consider the exponential op-
erator but several concepts and properties naturally extend to other classes of
functions.

Most of the analysis reported here was published in [55], written in coop-
eration with Valeria Simoncini.

1.2 Notations

We describe some notations used throughout the thesis: for any given k, ek

will denote the kth unit vector belonging to R
m while I will denote the identity
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matrix whose dimension depends on the context; spec(A) will denote the spec-
trum of A while we will use λ for its eigenvalues; when referring to the condition
number of a symmetric matrix A we mean the ratio of the absolute values of
the largest and the smallest eigenvalues of A, that is, κ2(A) :=

∣∣λmax/λmin

∣∣
and we will simply write κ(A).

In this thesis we assume that the matrix A is real, of large dimension, sym-
metric negative semi-definite with spec(A) ⊂ [α, 0], for some α < 0 with large
modulus. This requirement allows us to simplify the analysis without restrict-
ing the applicability of the approach. If, indeed, spec(A) ⊂ [α, β], with β < 0,
then we may shift the matrix towards the origin by defining A1 = A − βI;
this matrix will have spectrum in [α − β, 0] and, once applied our analysis to
exp(A1), we may express exp(A) as exp(A) = exp(A1) exp(β).
Also the hypothesis on the negative definiteness of the matrix is not restric-
tive since, with a suitable scaling and shifting, also indefinite matrices can be
considered.
Throughout this thesis we will assume, without loss of generality, that ‖v‖ =
1; in the generic case in which this hypothesis is not satisfied we may de-
fine v1 = v/‖v‖, apply our analysis to y1 = exp(A)v1 and then compute
exp(A)v = ‖v‖y1.
In the following we will use the symbol Πk to denote the set of algebraic poly-
nomials of degree at most k.

This version slightly differs from the previous one in few grammar correc-
tions.





Chapter 2

Krylov Subspace Methods

In this chapter we analyze the Krylov subspace methods; their application in
the context of the matrix exponential was first proposed in [51] in 1983 and
from that moment they represent one of the most used methods for comput-
ing exp(A)v when A is large. The ease of implementation is among the main
reasons for this success, together with the fact that they simplify the problem,
usually by sensibly reducing its dimension.
We start by analyzing the basic facts related to Krylov spaces; we then go into
the details of the concepts used in the rest of the thesis; we present the shift
and invert method, which will be largely used in the following, together with
practical tools for handling problematic situations.

2.1 Krylov subspaces

In 1931 A. N. Krylov published the paper [39] in the context of eigenvalue
problems and he introduced what is now called the Krylov space; we recall the
definition:

Definition 2.1.1. The Krylov space of dimension m defined by a matrix
A ∈ C

n×n and a vector v ∈ C
n is

Km(A, v) = span{v, Av, . . . , Am−1v}. (2.1.1)

When the context is clear we will only write Km, without specifying the
matrix and the vector involved.
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One important property of Km, which follows directly from its definition, is
that

Km(A, v) = { p(A)v | p ∈ Πm−1}.
The basic idea of Krylov methods is to project the original (large) matrix

A onto a m-dimensional Krylov subspace by constructing a basis Vm of the
subspace; then the exponential of the projected and restricted matrix Hm is
computed by using a standard technique; finally an approximation to exp(A)v
is recovered from the first column of the matrix Vm exp(Hm).

In the rest of this thesis we will always consider an orthonormal basis for
Km, unless otherwise specified. The most common approach to build this basis
is the Arnoldi method, whose name refers to W. E. Arnoldi who presented it
in [4]. This method starts from the initial vector v1 = v/‖v‖ and it is an
iterative procedure that, at each step, adds a new vector vi to the basis. A
key point of the method is the application of the Gram-Schmidt procedure
to orthonormalize this vector with respect to the older ones. In practice, if
the vectors v1, . . . , vj have been determined, then vj+1 is obtained as w/‖w‖
with w = Avj −

∑j
i=1(v

T
i Avj)vi; unfortunately in finite precision arithmetic

this computation leads to perturbed results, which may affect the quality of
the final approximation. For this reason it is necessary to resort to a modified
Gram-Schmidt orthonormalization which is equivalent to the standard one in
exact arithmetic but is more reliable in finite precision arithmetic. We sketch
the main steps of the global procedure, taking into account our hypothesis
‖v‖ = 1:

Arnoldi

1. Set v1 = v;

2. For j = 1, 2, . . . , m:

Compute w = Avj

For i = 1, . . . , j:

hi,j = wT vi

w = w − hi,jvi

End For

hj+1,j = ‖w‖
If hj+1,j = 0 then Stop

vj+1 = w
hj+1,j
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3. End For

If we denote by Hm the m × m upper Hessenberg matrix consisting of the
coefficients hi,j computed from the algorithm and Vm := [v1, . . . , vm], then we
have the well known relation

AVm = VmHm + hm+1,mvm+1e
T
m. (2.1.2)

An insightful way for understanding the meaning of (2.1.2) may be offered
by its graphical representation, namely

= +A Vm Vm

Hm

When the matrix A is symmetric, the Arnoldi method simplifies into the
symmetric Lanczos process, which entails a three-term recurrence. This is
due to the additional requirement that the upper Hessenberg matrix Hm =
V T

mAVm is symmetric and therefore tridiagonal, and so all hi,j = 0 for i =
1, 2, . . . , j − 2. We sketch the algorithm:

Symmetric Lanczos

1. Set v1 = v;

2. Set β1 = 0, v0 = 0;

3. For j = 1, . . . , m:

w = Avj − βjvj−1

αj = wT vj

w = w − αjvj

βj+1 = ||w||
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If βj+1 = 0 then Stop

vj+1 = w
βj+1

4. End For

If we denote with Tm = (ti,j) the tridiagonal symmetric matrix with ti,i =
αi and ti,i−1 = βi, then the symmetric Lanczos relation reads

AVm = VmTm + tm+1,mvm+1e
T
m. (2.1.3)

We shall refer to this approximation as the Standard Lanczos method.
The symmetric Lanczos method is advantageous since it leads to savings in
computations and in memory requirements; however, as mentioned above,
working in finite precision arithmetic perturbs slightly the Lanczos relation.
In practice (2.1.3) should be written as

AVm = VmHm + hm+1,mvm+1e
T
m + Fm

if the columns of Fk represent the rounding errors at each step. Paige [53]
and Druskin and coauthors [18] derived small upper bounds for the individual
roundoff terms and the conclusion in [18] was that the Lanczos vectors pro-
duced in finite precision arithmetic still offer a good approximation to exp(A)v;
however there are situations in which the loss of orthogonality among the com-
puted vectors is withering and a double orthogonalization is applied to reduce
the errors.
In the following we will assume to work in exact arithmetic.

Another common algorithm to build the projection and the projected
matrices is the method proposed by C. Lanczos in [40], particularly useful
in the nonsymmetric case and for this reason known as the nonsymmetric
Lanczos algorithm. The first step is the selection of a vector w such that
wT v = 1, while the core of the method is the construction of two biorthogonal
bases {q1, . . . , qm} and {w1, . . . , wm} for the two Krylov subspaces Km(A, v)
and Km(AT , w) by means of recursions relating wi to qi and qi to wi−1. If
Qm = [q1, . . . , qm] and Wm = [w1, . . . , wm] then the analogue of the Arnoldi
relation (2.1.2) is

AQm = Qm+1Wm (2.1.4)

where Wm is a tridiagonal matrix whose entries are the coefficients of the
biorthogonalization while the columns of Qm are not orthonormal.
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In the following we will only use the standard Lanczos method since all
the matrices involved in our analysis turn out to be symmetric. We will refer
to nonsymmetric Lanczos only for introducing the QMR method in Section
4.2.1, in the context of numerical methods for linear systems.

Relation (2.1.3) represents the core of the Lanczos method since it provides
the projection and restriction of A onto Km, the matrix Tm; indeed, due to the
orthogonality of the matrix Vm, Tm = V T

mAVm. The next step to approximate
exp(A)v involves computing exp(Tm): this evaluation is no longer problematic
since, as we will see later, the dimension of Tm is in general much smaller than
that of A. The theoretical justification of this process is given by the following
result, presented by Saad in [58] and here reported in our symmetric context.

Theorem 2.1.2 ([58]). Let A be a symmetric matrix and Vm, Tm be the results
of m steps of the Lanczos method applied to A. Then for any polynomial pj

of degree j ≤ m − 1 the following equality holds

pj(A)v = Vmpj(Tm)e1.

The previous result justifies the crucial approximation

exp(A)v ≈ Vm exp(Tm)e1 (2.1.5)

since, as seen in the Introduction, exp(A) can always be expressed as a matrix
polynomial p(A), where p interpolates exp in the Hermite sense in the eigen-
values of A. If, in the previous theorem, we choose the polynomial p which
interpolates exp in the Ritz values of A, i.e. in the eigenvalues of Tm, then we
have

Vm exp(Tm)e1 = Vmp(Tm)e1 = p(A)v

from which (2.1.5) follows. Therefore, the approximation (2.1.5) can be seen
as an interpolation of exp in the Ritz values of A with respect to Km and this
explains the name Ritz approximation sometimes used for denoting it.

2.1.1 Corrected schemes

In [58] Saad observed that in (2.1.5) the only vectors involved are v1, . . . , vm

even if at the m-th step also the vector vm+1 is available; for this reason he
suggested to use a corrected scheme which takes into account also this vector,
resulting in a more accurate approximation. For defining this scheme the
function

ϕ1(z) =
exp(z) − 1

z
(2.1.6)
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is needed to write

exp(A)v = v + Aϕ1(A)v.

By applying Theorem 2.1.2 to the function ϕ1 it follows that the vector
Vmϕ1(Tm)e1 approximates ϕ1(A)v and, if sm is the error in the approximation,
then

exp(A)v = v + Aϕ1(A)v
= v + A(Vmϕ1(Tm)e1 + sm)
= v + (VmTm + tm+1,mvm+1e

T
m)ϕ1(Tm)e1 + Asm

= Vm[e1 + Tmϕ1(Tm)e1] + tm+1,meT
mϕ1(Tm)e1vm+1 + Asm

= Vm exp(Tm)e1 + tm+1,meT
mϕ1(Tm)e1vm+1 + Asm

from which we may deduce the corrected approximation

exp(A)v ≈ Vm exp(Tm)e1 + tm+1,meT
mϕ1(Tm)e1vm+1.

To numerically evaluate this approximation one may use the following theo-
retical equivalence.

Theorem 2.1.3 ([58]). Define the (m + 1) × (m + 1) matrix

T̂m =

(
Tm 0
c 0

)

where c is any row vector of length m. Then

exp(T̂m) =

(
exp(Tm) 0
cϕ1(Tm) 1

)
.

The choice c = tm+1,meT
m allows the straightforward application of the

corrected scheme and leads to the approximation

exp(A)v ≈ Vm+1 exp(T̂m)e1 (2.1.7)

which requires a computational cost similar to that of (2.1.5).
We will use this corrected scheme in Section 2.2.2 for the description of a
posteriori estimates for the Lanczos process.
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2.2 Quality of the Ritz approximation

It is crucial at this point to understand the quality of the approximation
(2.1.5). It is always possible to detect the dimension m∗ corresponding to an
exact approximation, that is, such that

exp(A)v = Vm∗ exp(Tm∗)e1.

Obviously the approximation corresponding to the dimension of the matrix A
is exact but wasteful since it still requires the exponential of a large matrix.
Saad [58] showed that a smaller value m∗, depending also on the vector v, may
be found; more precisely m∗ is the grade of v with respect of A, that is,

m∗ = min{m ∈ N | ∃p ∈ Πm : p(A)v = 0}.
However in practical situations exact approximations are too expensive to be
computed and the effort is detecting a smaller dimension m such that the
corresponding approximation is within a desired tolerance. To this purpose
it is crucial to be able to estimate the accuracy of the computed solution in
terms of the error with respect to the true result. This is an important topic in
numerical analysis and typically two kinds of analysis are performed to provide
error estimates: the first one aims to describe the asymptotic behavior of the
error; it results in the so called a priori error estimates, the main disadvantage
being that the knowledge of the true solution is required. The second kind
of analysis consists in providing error estimates which depend only on known
quantities; they are defined a posteriori error estimates and are commonly
used to construct stopping criteria for iterative methods.

In this section we list several a priori estimates, with an example showing
their performances, and the most common a posteriori error bounds.

2.2.1 A priori error estimates

We report the most relevant a priori error estimates presented over the years;
as mentioned above, they are asymptotically accurate, in the sense that they
mimic the qualitative behavior of the Lanczos error when the dimension m is
sufficiently large; we also report an example in which the numerical perfor-
mances of the bounds are compared.

Theorem 2.2.1. Let A be a symmetric negative semidefinite matrix with
eigenvalues in the interval [−4ρ, 0]. Let εm be the error in the Lanczos ap-
proximation of exp(A)v, that is,

εm = ‖ exp(A)v − Vm exp(Tm)e1‖.
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The following upper bounds for εm have been presented and we report them in
chronological order:

• Druskin and Knizhnerman [19]

εm ≤
{

2[
√

2π + O(1
ρ)]

√
2ρ

m exp
[
− m2

4ρ + O(m4

ρ3 )
]

m ≤ 2ρ

4ρm

m! exp(ρ2)
(
1 − ρ

m+1

)−1
m ≥ ρ − 1

(2.2.1)

• Tal-Ezer [66]

εm ≤
√

1

ρπ
exp

(
− m2

4ρ

)
(2.2.2)

• Saad [58]

εm ≤ 2m+1

m!
ρm (2.2.3)

• Stewart and Leyk [65]

Let b = 2
1+

√
5

and d = exp(b)

2+
√

5
then

εm ≤ 4 exp

(
− bm2

4ρ

)[
1 +

√
ρπ

b
+

d 4ρ

1 − d

]
(2.2.4)

• Hochbruck and Lubich [36]

εm ≤
{

10 exp
(
− m2

5ρ

) √
4ρ ≤ m ≤ 2ρ

10
ρ exp(−ρ)( eρ

m )m m ≥ 2ρ.
(2.2.5)

We now present an example to compare the a priori error estimates listed
above.

Example 2.2.2. Let D be a diagonal matrix of dimension 1001 with uniformly
distributed entries in the interval [−40000, 0] and let v be the vector of all ones,
normalized as to have unit norm. We compare the curve of the true Lanczos
error with those given by the terms in (2.2.1)-(2.2.5) which depend on m, as
m varies.
In Figure 2.1 we actually compare only (2.2.2), (2.2.4) and (2.2.5), since the
curve corresponding to (2.2.1) and (2.2.3) were too far from the others and
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made the plot difficult to analyze; as soon as the estimates reached the value
10−13 we stopped their representation.
From the plot in Figure 2.1 we may appreciate the qualitative similarities
among the considered curves, all miming the superlinear rate of convergence,
and we notice that the estimate (2.2.2) allows to save one hundred iterates
with respect to (2.2.4).
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Figure 2.1: Error of Standard Lanczos and different a priori error estimates.

2.2.2 A posteriori error estimates

One of the main disadvantages of Krylov subspace methods is that they do
not provide an easy expression for the error; this problem has been addressed
by several authors and the most attractive result is due to Saad [58]. The
formulation he found, that we report in the following theorem, immediately
translates in a posteriori error estimates which are nowadays commonly used
as stopping criteria. To present the result we need to introduce a sequence of
functions ϕk defined by induction:

ϕ0(z) = exp(z);

ϕk+1 =
ϕk(z) − ϕk(0)

z
, k ≥ 0.
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Theorem 2.2.3 ([58, Theorem 5.1]). The error produced by the Lanczos ap-
proximation (2.1.5) satisfies the following expansion:

exp(A)v − Vm exp(Tm)e1 = tm+1,m

∞∑

k=1

(
eT
mϕk(Tm)e1

)
Ak−1vm+1.

By truncating the series in the previous theorem estimates for the Lanczos
error follow, their accuracy depending on the number of terms considered; the
estimates proposed in [58] are actually based on this idea: if, for example, only
the first term of the series is considered, the corresponding estimate is

Er1 = tm+1,m|eT
mϕ1(Tm)e1|. (2.2.6)

The previous quantity involves the function ϕ1(Tm) and, if only a rough es-
timate of the error is required, one may approximate it by exp(Tm) and the
final estimator will be

Er2 = tm+1,m|eT
m exp(Tm)e1|. (2.2.7)

In [58] other error estimates were presented which are more accurate but more
expensive to evaluate; for our numerical tests we found (2.2.6) and (2.2.7) to
be accurate enough. In Figure 6.1 we will show a comparison among (2.2.6)
and (2.2.7) in the context of the Shift and Invert method we will describe in
Section 2.4.
The error estimates (2.2.6) and (2.2.7) turn out to be a key part of the numer-
ical implementation of the Krylov subspace methods; indeed they offer good
results with irrelevant computational costs since the quantities involved are
available at each step.

