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Recently, H2O2 has been identified as the endothelium-dependent hyperpolarizing factor
(EDHF), which mediates flow-induced dilation in human coronary arteries. Neuronal nitric
oxide synthase (nNOS) is expressed in the cardiovascular system and, besides NO, gen-
erates H2O2. The role of nNOS-derived H2O2 in human vessels is so far unknown. The
present study was aimed at investigating the relevance of nNOS/H2O2 signaling in the hu-
man internal mammary artery (IMA) and saphenous vein (SV), the major conduits used in
coronary artery bypass grafting. In the IMA, but not in the SV, ACh (acetylcholine)-induced
vasodilatation was decreased by selective nNOS inhibition with TRIM or Inhibitor 1, and by
catalase, which specifically decomposes H2O2. Superoxide dismutase (SOD), which gen-
erates H2O2 from superoxide, decreased the vasodilator effect of ACh on SV. In the IMA,
SOD diminished phenylephrine-induced contraction in endothelium-containing, but not in
endothelium-denuded vessels. Importantly, while exogenous H2O2 produced vasodilata-
tion in IMA, it constricted SV. ACh increased H2O2 production in both sets of vessels. In
the IMA, the increase in H2O2 was inhibited by catalase and nNOS blockade. In SV, H2O2

production was abolished by catalase and reduced by nNOS inhibition. Immunofluores-
cence experiments showed the presence of nNOS in the vascular endothelium and smooth
muscle cells of both the IMA and SV. Together, our results clearly show that H2O2 induced
endothelium-dependent vascular relaxation in the IMA, whereas, in the SV, H2O2 was a vaso-
constrictor. Thus, H2O2 produced in the coronary circulation may contribute to the suscept-
ibility to accelerated atherosclerosis and progressive failure of the SV used as autogenous
graft in coronary bypass surgery.

Introduction
The internal mammary artery (IMA) and the saphenous vein (SV) are the main vascular tissues used
as grafts in coronary artery bypass grafting (CABG) [1]. However, when grafted into the coronary cir-
culation, SV grafts undergo profound remodeling, which compromises their long-term viability [2,3].
Moreover, vasospasm of the grafts following CABG surgery is a major problem and may cause perioper-
ative and late failure of bypass conduits [4]. The integrity of the vascular endothelium is also a key factor
in determining the fate of SV and IMA grafts following implantation [5].

In the present context, an important property of vascular endothelium is the release of vasodilator
metabolites such as nitric oxide (NO) [6], prostacyclin (PGI2) [7] and cytochrome P450 metabolites
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of arachidonic acid [8], which is stimulated by the shear stress of blood flow. More recently, hydrogen peroxide (H2O2)
has emerged as the endothelium-derived hyperpolarizing factor (EDHF) that mediates flow-induced dilation of hu-
man coronary arterioles (HCA) [9–11]. Moreover, while NO and PGI2 seem to play a more important role in the
HCA of healthy patients, the role of H2O2, as a vasodilator factor in HCA is more prominent in certain disease states
such as in coronary artery disease [9].

H2O2 has also been considered as the EDHF responsible for agonist-induced dilation in porcine and human [10]
coronary micro vessels, and in murine and human mesenteric arteries [12]. However, it is important to note that,
apart from vasodilation [13–16], H2O2 may cause vasoconstriction [17–19], depending on the vessel or experimental
condition. It was, therefore, possible that the effects of H2O2 on the IMA could differ from its effects on the SV,
especially when grafted into the vascular bed.

Neuronal nitric oxide synthase (nNOS) is expressed in the vascular endothelium [20,21] and in smooth muscle cells
[22]. The activity of this isoform of NOS is relevant to the physiological modulation of myogenic tone [23], systemic
arterial pressure [24] and blood flow [25,26]. We have shown that, in addition to NO, nNOS generates H2O2, which
in the mouse aorta and small mesenteric artery contributes to endothelium-dependent vascular relaxation [21,27,28].
However, the effect of H2O2 derived from nNOS in human vascular tissue is not known.

