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Nonlinear and Mixed-Integer Optimization in ChemicalProcess Network SystemsC. S. Adjiman, C. A. Schweiger, and C. A. Floudas�Abstract. The use of networks allows the representation of a variety of im-portant engineering problems. The treatment of a particular class of networkapplications, the Process Synthesis problem, is exposed in this paper. ProcessSynthesis seeks to develop systematically process owsheets that convert rawmaterials into desired products. In recent years, the optimization approach toprocess synthesis has shown promise in tackling this challenge. It requires thedevelopment of a network of interconnected units, the process superstructure,that represents the alternative process owsheets. The mathematical model-ing of the superstructure has a mixed set of binary and continuous variablesand results in a mixed-integer optimization model. Due to the nonlinearityof chemical models, these problems are generally classi�ed as Mixed-IntegerNonlinear Programming (MINLP) problems.A number of local optimization algorithms for MINLP problems are out-lined in this paper: Generalized Benders Decomposition (GBD), Outer Ap-proximation (OA), Generalized Cross Decomposition (GCD), Extended Cut-ting Plane (ECP), Branch and Bound (BB), and Feasibility Approach (FA),with particular emphasis on the Generalized Benders Decomposition. Recentdevelopments for the global optimization of nonconvex MINLPs are then in-troduced. In particular, two branch-and-bound approaches are discussed: theSpecial structure Mixed Integer Nonlinear �BB (SMIN-�BB), where the bi-nary variables should participate linearly or in mixed-bilinear terms, and theGeneral structure Mixed Integer Nonlinear �BB (GMIN-�BB), where the con-tinuous relaxation of the binary variables must lead to a twice-di�erentiableproblem. Both algorithms are based on the �BB global optimization algorithmfor nonconvex continuous problems.Once some of the theoretical issues behind local and global optimizationalgorithms for MINLPs have been exposed, attention is directed to their practi-cal use. The algorithmic framework MINOPT is discussed as a computationaltool for the solution of process synthesis problems. It is an implementation of anumber of local optimization algorithms for the solution of MINLPs. The syn-thesis problem for a heat exchanger network is then presented to demonstratethe application of some local MINLP algorithms and the global optimizationSMIN-�BB algorithm.1991 Mathematics Subject Classi�cation. Primary 54C40, 14E20; Secondary 46E25, 20C20.This work was supported by the National Science Foundation and Mobil Technology Com-pany.�Author to whom all correspondence should be addressed. c0000 (copyright holder)1



2 C. S. ADJIMAN, C. A. SCHWEIGER, AND C. A. FLOUDAS1. IntroductionNetwork applications exist in many �elds including engineering, applied math-ematics, and operations research. These applications include problems such asfacility location and allocation problems, design and scheduling of batch processes,facility planning and scheduling, topology of transportation networks, and processsynthesis problems. These types of problems are typically characterized by bothdiscrete and continuous decisions. Thus, the modeling aspects of these applicationsoften lead to models involving both integer and continuous variables as well as non-linear functions. This gives rise to problems classi�ed as mixed-integer nonlinearoptimization problems.Major advances have been made in the development of mathematical pro-gramming approaches which address mixed-integer nonlinear optimization prob-lems. The recent theoretical and algorithmic advances in mixed-integer nonlinearoptimization have made the use of these techniques both feasible and practical.Because of this, optimization has become a standard computational approach forthe solution of these networking problems.Some of the major contributions to the development of mixed-integer nonlin-ear optimization techniques have come from the �eld of process synthesis. This isdue to the natural formulation of the process synthesis problem as a mixed-integernonlinear optimization problem. This has led to signi�cant algorithmic develop-ments and extensive computational experience in process synthesis applications.The research in this area has focused on the overall process synthesis problem aswell as subsystem synthesis problems including heat exchanger network synthe-sis (HENS), reactor network synthesis, distillation sequencing, and mass exchangenetwork synthesis.The process synthesis problem is stated as follows: given the speci�cationsof the inputs (feed streams) and the speci�cations of the outputs, develop a pro-cess owsheet which transforms the given inputs to the desired products whileaddressing the performance criteria of capital and operating costs, product quality,environmental issues, safety, and operability. Three key issues must be addressedin order to determine the process owsheet: which process units should be in theowsheet, how the process units should be interconnected, and what the operatingconditions and sizes of the process units should be. The optimization approachto process synthesis has been developed to address these issues and has led tosome of the major theoretical and algorithmic advances in mixed-integer nonlinearoptimization.The next section describes the optimization approach to process synthesis whichleads to the formulation of a Mixed-Integer Nonlinear Program. In Section 3, theGeneralized Benders Decomposition, one of the optimization algorithms developedfor the solution of the posed optimization problem, is presented. Although this andother MINLP algorithms have been developed for process synthesis, they are appli-cable to models that result in other network applications. Section 4 reports somerecent developments for the global optimization of nonconvex MINLPs. Section 5describes the algorithmic framework, MINOPT, which implements a number ofMINLP algorithms. The �nal part of the paper describes the application of bothglobal and local MINLP methods to a heat exchanger network synthesis problem.