2.3 Memory requirements and computational costs

The computational cost of Krylov subspace methods is essentially determined
by three parts: the construction of the space Km(A, v), the evaluation of
exp(Tm) and the product Vm exp(Tm)e1. For the former, following the algo-
rithm sketched in Section 2.1, at each step the most expensive part is the
matrix-vector product with A, requiring 2n2 operations, while we omit the
cheaper operations. Thus, if m iterates are performed, the cost is 2mn2 oper-
ations.
The cost to evaluate exp(Tm) depends on the chosen method; for our numerical
tests we used the Matlab routine expm implementing the Padé approximation
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with scaling and squaring, which we will describe in Section 3.2. However, for
a fair analysis, we consider the computational cost of a revisited implementa-
tion of it presented by Higham in [34]. The resulting computational cost of
this improved procedure consists of the cost of one matrix equation and of a
number of matrix products which depends on the degree of the approximation
and on the norm of Tm; thus, if we only look at the order of magnitude, the
cost for exp(Tm) is O(m3).
For the product Vm exp(Tm)e1 2mn operations are required.
Thus to get the approximation (2.1.5) the dominating cost is the term 2mn2.
If we take into account that the direct computation of exp(A)v would require
more than n3 operations, if the revisited Padé method is used, then the saving
produced by (2.1.5) is evident.

The main drawback of the Krylov approach is represented by the storage
requirement, especially when the matrix A is very large; indeed, to compute
the approximation corresponding to a the dimension m one needs to store
the matrix Vm of dimension n × (m + 1), the matrix Tm of dimension m × m
and the approximate vector. To overcome the storage problem an alternative
approach could be applied which consists in resorting to a two-pass strategy :
in the first pass the Lanczos method is applied and at each step the older
columns of Vm are discarded and Tm is built column by column; once exp(Tm)
has been generated we compute the vector exp(Tm)e1; the second pass consists
in reapplying Lanczos to recompute the columns of Vm and use them one at a
time to sum up Vm exp(Tm)e1. In this way the computing time increases with
respect to the standard process and this may make this strategy less appealing
with respect to other available in literature. Bergamaschi and Vianello [11],
for example, showed that in these situations the Chebyshev series method pro-
posed in [19] and [66] can offer a good performance, even though it requires
an initial approximation of the extremal eigenvalues of A. Another alternative
in the case in which the storage is of primary importance is represented by
the recently proposed Restarted Krylov method, as well described in [22] and
[1]. Let m be the largest dimension allowed for Krylov subspaces; consider

the Lanczos process to build Km(A, v) by starting from v
(1)
1 = v and let V

(1)
m+1

and T
(1)
m be the resulting matrices. The idea is to apply the Lanczos method

by starting from the last column of V
(1)
m+1, say v

(2)
1 = v

(1)
m+1, to get V

(2)
m+1 and
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T
(2)
m . This process is repeated and the matrix

T̂k =




T1

E2 T2

. . .
. . .

Ek Tk


 ∈ C

mk×mk, Ej = (Tj)m+1,me1e
T
m,

is updated. The resulting approximation is

exp(A)v ≈ [V1 V2 . . . Vk] exp(T̂k)e1

and the process is repeated until the desired accuracy on the final solution is
reached.

2.4 Shift and Invert

Recently four authors, Moret-Novati in [48] and van den Eshof-Hochbruck in
[68], proposed the same technique, independently of each other, for accelerat-
ing the convergence of the numerical approximation to exp(A)v. The starting
points of the two papers are different and we start by describing the approach
in the older paper, i.e. [48].
Moret and Novati considered in [48] the Restricted Denominator (RD) rational
forms which were introduced by Nørsett in [52], with the following definition:

Definition 2.4.1. For any σ ∈ R and x ∈ C a form of the type

Rj,k(x, σ) =
qj(x)

(1 + σx)k
, qj ∈ Πj , k ≥ 0, (2.4.1)

is called an RD(j,k)-rational form.

An important property of these functions is that

lim
k→∞

Rk,k(−x, σ) = exp(x)

for any x ∈ C having ℜ(x) < 0, as shown in [52]. This relation suggests to use
the RD forms to approximate the exponential, one task being to determine a
good parameter σ such that Rk,k(−A, σ) approximates exp(A)v for a relatively
small degree k.
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The technique proposed by Moret and Novati is valid for sectorial operators,
that is for matrices A such that

W (A) ⊂
{

λ : |arg(λ − γ)| < θ, 0 < θ <
π

2
, γ ≥ 0

}

where W (A) denotes the field of values of A, i.e.

W (A) = {xT Ax| x ∈ C
n, xT x = 1}.

Symmetric negative semidefinite matrices are sectorial operators and then in
our case the analysis in [48] may be considered.
The crux of the approach proposed in [48] is to approximate exp(A)v with
vectors of the form Rm−1,m−1(−A, σ); they may be viewed as elements of
Km((I − σA)−1, v) for which the Lanczos relation

(I − σA)−1Vm = VmTm + tm+1,mvm+1e
T
m (2.4.2)

holds. Moreover, if we define fσ(z) = exp( 1
σ (1 − z−1)) then

exp(A)v = fσ((I − σA)−1)v ≈ Vmfσ(Tm)e1;

thus the resulting approximation to exp(A)v is

ym := Vm exp

(
1

σ
(I − T−1

m )

)
e1. (2.4.3)

As discussed in Section 2.3, the advantage of Krylov subspace methods is
that only matrix-vector products are required. However to build the space
Km((I − σA)−1, v) any matrix-vector product is actually a linear system to
solve. The positive aspect is that all these linear systems have the same
symmetric shifted coefficient matrix I − σA and then the great advantage is
that factorization, as well as preconditioners, may be computed once for all.

In [68] van den Eshof and Hochbruck proposed exactly the same approx-
imation (2.4.3) but in the context of spectral transformations and we recall
here their derivation.
When approximating exp(A)v, with A symmetric negative semidefinite, only
its largest eigenvalues play a role since the exponential function decays rapidly.
However there are situations in which the Lanczos method has difficulties in
detecting these eigenvalues; then a remedy could be to transform the problem
in such a way that the Lanczos method can approximate faster the leading
eigenvalues. A spectral transformation performs well in such a situation and
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results in the auxiliary matrix (I − σA)−1, as in [48], for a suitable shift pa-
rameter σ. This method is well known in the context of eigenvalue problems
as the Shift and Invert method and we will refer to it with this name.

2.4.1 Choice of the shift parameter

In [68] the authors gave an a priori estimate for the error of the approximate
solution (2.4.3); this estimate in practice represents the starting point for
choosing the shift parameter. Before stating the main result we introduce

Rj
i = {p(t)(1 − σt)−i|p ∈ Πj} (2.4.4)

and
Ej

i (σ) = inf
r∈Rj

i

sup
t≤0

|r(t) − exp(t)|.

Theorem 2.4.2 ([68]). Let µ be such that A − µI is negative semidefinite.
Then ∥∥∥∥Vm exp

(
1

σ
(I − T−1

m )

)
e1 − exp(A)v

∥∥∥∥ ≤ exp(µ)Em−1
m−1(σ̃),

with σ̃ = σ
1−σµ .

In [2] Andersson analyzed the asymptotic behavior of Ej
j (σ) and detected

for it the optimal value of σ; we report this result in the following theorem:

Theorem 2.4.3 ([2]). Asymptotically the optimal value for σ is given by
√

2/j,
for which we have

lim
j→∞

(
Ej

j (
√

2/j)

)1/j

=
1√

2 + 1
.

In practice one is interested only in approximations corresponding to small
degree j, for which the asymptotic analysis is meaningless. However in this
case minimizing Ej

j (σ) is very challenging; for this reason in [68] the search for
the optimal shift parameter was carried out numerically, by using the Remez
algorithm to find the optimal polynomial approximation to exp

(
1
σ (1 − t−1)

)

on the interval [0, 1]. In this way the authors collected a table of suggested
shift values corresponding to the dimension of the Krylov space considered;
we will report these values in Table 5.3, when dealing with our derivation of
the optimal shift parameters.
We refer to Chapter 6 for the implementation details of this technique.
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In the context of iterative algorithms the idea of applying a spectral trans-
formation for accelerating the convergence has been extensively used, see e.g.
[38] published in 1972. However, as far as we know, the first work combining
Arnoldi and inverse iterations is due to Ericsson and Ruhe [23] dating back to
1980. In this work the authors fix a parameter µ and compute the eigenvalues
of the matrix (A − µI)−1 that, for a suitable choice of the shift parameter µ,
approximate some of the eigenvalues of A. For approximating all eigenvalues
of A it is then necessary using different shift parameters and in [23] their se-
lection was essentially based on heuristics. Ruhe extended this approach in
[57], where he introduced the name Rational Krylov method, by considering
arbitrary rational functions, that is, he considered functions belonging to the
space

R̃j
i = {p(t)Πi

k=1(1 + γkt)
−1 | p ∈ Πj}, γk ∈ R.

However in [13] it was shown that the optimal approximation from R̃j
i is

also contained in Rj
i . This result plays in favor of the shift and invert approach,

which clearly may be viewed as a special case of the method proposed in
[23] when just one shift parameter is used. Also the Restricted Denominator
method introduced in [52] and reported in (2.4.1) deals exactly with functions
in Rj

i .

2.5 Krylov Plus Inverted Krylov

In the context of numerical approximations to functions of symmetric matrices
Druskin and Knizhnerman [21] proposed an extended Krylov method which
may be interpreted as a particular rational Krylov method. The rationale
was the observation that for some important problems, e.g. Maxwell’s system
and acoustic equations, the matrix A−1 may be easily used, for example by a
Fast Fourier Transform, at low computational cost. This suggested the idea
of considering a Krylov space method which contains information on both A
and its inverse, namely by working with the space

Kk,m(A, v) = span{A−k+1v, . . . , A−1v, v, Av, . . . , Am−1v}

for m ≥ 1 and k ≥ 1.
When building Kk,m(A, v) two starting vectors are considered, v and A−1v,
and then at each step two vectors are added to the basis Vm; thus Vm may be
described as

Vm = [V1, . . . , Vm] ∈ R
n×2m
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where Vi ∈ R
n×2 contains two vectors, one multiplied by A and one by A−1,

orthonormalized with respect to the columns of Vi−1.
By defining Tm := VT

mAVm ∈ R
2m×2m the analogue of the approximation

(2.1.5) reads
exp(A)v ≈ Vm exp(Tm)e1. (2.5.1)

Recently Simoncini [62], dealing with Krylov methods for solving the Lya-
punov matrix equations, used the extended Krylov method in a more general
setting with dissipative matrices, that is, matrices M such that M + MT is
negative definite. Moreover she suggested a strategy in which the user may
arbitrarily increase both m and k to reach the required accuracy. This was
a great improvement with respect to the method proposed in [21] in which a
small value k was fixed a priori and only m was allowed to increase.
In the rest of the thesis we will use the name KPIK for denoting this approach,
as introduced in [62] as the acronym for Krylov Plus Inverted Krylov .

We conclude with an example in which we compare the KPIK method
with the Standard Lanczos method; for the implementation of the former we
followed the algorithm sketched in [62] with direct solvers for the systems with
A; in Section 6.5 additional implementation details are presented.

Example 2.5.1. We consider the diagonal matrix D of dimension 10000 ×
10000 with entries uniformly distributed in [−10000,−0.1] and the vector v
of all ones, normalized as to have unit norm. We compare the convergence of
the Standard Lanczos method with that of the Krylov Plus Inverted Krylov
method, by plotting the error curves versus the space dimension; for the error
we measured the distance among the true solution and the approximation and
stopped the iteration as soon as this quantity dropped below 10−13.
In Figure 2.2 we may appreciate the great saving obtained when using the
KPIK method; indeed, for reaching the same accuracy the former needs a
space of dimension 50, while the Lanczos method needs the 1000% more.

In Chapter 6 we will present tests comparing the elapsed time for the
Krylov Plus Inverted Krylov method and other approaches described in the
following chapter.
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Figure 2.2: Dimension of the Krylov space for Standard Lanczos and the KPIK
method
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Chapter 3

Rational Approximations

Rational functions represent an important tool in approximation theory; they
are largely used to approximate several classes of functions and they are among
the most commonly used instruments to approximate the exponential.
One of the goals of this thesis is to offer a unifying framework for rational
approximations to the exponential and Krylov subspace methods.

In this chapter we introduce definitions and concepts which will be used
in the following: we start with a theoretical result stating that any continuous
function may be approximated by a rational form; we then go into the details
of the approximation of the exponential, with special emphasis for the Padé
and the Chebyshev functions. For the practical use of rational functions we
describe the partial fraction expansion, which will be a key instrument of our
analysis.

3.1 Definitions and basic facts

In this section we consider the problem of approximating a generic continuous
function, from which specific results for the exponential operator follow.
We introduce the fundamental definition:

Definition 3.1.1. A rational function Rµ,ν is a ratio of polynomials, i.e.

Rµ,ν(z) =
πµzµ + πµ−1z

µ−1 + . . . + π0

ρνzν + ρν−1zν−1 + . . . + ρ0
=

Nµ(z)

Dν(z)
(3.1.1)

where the terms πi’s, ρj ’s and z are complex, Dν(z) 6= 0 and the numerator
and the denominator have no common roots; moreover we assume πµ 6= 0 and
ρν 6= 0.
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We denote by R(µ, ν) the set of rational functions of the form (3.1.1).
To define the rational form (3.1.1) µ + ν + 2 parameters have to be fixed;
however it is possible to reduce this number to µ + ν + 1 also in the case
ρ0 6= 0 since we may assume, without loss of generality, that ρ0 = 1; indeed,
if this is not the case, we may resort to it by multiplying numerator and
denominator by the same suitable factor.

We introduce some notation: we denote with C[a, b] the set of all contin-
uous functions in the closed finite interval [a, b] and we consider the so-called
uniform norm

‖f‖C[a,b] = max{|f(x)| : x ∈ [a, b]};
moreover we define the best rational approximation in C[a, b] of order (µ, ν)
as

Eµ,ν(f)C[a,b] = inf{‖f −Rµ,ν‖C[a,b] : Rµ,ν ∈ R(µ, ν)}.
It is always possible to detect the rational function attaining this value, as
stated in the following theorem.

Theorem 3.1.2 ([54]). Let f ∈ C[a, b]; then there exists a rational function
Rµ,ν ∈ R(µ, ν) such that

‖f −Rµ,ν‖C[a,b] = Eµ,ν(f)C[a,b].

Rµ,ν is called a rational function of best rational approximation to f in
C[a, b], or of best uniform approximation to f .

We restrict our analysis to rational functions having numerator and de-
nominator with the same degree ν, the diagonal rational functions, and we
simply write Rν in place of Rν,ν .
We address now the problem of practically evaluating Rν(A)v.

3.1.1 Partial Fraction Expansion

When the dimension of the matrix A is small the vector w = Rν(A)v may be
computed directly by solving the linear system

Dν(A)w = Nν(A)v, (3.1.2)

once the powers of A have been computed to evaluate Nν(A) and Dν(A).
This strategy is not feasible when A is a large matrix, as we are assuming; in
this case a useful tool when handling Rν(A) is its partial fraction expansion.
We stress that we only consider the case of simple poles since this is the case



Chapter 3. Rational Approximations 31

for the rational approximations to exp we will use.
Let ξ1, . . . , ξν be the poles and ω0, . . . , ων the residues of Rν , that is

ω0 = lim
z→∞

Nν(z)

Dν(z)
, ωj =

Nν(ξj)

D′
ν(ξj)

, j = 1, . . . , ν,

then Rν has the following partial fraction expansion:

Rν(z) = ω0 +
ν∑

j=1

ωj

z − ξj
. (3.1.3)

For Rν(A)v expression (3.1.3) reads

Rν(A)v = ω0v +
ν∑

j=1

ωj(A − ξjI)−1v (3.1.4)

which requires the solution of the shifted linear systems appearing in the sum;
in the next chapter we will consider practical methods for solving them.
Since we assume A to be real the poles in (3.1.3) come in complex conjugates,
therefore we can almost halve the number of terms in the sum, resulting in
the expression

Rν(A)v = ω0v +
ν−1∑

j=1

j odd

2ℜ
(

ωj(A − ξjI)−1v

)
+ ων(A − ξνI)−1v (3.1.5)

where ξν denotes the real pole if ν is odd.
We now address the problem of determining good rational approximations

for the exponential.