Given the importance of H2O2 in the coronary circulation and the lack of information available regarding the role
of nNOS and H2O2 in human vascular function, the present study investigated the role of nNOS-derived H2O2 in the
regulation of vascular function in the IMA and SV of patients undergoing coronary bypass graft. A particular focus
was on any differences between the IMA and SV in their responses to endogenously generated H2O2.

Experimental
Assessment of vascular function
We used IMA and SV segments from human subjects undergoing coronary artery bypass grafting (n = 148). All the
experimental procedures were carried out in accordance with the Declaration of Helsinki (2013) of the World Med-
ical Association and approved by the ethics committee of the Universidade Federal de Minas Gerais (protocol CAAE:
31961214.6.0000.5149), and informed consent was obtained from all participants. The mean age of the patients was
61.3 +− 11.9 years. After the surgical procedure, the vessels were immediately transferred to the laboratory in cold
(4 ◦C) Krebs–Henseleit solution (the composition in mM was as follows: NaCl 118.3, KCl 4.7, MgSO4 1.2, CaCl2 2.5,
MgSO4 1.2, KH2PO4 1.2, NaHCO3 25, glucose 11.1). IMA and SV (2–3 mm in length) were cut into rings and moun-
ted in organ baths containing Krebs–Henseleit solution gassed with 5% CO2 in O2 at 37 ◦C and pH 7.4. The rings were
stretched to an optimal load of 1.5 g for the IMA [29] and 4 g for the SV [30,31]. In some preparations, the endothe-
lium was mechanically removed. Changes in mechanical activity were recorded isometrically by a force transducer
(World Precision Instruments, Inc., Sarasota, FL, USA) connected to an amplifier–recorder (TBM-4 model; World
Precision Instruments, Inc., USA) and to a personal computer equipped with an analogue-to-digital converter board
(DI-720), using WinDaq Data Acquisition software (Dataq R© Instruments, USA). Concentration–response curves
were performed on each vascular ring in the presence or in the absence of specific drugs, as indicated.

Following a 60-minute stabilization period, all rings were challenged with 80 mM KCl to evaluate the maximal
contraction possible for each ring. Endothelial integrity was tested with acetylcholine (ACh; 10 μM) in segments
previously contracted with phenylephrine (1 μM). Relaxation greater than 60% and 20% was considered demon-
strative of the functional integrity of the endothelium in the IMA [32] and SV, respectively [30,33,34]. After a 45-min
washout period, vessels were pre-contracted with phenylephrine (1 μM; inducing 75% of 80 mM KCl maximal con-
traction) and when the preparations reached a plateau, concentration–response curves to ACh were performed.
Then, the vessels were washed out until they returned to their optimal load and were incubated for 30 minutes with
different drugs, and a second cumulative concentration–response curve for ACh was constructed and compared
with the first. The drugs used were: the non-specific inhibitor of NOS L-NG-nitroarginine methyl ester (L-NAME;
300 μM); the non-specific inhibitor of cyclooxygenase (COX) indomethacin (10 μM), catalase (2000 U/ml), which
selectively decomposes H2O2 [35,36]; superoxide dismutase (SOD; 300 U/ml,) an enzyme that dismutes O2

−

into H2O2 [37,38]; and the selective nNOS inhibitors 1-(2-trifluoromethylphehyl) imidazole (TRIM; 300 μM) and
(4S)-N-(4-amino-5[aminoethyl]aminopentyl)-N′-nitroguanidine (Inhibitor 1; 5 μM). The concentrations of TRIM
and Inhibitor 1 were chosen on the basis of their selectivity for nNOS over other isoforms [39–41]. In some experi-
ments, cumulative concentration–response curves to exogenous H2O2 were performed in endothelium-denuded ves-
sels pre-contracted with phenylephrine (1 μM). In a separate set of experiments, cumulative concentration–response
curves to phenylephrine were constructed using the IMA in the presence and in the absence of SOD (300 U/ml).
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Hydrogen peroxide production in the IMA and SV
Spectrofluorimetry was used to measure the ACh-induced H2O2 released in human IMA and SV.
Small rings were placed in physiological salt solution (PSS) containing the H2O2 marker probe, 2′,7′