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Figure 1. Network representation of superstructure2. Optimization Approach in Process SynthesisA major advance in process synthesis has been the development of the opti-mization approach. This approach leads to a mathematical programming problemclassi�ed as a Mixed Integer Nonlinear Program. Signi�cant progress has been madein the development of algorithms capable of addressing this class of problems.The optimization approach to process synthesis involves three steps: the repre-sentation of alternatives through a process superstructure, the mathematical mod-eling of the superstructure, and the development of an algorithm for the solutionof the mathematical model. Each of these steps is crucial to the determination ofthe optimal process owsheet.The superstructure is a superset of all process design alternatives of inter-est. The representation of process alternatives is conceptually based on elementarygraph theory ideas. Nodes are used to represent the inputs, outputs, and each unitin the superstructure. One-way arcs represent connections from inputs to processunits, two-way arcs represent interconnections between process units, and one-wayarcs represent connections to the outputs. The result is a bi-partite planar graphwhich represents the network of process units in the superstructure. This networkrepresents all the options of the superstructure and includes cases where nodes inthe graph may or may not be present. The idea of the process superstructure canbe illustrated by a process which has one input, two outputs, and potentially threeprocess units. The network representation of this is shown in Figure 1.Since all the possible candidates for the optimal process owsheet are embeddedwithin this superstructure, the optimal process owsheet that can be determined isonly as good as the postulated representation of alternatives. This superstructuremust be rich enough to allow for a complete set of alternatives, but it must also beconcise enough to eliminate undesirable structures.A speci�c example of a superstructure is illustrated by the two componentdistillation scheme presented by [KG89]. This process consists of two feed streamsof known composition and owrate and two products streams with speci�ed purities.The superstructure consists of a ash unit and a distillation unit and is shown inFigure 2.
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Figure 2. A Two-Column Distillation Sequence SuperstructureThrough the process synthesis, the structure owsheet and the optimal valuesof the operating parameters are determined. The existence of process units leadsto discrete decisions while the determination of operating parameters leads to con-tinuous decisions. Thus, the process synthesis problem is mathematically classi�edas mixed discrete-continuous optimization.The next step involves the mathematical modeling of the superstructure. Bi-nary variables are used to indicate the existence of nodes within the network andcontinuous variables represent the levels of values along the arcs. The resultingformulation is a Mixed Integer Nonlinear Programming Problem (MINLP):minx;y f(x;y)s.t. h(x;y) = 0g(x;y) � 0x 2 X � Rny 2 Y integer(2.1)where� x is a vector of n continuous variables representing ow rates, compositions,temperatures, and pressures of process streams and sizing of process units.� y is a vector of integer variables representing process alternatives.� f(x;y) is the single objective function representing the performance crite-rion.� h(x;y) = 0 are the m equality constraints that represent the mass andenergy balances, and equilibrium expressions.� g(x;y) � 0 are the p inequality constraints that represent design speci�ca-tions, restrictions, and logical constraints.This formulation is completely general and includes cases where nonlinearities occurin the x space, y space, and joint x� y space.