3.2 Padé approximation

Padé approximations are among the most used rational forms in the context of
approximation theory; in this section, by using the notation in [54], we recall
their definition as stated by Baker in 1973:

Definition 3.2.1. We say that the Padé approximant of order (µ, ν) exists if
there exist two polynomials Nµν of degree µ and Dµν of degree ν such that

i) f(z) −Nµν(z)/Dµν(z) = O(zµ+ν+1) as z → 0,
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ii) Dµν(0) = 1.

Usually the Padé approximants of order (µ, ν) are displayed in a table,
called the Padé table, whose form is reported in Table 3.1.

µ\ν 0 1 2 . . .

0 (0,0) (1,0) (2,0) . . .
1 (0,1) (1,1) (2,1) . . .
2 (0,2) (1,2) (2,2) . . .
...

...
...

...
. . .

Table 3.1: Padé table

In the survey [45], Moler and van Loan listed some of the reasons for prefer-
ring diagonal Padé approximants when considering the exponential operator:
one of them is related to the computational costs, since the same computa-
tional effort is needed for evaluating Rµ,ν for any couple (µ, ν) but the largest
accuracy is attained in the diagonal case. In the case in which the spectrum
of A is in the left half plane another important reason for choosing µ = ν
is related to the errors: indeed for µ 6= ν rounding errors may significantly
affect the computation [45]. For these reasons we refer only to diagonal Padé
functions.

A direct consequence of condition (i) in Definition 3.2.1 is that the Padé
approximation has a local behavior. This represents the main drawback of
the method since the quality of the approximation rapidly deteriorates when
we move away from the origin. In terms of matrices this condition forces to
use the Padé approximation only for matrices with small norm; however a
fundamental property unique to the exponential allows to enlarge the range
of applicability of the Padé approximation. Indeed, for any scalar z and any
integer m

exp(z) =
(
exp(z/m)

)m
. (3.2.1)

This means that if z has large modulus we may always find a scaling factor m
such that z/m is small enough to compute its exponential by means of Padé
approximants; finally the m-th power of this computed value is determined to
approximate exp(z).
For matrices usually an effective technique is to look for a scaling factor of
the form 2s; in this way, once the approximation M to exp(A/2s) has been
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determined, to recover exp(A) the matrix M is squared s times: this procedure
is known as scaling and squaring and goes back at least to [41], dating back
to 1967.
As declared in [45], if properly implemented this procedure is one of the most
effective, at least for moderate size matrices; a confirmation of this is the fact
that the Matlab routine expm implements exactly this procedure.
In [34] Higham presented a revisited implementation of scaling and squaring
Padé, resulting in computational savings; one element of this improvement
was the justification of a smaller scaling factor leading to less squaring steps,
which are expensive and represent a great source of rounding errors.

3.3 Chebyshev approximation

Theorem 3.1.2 gives information about the existence of the best uniform ap-
proximation; for practical implementations the second fundamental ingredient
is to characterize this approximant. In this direction P. Chebyshev detected a
property, now known as Chebyshev alternation, which characterizes the poly-
nomial of best uniform approximation. From that property it is also possible
to characterize the best rational approximation, for which the name Chebyshev
approximation is extended.

R. Varga [71] was among the first to study the Chebyshev approximation
to the exponential. Some years later in [16] Cody, Meinardus and Varga
considered the problem of finding the rational function Rν such that

||Rν(z) − exp(−z)||C[0,+∞) = min
r∈Rν

max
z∈[0,+∞)

|r(z) − exp(−z)| =: ζν .

They solved this problem and listed the coefficients of the numerator and
denominator of the best approximants up to ν = 14; fifteen years later in
[14] the coefficients were listed up to ν = 30. For our experiments, when the
Chebyshev rational forms were required, we used these coefficients.
Moreover in [14] the authors showed that ζν → 0 geometrically; the concluding
result was presented in [32]:

lim
ν→0

ζ1/ν
ν =

1

9.2890 . . .
.

In practice we may use the approximation

|| exp(A) −Rν(A)|| . 10−ν (3.3.1)
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when A is symmetric negative semidefinite, as in our assumption.
Recently Trefethen and coauthors [67], dealing with the numerical compu-

tation of contour integrals, offered an interesting connection among quadra-
ture formulas and rational functions. In particular their analysis perfectly fits
the computation of exp(A)v; moreover they proposed to use the Carathéodory-
Fejér method for recovering the coefficients of the best rational approximation
to the exponential.
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Linear Systems and

Preconditioning

4.1 Overview

In Section 2.4 we described the shift and invert method, proposed in [48] and
[68], for which an essential element is the Krylov space Km((I − σA)−1, v),
for a suitable real parameter σ. To build this space linear systems with the
coefficient matrix (I − σA) need to be solved. Using the partial fraction
expansion of a rational function, as in (3.1.5), requires to solve linear systems
with coefficient matrices of the form (A − ζI), with ζ complex. Thus solving
linear systems of the shifted form

(I − ωA) (4.1.1)

turns out to be a key aspect of our problem; indeed the accuracy on the final
approximation to exp(A)v strongly depends also on the accuracy reached when
solving these linear systems.
When needed we use the symbol Z to denote the shifted matrix (4.1.1); we
stress that this matrix is complex symmetric, that is, if zi,j is the generic (i, j)
entry of Z then the generic (i, j) entry of ZT is zj,i. We address the problem
of solving linear systems of the form

Zx = b. (4.1.2)

To this purpose we restrict our attention to the solvers and the precondition-
ers used in the implementations presented in this thesis; moreover we stress
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that they represent a minor part of the amount of methods for linear systems
currently available, see e.g. [59], [8], [33] and [64] for a recent survey.

4.2 Solving linear systems

Direct methods represent the simplest way for solving linear systems. They
are based on a factorization of the coefficient matrix and the Gaussian elim-
ination method is an example of them: it consists in factorizing the matrix
Z into two triangular factors in such a way that the solution to (4.1.2) may
be computed by solving two triangular systems; in particular, when the co-
efficient matrix is symmetric positive definite its Cholesky factor represents
the coefficient matrix of the consequent systems. However, when the coef-
ficient matrix (4.1.1) is very large direct methods may become prohibitively
expensive, or even impossible to apply. A viable alternative in this situation
is represented by iterative methods: they start from an initial guess and find
successive approximations to obtain more accurate solutions at each step.
We restrict our attention to iterative methods based on Krylov space approx-
imations.

4.2.1 Krylov Methods

Let x0 be an initial guess to the solution, let r0 = b−Zx0 be the corresponding
residual, β = ||r0||, and Km = Km(Z, r0) be the Krylov space of dimension m
defined by Z and r0; thus the standard Lanczos relation (2.1.3) reads

ZVm = VmTm + tm+1,mvm+1e
T
m. (4.2.1)

At the m-th step an approximation xm to x is constructed which belongs to
the space x0 + Km; thus xm = x0 + Vmym for a certain vector ym obtained by
fulfilling some specific condition.
We report the two conditions we will use later on for which we need to in-
troduce the vector rm := b − Zxm, i.e. the residual at the m-th iterate: the
conditions are

i) Galerkin condition
rm ⊥ Km (4.2.2)

ii) Minimal Residual condition

||rm|| = min
x∈x0+Km

||b − Zx||.



Chapter 4. Linear Systems and Preconditioning 37

We now list the methods belonging to this class which we will use in the
following:

• FOM. The Full Orthogonalization Method (FOM) consists in imposing
the Galerkin condition on the residual; for the properties of Krylov spaces
the condition (4.2.2) may be written as

V T
m (b − Zxm) = 0

that, taking into account the Lanczos relation (4.2.1), reduces to the
tridiagonal system

Tmym = βe1. (4.2.3)

• CG. When the coefficient matrix Z is real symmetric positive definite
then Tm is also symmetric positive definite, and the whole procedure can
be simplified so as to derive a coupled-two term recurrence; this method
is known as the Conjugate Gradients (CG) method, see e.g. [59].
An important feature of this method is that the error may be bounded
in terms of the spectral condition number of Z, indeed

||x − xm||Z ≤ 2

(√
κ(Z) − 1√
κ(Z) + 1

)m

||x − x0||Z

and the symbol ‖ · ‖Z denotes the Z norm, that is ‖x‖2
Z = xT Zx. This

relation highlights that the number of iterations to reach a certain ac-
curacy depends on κ(Z).

• Simplified QMR. The Quasi Minimal Residual (QMR) method applies
to nonsymmetric systems, say Bx = b. Let Qm and Wm be the matrices
obtained by applying the nonsymmetric Lanczos method, as described
in Section 2.1, to B and r0 = b − Bx0, β = ‖r0‖; thus at the m-th
step the vector xm = x0 + Qmym is the approximate solution with ym

obtained by imposing certain conditions we define next. For (2.1.4), the
residual rm may be written as

rm = Qm+1(βe1 − Wmym).

If Qm+1 had orthonormal columns, as in the symmetric case, then ‖rm‖ =
‖βe1 − Wmym‖ and one could select the vector ym such that

||βe1 − Wmym|| = min
y∈Rm

||βe1 − Wmy||; (4.2.4)
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this is the criterion of the MINRES method which ensures that ‖rm‖ is
minimized. As discussed in Section 2.1, Qm+1 does not have orthonor-
mal columns; nonetheless, the QMR method imposes the same condition
(4.2.4), thus imposing only a quasi -minimization condition of the resid-
ual, from which the name of the method follows.

In [26] Freund and Nachtigal proposed a simplified version of the QMR
method for J-symmetric and J-Hermitian matrices. In the following we
will consider only J-symmetric matrices and we recall their definition

Definition 4.2.1. Given a nonsingular matrix J ∈ C
n×n a matrix A is

J-symmetric if
AT J = JA.

When the coefficient matrix is J-symmetric then the nonsymmetric Lanc-
zos method may be applied by starting from a vector v1 and the vector
w1 defined as w1 = ς1Jv1 for some ς1 ∈ C, ς1 6= 0 , as suggested in [26].
Starting from these vectors it follows that wn = ςnJvn for any n ≥ 1,
with a consequent simplification of the Lanczos process since we only
need to generate the vectors v1, . . . , vn, without matrix multiplications
with AT or complicated formulas to compute the wi’s.
In our implementation we used a slightly different formulation of sim-
plified QMR and we will present it in Section 4.3, when dealing with
preconditioning.

4.2.2 Solving A
2
x = b

In [70] van der Vorst proposed a useful method for solving equations of the form
f(A)x = v, when A is symmetric positive definite, by exploiting information
obtained by applying the Conjugate Gradient method to Ax = b.
A specific example is the case in which f(A) = A2; we recall here the basic facts
related to this case, which is the one we will encounter in our implementation,
stressing that the basic idea is to solve Ay = b and Ax = y.
Let y0 = 0 be the initial guess for applying CG to the system Ay = b and
consider the space Ki+1(A, r0), r0 being the initial residual. If Ri := [r0, . . . , ri]
and {r0, . . . , ri} is a set of orthogonal vectors spanning Ki+1(A, r0), then the
following relation holds:

ARi = RiTi − ti+1,iri+1e
T
i ,

with Ti a tridiagonal matrix.
The (i + 1)st approximate solution obtained by applying CG to Ay = b
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is yi+1 = RiT
−1
i e1. Let xi+1 be the approximate solution to Ax = yi+1

obtained by applying the Conjugate Gradient with respect to Ki+1(A, r0);
thus xi+1 = Rizi+1 and the Galerkin condition RT

i Axi+1 = RT
i yi+1 be-

comes RT
i yi+1 = RT

i ARizi+1 = RT
i RiTizi+1 from which we get the expression

Tizi+1 = (RT
i Ri)

−1RT
i yi+1 and, taking into account the form of yi+1,

xi+1 = RiT
−1
i (RT

i Ri)
−1RT

i yi+1 = RiT
−1
i (RT

i Ri)
−1RT

i RiT
−1
i e1

= RiT
−1
i T−1

i e1 = RiT
−2
i e1.

With suitable algebraic manipulations a recursive formula for computing
xi+1 is derived; the important facts are that to compute xi+1 is not necessary
to store all the ri’s and only four additional flops per iterations are required
with respect to the computation of yi+1; moreover yi+1 needs not be computed
explicitly if only A2x = b has to be solved.
In [70] a convergence analysis is reported showing the validity of the approach.
This technique is very effective when solving systems with A and A2 as co-
efficient matrices, since in the same run of the Conjugate Gradient method
the two approximate solutions are available; however preconditioning is not
applicable to this method, as we face in Section 6.2.

4.2.3 Complex systems

In general any solver available in literature works also when applied to com-
plex systems, the only difference being that the computations involve complex
arithmetic. However this may be completely avoided by resorting to an equiv-
alent real formulation of the original complex system: assume indeed that
A = R + ıS with R = (A + A∗)/2 and S = (A − A∗)/2ı and let b = bR + ıbI .
Then the solution x = xR + ıxI of (4.1.1) may be computed by solving the
real system

[
R −S
S R

][
xR

xI

]
=

[
bR

bI

]
. (4.2.5)

There are also other possible real formulations, e.g. when A is symmetric the
formulation [

R S
S −R

][
xR

−xI

]
=

[
bR

bI

]

has the same symmetry property than the original system.
To preserve the structure of A Day and Heroux [17] defined a real equivalent
formulation, called the K-formulation, obtained by rewriting each entry in A
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as a 2 × 2 real matrix and Benzi and Bertaccini in [10] considered block pre-
conditioners for this formulation.
In general the advantage in solving (4.2.5), that in any case has a doubled
dimension with respect to the original one, is that it requires only real arith-
metic although there is no guarantee that it is simpler to solve than (4.1.1).
The main motivation for avoiding complex arithmetic when dealing with large
systems is the scarcity of preconditioning software currently available, as no-
ticed in next section.
Implementing an iterative method in complex formulation may be wasteful
also when dealing with matrices in which most of the entries are real and the
complex ones are localized, as often occurs in practice: in this case if, for ex-
ample, the matrix is needed only for matrix-vector products, then one could
keep the complex entries separate from the real, thus achieving computational
savings, as shown in [12].

4.3 Preconditioning linear systems

A common property of Krylov subspace methods is that their convergence
rate depends on the spectral properties of the coefficient matrix, with the
consequence that for some systems the convergence may be very slow. In
these situations a transformation of the coefficient matrix may help and it is
usually achieved by multiplying for a suitable matrix, called preconditioner .
In general preconditioning transforms the system Ax = b into the equivalent
one

M−1
1 AM−1

2 x̂ = M−1
1 b, x̂ = M2x. (4.3.1)

The main purpose of this transformation is to make the system in (4.3.1) con-
verge faster than the original one; moreover the matrices M1 and M2 should be
chosen so that the improvement in the convergence overcomes the additional
costs due to their computation and application.
As special case the identity matrix may be chosen, leading to ad hoc defi-
nitions: the choice M2 = I defines the left preconditioning which results in
the simple formulation M−1

1 Ax = M−1
1 b, while M1 = I corresponds to right

preconditioning AM−1
2 x̂ = b, x̂ = M2x.

Usually when A is symmetric the matrices M1 and M2 are chosen such that
M−1

1 AM−1
2 is symmetric and κ(M−1

1 AM−1
2 ) ≪ κ(A), to ensure a faster con-

vergence than that expected for Ax = b. Clearly a good choice is to select M1

and M2 such that M−1
1 AM−1

2 approximates the identity matrix.
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When the matrix A is large and sparse effective preconditioners are often
defined by using its incomplete factorization; for the LU factorization, for
example, the crux is to compute a sparse lower triangular matrix L and a
sparse upper triangular matrix U so that the residual matrix R = LU − A
satisfies certain conditions, such as having zero entries in fixed positions; the
same is true if the incomplete Cholesky factorization is desired, for which the
residual is R = LLT − A, with L lower triangular matrix.
A common requirement on R is to have a predefined sparsity pattern and
then entries in fixed positions are set to zero; another common criterion is
setting to zero the elements in the factors which are smaller than a fixed
value, usually called drop tolerance; more precisely, the comparison is carried
out with this drop tolerance multiplied by the norm of the inspected row. In
our experiments we applied the latter strategy, both for the incomplete LU
and for the incomplete Cholesky factorizations, with a common drop tolerance
of 10−2.

In some numerical experiments in Chapter 6 we used the Preconditioned
Conjugate Gradients (PCG): it may be applied when the coefficient matrix is
symmetric positive definite and its basic idea is to apply CG to the transformed
system M−1AM−1x̃ = M−1b, with M symmetric positive definite and x̃ =
Mx, see e.g. ([31], Section 10.3).

The systems deriving from the partial fraction expansion (3.1.4) have a
coefficient matrix with a shifted form, complex symmetric but indefinite. For
their solution we used the simplified QMR procedure, as suggested in [26] by
Freund and Nachtigal: for indefinite symmetric systems of the form Ky = c
consider a symmetric matrix M ∈ C

n×n chosen as preconditioner; in this
way by writing M as M = M1M2 the preconditioned system to be solved is
Ax = b with A = M−1

1 KM−1
2 , x = M2y and b = M−1

1 c. It follows that A is
J-symmetric for J = MT

1 M−1
2 and then the simplified QMR method applies.

In our implementation M was chosen as an incomplete factorization of the
coefficient matrix.