dichlorodihydrofluorescein-diacetate (5 μM DCF-DA) for 30 minutes and kept at 37 ◦C in a dry bath. Sub-
sequently, the vessels were rinsed in a solution of PSS without DCF-DA for 10 minutes and stimulated with ACh in
the presence or absence of catalase (2400U/ml), NG-nitro-L-arginine (L-NNA; 100 μM), TRIM (300 μM), Inhibitor
1 (5 μM), indomethacin (10 μM) or L-NNA + indomethacin. The assessment of the basal production of H2O2 was
performed in vessels before the stimulation with ACh. For the measurement of H2O2, 100 μl of the perfusate was
placed into a 96-well microplate (Axygen R©) and the samples were read in a spectrofluorometer (fluoroscan Ascent
FL Thermo-Cientific) at 485 nm excitation and 538 nm emission. The reaction proceeded at room temperature and
in the dark. The values from each experiment were normalized to the dry weight of each IMA or SV ring.

Immunolocalization of nNOS
Immunolocalization of nNOS in human IMA and SV was performed as previously described, with some modifica-
tions [42]. Briefly, fixed cryosections (10 μm) of IMA and SV were fixed in cold acetone for 15 minutes and rinsed
in phosphate-buffered saline (PBS) wash buffer (1% BSA and 0.3% Triton X-100, in PBS). The blocking procedures
(3% BSA and 0.3% Triton X-100 in PBS, 30 minutes) were performed to remove cross reactivity of secondary anti-
body with the alternating primary antibody. Slides were incubated with mouse anti-nNOS anti-body (1:50) overnight
at 4 ◦C followed by incubation with goat anti-mouse secondary antibody conjugated with Alexa Fluor 555 (1:500).
The slices were mounted with DAPI/UltraCruz R Mounting Medium (Santa Cruz Biotechnology, Inc., CA, USA)
and digital images were obtained using a fluorescence microscope (Axio Imager Zeiss 2 Apotome, Germain) using
a standard filter with a 63× objective. Four fields per slide of endothelium and media layers were observed and im-
ages shown are representative of five patients. Immunostained sections were examined on an Apotome microscope,
with excitation at 555 nm for nNOS (represented by images in red color), excitation at 488 nm for elastic laminae
autofluorescence (represented by images in green color) and DAPI at 358 nm (represented by images in blue color).

Statistical analysis
Data are expressed as the means +− SEM. Two-way ANOVA with Bonferroni’s multiple comparisons post-test was used
to compare concentration–response curves. One-way ANOVA followed by Newman-Keuls multiple-comparison was
used in Figure 7. All statistical analyses were calculated using Prism 4.2 software (GraphPad) and were considered to
be significant when P < 0.05.

Drugs
ACh, phenylephrine, L-NAME, L-NNA, TRIM, indomethacin, catalase and SOD, were purchased from
Sigma-Aldrich Inc, (St. Louis, MO, USA); Inhibitor 1 was purchased from Calbiochem (San Diego, CA, USA); H2O2
was purchased from Merck (Darmstadt, Hessen, Germany); the primary antibodies anti-PECAM-1 and anti-NOS1
were obtained from Santa Cruz Biotechnology (Dallas, TX, USA); and DCF-DA probe, the secondary antibody con-
jugated with Alexa Fluor 555 was purchased from Invitrogen (Carlsbad, CA, USA).

Results
Vascular reactivity studies
A concentration-dependent vasodilator effect in response to ACh was observed only in endothelium-containing rings
from IMA (Figure 1A) and SV (Figure 1B). Pre-treatment of vessels with L-NAME abolished the vasodilator response
to ACh in IMA rings (Figure 2A). On the other hand, only a partial inhibition was observed for SV in the same
conditions (Figure 2B). However, when SV was pre-treated with L-NAME + indomethacin, a full blockade of the
vasodilator response was observed (Figure 2C).

We assessed the role of nNOS in the endothelium-dependent vasodilation in IMA and SV by pre-treatment of IMA
and SV samples with two selective nNOS inhibitors, TRIM or Inhibitor 1. This pre-treatment significantly decreased
ACh-induced relaxation (Figure 3A and 3B). However, no differences were observed in the relaxant responses to ACh
in the presence of TRIM or Inhibitor 1 in SV (Figure 3C and 3D).