NONLINEAR AND MIXED-INTEGER OPTIMIZATION 5The integer variables can be expressed as binary variables without loss of gen-erality. Through an appropriate transformation, the general formulation can bewritten as minx;y f(x;y)s.t. h(x;y) = 0g(x;y) � 0x 2 X � Rny 2 Y = f0; 1gq(2.2)where the y are the q binary variables which represent the existence of processunits.The �nal step of the optimization approach is the development and applicationof algorithms for the solution of the mathematical model. This step is highly depen-dent on the properties of the mathematical model and makes use of the structureof the formulation. This step focuses on the development of algorithms capable ofaddressing the MINLPs.The solution of MINLPs is particularly challenging due to the combinatorialnature of the problem (y domain) combined with the nonlinearities in the contin-uous domain (x domain). The combinatorial nature of the problem becomes anissue as the number of y variables increases creating a large number of possibleprocess structures. In the continuous domain, the models of chemical processes aregenerally nonlinear. The nonlinearities in the problem imply the possible existenceof multiple solutions and lead to challenges in �nding the global solution.Despite the challenges involved in the solution of the MINLPs, there have beensigni�cant advances in the area of MINLPs on the theoretical, algorithmic, andcomputational fronts. Many algorithms have been developed to address problemswith the above form and a brief review of these developments with emphasis on theGeneralized Benders Decomposition is presented in the next section.3. MINLP AlgorithmsA number of algorithms have been developed to address the problem formula-tion 2.2. The following is a listing of these algorithms.1. Generalized Benders Decomposition, GBD [Geo72, PF89, FAC89]2. Branch and Bound, BB [Bea77, Gup80, OOM90, BM91, QG92]3. Outer Approximation, OA [DG86]4. Feasibility Approach, FA [MM86]5. Outer Approximation with Equality Relaxation, OA/ER [KG87]6. Outer Approximation with Equality Relaxation and Augmented Penalty,OA/ER/AP [VG90]7. Generalized Outer Approximation, GOA [FL94]8. Generalized Cross Decomposition, GCD [Hol90]9. Extended Cutting Plane, ECP [WPG94, WP95]10. Logic Based Methods, [RG94, TG96]11. Interval Analysis Based Methods, [VEH96]An overview of MINLP algorithms and extensive theoretical, algorithmic, andapplications-oriented description of GBD, OA, OA/ER, OA/ER/AP, GOA,and GCD algorithms is found in [Flo95].



6 C. S. ADJIMAN, C. A. SCHWEIGER, AND C. A. FLOUDASSome of these algorithms are applicable only to restricted classes of the generalproblem formulation. The general strategy of algorithms used to solve MINLPs isto formulate subproblems such that the subproblems are easier to solve than theoriginal problem. This may involve �xing certain variable types, relaxing certainconstraints, using duality, or using linearization. The algorithms iterate throughsolutions of the subproblems which provide upper and lower bounds on the optimalsolution of the original problem. The nature of the subproblems and the quality ofbounds provided by the subproblems are di�erent for the various algorithms.Due to space limitations, only one of these algorithms, Generalized BendersDecomposition, is discussed here. The work of [Geo72] generalized the work of[Ben62] which exploits the structure of mathematical programming problems. Thealgorithm addresses problems with the form of problem 2.2. In fact, the algorithmis applicable to a broader class of problems for which the y variables may be contin-uous. The focus here is on MINLP models and thus the y variables will be treatedas binary.The basic idea behindGBD is the generation of upper and lower bounds on thesolution of the MINLPmodel through the iterative solution subproblems formulatedfrom the original problem. The upper bound is the result of the solution of theprimal problem while the lower bound is the result of the solution of the masterproblem. The primal problem corresponds to the solution of the original problem2.2 with the values of the y variables �xed. This problem is solved in the x spaceonly and its solution provides information about the Lagrange multipliers for theconstraints. The master problem is formulated by making use of the Lagrangemultipliers and nonlinear duality theory. Its solution provides a lower bound aswell as a new set of y variables. The algorithm iterates