4.3.1 Preconditioning complex systems

As mentioned above, preconditioning complex systems is much harder than
preconditioning the real ones, one reason being the limited amount of meth-
ods available, with respect to that for real systems; indeed, as discussed in
[10], every preconditioner for the complex formulation (R + ıS)x = b has a
real equivalent formulation, while there are infinitely many choices of the pre-
conditioner for the real equivalent formulation that do not have any complex
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equivalent.
In Section 5.4 we describe the method proposed by Axelsson and Kucherov

[5] to precondition complex systems by only using real arithmetic, from which
an acceleration technique to approximate exp(A)v derives.

Our complex systems have a coefficient matrix with the very special form
A − γI. Bertaccini in [12] dealt with the problem of solving sequences of
systems of this form, namely A − γjI. He proposed a method tailored to
effectively preconditioning all of them: the idea is to consider an effective
preconditioner for A and then, for each shift value, it is updated to ensure
effectiveness.
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Krylov Space Methods and

Rational Approximations

In Chapter 2 and Chapter 3 we described two distinct classes of approaches
for approximating exp(A)v: the Krylov space methods and the rational ap-
proximations. Connections between these two sets of methods have been in-
vestigated, among the others, by Lopez and Simoncini [42], that analyzed in
depth approximations which combine the Krylov subspace methods and ratio-
nal approximations to the exponential function.
The main result of this chapter is that these two categories are strictly related;
behind the relevance of this unifying view in its own right, this new perspec-
tive allows us to better understand both classes of methods.

5.1 Rational function approximations and Krylov

subspaces

The first interaction among the Krylov space methods and the rational ap-
proximations occurs when we think to rational approximations as a way to
evaluate exp(Tm)e1, with Tm stemming from the Lanczos recurrence (2.1.3)
applied to A and v.
Another strong relation between the two approaches is detected when dealing
with the practical evaluation of Rν(A)v, for a certain rational function Rν

approximating exp. As discussed in Chapter 3, we assume that Rν has ν dis-
tinct poles, in such a way that its partial fraction expansion may be written
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as (3.1.4). To use this expression, the shifted systems (A − ξjI)x = v need to
be solved; for small matrices direct methods represent a viable approach while
Krylov subspace methods represent a good choice for large problems; indeed
the shift invariance property

Km(A − δI, v) = Km(A, v), ∀δ

allows one, for any j, to solve the system (A − ξjI)x = v in the same space

Km(A, v). The result is an approximate solution x
(j)
m and, once solved all

systems, the resulting approximation is

Rν(A)v ≈ ω0v +
ν∑

j=1

ωjx
(j)
m .

Although for our numerical tests we followed another strategy, for our analysis
we assume to solve the shifted systems by imposing the Galerkin condition

(4.2.2) on the residual; then x
(j)
m may be computed as Vmy

(j)
m with y

(j)
m solution

to the tridiagonal system (4.2.3). The resulting approximation is

exp(A)v ≈ VmRν(Tm)e1 =: xK
m. (5.1.1)

The approximation (5.1.1) was obtained by combining the use of the partial
fraction expansion of Rν with a Galerkin method to solve the resulting linear
systems; however, Krylov methods could apply also when computing Rν(A)v
by means of (3.1.2). If, in particular, the Galerkin method is used to solve
these systems, then the orthogonality condition is

V T
m (Dν(A)Vmym −Nν(A)v) = 0

and the approximation to exp(A)v will be

xG
m := Vmym = Vm(V T

mDν(A)Vm)−1V T
mNν(A)v.

In [42] the authors showed that the two approximations xK
m and xG

m tend to
coalesce as convergence takes place.

5.2 Preconditioning linear systems

We restrict our analysis to the approximation to exp(A)v based on the par-
tial fraction expansion of Rν and address the problem of preconditioning the
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linear systems involved.
When using (3.1.4) it is necessary to solve linear shifted systems with coeffi-
cient matrices of the form A − ξjI for different values of ξj . As discussed in
Section 4.3, an effective way for accelerating the solution of linear systems is
to precondition the systems. In our context one possible choice could be to
select a different preconditioner for each pole, in such a way that each system
is solved faster, with a consequent acceleration of the global procedure. How-
ever, to keep under control computational costs and memory requirements,
we only consider using one preconditioner for all poles. Moreover, to preserve
the shifted form of the coefficient matrix, we consider a preconditioner of the
form

(A − τI)−1

for a suitable parameter τ which in general is complex, or real positive. Then,
in place of the linear system (A − ξjI)x = v we solve the system

(A − τI)−1(A − ξjI)x = (A − τI)−1v. (5.2.1)

At this point the crucial part of the approach is to select a parameter τ which
makes the preconditioning effective for all poles.
Before moving in this direction we state one of the main results of our analysis:
we show that if Rν is a rational approximation to exp then the shift and invert
technique applied to Rν is equivalent to preconditioning all systems stemming
from the partial fraction expansion of Rν .

Proposition 5.2.1 ([55]). Let Rν be a rational function with distinct poles
and partial fraction expansion Rν(z) = ω0 +

∑ν
j=1 ωj/(z − ξj). For a chosen

σ > 0, let ySI be the approximation to Rν(A)v obtained by applying the shift
and invert approach with shift parameter σ.

Let yprec = ω0v +
∑ν

j=1 ωjx
(j)
m , where for each j, x

(j)
m is the Galerkin approxi-

mation to x(j) = (A − ξjI)−1v in Km((A − 1
σ I)−1(A − ξjI), v).

Then ySI = yprec.

Proof. Let Vm and Tm be defined by the relation

(I − σA)−1Vm = VmTm + tm+1,mvm+1e
T
m; (5.2.2)

thus applying the shift and invert procedure for approximating Rν(A)v results
in the relation

Rν(A)v ≈ ySI := VmRν

(
1

σ
(I − T−1

m )

)
e1.
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Then, by resorting to the partial fraction expansion of Rν , ySI can be written
as

ySI = Vm


ω0e1 +

ν∑

j=1

ωj

(
− 1

σ
T−1

m + (
1

σ
− ξj)I

)−1

e1


 . (5.2.3)

On the other hand, yprec is obtained as yprec = ω0v +
∑ν

j=1 ωjx
(j)
m , where

each x
(j)
m approximates x(j) = (A − ξjI)−1v. For j = 1, . . . , ν, we multiply by

(A − 1
σ I)−1 the system (A − ξjI)x(j) = v from the left getting

(
A − 1

σ
I

)−1

(A − ξjI)x(j) =

(
A − 1

σ
I

)−1

v; (5.2.4)

we solve it in the space Km((A − 1
σ I)−1(A − ξjI), v), even if the most natu-

ral approximation space would be Km(
(
A − 1

σ I
)−1

(A − ξjI),
(
A − 1

σ I
)−1

v)).
Thanks to the equality

(
A − 1

σ
I

)−1(
A − ξjI

)
= I +

(
1

σ
− ξj

)(
A − 1

σ
I

)−1

(5.2.5)

and for the shift and scaling invariance property of Krylov spaces, we get

Km

((
A − 1

σ
I

)−1(
A − ξjI

)
, v

)
= Km

((
A − 1

σ
I

)−1

, v

)
.

Moreover, relation (5.2.2) can be scaled as

(
A − 1

σ
I

)−1

Vm = −VmσTm − σtm+1,mvm+1e
T
m. (5.2.6)

Therefore, let x(j) ≈ x
(j)
m ∈ Km((A − 1

σ I)−1, v) with x
(j)
m = Vmz

(j)
m . Impos-

ing the Galerkin condition on the residual vector and using (5.2.5) yield the
equation

V T
m

(
I +

(
1

σ
− ξj

)(
A − 1

σ
I

)−1)
Vmz(j)

m = V T
m

(
A − 1

σ
I

)−1

Vme1.

Taking into account (5.2.6), we get for z
(j)
m the system

(
I −

(
1

σ
− ξj

)
σTm

)
z(j)
m = −σTme1,
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or, equivalently, (− 1
σT−1

m + ( 1
σ − ξj)I)z

(j)
m = e1. We have thus shown that

yprec = Vm

(
ω0e1 +

ν∑

j=1

ωj

(
− 1

σ
T−1

m + (
1

σ
− ξj)I

)−1

e1

)
,

which is the same as (5.2.3).

The previous result shows that, when applied to a rational function, the
shift and invert technique may be viewed as a particular way of precondition-
ing the linear systems stemming from the partial fraction expansion.
An additional relevant consequence of the previous result is that we may look
at the shift parameter as the reciprocal of the parameter defining the precon-
ditioner. We will exploit this view point to select a good shift parameter in
the framework of preconditioning, resulting in a larger amount of useful infor-
mations than what is available in the context of spectral transformations.

5.3 Selecting the acceleration parameter

In this section we address the problem of selecting an effective preconditioning
parameter τ := 1/σ for systems (5.2.1).
For simplicity we omit the index for the poles and for the solution to the
corresponding shifted linear systems.

We start by analyzing spectral information about the matrices occurring
in the approach; the preconditioned system corresponding to a pole ξ is

(
I + (τ − ξ)(A − τI)−1

)
x = (A − τI)−1 v; (5.3.1)

if λ is an eigenvalue of A then an eigenvalue of the coefficient matrix in (5.3.1)
may be written as λ̂ = 1 + (τ − ξ)/(λ− τ), implying that the whole spectrum
lies on a curve of the complex plane.
The special case τ = ξ would reduce the system corresponding to ξ to the
unscaled one, for which the selection of the shift parameter is meaningless; we
may then assume τ 6= ξ. Dividing the system (5.3.1) by (τ − ξ) yields

(
(A − τI)−1 − χI

)
x = ṽ, with χ =

1

ξ − τ
, (5.3.2)

and ṽ defined accordingly. The coefficient matrix in (5.3.2) is given by a
real negative definite symmetric matrix shifted by a complex multiple of the
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identity. When Krylov methods are applied to systems having this kind of
coefficient matrix their performance may be fully characterized by using spec-
tral informations of the coefficient matrix, as shown in [25] and [42]. Before
stating these bounds we notice that eigenvalues of the coefficient matrix in
(5.3.2) lie on the horizontal line

y =
ℑ(ξ)

|τ − ξ|2 , with x ∈
[
− 1

τ
+

τ −ℜ(ξ)

|τ − ξ|2 ,
1

α − τ
+

τ −ℜ(ξ)

|τ − ξ|2

]
.

Proposition 5.3.1 ([42, Lemma 5.2]). Given the linear system (Ã − χI)x =
ṽ with Ã symmetric and semidefinite and χ ∈ C, let xm be the Galerkin
approximate solution to x in Km(Ã, ṽ). Let λmax, λmin be the largest and
smallest eigenvalues of Ã − ℜ(χ)I in absolute value, respectively. Then the
error satisfies

||x − xm|| < g(λmin, λmax, ṽ, χ)
1

ρm + 1/ρm

where g is a function of the spectrum of Ã, ṽ and of χ only, while ρ = γ +√
γ2 − 1 and

γ =
|λmin − iℑ(χ)| + |λmax − iℑ(χ)|

|λmin − λmax|
.

The previous result shows that the decay rate of the error in Km(Ã, ṽ)
varies inversely with the quantity γ and then the larger γ, the smaller the
subspace dimension m, that is, the faster the convergence; this suggests us that
γ is the quantity to “manipulate” for accelerating the convergence. This of
course makes sense in the case in which the problem depends upon a parameter
we may vary, as in the case of shift and invert.
In our context, we can apply the result above both to the original partial
fraction expansion approximation, having coefficient matrix A − ξjI, as well

as to the preconditioned system (5.3.1). In the former case, setting Ã = A
and χ = ξ, we obtain

γ(ξ) =
|α − ξ| + |ξ|

−α
. (5.3.3)

Clearly γ(ξ) ≥ 1 and γ ≈ 1 when |α| ≫ |ξ|; then when |α| is very large, as
we are assuming, the error bound predicts very slow convergence of the linear
system.
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In the preconditioned case, setting Ã = (A − 1
σ I)−1 and χ = 1/(ξ − τ), after

simple algebraic manipulations we get

γprec(ξ, τ) =
(τ − α)|ξ| + τ |α − ξ|

−α|τ − ξ| . (5.3.4)

This suggests, as criterion for selecting τ , making γprec(ξ, τ) much larger than
γ(ξ), to accelerate the decay rate of the errors, and then the convergence of
the procedure.
An ideal value τ should accelerate the convergence of (5.2.4) for any pole; this
requirement would be attained if γprec(ξj , τ) > γ(ξj) for any j or, by using a
simpler but more stringent condition, if

min
ξ

γprec(ξ, τ) ≥ max
ξ

γ(ξ);

unfortunately, this inequality turns out to be hard to analyze and another
criterion needs to be detected.
The two parameters γprec(ξ, τ) and γ(ξ) may be related in the following way

γprec(ξ, τ) = F (α, ξ, τ)γ(ξ) (5.3.5)

where

F (α, ξ, τ) =
τ

|τ − ξ| −
α|ξ|

(|α − ξ| + |ξ|)|τ − ξ| =
τ − c

|τ − ξ| , (5.3.6)

with c = α|ξ|/(|α − ξ| + |ξ|). Acceleration on the convergence would then be
attained by choosing the parameter τ which maximizes the function F (α, ξ, τ).
In the following proposition we analyze this function, stating relations useful
for our analysis. Also the value τ attaining the maximum for F (α, ξ, τ) is
characterized.

Proposition 5.3.2 ([55]). Given α and ξ, let F (τ) = F (α, ξ, τ) be defined in
(5.3.6) and assume that ℜ(ξ) > α/2 and ℑ(ξ) 6= 0. Then

i) F (τ) ≥ 1 for τ ≥ τ0 with τ0 = 1
2
|ξ|2−c2

ℜ(ξ)−c and ℜ(ξ) > c;

ii) F (τmax) ≥ F (τ), for every τ , where

τmax = τmax(ξ) =
ℜ(ξ)c − |ξ|2

c −ℜ(ξ)
and F (τmax) =

|c − ξ|
|ℑ(ξ)| ≥ 1;
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iii) γprec(ξ, τ0) = γ(ξ) and lim
τ→∞

γprec(ξ, τ) = γ(ξ).

Proof. Let ξ = ξR + ıξI . We first show that ξR > c. Since c < 0 then clearly
ξR > c when ξR ≥ 0. For ξR < 0, using α < 2ξR we obtain α|ξ| < 2ξR|ξ| ≤
ξR|ξ| ≤ ξR(|ξ| + |α − ξ|), from which

ξR >
α|ξ|

|ξ| + |α − ξ| = c.

To prove (i), we observe that

F (τ) ≥ 1 ⇔ 2(ξR − c)τ ≥ |ξ|2 − c2. (5.3.7)

Using ξR > c, the previous requirement corresponds to imposing τ ≥ τ0.
To prove (ii) we explicitly write

F ′(τ) = −(τ − ξR)

|τ − ξ|3 (τ − c)+
1

|τ − ξ| = 0 ⇔ −(τ − ξR)(τ − c)+ |τ − ξ|2 = 0

from which the expression for τmax follows. Moreover, F is an increasing
function for τ ≤ τmax and a decreasing one otherwise, so that F (τmax) is a
maximum.

To prove that F (τmax) ≥ 1 we notice that F (τmax)
2 = 1 + (c − ξR)2/ξ2

I ,

from which we obtain that (F (τmax) − 1)(F (τmax) + 1) = (c−ξR)2

ξ2
I

. The result

follows by taking into account that

F (τmax) + 1 =
|ξI | + |c − ξ|

|ξI |
.

Finally, the first equality in (iii) follows from F (τ0) = 1 in (5.3.7), while it can
be readily verified that limτ→∞ F (τ) = 1.

We add some remarks to the results of the previous proposition: first
of all we observe that the hypotheses are fulfilled in our situation since we
are assuming |α| large, say |α| ≫ |ξ|, which in particular guarantees that
ℜ(ξ) > α/2 and implies that τmax ≈ |ξ|.
The point 5.3.2(ii) offers the explicit expression for the optimal value τmax

ensuring the best acceleration for the system corresponding to ξ. In view of
5.3.2(iii) we may restrict the choice of the parameter τ to the interval [τ0,∞[,
avoiding values of the parameter that are too close to the extremes since they
do not improve the convergence.
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Proposition 5.3.2 offers a good theoretical analysis of the ratio γprec(ξ,τ)
γ(ξ) ,

although of little use for our purposes; indeed it results in a parameter τmax

whose effectiveness is restricted to the solution of the system corresponding to
the fixed pole whereas we are interested in a value of τ which accelerates the
convergence of (5.2.4) for any j; moreover the parameter τmax depends on the
spectrum of A, through the presence of α.
In the following we determine a condition on τ which is independent of A and
guarantees the acceleration of the general procedure.