In addition to NO, vascular nNOS generates H2O2, which makes an important contribution to the total
endothelium-dependent vascular relaxation [21,42]. We therefore assessed, here, the possible contribution of en-
dogenous H2O2 to the ACh-induced vasodilatation in two types of human blood vessel using catalase to inactivate
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Figure 1. Vasodilator effect of acetylcholine (ACh) in (A) endothelium-intact internal mammary artery (IMA) and (B) saphen-

ous vein (SV)

Results are shown as the mean +− S.E.M. n = 10 for IMA and n = 8 for SV.

Figure 2. Vasodilator effect of acetylcholine (ACh) in the absence (control) and in the presence of L-NAME (300 μM): (A)

in endothelium-intact internal mammary artery (IMA) rings; (B) in endothelium-intact saphenous vein (SV); and (C) in the

presence of L-NAME + indomethacin in endothelium-intact SV

Results are shown as the mean +− S.E.M. A two-way ANOVA followed by Bonferroni’s post-test was conducted. *P < 0.05, **P < 0.01;

***P < 0.001; n = 5 for IMA and n = 5–8 for SV.

the H2O2 formed. In endothelium-containing IMA rings, pre-treated with catalase, ACh-induced vasodilatation was
significantly decreased (Figure 4A). However, in samples of SV, catalase did not affect the vasorelaxant response to
ACh (Figure 4B).

Another pathway to generating H2O2 is via the dismutation of superoxide by SOD. We therefore incubated IMA
and SV samples with SOD before assaying the vasodilation induced by ACh. SOD markedly impaired the relaxant
effect of ACh in endothelium-containing preparations of SV (Figure 5A). However, in the IMA, the pre-contraction
with phenylephrine was not sustained and it was not possible to use the same protocol as with the SV. Therefore,
we analyzed the effect of SOD on the concentration–response curve elicited by phenylephrine in IMA rings. As
seen in Figure 5B, pre-treatment of the vessels with SOD decreased the constrictor response to phenylephrine in
endothelium-containing preparations. Conversely, no change was observed when the same protocol was performed
in IMA preparations after endothelium removal (Figure 5C).

To further compare the role of H2O2 in the IMA and SV, we carried out concentration–response curves to exo-
genous H2O2 in preparations where endothelium was mechanically removed. In endothelium-denuded IMA, exo-
genous H2O2 exerted a concentration-dependent vasodilator effect in vessels pre-contracted with phenylephrine
(Figure 6A), whereas in similar preparations of SV, exogenous H2O2 induced a concentration-dependent contractile
effect (Figure 6B). Inhibition of nNOS with TRIM did not change the H2O2 effects in both the IMA and SV (Figure 6A
and 6B).

1018 c© 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.
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Figure 3. Role of nNOS in the vasodilator effect of acetylcholine (ACh) in endothelium-intact rings from internal mammary

artery (IMA) and saphenous vein (SV)

Concentration–response curves to ACh in the absence (control) and in the presence of TRIM (300 μM) or Inhibitor 1 (5 μM) in IMA (A and

B) and SV (C and D). Results are shown as the mean +− S.E.M. A two-way ANOVA followed by Bonferroni’s post-test was conducted. *P <

0.05, **P < 0.01 and ***P < 0.001; n = 6–7 for IMA and n = 6–11 for SV.

Figure 4. Effect of catalase (2000 U/ml) on the vascular relaxation induced by acetylcholine (ACh) in endothelium-intact (A)

internal mammary artery (n = 6) and (B) saphenous vein (n = 9)

Results are shown as the mean +− S.E.M. A two-way ANOVA followed by Bonferroni’s post-test was conducted. **P < 0.01, ***P < 0.001.