between the primal andmaster problems generating a sequence of upper and lower bounds which convergein a �nite number of iterations.3.1. Primal Problem. The primal problem results from �xing the values ofthe y variables. For values of y �xed to yk where k is an iteration counter, theprimal problem has the following formulation:minx f(x;yk)s.t. h(x;yk) = 0g(x;yk) � 0x 2 X � Rn(3.1)The primal formulation is an NLP which can be solved by using existing algo-rithms. If the primal problem is feasible, then the optimal solution provides valuesfor xk, f(xk;yk), and the Lagrange multipliers �k and �k for the equality andinequality constraints.If the primal problem is found to be infeasible when applying a solution al-gorithm, a feasibility problem is formulated. This problem can be formulated byminimizing the `1 or `1 sum of constraint violations. One possible formulation ofthe feasibility problem is the following:



NONLINEAR AND MIXED-INTEGER OPTIMIZATION 7minx;� �i + �+e + ��es.t. g(x;yk)� �i � 0h(x;yk) + �+e � ��e = 0x 2 X � Rn�i; �+e ; ��e � 0(3.2)Another possible form for the infeasible primal problem is the following wherethe equality constraints are not relaxed:minx;� �s.t. g(x;yk) � �h(x;yk) = 0x 2X � Rn� � 0(3.3)The solution of the feasibility problem provides values for �xk and the Lagrangemultipliers ��k and ��k for the equality and inequality constraints.3.2. Master Problem. The formulation of the master problem for GBDmakes use of nonlinear duality theory. The key aspects of the master problemformulation are the projection of the problem onto the y space and the dual repre-sentation.For the projection of the problem onto the y space, problem 2.2 can be writtenas miny infx f(x;y)s.t. h(x;y) = 0g(x;y) � 0x 2 X � Rny 2 Y � f0; 1gq(3.4)Let �(y) and V be de�ned as follows:�(y) = infx f(x;y)s.t. h(x;y) = 0g(x;y) � 0x 2 X � Rn(3.5) V = fy : h(x;y) = 0; g(x;y) � 0 for some x 2X � Rng(3.6)The projected problem can now be written as:miny �(y)s.t. y 2 Y \ V(3.7)The di�culty in solving this problem is that V and �(y) are known only im-plicitly. In order to overcome this, dual representations of V and �(y) are used.The dual representation of V is described in terms of a collection of regionsthat contain it. An element of Y also belongs to the set V if and only if it satis�es



8 C. S. ADJIMAN, C. A. SCHWEIGER, AND C. A. FLOUDASthe system: 0 � inf �L(x;y; ��; ��); 8��; �� 2 �where � = ��� 2 Rm ; �� 2 Rp : �� � 0; pPi=1 �i = 1�(3.8)This system corresponds to the set of constraints that have to be incorporated forthe case of infeasible primal problems.The dual representation of �(y) is the pointwise in�mum of a collection offunctions that support it.�(y) = 2664 minx f(x;y)s.t. h(x;y) = 0g(x;y) � 0x 2X � Rn 3775 = h sup�;��0 minx2X L(x;y; �; �) i 8y 2 Y \ V(3.9)
where L(x;y; �; �) = f(x;y) + �Th(x;y) + �Tg(x;y):Now, the representation for V (3.8) and the representation for �(y) (3.9) aresubstituted into problem 3.7 and the scalar �b is introduced to obtain the followingmaster problem: miny2Y ;�B �Bs.t. �B � minx2X L(x;y; �; �) 8�;8� � 00 � minx2X �L(x;y; ��; ��) 8 ���; ��� 2 �(3.10) where L(x;y; �; �) = f(x;y) + �Th(x;y) + �Tg(x;y)�L(x;y; ��; ��) = ��Th(x;y) + ��T g(x;y)(3.11)The key issue in the development of an algorithmic implementation of GBDis the solution of the master problem. The master problem consists of an outeroptimization with respect to y whose constraints are two optimization problemswith respect to x corresponding to the feasible and infeasible primal problems.These inner optimization problems need to be considered for all possible values ofthe Lagrange multipliers which implies that an in�nite number of constraints needto be considered for the master problem.One way to solve the master problem is to use relaxation of the problem whereonly a few of the constraints are considered. The inner optimization problemsare considered only for �xed values of the multipliers which correspond to themultipliers from the solution of the primal problem. Furthermore, the inner opti-mization problems can be eliminated by evaluating the Lagrange function for �xedvalues of the x variables corresponding to the solution of the primal problem. Thiselimination assumes that the Lagrange function evaluated at the solution to thecorresponding primal is a valid underestimator of the inner optimization problem.This is true when the projected problem �(y) is convex in y.3.3. GBD Algorithm. The algorithm for GBD is stated as follows:Step 1 Obtain initial values: y1Set the counter: k = 1Set the lower bound: LBD = �1