In expression (5.3.5) we may exploit our initial assumption |α| ≫ |ξ| al-
lowing the approximations γ(ξ) ≈ 1 and c ≈ −|ξ|; the final result is

γprec(τ, ξ) =
τ

|τ − ξ|γ(ξ) +
|ξ|

|τ − ξ| ≥
τ

|τ − ξ| +
|ξ|

|τ − ξ| =: H(τ, ξ). (5.3.8)

The quantity H(τ, ξ) = τ+|ξ|
|τ−ξ| ≥ 1 also represents an upper bound for

F (ξ, τ) since −c ≤ |ξ|. Interestingly, the quantity H(τ, ξ) has all features we
were looking for: its maximum corresponds to a lower bound for γprec(τ, ξ),
its expression does not depend on any eigenvalue of A and maximizing it is
a simple task: we now proceed with detecting its maximum in the following
lemma.

Lemma 5.3.3 ([55]). Let H(τ, ξ) be defined in (5.3.8). Then

H(|ξi|, ξi) = max
τ>0

H(τ, ξi).

Proof. We have

H(τ, ξ)2 =
(

τ+|ξ|
|τ−ξ|

)2
= τ2+2τ |ξ|+|ξ|2

|τ−ξ|2

= |τ−ξ|2−2τξR+2τ |ξ|
|τ−ξ|2 = 1 + 2(|ξ| + ℜ(ξ)) τ

|τ−ξ|2 .

Since we assume that τ > 0, the value τ = |ξ| is the only critical point
for τ/|τ − ξ|2, its derivative being τ2 − |ξ|2. Moreover τ = |ξ| represents a
maximum for τ/|τ − ξ|2 and consequently for H(τ, ξ)2. Then

H(τ, ξ)2 ≤ 1 + 2(|ξ| + ℜ(ξ))
|ξ|

||ξ| − ξ|2 =
4|ξ|2

||ξ| − ξ|2 = H(|ξi|, ξi)
2

from which the result follows.
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From the previous result we may conclude that, as resulting from Proposi-
tion 5.3.2, the value τi := |ξi| defines an effective preconditioner for the system
corresponding to the i-th pole; however our practical task is selecting just one
preconditioning parameter, among τ1, . . . , τν , which improves the convergence
of all systems and this condition may be expressed in terms of the following
max-min problem

max
τ1,...,τν

min
ξ1,...,ξν

H(τi, ξj). (5.3.9)

The formulation (5.3.9) has several nice features: it is completely independent
of the matrix A; it depends only on the degree and on the poles of the chosen
rational function; moreover we do not need to solve it analytically, since we
are interested only in a finite, usually small, number of terms. For its practical
use, once the rational function has been chosen and its poles are available, we
can explicitly list all values of H(τi, ξj) and decide once for all the optimal
value of τ we can pick up. Moreover, we stress that the function H assumes
the same value on complex conjugate numbers; thus the number of terms in
(5.3.9) is halved, since we are assuming A to be real and then the poles come
in complex conjugate pairs.

We consider the Chebyshev function R14, described in Section 3.3, with
the poles as listed in [14]. The degree 14 is one of the largest used in practice
since, thanks to relation (3.3.1), it corresponds to an approximation with accu-
racy 10−14; however we have selected this value to show that also for delicate
problems the technique described in the previous section is quite simple.

τi = |ξi| ξ1 ξ3 ξ5 ξ7 ξ9 ξ11 ξ13

18.8616 1.1657 1.2516 1.3564 1.4831 1.6260 1.7628 1.8515
14.1496 1.1615 1.2590 1.3905 1.5708 1.8105 2.0910 2.3111
10.9932 1.1515 1.2533 1.4010 1.6254 1.9739 2.4925 3.0433
8.7609 1.1387 1.2391 1.3924 1.6430 2.0832 2.9193 4.3218
7.2115 1.1261 1.2219 1.3727 1.6300 2.1170 3.2233 6.5221
6.2274 1.1160 1.2068 1.3520 1.6045 2.0975 3.3081 8.9488
5.7485 1.1105 1.1981 1.3391 1.5859 2.0716 3.2821 9.5758

Table 5.1: Values of H(τi, ξj), i, j = 1, . . . ν, for Chebyshev with ν = 14.

In Table 5.1 we list the data H(τi, ξj), with the poles sorted with decreasing
imaginary parts. The optimal value of τ for problem (5.3.9) is given by τ1 =
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18.8616, ensuring that γprec(ξ, τ) ≥ H(τ1, ξ1) = 1.1657.
In several numerical examples it turned out that for all degrees the best value
of τ is always associated with ξ1. Therefore we propose to use the parameter

τopt := |ξ1| ⇔ σopt =
1

|ξ1|
. (5.3.10)

The corresponding values associated with Chebyshev rational poles are listed
in Table 5.2 for ν ≤ 20. The entries in the table can be used as follows: if
a final tolerance tol for the approximation of exp(A)v is requested, then the
shift and invert approach may be used with a shift value corresponding to
ν ≥ − log10(tol) (e.g., tol=10−8 yields ν ≥ 8 so that σ = 0.1062 or a smaller
value in the table may be used).

ν 1 2 3 4 5 6 7 8 9 10

σopt 1.7271 0.7565 0.4134 0.2720 0.1988 0.1551 0.1264 0.1062 0.0914 0.0801

ν 11 12 13 14 15 16 17 18 19 20

σopt 0.0711 0.0639 0.0580 0.0530 0.0488 0.0452 0.0421 0.0394 0.0369 0.0348

Table 5.2: Optimal values of the parameter, cf. (5.3.10), for various rational
function degrees.

For comparison purposes we report here the shift parameters derived by
van den Eshof and Hochbruck in [68], with a completely different strategy, see
Section 2.4.

m Em
m(σopt) σopt m Em

m(σopt) σopt

1 6.7 · 10−2 1.73 · 100 11 4.0 · 10−6 9.90 · 10−2

2 2.0 · 10−2 4.93 · 10−1 12 1.6 · 10−6 1.19 · 10−1

3 7.3 · 10−3 2.64 · 10−1 13 6.1 · 10−7 1.00 · 10−1

4 3.1 · 10−3 1.75 · 10−1 14 2.5 · 10−7 8.64 · 10−2

5 1.4 · 10−3 1.30 · 10−1 15 1.0 · 10−7 7.54 · 10−2

6 4.0 · 10−4 1.91 · 10−1 16 4.0 · 10−8 8.67 · 10−2

7 1.6 · 10−4 1.44 · 10−1 17 1.6 · 10−8 7.63 · 10−2

8 6.5 · 10−5 1.90 · 10−1 18 6.6 · 10−9 6.78 · 10−2

9 2.4 · 10−5 1.47 · 10−1 19 2.7 · 10−9 7.62 · 10−2

10 9.7 · 10−6 1.19 · 10−1 20 1.1 · 10−9 6.82 · 10−2

Table 5.3: The tabulated values in [68] of the shift and invert parameter. m
is the number of shift and invert Lanczos iterations.

In [68] the authors suggested to detect the shift parameter from Table 5.3
which corresponds to the desired accuracy, i.e. to Em

m(σopt); thus, if one is
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interested in the accuracy 10−5 then he may arbitrarily choose among 0.19
and 0.147.

The values of Tables 5.2 and 5.3 are similar, even if we determined them in
a fully algebraic way while in [68] numerical procedures were applied for their
selection and there is an explicit dependence on the number of shift and invert
Lanczos iterations. However, this similarity may be viewed as an additional
motivation for the reliability of our approach.

5.3.1 Asymptotic behavior

In selecting the optimal shift parameter we avoided the use of spectral infor-
mation on the matrix A; the reason for this was the desire of offering shift
parameters tabulated once for all, depending only on the rational approxima-
tion to the exponential considered. However, if with this strategy we obtained
a parameter selection of immediate application, on the other side we lost all ad-
ditional information that would improve the strategy. We refer in particular to
spectral information on A that, in some cases, may be useful for recovering the
superlinear convergence, as described in Section 2.2. In practice the only in-
formation we used was the extrema eigenvalues of A; in this sense our analysis
was based on asymptotic arguments and not on the actual eigenvalue distribu-
tion. For better describing this “loss” of information we consider the problem
of approximating the exponential of two matrices having the same extremal
eigenvalues but with different eigenvalue distributions: we consider the matrix
Ã of size n = 3375 stemming from the discretization of the 3D Laplace oper-
ator, whose extreme eigenvalues are λmin ≈ −2329.4 and λmax ≈ −22.597; we
define the singular matrix A = Ã−λmaxI and we consider the diagonal matrix
D with nonzero entries uniformly distributed in the same spectral interval as
A. The vector v is taken as a normalized vector of all ones. We study the per-
formance of the accelerated process with the optimal parameter σopt = 0.053
and with another possible candidate, σmin = 1/ maxj |ℜ(ξj)| = 0.1124, taken
for ν = 14 poles. In the left plot of Figure 5.1 the convergence histories are
plotted for both matrices and both shift parameters. For the matrix A the
shift and invert method with shift parameter σmin is faster than that corre-
sponding to σopt. For the matrix D the fastest convergence corresponds to
σopt, confirming the theory.
In the same plot also the asymptotic estimates H(1/σ, ξ1)

j , j = 1, . . . , m are
reported for σ = σopt (filled squares) and σ = σmin (circles); both curves well
represent the initial convergence phase of the shift-invert procedure with D,
with a slightly better performance for H(1/σopt, ξ1).



Chapter 5 55

In the right plot of Figure 5.1 we report a graphical representation of how the
shift parameter influences the performance of the whole procedure. We con-
sider D as before and plot the number of iterations required by the shift and
invert method for reaching the accuracy of 10−14 when the shift parameter
varies in [10−2, 104]. The symbol “*” refers to the choice σ = σopt. The total
number of iterations does not grow up sensibly for σ > σopt while it reaches
very large values for σ < σopt. It is interesting to notice that in [68, section 6]
the value σ = 0.01 was often used in practical situations but it corresponds,
in our plot, to a much larger number of iterations than that corresponding to
σopt.
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Figure 5.1: Left: Convergence history of shift and invert Lanczos for a matrix
A stemming from a shifted Laplace operator, and for a diagonal matrix D with
uniformly distributed eigenvalues in spec(A). Here σopt = 0.053 and σmin =
0.1124. Reported are also the asymptotic values H(1/σ, ξ1)

j , j = 1, . . . , m, for
σmin (circles) and σopt (filled squares). Right: Number of iterations of shift
and invert Lanczos applied to the diagonal matrix D versus value of the shift
σ; the symbol “*” refers to the choice σ = σopt.

5.4 Real valued method

In this section we describe the method proposed by Axelsson and Kucherov in
[5] to precondition complex systems by only using real arithmetic; by apply-
ing this approach to the approximation of exp(A)v an acceleration technique
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derives.
Assume we need to solve the complex system

(R + ıS)u = b, (5.4.1)

with R = RT , S = ST , u = uR + ı uI and b = bR + ı bI ; then fix a parameter
η > 0 and consider the equivalent real form

(
R − ηS

√
1 + η2S√

1 + η2S −R − ηS

)(
uR

z

)
=

(
bR

(bI − ηbR)/(
√

1 + η2)

)
,

where z = (ηuR − uI)/
√

1 + η2. If R + ηS is nonsingular then, by applying
the Schur complement reduction, the real part of the solution, that is uR, may
be recovered by solving the real symmetric system

CuR = w, (5.4.2)

with C = R−ηS+(1+η2)S(R+ηS)−1S and w = bR +S(R+ηS)−1(bI −ηbR).
The imaginary part, uI , will be characterized as the solution to the system

R uR − S uI = bR. (5.4.3)

The most costly part of this technique is the solution of (5.4.2) and in [5] the
key idea is to precondition it through the matrix B = R + ηS, by getting the
equivalent system

MuR = w̃ (5.4.4)

with M = B−1C and w̃ defined accordingly. The matrix M is shown to be
symmetric positive definite in [5, Remark 1]; nevertheless at this point the
parameter η becomes fundamental for guaranteeing that the matrix M in
(5.4.4) is well conditioned so that (5.4.4) is easily solvable.
We report the result in [5] which detects the optimal value of η when R and
S have certain properties:

Theorem 5.4.1 ([5, Theorem 2.1]). With the notation above, assume that R
is symmetric positive definite and S is symmetric positive semidefinite; then
the condition number of M is minimized when

η =
λ̂

1 +
√

1 + λ̂2

and λ̂ is the maximal eigenvalue of R−1S.
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5.4.1 Real valued method and the partial fraction expansion

In our context we face complex systems when computing the partial fraction
expansion of a rational approximation to the exponential. Indeed, if Rν is
such a function, the evaluation of Rν(A)v by means of the expansion (3.1.4)
entails solving complex systems. The crucial aspect is that they all have the
shifted symmetric form (A− ξI)u = v for a fixed pole ξ = ξR + ıξI . Rewriting
our problem in the notation of the method of [5] leads to R = A − ξRI and
S = −ξII. Substituting in the coefficient matrix of the system (5.4.2) we
obtain

C = −B + 2η ξI I − (1 + η2)ξ2
I B−1,

where the preconditioner becomes B = −(R + ηS) = (ξR + η ξI)I − A; the
resulting preconditioned system reads

MuR = B−1w, (5.4.5)

with M = B−1C = −I + 2ηξIB
−1 − ξ2

I (1 + η2)B−2 and w = v − η ξIB
−1v.

Moreover for the imaginary part of the solution the system (5.4.3) simplifies
into the expression uI = 1

ξI
(−A + ξRI)uR + 1

ξI
v, which only involves matrix-

vector multiplications.
The crux of the procedure is then represented by the system (5.4.5) for which
iterative methods are necessary for the presence of B−1. However it is real and
we will show in the next proposition that the matrix −M is symmetric positive
definite for any choice of η > 0 and for all poles, and thus the Conjugate
Gradient method can be used.

Proposition 5.4.2 ([55]). Let uR be the solution to MuR = B−1w (cf.
(5.4.5)) and for τ = ξR + η ξI , η > 0, consider the (preconditioned) linear
system

(τI − A)−1(A − ξI)u = (τI − A)−1v, (5.4.6)

and set K = (τI − A)−1(A − ξI). Then M = −K∗K ∈ R
n×n. Moreover, uR

is the real part of the solution of K∗Ku = K∗(τI − A)−1v.

Proof. Let R = A − ξRI and S = −ξII, and note that R and S commute, so
that

K∗K = (R + ηS)−2(R − ıS)(R + ıS) = (R + ηS)−2(R2 + S2)

= I + 2ηξI(R + ηS)−1 + ξ2
I (1 + η2)(R + ηS)−2 = −M.

Therefore, K∗K is real symmetric and M is negative definite. Analogously,
we can write K∗(τI − A)−1v = (R + ηS)−2(R − ıS)v whose real part is given
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by ℜ(K∗(τI − A)−1v) = (R + ηS)−2Rv = (R + ηS)−1w. Therefore, the real
part of the equation K∗Ku = K∗(τI −A)−1v is given by −Mℜ(u) = −B−1w,
from which it follows that uR = ℜ(u).

The connection among (5.4.5) and (5.4.6) established in the above propo-
sition is very important; indeed it shows that (5.4.5) is nothing but the normal
equation of (5.4.6) for a special choice of the acceleration parameter. The mat-
ter of importance is, at this point, the fact that also (5.4.5) is equivalent to
the preconditioned system (5.2.1) described in the context of accelerating the
computation of the partial fraction expansion of Rν(A) by means of Krylov
methods. The previous result thus allows looking at the method proposed in
[5] in the framework of preconditioning the linear systems stemming from the
partial fraction expansion of a certain rational function.

5.4.2 Selecting the acceleration parameter

Theorem 5.4.1 taken from [5] suggests the optimal value η to consider to reach
the fastest convergence for (5.4.5); however this theorem only applies when the
matrix R is symmetric positive definite and S is symmetric positive semidef-
inite. In our case R = A − ξRI which in general is not definite. Moreover
Theorem 5.4.1 would detect the optimal value η corresponding to a fixed pole
ξ; rather our aim is to define just one preconditioner to be applied to all sys-
tems to save computational costs and memory storage, since the construction
of a preconditioner is generally expensive; on the other hand this single pre-
conditioner must be effective for each system to be solved. In this section we
devise a parameter which satisfies these conditions.