Measurements of H2O2 produced in IMA and SV
For both the IMA and SV, the addition of ACh induced an increase in the production of H2O2 (Figure 7). When the
vessels were pre-treated with catalase, no H2O2 could be detected in both the IMA and SV samples (Figure 7A and
7B). The non-selective NOS inhibitor L-NNA and the selective nNOS inhibitors, TRIM and Inhibitor-1, significantly
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Figure 5. Vasodilator effect of acetylcholine (ACh) in endothelium-intact saphenous vein (SV) in (A) the absence (control)

and in the presence of SOD (300U/ml). Vasoconstrictor effect of phenylephrine (Phe) in (B) endothelium-intact and (C)

endothelium-denuded internal mammary artery rings (IMA) in the absence (control) and in the presence of SOD (300 U/ml)

Results are shown as the mean +− S.E.M. A two-way ANOVA followed by Bonferroni’s post-test was conducted. *P < 0.05; **P < 0.01; ***P

< 0.001; n = 5 for both SV and IMA.

Figure 6. Effect of hydrogen peroxide (H2O2) in endothelium-denuded (A) internal mammary artery (IMA) and (B) saphenous

vein (SV) rings in the presence or in the absence of TRIM

Results are shown as the mean +− S.E.M. A two-way ANOVA followed by Bonferroni’s post-test was conducted. n = 5–8 for IMA and n =
5–6 for SV.

decreased H2O2 generation induced by ACh in the IMA. By contrast, indomethacin did not change H2O2 production
compared with ACh alone. Together, these results indicate that, in the IMA, nNOS has a central role in endothelial
H2O2 generation. Conversely, in SV, H2O2 production was partly inhibited, to the same extent, by L-NNA, TRIM,
inhibitor-1 and indomethacin each used alone. When SV rings were treated with a combination of indomethacin +
L-NNA, there was a complete inhibition of H2O2 production, indicating a role for nNOS and COX in H2O2 generation
(Figure 7B).

nNOS immunolocalization in the IMA and SV
By merging the red, green and blue components, the elastic lamellae (EL) could be safely identified in IMA sections.
As observed in Figure 8A, the EL is the thickest elastic sheet, located en face to the lumen in bright cyan tonality. The
characterization of EL allowed the precise distinction of nNOS immunolocalization in the endothelium and tunica
media layers of the IMA (Figure 8A, red images). In sections of SV, the immunofluorescent signal for nNOS was
detected on the endothelium, neointima and tunica media layers (Figure 8B).
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Figure 7. Detection of acetylcholine (ACh)-induced hydrogen peroxide (H2O2) production in endothelium-intact (A) internal

mammary artery (n = 6–10) and (B) saphenous vein (n = 6–10) in the presence or absence of catalase (2000 U/ml), L-NNA

(100 μM), TRIM (300 μM), Inhibitor 1 (5 μM), Indomethacin (10 μM) and L- NNA plus Indomethacin

Results are shown as the mean +− S.E.M. A one-way ANOVA followed by the Newman–Keuls multiple-comparison test was conducted. *P

< 0.05; **P < 0.01; ***P < 0.001 compared with ACh alone.

Discussion
The major findings of this work can be summarized as follows: our experiments showed clear differences between
the IMA and SV in terms of their responses to endogenous and exogenous H2O2. The most important difference was
that, in the IMA, H2O2 contributed to agonist-induced vascular relaxation, whereas in the SV, agonist-stimulation of
H2O2 production induced vasoconstriction. The clinical importance of this difference derives from the fact that the
IMA and SV are the major conduits used as coronary artery bypass grafting.

In the USA, approximately 1,000,000 aortocoronary and peripheral vascular reconstructions are performed annu-
ally using the IMA and SV [43]. Immediate post-operative vasospasms, as well as long-term intimal hyperplasia are
the leading causes of complications related to coronary arterial bypass surgery [44]. A better understanding of the
physiological processes involved in the control of IMA and SV functioning should contribute to the improvement of
clinical interventions regarding this common surgical procedure.

The usual assumption that endothelial NO synthase (eNOS)-derived NO is largely responsible for the regulation
of vascular tone has been challenged by the discovery that a totally different molecule, H2O2, exerts an important role
as a dilator of coronary and other vascular beds [9–11]. However, at least in animals, NOS is still involved in H2O2
production since this molecule is produced by nNOS along with NO in the vascular endothelium. Furthermore, H2O2
participates in agonist-induced vascular relaxation. This relatively new interaction between endogenous vasoactive
mediators has been reviewed recently [45].