NONLINEAR AND MIXED-INTEGER OPTIMIZATION 9Set the upper bound: UBD = +1Initialize the feasibility set: F = ;Initialize the infeasibility set: �F = ;Set the convergence tolerance: � � 0Step 2 Solve the primal problem for the �xed values of y = yk:minx f(x;yk)s.t. g(x;yk) � 0h(x;yk) = 0Obtain the optimal solution, xk, and Lagrange multipliers �k and �kIf the primal is feasibleUpdate the feasibility set: F = F [ kIf the primal solution is less than the current upper boundupdate the upper boundElse Solve the infeasible primal problem for the �xed values of y = yk:minx;� �i + �+e + ��es.t. g(x;yk)� �i � 0h(x;yk) + �+e � ��e = 0�i; �+e ; ��e � 0Obtain the optimal �xk and the Lagrange multipliers ��k and ��kUpdate the infeasibility set: �F = �F [ kStep 3 Solve the relaxed master problem:miny;�b �bs.t. �b � f(xl;y) + (�l)T g(xl;y) + (�l)Th(xl;y) l 2 F0 � (��l)Tg(�xl;y) + (��l)Th(�xl;y) l 2 �FObtain optimal yk+1 and �bSet the lower bound: LBD = �bIf UBD � LBD � �TerminateElse Update the counter: k = k + 1Go to step 2This algorithm can be applied to general MINLP models, however it is onlyguaranteed to converge to the global solution for problems which meet speci�cconditions. First X must be a nonempty convex set, the functions f and g mustbe convex for each �xed y 2 Y , and the function h must be linear in x for eachy 2 Y .4. Recent Developments in Global Optimization for MINLPsTwo new optimization algorithms, the Special Structure Mixed-Integer Non-linear �BB (SMIN-�BB) and the General Structure Mixed-Integer Nonlinear �BB(GMIN-�BB), have been designed to solve large classes of nonconvex MINLPs toglobal optimality. They are described in the following two sections.4.1. The SMIN-�BB Algorithm. This algorithm, proposed by [AAF7a],is designed to address the following class of problems to global optimality:



10 C. S. ADJIMAN, C. A. SCHWEIGER, AND C. A. FLOUDASmin f(x) + xTA0y + cT0 ys.t. h(x) + xTA1y + cT1 y = 0g(x) + xTA2y + cT2 y � 0x 2 X � Rny 2 f0; 1gq(4.1)where cT0 , cT1 and cT2 are constant vectors, A0, A1 and A2 are constant matricesand f(x), h(x) and g(x) are functions with continuous second-order derivatives.The solution strategy for problems of type (4.1) is an extension of the �BBalgorithm for twice-di�erentiable NLPs [AMF95, AF96, ADFN97]. It is basedon the generation of two converging sequences of upper and lower bounds on theglobal optimum solution. A rigorous underestimation and convexi�cation strategyfor functions with continuous second-order derivatives allows the construction ofa lower bounding MINLP problem with convex functions in the continuous vari-ables. If no mixed-bilinear terms are present (Ai = 0;8i), the resulting MINLPcan be solved to global optimality using the Outer Approximation algorithm (OA)[DG86]. Otherwise, the Generalized Benders Decomposition (GBD) can be used,as discussed in Section 3, or the Glover transformations [Glo75] can be applied toremove these bilinearities and permit the use of the OA algorithm. This convexMINLP provides a valid lower bound on the original MINLP. An upper bound onthe problem can be obtained by applying the OA algorithm or the GBD to prob-lem (4.1) to �nd a local solution. This bound generation strategy is incorporatedwithin a branch-and-bound scheme: a lower and upper bound on the global solu-tion are �rst obtained for the entire solution space. Subsequently, the domain issubdivided by branching on a binary or a continuous variable, thus creating newnodes for which upper and lower bounds can be computed. At each iteration, thenode with the lowest lower bound is selected for branching. If the lower boundingMINLP for a node is infeasible or if its lower bound is greater than the best upperbound, this node is fathomed. The algorithm is terminated when the best lowerand upper bound are within a prespeci�ed tolerance of each other.Before presenting the algorithmic procedure, an overview of the underestima-tion and convexi�cation strategy is given, and some of the options available withinthe algorithm are discussed.4.1.1. Convex Underestimating MINLP Generation. In order to transform anMINLP problem of the form (4.1) into a convex problem which can be solved toglobal optimality with the OA or GBD algorithm, the functions f(x), h(x) andg(x) must be convexi�ed. The underestimation and convexi�cation strategy usedin