To fulfill our purposes we define B = τI − A as the single preconditioner
to be applied to (A−ξjI)x = v for any pole ξj ; moreover, to take into account
the features of each system, we choose τ = ℜ(ξj) + ηjℑ(ξj), thus allowing
ηj to change accordingly to each pole. We will show that in this way we
reach our goal of defining a single preconditioner and reaching a good global
acceleration.
By allowing η to change also the matrix M in (5.4.5) will change. Next
proposition provides sharp bounds for the condition number of M that do
not depend on the spectrum of A nor require further hypotheses on A − ξI;
these bounds depend upon τ and then, by minimizing them, we will reach the
optimal τ .
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Proposition 5.4.3 ([55]). Assume that the hypotheses of Proposition 5.4.2
hold and that τ > max{0, ξR}. Then

κ(M) ≤ max

{ |ξ|2
τ2

,
|α − ξ|2
(α − τ)2

} |τ − ξ|2
ξ2
I

. (5.4.7)

Moreover, if it also holds that τ ≤ |ξ|, then |α−ξ|2
(α−τ)2

≤ |ξ|2
τ2 and hence

κ(M) ≤ |ξ|2
ξ2
I

|τ − ξ|2
τ2

. (5.4.8)

Proof. Writing −M = (R + ηS)−2(R2 + S2) = (R− ηξII)−2(R2 + ξ2
I I) we get

spec(−M) =

{
(λ − ξR)2 + ξ2

I

(λ − τ)2

∣∣∣∣λ ∈ spec(A)

}
.

For λ ∈ [α, 0], let µ ∈ spec(−M), µ = g(λ) = λ2−2λξR+|ξ|2
(λ−τ)2

. We have

g′(λ) = 2
λ(ξR − τ) + τξR − |ξ|2

(λ − τ)3
= 0 ⇔ λ̂ :=

τξR − |ξ|2
τ − ξR

.

Since τ > ξR, it holds that g′(λ) > 0 only for λ > λ̂, hence

g(λ̂) =
ξ2
I

|τ − ξ|2 ≤ µ ∀µ ∈ spec(−M). (5.4.9)

To derive an upper bound, we notice that since λ̂ is the only critical point
and it is associated with a minimum, the maximum of g in [α, 0] is given
by max{g(α), g(0)}. Collecting this bound and (5.4.9), the bound (5.4.7) for
κ(M) follows.

We next assume that τ ≤ |ξ| holds for all poles ξ. We write

g(α) − g(0) =
α2(τ2 − |ξ|2) − 2ατ(ξRτ − |ξ|2)

τ2(τ − α)2
.

For τ ≤ |ξ| the first addend in the numerator of the last expression is negative.
For the second addend, we separately treat the cases of positive and negative
pole’s real part. If ξR < 0, the second addend gives −2ατ(ξRτ − |ξ|2) ≤ 0. If
ξR > 0, we can get −2ατ(ξRτ − |ξ|2) ≤ −2ατ(τ2 − |ξ|2) ≤ 0. We have thus
shown that g(α) − g(0) ≤ 0, which completes the proof.
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The bound in (5.4.7) may be rather sharp, its sharpness depending on
whether the extremes of the function g defined in the proof are attained.
For giving an illustration of the previous bound we consider the following
example:

Example 5.4.4. We consider the Chebyshev rational form of degree ν = 14
as approximation to the exponential; we choose A as the 125 × 125 ma-
trix obtained by the discretization of the 3D Laplacian with homogeneous
boundary conditions; the matrix is shifted so as to have zero largest eigen-
value. Table 5.4 reports the bound in (5.4.7) corresponding to these data,
when only the poles with positive imaginary part are considered. We used
τopt = minj=1,...,ν |ξj | = 5.7485; the reason of this choice will be clarified in
the next.

ξj (ν = 14) κ(M(ξj)) estimate (5.4.7)

-8.8978 + 16.631i 19.115 19.115
-3.7033 + 13.656i 8.9609 8.9609
-0.2087 + 10.991 4.7174 4.7315
2.2698 + 8.4617i 2.7012 2.7152
3.9934 + 6.0048i 1.7001 1.7082
5.0893 + 3.5888i 1.2122 1.2132
5.6231 + 1.1941i 1.0097 1.0110

Table 5.4: Condition number of M and its upper bound, as the poles vary.

Our aim is now to consider a single parameter τ and to this purpose we

will start from the bounds in (5.4.8). Let Wξ(τ) = |τ−ξ|2
τ2 be the part of the

upper bound in (5.4.8) that depends on τ ; then

Wξ(τ)′ =
2(τ − ξR)τ2 − 2τ((τ − ξR)2 + ξ2

I )

τ4
=

2

τ3
(τℜ(ξ) − |ξ|2)

so that

Wξ(τ)′ = 0 ⇔ τ∗(ξ) =
|ξ|2
ℜ(ξ)

.

If ℜ(ξ) < 0, then Wξ(τ∗) is a maximum and τ∗(ξ) is negative. We thus restrict
our attention to the poles with positive real parts. Moreover, we observe that
for τ > τ∗ and ℜ(ξ) < 0, the function Wξ is decreasing, so that the larger τ
the smaller the bound for ℜ(ξ) < 0. We then recall that for (5.4.8) to hold
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the selected parameter τ must satisfy

ℜ(ξ) ≤ τ ≤ |ξ|, ∀ξ.

Let the poles be sorted as ℜ(ξ1) ≤ · · · ≤ ℜ(ξν). Then τ∗(ξν) ≥ ℜ(ξj) for j ≤ ν
and we define

τopt := min

{
min

j=1,...,ν
|ξj |, τ∗(ξν)

}
(5.4.10)

as the parameter to use for accelerating the convergence of this real valued
procedure.

Remark 5.4.5. For the Chebyshev poles of Table 5.4 it holds that
minj=1,...,ν |ξj | = |ξν | so that

τopt = |ξν |.

To have an idea of the effectiveness of our choice of τ we consider the
following example:

Example 5.4.6. We consider the 125× 125 matrix stemming from the finite
difference discretization of the 3D Laplace operator on the unit cube and
Dirichlet homogeneous boundary conditions scaled by a factor t = 0.1; v
is a normalized normally distributed random vector; the Chebyshev rational
function of degree ν = 8 is considered. In Figure 5.2 we report the total
number of Conjugate Gradient iterations required by the method to solve all
systems MuR = ŵ with accuracy 10−10 (see Algorithm AK in Section 6.2),
for different values of the parameter τ ∈ [0, 7]. The symbol “*” indicates the
number of iterations for the choice τ = τopt, showing the high quality of the
a-priori selected parameter.

The analysis above conforms with the multiple choice in [5], although in
our case extremely fast convergence cannot be achieved for all shifted systems.

In Section 6.2 we will present the implementation details of this procedure
and numerical tests comparing it with other approaches.
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Figure 5.2: Total number of iterations for the variant of the Axelsson-Kucherov
method applied to exp, as a function of the parameter τ . The symbol “*” refers
to the number of iterations for τ = τopt.
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Numerical Experiments

In this chapter we describe the implementation of the methods described so
far and we present their numerical performance:

- Partial Fraction Expansion (PFE). Computation of (3.1.5) by explicitly solv-
ing each complex shifted symmetric system;

- Standard Lanczos. Classical Lanczos approach described in Section 2.1;

- AK. Variant of method by Axelsson and Kucherov described in Section 4.3.1;

- Shift-Invert Lanczos (SI). Acceleration procedure described in Section 2.4;

- Krylov Plus Inverted Krylov (KPIK). Method described in Section 2.5.

We test these methods on the computation of vectors of the form exp(A)v
with matrices A stemming from realistic applications; we compare their per-
formance, by separately handling the case when all linear systems involved are
solved by direct methods from the one in which iterative methods are used;
we also discuss and test possible strategies for improving PFE and SI.
In the last part of this chapter we address the important task of integrating
PDEs for which the computation of vectors of the form exp(A)v is crucial; to
this purpose we compare some of the methods listed above with the Crank-
Nicolson approach, which is largely used for problems of this kind. The results
are interesting and very promising for PFE and SI.

Most of the numerical tests presented in this chapter have been published
in [55].
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For PFE and AK the degree ν of the chosen rational approximation deter-
mines the number of linear systems to be solved; moreover for all methods we
set the final accuracy to 10−ν . Thus the value ν plays an important role in the
numerical examples, and we present tests with different values of ν, ranging
from 4 to 13. Once fixed ν we selected the shift parameter as the value in
Table 5.2 corresponding to it; however a single parameter could be used, for
example the one corresponding to a large degree, say ν = 14.
Interestingly, we observed that when implementing PFE, AK and SI the so-
lution of linear systems required over 95% of the total computational efforts,
representing the only bottleneck of these methods.

We focus on matrices which have eigenvalues in a large interval of the
negative real axis to stress the need of accelerating; indeed, as described in
Theorem 2.2.1, when the spectrum is large the convergence is expected to be
slow. However the presence of very small eigenvalues often makes the norm
of the final solution exp(A)v become very small, forcing the use of very small
stopping tolerances; to avoid this problems we introduced a scaling factor t
and worked on the computation of the vector exp(tA)v. The value t may be
actually interpreted as a time variable, as actually is in the practical integra-
tion of differential equations. We used the value t = 0.1 which ensures in any
example a solution with norm larger than 10−4.

The numerical experiments of the first sections were performed in Matlab
[44], version 7.0.1 (R14-SP1) while for the others Matlab 7.4 was used. CPU
timings were obtained with the function cputime.

6.1 Implementation details for SI

As discussed in Section 2.4, when implementing the shift and invert technique
at each step the construction of the new basis vector requires the solution of a
linear system with coefficient matrix I −σA. When using an iterative method
as inner solver, a stopping tolerance tolinn needs to be set. Such tolerance
should be in accordance with the required shift and invert final accuracy, say
tolfin. In the following we present numerical experiments in which the inner
tolerance is fixed a priori, namely tolinn = 0.01 · tolfin, and others in which
a tuning technique is used, as in [68], by taking advantage of the relaxation
strategy [63] we will describe in Section 6.6.
In Section 2.2 a posteriori error estimates were defined to figure out the reached
accuracy on the Standard Lanczos approximation. When implementing shift
and invert one could directly apply one of the a posteriori estimates (2.2.6) or
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(2.2.7), the only difference being the argument of the functions involved; the
estimate (2.2.7), for example, in this context reads

tm+1,m|eT
m exp((I − T−1

m )/σ)e1|, (6.1.1)

while the more accurate estimate (2.2.6) becomes

tm+1,m|eT
mϕ1((I − T−1

m )/σ)e1|. (6.1.2)

A well known problem of estimate (6.1.1) is that in the very first iterates it may
highly underestimate the true error, with the unpleasant effect of stopping the
process when only an inadequate approximation is given. To limit this problem
we thought to an alternative estimate for the first iterates; we found effective
monitoring the relative quantity

tm+1,m|eT
m exp((I − T−1

m )/σ)e1|/|eT
1 exp((I − T−1

m )/σ)e1| (6.1.3)

and as soon as it becomes smaller than a selected parameter, say τ , we go
back to (6.1.1). Numerical experiments suggested us that the value τ = 10−1

is a good choice. This safeguard procedure should in practice replace (6.1.1)
until the components of the approximation vector exp((I−T−1

m )/σ)e1 take the
expected exponential pattern.

Example 6.1.1. In this example we compare the effectiveness of the a poste-
riori estimates (6.1.1) -(6.1.3). We consider the approximation of exp(0.1 A)v,
where A is the 4900×4900 matrix stemming from the 2D Laplace operator
with Dirichlet homogeneous boundary conditions, v is the normalized vector
of all ones, and the safeguard parameter is equal to 0.1.

In Figure 6.1 we observe that the estimate (6.1.2) catches perfectly the
pattern of the curve for the true error, even if there is a distance among the
two curves of about two orders of magnitude.
The estimate (6.1.1) has a completely wrong behavior for almost 20 iterates
but then it results in a good accuracy. The safeguard strategy (6.1.3) gives
a right estimate of the true error, even at the beginning of the process. In
conclusion, (6.1.3) and (6.1.2) seem to be accurate estimates of the true error;
however, due to the lower effort in evaluating (6.1.3), we use it in our numerical
experiments.
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Figure 6.1: Convergence history of Shift and Invert and different error esti-
mates. Safeguard parameter for (6.1.3) equal to 0.1 (see text).

6.2 Implementation details for AK

We recall the framework we are in: we are interested in evaluating the term
Rν(A)v used to approximate exp(A)v. For simplicity and without loss of
generality, we assume ν to be even. For odd degree rational approximation,
the real shifted system corresponding to the real pole can be solved explicitly
without resorting to the method discussed above.
We sketch the algorithm to implement the procedure described in Section 5.4
obtained by considering our modification of the real valued method proposed
in [5]. We recall that ξ1, . . . , ξν are the poles and ω0, ω1, . . . , ων the residuals
of Rν , while for the definition of M and the other matrices we refer to (5.4.5)
and the related expressions:

Algorithm AK.

Given A, v, ξ1, . . . , ξν , ω0, ω1, . . . , ων

i) Choose a parameter τ > 0

ii) Set B = τI − A; w1 = B−1v; w2 = B−1w1

iii) For each pole ξj = ξR + ıξI , j = 1, 3, 5, . . . , ν − 1:
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– Solve MuR = ŵ with M = −I + 2(τ − ξR)B−1 − |τ − ξ|2B−2

and ŵ = +w1 − (τ − ξR)w2

– Compute uI = 1
ξI

(−AuR + ξRuR + v)

– Set xj = uR + ıuI

iv) Compute yAK = ω0v + 2
ν−1∑

j=1

j odd

ℜ(ωjxj)

As already mentioned, since the expression for M involves B−1, the solu-
tion of MuR = ŵ is performed iteratively. It becomes thus necessary to fix the
accuracy to impose on these inner systems, since it will influence the quality
of the final approximation to exp(A)v. In particular, the stopping tolerance
needs to be smaller than the accuracy requested.
In our experiments the required accuracy on the final approximation is tolfin =
10−ν and the inner tolerance tolinn = 10−ν−2 delivers a sufficiently accurate
final solution to the exponential. No further study was attempted to refine
this value.

Each matrix-vector multiply with M requires solving two systems with
B = τI − A, and this is related to the fact that M is the coefficient matrix
of the normal equation, as shown in Proposition 5.4.2. We consider solving
systems with B both with direct and iterative methods.

Example 6.2.1. In this example we compare the original method in [5] with
our variant on the data of Example 5.4.6 with three different dimensions for
the matrix A. Once computed the Cholesky factor of B the systems are solved
by resorting to the Matlab command “\” applied to the resulting triangular
systems.
We compare the original method, where an optimal B = B(τ) is determined
and factorized for each pole, with Algorithm AK, where a single suboptimal
B is computed and factorized at step (ii) of the algorithm.

The numbers in Table 6.1 show that the new strategy improves perfor-
mance, especially on large problems, while the total number of iterations does
not significantly grow, compared to the optimal shift selection in [5].

In the case an iterative solver is used, one is faced with the problem of
efficiently solving two systems with B at each iteration of the solver with
M . By exploiting the positive definiteness of B, we consider the following
alternatives: a) Two calls to the Conjugate Gradients in sequence; b) Two
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original method Algorithm AK
n tol time (# its) time (# its)

10−5 0.02 (10) 0.02 ( 11)
125 10−8 0.04 (23) 0.23 ( 32)

10−11 0.05 (40) 0.05 ( 61)
10−14 0.07 (69) 0.09(105)

10−5 1.59 (11) 1.31 ( 11)
3375 10−8 2.92 (25) 2.23 ( 28)

10−11 4.80 (46) 4.08 ( 53)
10−14 6.87 (72) 5.97 ( 85)

10−5 30.42 (11) 22.14 ( 11)
15625 10−8 55.08 (25) 31.77 ( 27)

10−11 84.32 (46) 54.90 ( 51)
10−14 119.97 (74) 77.73 ( 84)

Table 6.1: Comparison of the original method in [5] and Algorithm AK for
Example 5.4.6. Direct methods are used to solve the linear systems with B.

calls to Preconditioned Conjugate Gradients in sequence; c) One call to the
method due to van der Vorst and described in Section 4.2. We consider the
problems of Example 5.4.6 and Example 6.2.2 described next.

Example 6.2.2. In this example we approximate exp(tA)v, t = 0.1, where
the n × n matrix A stems from the finite difference discretization of the 2D
operator

L(u) = (a(x, y)ux)x+(b(x, y)uy)y, a(x, y) = 1+y−x, b(x, y) = 1+x+x2

on the unit square, with Dirichlet homogeneous boundary conditions [68]. Two
grid refinements are considered; v is a normalized normally distributed random
vector.