In this work, we investigated for the first time the role of H2O2 in the vascular reactivity of two examples of human
vessels: the IMA and SV. These two vessels are particularly relevant to the coronary circulation as they are the most
commonly used tissues in CABG, itself a common surgical procedure. As a result, our data could have considerable
clinical significance. In agreement with previous results [46–49], we show here that the endothelium-dependent vas-
cular relaxation in response to ACh was greater in the IMA than in the SV. In addition, in the IMA, the vasodilator
response induced by ACh was completely abolished by pre-treatment with L-NAME, a non-selective NOS inhib-
itor; while in the SV, the vasodilator effect of ACh was only abolished by combined inhibition of COX and NOS, in
line with previous reports [47,48,50]. Interestingly, pre-treatment of IMA rings with the selective nNOS inhibitors,
TRIM or Inhibitor 1, significantly decreased the ACh-induced vasodilator response. Conversely, inhibition of nNOS
by TRIM or Inhibitor 1, did not affect ACh-induced relaxation in SV. These results suggest that activity of nNOS
contributes to vascular relaxation in the IMA, but not in the SV. These findings show, for the first time, a role for
endothelial nNOS in the mechanisms underlying vascular relaxation in a human vessel. This suggestion is supported
by our immunofluorescence data that show the presence of nNOS in the endothelial cells of the IMA. In agreement

c© 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society. 1021



Clinical Science (2017) 131 1022–1026
DOI: 10.1042/CS20160642

Figure 8. Immunofluorescent staining of nNOS in human internal mammary (IMA) artery and saphenous vein (SV)

(A) nNOS expression in IMA is represented by the red color image, elastin auto fluorescence in green and DAPI in blue. The superimposition

of three color components facilitated the identification of the elastic lamellae (EL), seen in bright cyan tonality in merge image. In human

IMA, nNOS is expressed in the endothelium and media layer (red and merge images). (B) In human SV, nNOS is detected in intima and

media layers (red and merge images). For each vascular bed, representative images are from samples of 5 patients.

with others [51,52], our immunofluorescence data also reveal the presence of nNOS in vascular smooth muscle cells
(VSMC) from human IMA and SV. However, our data suggest a major role for endothelium nNOS in mediating the
vascular responses found in this work for the following reasons: (i) the effect of ACh was seen only in the presence
of a functional endothelium, in agreement with previous reports [32,46]; (ii) pre-treatment of endothelium-denuded
vessels with the nNOS inhibitor TRIM did not change H2O2-induced vasorelaxation in the IMA nor H2O2-induced

1022 c© 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.
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constriction in the SV; (iii) in the IMA, SOD decreased the vasoconstriction induced by phenylephrine only in the
presence of a functional endothelium.

As highlighted above, it is known that besides NO, nNOS produces H2O2 under physiological conditions, which
in some vessels behaves as an endothelium-dependent relaxant factor [21,27,28]. In the present study, we demon-
strated that stimulation of IMA rings with ACh increased production of H2O2 detected fluorimetrically in the in-
cubation mixture. This production was deeply decreased by either non-selective or selective inhibition of nNOS. As
expected, the levels of H2O2 production by ACh stimulation were also markedly reduced by the addition of catalase
to the rings. Inhibition of both isoforms of COX with indomethacin did not affect H2O2 production. Functionally,
vascular relaxation in the rings of the IMA induced by ACh was also markedly inhibited by catalase. Finally, SOD
reduced the phenylephrine-induced contraction in endothelium-containing but not in endothelium-denuded IMA
rings. Together, these results suggest that stimulation of nNOS induces production of H2O2, which plays a role in the
endothelium-dependent vascular relaxation of the IMA.