The numbers in Table 6.2 show that the variant that simultaneously ap-
proximates the systems with B and B2 is faster than both the standard CG
method and its preconditioned version. It is important to notice that in the
approach proposed in [70] preconditioning is not applicable, nonetheless, its
performance is superior to that of standard PCG applied twice. We should
mention that when using the approach in [70], one could employ a different
(optimal) B for each shifted system at no additional cost. We decided to
maintain Algorithm AK for consistency with the case of the direct solves.
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n tol AK + Variant AK + CG AK + PCG

Example 5.4.6

10−5 0.02 0.04 0.05
125 10−8 0.04 0.07 0.08

10−11 0.08 0.15 0.17
10−14 0.15 0.29 0.32

10−5 0.42 0.65 1.22
3375 10−8 0.77 1.75 2.91

10−11 1.73 3.88 6.07
10−14 2.81 6.69 11.11

10−5 3.20 4.57 8.61
15625 10−8 5.88 13.31 21.21

10−11 13.42 28.07 44.51
10−14 22.10 52.51 83.22

Example 6.2.2

10−5 0.68 1.38 1.10
2500 10−8 1.69 4.02 3.01

10−11 3.43 8.32 8.46
10−14 5.86 15.70 12.58

10−5 3.67 9.38 7.69
10000 10−8 8.60 28.54 22.34

10−11 17.50 61.85 47.12
10−14 29.54 122.99 89.27

Table 6.2: CPU time of Algorithm AK when different iterative schemes are
used to solve with B = τI − A.

6.3 Using direct methods

In this section we compare the performances of Standard Lanczos, SI, PFE
and AK when the linear systems in AK, PFE and SI are solved with a direct
method.
Reordering the entries of the coefficient matrix may result advantageous; thus
we always applied the minimum degree reordering , see e.g. [9]. More precisely,
to any coefficient matrix we applied the Matlab routine symamd and, once
computed the Cholesky factorization of the reordered matrix, we solved the
resulting triangular systems by resorting to the Matlab command “\”.

In Table 6.3 we show the effectiveness of the minimum degree reordering
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applied to SI and AK; we consider the matrix σI − A with A stemming from
the 3D discretization of the Laplace operator on the unit cube and Dirichlet
homogeneous boundary conditions and σ = 0.053 corresponding to ν = 14 in
Table 5.2. The data in the table are the numbers of nonzero entries of the
Cholesky factor of σI − A before and after the minimum degree reordering.
Numerical experiments with other shift parameters showed similar results.

n lexicographic minimum degree

53 2,729 1,344
153 715,289 195,219
253 9,405,649 2,400,509

Table 6.3: Example 6.3.1. Number of nonzero entries for the Cholesky factor
of σI − A, σ = 0.053

The results of Table 6.3 clearly shows the advantage of reordering the ma-
trix for the storage requirement; moreover, in all numerical experiments we
also experienced computational saving in the elapsed time to solve the conse-
quent systems.
The coefficient matrices for PFE have the form A − ξjI, where we consider
the poles ξj of the Chebyshev approximation to the exponential. In general
these matrices are indefinite, preventing the use of the Cholesky factorization.
However we reordered the matrices with the minimum degree ordering and we
solved the resulting systems by means of the backslash Matlab command “\”.
In these cases we observed that the reordering accelerates the solution of the
consequent systems.
For PFE we also considered a different strategy: once computed the LU fac-
torization of A − ξjI we solved the systems with the computed factors. This
strategy was more time consuming than the one described before and then we
ignored it.

In all tables of this section we list the CPU time corresponding to Stan-
dard Lanczos, SI, PFE and AK, including the factorization time when needed;
moreover for Lanczos and SI we report, in parentheses, the dimension of the
final approximation space. For AK we report the global number of CG iterates
needed for the systems with the matrix M = M(ξj) defined in Section 5.4.1.

For SI and Lanczos the final stopping tolerance is 10−ν ; for AK and PFE
ν represents the degree of the diagonal Chebyshev rational function while for
CG in AK the tolerance 10−ν−2 is used.
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Example 6.3.1. We consider the n×n matrix stemming from the finite differ-
ence discretization of the 3D Laplace operator on the unit cube and Dirichlet
homogeneous boundary conditions, with eigenvalues in [−179.14,−12.862] for
n = 125. We approximate the vector exp(tA)v, with t = 0.1, v a normal-
ized normally distributed random vector and for three different discretization
refinements.

Standard Part.Fract. AK Shift-Invert
n tol Lanczos Expansion Lanczos

10−5 0.01 (13) 0.01 0.02 (11) 0.01 ( 7)
125 10−8 0.01 (18) 0.01 0.03 (32) 0.01 (11)

10−11 0.01 (22) 0.03 0.05 (61) 0.01 (14)
10−14 0.01 (24) 0.03 0.08(105) 0.01 (17)

10−5 0.14 (47) 1.32 1.33 (11) 0.48 ( 8)
3375 10−8 0.21 (55) 2.13 2.23 (28) 0.65 (13)

10−11 0.35 (67) 2.88 4.07 (53) 0.85 (19)
10−14 0.52 (77) 3.70 5.94 (85) 1.06 (25)

10−5 2.69 ( 89) 30.35 22.05 (11) 11.49 (10)
15625 10−8 2.95 ( 93) 51.61 31.60 (27) 11.88 (11)

10−11 4.76 (113) 69.03 54.68 (51) 14.22 (17)
10−14 7.25 (130) 90.20 77.31 (84) 16.96 (24)

Table 6.4: Example 6.3.1. CPU time (and number of iterations in parenthesis
when appropriate) when systems with shifted matrices are solved with a direct
method. Different dimension problems and various stopping tolerances are
reported.

Firstly, we note that the CPU time required by all methods sensibly grows
up when the dimension of the problem increases. In particular, the ranking
among the methods is the same independently of the dimension of the problem,
even if the differences are less evident for n = 125 since the problem is very
small.
In terms of CPU time we notice that standard Lanczos is always the most
efficient, while the second best performance is offered by shift and invert.
Nevertheless, the memory requirements for Lanczos considerably increase with
the dimension of the problem. For handling the largest case one could resort
to a two pass strategy, as described in Section 2.3; it would result in an almost
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doubled CPU time but in the storage of few vectors. In this way Lanczos
would employ a CPU time similar to that of SI.
For SI we highlight that the dimension of the approximation space does not
grow when the problem dimension increases, as pointed out in [68].
The Axelsson-Kucherov method performs worse than both SI and Standard
Lanczos with a significant difference in CPU time. The positive aspect of this
method are the limited storage requirements, since only the Cholesky factor
and the vectors resulting from CG need to be stored. Moreover for loose
tolerances the difference with standard Lanczos and SI is less evident; this is
coherent with the original context in which the method was proposed [5].
Furthermore we stress that for the largest problem AK performs better than
PFE, although it is not comparable with SI and standard Lanczos, suggesting
its use for other matrix functions for which the standard Lanczos method does
not show superlinear convergence.

In summary, in this example the Standard Lanczos method performs bet-
ter than the considered acceleration strategies; the explanation of this phe-
nomenon is in the spectra of the matrices involved; for n = 125, indeed, the
smallest eigenvalue has modulus less than 200, which still allows standard
Lanczos to converge fast. In the following example we look at a different
problem:

Example 6.3.2. We consider the vector v and the matrices A defined in Ex-
ample 6.2.2.
We stress that these matrices have large spectra; indeed, for the coarser dis-
cretization, the spectrum is contained in the interval [−35424,−25.256] and
we may expect a slow convergence for Standard Lanczos in view of Theorem
2.2.1, as confirmed by the numerical experience.

In Table 6.5 we notice a completely different scenario with respect to the
previous one; the shift and invert method always offers the best performance,
both for the elapsed time and the memory requirements. The standard Lanc-
zos does not work satisfactorily on these problems, especially if memory con-
straints are imposed. The reason of this behavior lies in the spectral properties
of the considered matrices: indeed, the smallest eigenvalues of the two matri-
ces have very large modulus, thus making the standard Lanczos converge very
slowly, as described in the bounds of Theorem 2.2.1.
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Standard Part.Fract. AK Shift-Invert
n tol Lanczos Expansion Lanczos

10−5 16 (194) 0.22 0.29 (11) 0.12 (10)
2500 10−8 18 (200) 0.33 0.50 (27) 0.13 (11)

10−11 53 (242) 0.44 0.92 (51) 0.20 (19)
10−14 111 (280) 0.53 1.39 (84) 0.24 (24)

10−5 615 (406) 1.24 1.39 ( 9) 0.67 (11)
10000 10−8 610 (406) 1.87 2.53 (25) 0.66 (11)

10−11 1221 (484) 2.55 4.71 (47) 0.94 (17)
10−14 - (> 500) 3.20 7.49 (82) 1.24 (23)

Table 6.5: Example 6.3.2. CPU time (and number of iterations in parenthesis
when appropriate) when systems with shifted matrices are solved with a direct
method. Different dimension problems and various stopping tolerances are
reported.

6.4 Using iterative methods

In this section we compare the methods AK, PFE and SI when all systems
are solved by an iterative method. For AK and SI the result is an inner-outer
procedure, requiring the definition of a suitable inner tolerance.
For comparison purposes we report the data from the previous tables, namely
Table 6.4 and Table 6.5, for the standard Lanczos method.

We list the methods considered and their main features:

- PFE+QMR. Partial Fraction Expansion where each complex shifted sys-
tem is solved by a preconditioned simplified QMR method, as described
in Section 4.2. The preconditioner is a complex symmetric LDLT in-
complete factorization of the shifted matrix, obtained by a simple mod-
ification of the factors computed with the Matlab luinc factorization
with dropping tolerance equal to 10−2. The system stopping threshold
is 10−ν .

- SI+PCG. Shift-Invert Lanczos where systems with I − σA are solved with
PCG. The Matlab cholinc function with dropping tolerance 10−2 is used
to generate the preconditioner. The inner system stopping threshold is
10−ν .

- AK+Variant. We report the results of Table 6.2 of the variant of the
Axelsson-Kucherov method, which solves systems with B = τI −A and
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B2 with a single iterative method. For odd degrees the system with
the real pole is solved with Preconditioned Conjugate Gradients as in
SI+PCG. The inner system stopping threshold is 10−ν−3.

In SI+PCG and AK+Variant, the shifted matrix was reordered with a
Cuthill-McKee permutation (Matlab function symrcm) before building the pre-
conditioner, whereas minimum degree reordering was used for PFE+QMR.

The CPU time for the two test problems are reported in Table 6.6. For
SI+PCG and AK+Variant, the total number of outer iterations and the aver-
age number of inner iterations is shown. For PFE+QMR, the average number
of iterations is shown in parenthesis.

The first difference with the results of Table 6.4 and Table 6.5 is the sensible
reduction of the elapsed times when iterative solvers are applied, except for
SI. For the first problem, the 3D Laplace operator of Example 6.3.1, standard
Lanczos outperforms all methods, even after a two-step procedure, although
its benefits are less evident than those in the direct solver case. For the second
problem, the 2D elliptic operator of Example 6.2.2, PFE+QMR requires the
smallest CPU time, in contrast with the direct case in which SI was the method
of choice. However the differences between SI+PCG and PFE+QMR are
much less evident than the differences between SI and PFE in the direct case;
this similarity fully recovers the equivalence of Theorem 5.2.1 between these
preconditioned methods.

6.5 Implementation details for KPIK

As mentioned in Section 2.5, for the numerical implementation of KPIK we
followed the algorithm presented by Simoncini [62]: it consists of a first part in
which the Krylov space Kk,m(A, v) is built and a second in which the Lyapunov
equation for the projected and restricted problem is solved. For our tests we
used exactly the same steps to get Kk,m(A, v); then, once determined the
matrices Vm and Tm, the approximation (2.5.1) was computed by resorting to
the Matlab command expm for Tm.
At the i-th step of the construction of the space Kk,m(A, v) the n × 2 block
Vi is required: its evaluation entails a linear system with A as coefficient
matrix. We present two kinds of experiments, one employing direct solvers
and the other based on iterative ones; in the latter case the implementation
was stopped as soon as the error with respect to the true solution was below
a fixed tolerance.
We compare the performances of KPIK, Standard Lanczos, SI and PFE. We
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Standard PFE+ SI+ AK+
Lanczos QMR PCG Variant

n tol (avg its.) (out/avg in) (out/avg in)

Example 6.3.1

10−5 0.01 0.01 ( 3) 0.01 ( 7/3) 0.02 ( 15/5)
125 10−8 0.01 0.01 ( 4) 0.03 (11/5) 0.04 ( 35/9)

10−11 0.01 0.02 ( 5) 0.14 (14/6) 0.08 (71/12)
10−14 0.01 0.05 ( 7) 0.04 (17/7) 0.15(111/16)

10−5 0.14 0.67 ( 8) 0.44 ( 8/7) 0.42 (20/6)
3375 10−8 0.21 1.15 (11) 0.81 (13/9) 0.77 (30/7)

10−11 0.35 1.75 (14) 1.27 (19/10) 1.73 (69/11)
10−14 0.52 2.30 (16) 1.94 (25/12) 2.81(89/126)

10−5 2.69 5.29 (11) 4.05 (10/10) 3.20 (23/7)
15625 10−8 2.95 9.36 (17) 5.37 (11/13) 5.88 (29/7)

10−11 4.76 14.29 (22) 8.87 (17/15) 13.42 (74/12)
10−14 7.25 19.52 (27) 14.39 (24/18) 22.10 (86/12)

Example 6.2.2

10−5 16 0.36 (13) 0.54 (10/12) 0.68 (25/8)
2500 10−8 18 0.68 (18) 0.75 (11/16) 1.69 (29/7)

10−11 53 1.09 (22) 1.46 (19/18) 3.43 (76/13)
10−14 111 1.54 (26) 2.12 (24/21) 5.86 (87/12)

10−5 615 2.46 (24) 4.4 (11/21) 3.6 (32/10)
10000 10−8 610 4.92 (35) 5.5 (11/27) 8.6 (27/ 7)

10−11 1221 8.17 (43) 9.8 (17/32) 17.5 (92/15)
10−14 - 11.74 (51) 15.4 (13/37) 29.5 (95/13)

Table 6.6: Approximation when shifted systems are solved with iterative meth-
ods.
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omit AK because from the tests performed so far it turned out to be less
effective than the others.
To solve the systems with A we use the same devices described in the previous
sections: for direct methods we resort to the symamd reordering, the Cholesky
factorization and the backslash operator; for iterative solves we use the symrcm
reordering, the incomplete Cholesky factorization and PCG method. In this
latter case the inner tolerance needs to be fixed: the numerical tests in [62]
show that imposing a very loose tolerance for the Lyapunov equation gives
accurate results; in our case we experimented that to reach the accuracy tolfin

on the final solution the largest admissible value for the inner tolerance is
tolinn = tolfin ∗ 10; for our tests we used this value.

All experiments in this section and the next were carried out on one proces-
sor of a Sun Fire V40z with 2390.895 MHz and 16 GB RAM, running Matlab
7.4.

Example 6.5.1. We consider the matrix A and the vector v described in
Example 6.2.2 for three different space discretizations.
We compare the elapsed time of KPIK, Standard Lanczos, SI and PFE. For the
iterative methods the final accuracy required was 10−ν while, when required,
the drop tolerance for the Incomplete Cholesky factorization was 10−2.
When referring to iterative methods we mean SI+PCG, PFE+QMR,
KPIK+PCG whereas for Standard Lanczos we just report the same column
presented in the context of direct methods.
For SI+PCG and KPIK+PCG, the total number of outer iterations and the
average number of inner iterations is shown, whereas for PFE+QMR we report
in parenthesis the average number of iterations.

From the data of Table 6.7 we notice that the KPIK method is very ef-
fective, although PFE and SI perform always better; however KPIK is always
much faster than the Standard Lanczos method, thus offering always a smaller
elapsed time, other than smaller memory requirements, as shown in Figure 2.2.

6.6 Enhancements for PFE and SI

In this section we describe a possible enhancement for both shift and invert
and PFE, with sensible computational savings.
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n ν Standard KPIK SI PFE
Lanczos

Direct methods

time (its.) time (its.) time (its.) time

5 6.53 (193) 0.09 (10) 0.08 (12) 0.14
502 8 7.65 (200) 0.12 (18) 0.09 (11) 0.21

11 18.83 (241) 0.17 (26) 0.12 (19) 0.30
14 42.18 (280) 0.25 (36) 0.16 (24) 0.37

5 294.49 (406) 0.48 ( 6) 0.47 (12) 0.74
1002 8 293.68 (406) 0.72 (16) 0.50 (13) 1.12

11 648.65 (485) 1.05 (26) 0.62 (17) 1.59
14 - (>500) 1.41 ( 36) 0.83 (23) 1.98

Iterative methods

time(its.) time(out/avg in) time(out/avg in) time(avg its.)

5 6.53 (193) 0.19 (10/12) 0.23 ( 9/11) 0.17 (12)
502 8 7.65 (200) 0.41 (18/19) 0.32 (11/15) 0.28 (16)

11 18.83 (241) 0.70 (26/24) 0.62 (19/17) 0.49 (20)
14 42.18 (280) 1.11 (36/29) 0.92 (24/21) 0.64 (24)

5 294.49 (406) 1.05 ( 6/21) 1.90 ( 9/21) 1.22 (22)
1002 8 293.68 (406) 3.27 (16/35) 2.87 (11/27) 2.08 (31)

11 648.65 (485) 6.26 (26/44) 5.09 (17/31) 3.72 (39)
14 - (>500) 10.03 (36/53) 7.96 (23/37) 4.85 (45 )

Table 6.7: Example 6.2.2. CPU times of Standard Lanczos, KPIK, SI, PFE.

6.6.1 Relaxation strategy for SI

In this section we describe the relaxation strategy proposed by Simoncini and
Szyld in [63] and van den Eshof and coauthors in [69] and used in [68] to
improve the performance of the shift and invert method described in Section
2.4.
As mentioned at the beginning of Section 6.1, at each step of the shift and
invert method a linear system of the form Zvj+1 = vj needs to be solved,
for j varying from 0 to the value m corresponding to the sought space. In
[63] a theoretical justification was presented to use a decreasing accuracy
when solving these systems. More precisely, they considered the situation
in which, for building the Krylov space Km(Z−1, v), in place of the exact sys-
tems Zvj+1 = vj one performs (Z + Ej)vj+1 = vj , with Ej error matrices
which changes at every step. It is shown in [63] that ||Ej || can be allowed to
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grow as convergence takes place; this means that the accuracy in solving the
linear systems can be relaxed, thus leading to computational savings.
We use the relaxed tolerance set in [68]: given a fixed tolerance ǫ > 0, the
stopping tolerance ηj for the j-th inner system is

ηj =
ǫ

‖ej−1‖ + ǫ
,

where ej−1 is the error in the approximation of the exponential operator at
the previous iteration. In practice, ‖ej−1‖ is replaced by the estimate

‖ej−1‖ .
δj−1

1 − δj−1
‖yj−1‖

and

δj−1 =
‖yj−1 − yj−2‖

‖yj−1‖
.

We fixed ǫ to be equal to the initial inner tolerance.

We have some numerical evidence that a similar relaxation strategy may be
applied also to the KPIK method and this will be investigated in a forthcoming
work.

6.6.2 Enhancement for PFE

In the implementation of PFE we used a single preconditioner for all systems
stemming from the partial fraction expansion. In this section we present nu-
merical experiments obtained by using the same preconditioner for all systems,
from which the name PFE+QMR mono derives. We did not consider in de-
tail the choice of the optimal preconditioner but numerical tests showed that
the shifted complex symmetric matrix A− ξ1I corresponding to the pole with
largest imaginary part worked better than the other shifted matrices of the
form A − ξjI; in practice we reordered the matrix with the symamd function
and we computed an Incomplete Cholesky factorization (Matlab 7.4 function
cholinc) with dropping tolerance 10−2.

This strategy makes the SI+PCG and the PFE+QMR methods even closer
to each other, since we have shown that SI+PCG may be viewed as a special
way of preconditioning the PFE systems with a single, parameter dependent,
matrix.
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PFE+QMR PFE+QMR SI+PCG SI+PCG
mono relax

n tol (avg its.) (avg its.) (out/avg in) (out/avg in)

2500 10−5 0.20 (12) 0.18 (12) 0.15 ( 9/ 7) 0.29 (10/11)
10−8 0.27 (16) 0.32 (16) 0.27 (15/ 9) 0.32 (11/15)
10−11 0.47 (20) 0.53 (20) 0.42 (21/10) 0.61 (19/17)
10−14 0.63 (24) 0.73 (23) 0.58 (26/12) 0.90 (24/21)

10000 10−5 1.31 (22) 1.37 (22) 1.18 ( 8/14) 2.50 (11/21)
10−8 2.19 (31) 2.67 (32) 2.22 (14/16) 3.05 (11/27)
10−11 3.99 (39) 4.32 (39) 3.65 (20/18) 5.44 (17/31)
10−14 5.29 (45) 6.14 (46) 5.33 (26/20) 8.49 (23/37)

Table 6.8: Example 6.2.2. CPU Time and number of iterations for the original
PFE+QMR and SI+PCG methods, and for their enhanced versions.

6.6.3 Comparisons between the original and enhanced ver-

sions

In this section we compare the performance of SI+PCG with the enhanced
version SI+PCG+relax and PFE+QMR with PFE+QMR mono for the prob-
lem of Example 6.2.2. For SI+PCG+relax the initial inner tolerance was equal
to the outer tolerance.

In Table 6.8 we notice the important improvement obtained with the en-
hanced versions, especially for SI, with instances reaching an improvement of
almost 50%. For PFE it is interesting that the average number of iterations is
in practice the same of the original one, with improvement of the elapsed time
in all cases. Best timings are in boldface. The two different enhanced pre-
conditioned techniques PFE+QMR+mono and SI+PCG+relax behave quite
similarly and, taking into account the Matlab timings fluctuation, it is difficult
to depict a clear winner.

In PFE the common preconditioner is computed once for all, whereas each
shifted system is solved separately. This is the major remaining drawback of
the enhanced PFE+QMR method when a few time steps are performed, since
many systems need to be solved. On the other hand, SI precisely avoids this
step, since it constructs a single preconditioner that, in the case of a rational
function, still allows one to keep the shifted form of the systems, so that all
systems can be solved simultaneously with a single SI-Lanczos iteration as in
(5.3.1).
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6.7 Integrating PDEs

We next consider the discretization of the following parabolic equation in two
spatial dimensions ([68]):

∂

∂t
u = L(u), (x, y) ∈ (0, 1)2, 0 ≤ t ≤ T, (6.7.1)

where the solution u = u(t, x, y) is subject to the initial condition u(0, x, y)
= g(x, y) and to mixed boundary conditions (b.c.): homogeneous Dirichlet
b.c. on the western and eastern boundaries, and homogeneous Neumann b.c.
on the northern and southern boundaries of the domain. The operator L is as
in Example 6.2.2 while the function g is defined in the following.

After standard centered finite difference space discretization the problem
(6.7.1) is equivalent to

d
dtu = Au, 0 ≤ t ≤ T

u(0) = u0
(6.7.2)

and the function g is chosen such that u0 is the normalized vector of all ones.
Assume we fix nx and ny nodes in the x and y directions, respectively;

then, for the presence of Dirichlet homogeneous b.c. for x = 0 and x = 1, the
size of A is simply (nx − 2)ny; indeed the finite difference scheme deletes the
rows corresponding to the extrema of the x side.
We assume that nx = ny, thus the distance among the nodes in the x direction
and in the y direction is the same, namely ∆x = ∆y.
In Figure 6.2 the Arnoldi approximate solution to exp(TA)u0 for m = 500
is plotted, for the fine discretization corresponding to nx = ny = 100 and
T = 0.1.

We compare two methods for solving the ordinary differential equation
(6.7.2): the Ideal one-step method , as defined in [29], and the Crank-Nicolson
method.
We recall here two important definitions for generic numerical methods for
differential equations in the two space variables x and y [30]:
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Figure 6.2: Solution of (6.7.2) for nx = ny = 100 and T = 0.1.

Definition 6.7.1.

- By convergence we mean that the results of the method approach the
analytical values as ∆t, ∆x and ∆y approach zero;

- by stability we mean that errors made at one stage of the calculations do
not cause increasingly large errors as the computations are continued,
but rather will eventually damp out.

6.7.1 Ideal one-step method

The solution of (6.7.2) at t = T is exp(TA)u0; in real applications this vector
is not computed directly but a time-stepping strategy is applied, due in general
to stability and accuracy requirements [28]. This means that exp(TA)u0 is
approximated by a sequence of round(T/∆t) applications of exp(∆tA) as

exp(∆tA) · · · exp(∆tA)u0, (6.7.3)

where ∆t is the time step length and round is the Matlab function which
approximates any real number to the nearest integer; this procedure was an-
alyzed by Gallopoulos and Saad in [29].
The methods described so far for approximating vectors of the form exp(A)v
apply to (6.7.3) since it translates in the iterative formula

wi+1 = exp(∆tA)wi, i = 0, . . . , ceil(T/∆t)
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with w0 = u0; thus about T/∆t vectors of the form exp(∆tA)w need to be
subsequently computed.

6.7.2 The Crank-Nicolson method

The Crank-Nicolson method is a procedure to approximately solve discretized
partial differential equations; one of its qualities is that it is second order ac-
curate in both spatial and time variables, that is, the error between the term
∂2u/∂x2 and its approximation is O(∆x2), and the same is true for ∂2u/∂y2

and for the time derivatives.
When applied to (6.7.2) the Crank-Nicolson method yields the recursive for-
mula (

I − ∆t

2
A

)
un+1 =

(
I +

∆t

2
A

)
un; (6.7.4)

it is clearly an implicit method which, at each step, requires to solve a system
with the same coefficient matrix (I−∆t

2 A), which is shifted symmetric positive
definite. As well known, this method is unconditionally stable, that is, it is
stable independently of ∆x, ∆y and ∆t, see e.g. ([30], Section 8.4, pp. 406).
The convergence analysis presented in ([30], Section 8.4, pp. 406) for the
Crank-Nicolson method was sketched for the 1D heat flow equation, resulting
in the conclusion that the method is convergent only when the ratio ∆t/(∆x)2

is finite, preferably small; a similar restriction for ∆t/[(∆x)2 +(∆y)2] was said
to ensure the convergence for 2D problems. We found similar qualitative re-
strictions on the ratio ∆t/[(∆x)2 + (∆y)2] in several books, but no precise
expression for its value.

In the following example the linear systems in (6.7.4) are solved with the
Preconditioned Conjugate Gradients method applied to the matrix reordered
with symrcm and an incomplete Cholesky factor is used as preconditioner; for
the inner tolerance we use tolinn = tolfin/1000.

6.7.3 Numerical tests

We consider different possible space and time discretizations so as to approx-
imate the exact solution at T = 0.1.

We analyze the methods that in previous examples showed the best per-
formances, namely the standard Lanczos and the enhanced versions of SI and
PFE methods and compare them with the Crank-Nicolson technique.
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In Table 6.9 we present the errors as ∆t varies; 50 nodes are considered
for the discretization of the domain (0, 1)2 both in the x and y direction; the
final accuracy is 10−6.

Standard Crank SI +PCG PFE+QMR
∆t Lanczos Nicolson relax mono

1e-04 6.1e-06 2.7e-08 9.2e-07 3.6e-04
5e-04 1.8e-06 7.0e-07 3.8e-06 6.0e-05
1e-03 1.6e-07 2.8e-06 3.2e-06 2.2e-05
5e-03 1.2e-07 1.6e-02 1.0e-07 4.1e-06
1e-02 4.4e-08 5.3e-02 1.0e-07 4.1e-06
5e-02 1.1e-08 2.1e-01 1.5e-07 1.1e-06
1e-01 1.1e-08 3.1e-01 3.2e-07 9.6e-07

Table 6.9: Errors of Standard Lanczos, of Crank-Nicolson and of enhanced
accelerated methods SI and PFE to approximate the solution at T = 0.1; ∆t
is the time step.

From the tabulated values it is evident that the Crank-Nicolson method
reaches a good accuracy only for a very small step size, namely, not larger than
0.001; this seems to be coherent with the restrictions on the ratio ∆t/[(∆x)2 +
(∆y)2] to ensure the convergence; the jump of the error when passing from
∆t = 1e − 03 to ∆t = 5e − 03 would suggest that the upper bound for the
ratio ∆t/2(∆x)2 in this case could be 105; indeed all larger ratios do not lead
to convergence. For this reason, when comparing the elapsed time in Tables
6.10 and 6.11 we start from very small values for ∆t.
Moreover it results that the accuracy for the Crank-Nicolson method dete-
riorates as ∆t gets larger, while for all other methods the behavior is the
opposite, depending on cancellation errors. From Table 6.9 it is also evident
the different accuracy for PFE and SI; for both methods the inner tolerance
is set to tolinn = tolfin/100 but for SI this value changes dinamically during
the iterative process, thanks to the relaxation strategy applied.

In the next experiment we compare the elapsed time for the considered
methods, for two different space discretizations and different final accuracies
which are of interest in the context of evolution problems.
By taking into account the data in Table 6.9 we assume that for ∆t > 0.005
the Crank-Nicolson method does not reach the required accuracy and we put
the symbol “†′′ to highlight this phenomenon; we do the same for PFE for the
three smallest time steps.
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The crucial result of this example is that the enhanced version of PFE
reaches always the best CPU time and it corresponds to the largest step size;
in practice in a single step (∆t = 0.1) the required accuracy is reached in the
lowest time. We stress here that also the enhanced SI version works very well,
with results which could be considered almost equal to those of PFE+QMR
mono, if taking into account the Matlab fluctuations.
The Crank-Nicolson method does not perform satisfactorily, with CPU time
that are even always worse than the Standard Lanczos procedure.
We thus conclude that for all practical situations in which a time stepping pro-
cedure is needed the enhanced versions of PFE and SI may offer a good result
in just one iteration, representing a welcome event; moreover they sensibly
outperform the commonly used Crank-Nicolson method.

In addition, we explicitly observe that the the costs of the acceleration
procedures and of standard Lanczos have an opposite behavior; indeed for
the former it decreases as the number of time steps decreases, whereas for
Standard Lanczos it becomes unacceptably large due to the increasing value
of ‖∆tA‖.

In conclusion these numerical tests showed that the enhanced acceleration
techniques based on shift and invert and on the explicit solution of the complex
shifted systems stemming from a partial fraction expansion perform very well.
In particular, for the common problem of integrating PDEs they allow a large
time step and offer very good results, as concern CPU time and memory
requirements, even better than those offered by the common Crank-Nicolson
integrator.



grid final Standard Crank SI +PCG PFE+QMR
(nx,ny) accuracy ∆t Lanczos Nicolson relax mono

(50,50) 10−4 1e-04 1.02 6.67 18.5 †
5e-04 0.40 1.75 5.14 †
1e-03 0.30 0.91 2.70 †
5e-03 0.23 † 0.78 1.53
1e-02 0.27 † 0.56 0.86
5e-02 1.19 † 0.25 0.26
1e-01 2.77 † 0.18 0.15

10−6 1e-04 1.34 8.11 25.15 †
5e-04 0.60 2.06 6.53 †
1e-03 0.42 1.09 3.62 †
5e-03 0.32 † 1.08 3.08
1e-02 0.44 † 0.76 1.61
5e-02 2.41 † 0.38 0.41
1e-01 6.41 † 0.28 0.23

(90,90) 10−4 1e-04 4.31 32.69 115.34 †
5e-04 2.07 9.62 26.82 †
1e-03 1.63 6.41 16.31 †
5e-03 1.79 † 5.59 8.81
1e-02 2.53 † 4.00 5.49
5e-02 19.48 † 1.88 1.73
1e-01 66.26 † 1.38 0.99

10−6 1e-04 5.70 45.15 135.12 †
5e-04 3.04 12.29 33.67 †
1e-03 2.44 7.86 20.15 †
5e-03 2.58 † 7.42 16.16
1e-02 3.94 † 5.41 9.56
5e-02 52.85 † 2.81 2.79
1e-01 187.31 † 2.10 1.62

Table 6.10: Parabolic problem (cf. (6.7.1)). CPU times of Crank-Nicolson,
Standard Lanczos and enhanced accelerated methods to approximate the so-
lution at T = 0.1, for different time step lengths ∆t and different number of
nodes nx, ny in the discretization of the domain (0, 1)2.



grid final Standard Crank SI +PCG PFE+QMR
(nx,ny) accuracy ∆t Lanczos Nicolson relax mono

(120,120) 10−4 1e-04 10.51 55.99 270.57 †
5e-04 5.41 18.99 65.34 †
1e-03 4.73 14.28 36.74 †
5e-03 5.70 † 13.40 21.83
1e-02 10.02 † 9.51 14.05
5e-02 238.48 † 4.48 4.10
1e-01 901.58 † 3.43 2.29

10−6 1e-04 14.16 78.63 339.99 †
5e-04 7.03 25.92 80.39 †
1e-03 6.10 18.90 46.49 †
5e-03 7.53 † 17.80 38.71
1e-02 12.96 † 13.06 23.35
5e-02 266.67 † 6.69 7.12
1e-01 902.46 † 4.80 3.64

Table 6.11: Parabolic problem (cf. (6.7.1)). CPU times of Crank-Nicolson,
Standard Lanczos and enhanced accelerated methods to approximate the so-
lution at T = 0.1, for different time step lengths ∆t and nx = ny = 120 in
the discretization of the domain (0, 1)2.
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