Curiously, our immunofluorescence data also showed the presence of nNOS in the endothelial cells of SV. Stimula-
tion of the vessel with ACh increased the production of H2O2, which, in turn, was decreased by NOS, nNOS and COX
inhibition, and by catalase. Hence, H2O2 is also produced in SV via stimulation of nNOS and COX. At this point, the
isoform of COX involved in the H2O2 production in human SV remains unknown. The question that arises from
these results is why nNOS and H2O2 contributed to the endothelium-dependent vascular relaxation only in the IMA.
Inhibition with catalase did not change the vascular relaxation induced by ACh in the SV; however, increasing endo-
genous H2O2 production by SOD inhibited vascular relaxation in the SV. This last result is in line with the idea that
H2O2 is inducing constriction in the SV.

Since H2O2 appeared to be an important relaxant mediator in the IMA and a vasoconstrictor in the SV, the effect of
exogenous H2O2 was investigated in both vessels. Indeed, H2O2 produced a concentration-dependent relaxant effect
in the IMA and a vasoconstrictor effect in the SV. Our results were in agreement with earlier studies showing that
exogenous H2O2 caused a relaxation in the IMA [53] and a contraction in SV [54]. In addition, a similar opposing
result was obtained with prostaglandin E2 , which induced contraction in the IMA and relaxation in the SV [55].
Hence, it seems that there are important differences in the molecular mechanisms mediated by H2O2 in the control
of vascular reactivity between these vessels.

Our results clearly showed a different role for H2O2 in the SV and IMA, acting as an endothelium-derived relaxant
mediator in the IMA and an endothelium-derived vasoconstrictor in the SV. This difference could have important
clinical implications, since H2O2 has been described as the EDHF produced by HCA in response to shear stress [10].
Thereby, H2O2 produced by the coronary bed could directly influence the vascular response in a recently implanted
SV graft, leading to vasospasm, a common post-operative complication in coronary bypass surgery [4,56].

The SV remains the most used conduit in patients undergoing CABG because of the greater perioperative mor-
bidity, mortality, duration of operation, and risk of sternal wound problems that occurs with the IMA. However, the
grafted SV remains patent for a very short time due to accelerated development of atherosclerosis, as an adaptive
response to the systemic circulation and surgical management [57]. Besides systemic atherogenic risk factors, the
local microenvironment makes an important contribution to atherosclerotic plaque formation. Disturbance of blood
flow plays an essential role in regulating local susceptibility to plaque formation through effects on endothelial cell
function [58]. In this sense, vasospasm is known to affect the patency rates of CABGs [59]. So, H2O2 produced by
the coronary bed may contribute to the loss of patency in the SV graft through its constrictor action on the grafted
vessel. A better understanding of the particular physiological responses of the different vessels used in CABG surgery,
to endogenous factors such as H2O2, could contribute to the development of novel therapeutic agents to decrease the
incidence of spasm and to increase the success of this surgical procedure.

In conclusion, our data show, for the first time, a role for nNOS-derived H2O2 as an endothelium-dependent factor
that has opposite effects on the smooth muscle of two types of human blood vessel. In the IMA, H2O2 acts as an
endothelium-dependent relaxant factor; whereas, in SV, H2O2 has a role as an endothelium-dependent contractile
factor. In view of the fact that: (i) H2O2 is the endogenous EDHF in the coronary bed; (ii) the IMA and SV are
the major conduits used in CABG; and (iii) vasospasm is a common post-operative complication in coronary bypass
surgery and contributes to the loss of patency of the graft, these findings may have highly relevant clinical implications.

Clinical perspectives
• H2O2 has been identified as the EDHF in human coronary arteries and, although NO and PGI2 are

more important for the HCA of healthy subjects, H2O2 is gaining importance in disease states.

c© 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society. 1023
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nNOS is present in most vascular tissues and, in addition to NO, generates H2O2. The effects of
nNOS-derived H2O2 in human vascular tissues are so far unknown.

• This study provides new information on the role of nNOS-derived H2O2 on the vascular reactivity of
the human IMA and SV, the main grafts used in CABG surgery. In the IMA, H2O2, induces a relaxant
effect and, in SV, H2O2 produces a contractile effect.

• Our findings provide a new insight into the pathophysiological role of H2O2 in the main grafts used in
CABG surgery. Our data may also explain why complications such as vasospasms and low patency
are more frequent in SV grafts than in IMA grafts.
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