the �BB algorithm has previously been described in detail [AAMF96, AF96,ADFN97]. Its main features are exposed here.In order to construct as tight an underestimator as possible, the nonconvexfunctions are decomposed into a sum of convex, bilinear, univariate concave andgeneral nonconvex terms. The overall function underestimator can then be builtby summing up the convex underestimators for all terms, according to their type.In particular, a new variable is introduced to replace each bilinear term, and isbounded by the convex envelope of the term [AKF83]. The univariate concaveterms are linearized. For each nonconvex term nt(x) with Hessian matrix Hnt(x),a convex underestimator L(x) is de�ned as



NONLINEAR AND MIXED-INTEGER OPTIMIZATION 11L(x) = nt(x)�Xi �i(xUi � xi)(xi � xLi )(4.2)where xUi and xLi are the upper and lower bounds on variable xi respectively and the� parameters are nonnegative scalars such that Hnt(x)+2diag(�i) is positive semi-de�nite over the domain [xL;xU ]. The rigorous computation of the � parametersusing interval Hessian matrices is described in [AAMF96, AF96, ADFN97].The underestimators are updated at each node of the branch-and-bound treeas their quality strongly depends on the bounds on the variables.4.1.2. Branching Variable Selection. An unusual feature of the SMIN-�BB al-gorithm is the strategy used to select branching variables. It follows a hybridapproach where branching may occur both on the integer and the continuous vari-ables in order to fully exploit the structure of the problem being solved. Afterthe node with the lowest lower bound has been identi�ed for branching, the typeof branching variable must be determined according to one of the following twocriteria:1. Branch on the binary variables �rst.2. Solve a continuous relaxation of the nonconvex MINLP locally. Branch ona binary variable with a low degree of fractionality at the solution. If thereis no such variable, branch on a continuous variable.The �rst criterion results in the creation of an integer tree for the �rst q levelsof the branch-and-bound tree, where q is the number of binary variables. At thelowest level of this integer tree, each node corresponds to a nonconvex NLP andthe lower and upper bounding problems at subsequent levels of the tree are NLPproblems. The e�ciency of this strategy lies in the minimization of the number ofMINLPs that need to be solved. The combinatorial nature of the problem and itsnonconvexities are handled sequentially. If branching occurs on a binary variable,the selection of that variable can be done randomly or by solving a relaxation ofthe nonconvex MINLP and choosing the most fractional variable at the solution.The second criterion selects a binary variable for branching only if it appearsthat the two newly created nodes will have signi�cantly di�erent lower bounds.Thus, if a variable is close to integrality at the solution of the relaxed problem,forcing it to take on a �xed value may lead to the infeasibility of one of the nodesor the generation of a high value for a lower bound, and therefore the fathomingof a branch of the tree. If no binary variable is close to integrality, a continuousvariable is selected for branching.A number of rules have been developed for the selection of a continuous branch-ing variable. Their aim is to determine which variable is responsible for the largestseparation distances between the convex underestimating functions and the originalnonconvex functions. These e�cient rules are exposed in [AAF7b].4.1.3. Variable Bound Updates. Variable bound updates performed before thegeneration of the convex MINLP have been found to greatly enhance the speed ofconvergence of the �BB algorithm for continuous problems [AAF7b]. For contin-uous variables, the variable bounds are updated by minimizing or maximizing thechosen variable subject to the convexi�ed constraints being satis�ed. In spite of itscomputational cost, this procedure often leads to signi�cant improvements in thequality of the underestimators and hence a noticeable reduction in the number ofiterations required.



12 C. S. ADJIMAN, C. A. SCHWEIGER, AND C. A. FLOUDASIn addition to the update of continuous variable bounds, the SMIN-�BB algo-rithm also relies on binary variable bound updates. Through simple computations,an entire branch of the branch-and-bound tree may be eliminated when a binaryvariable is found to be restricted to 0 or 1. The bound update procedure for a givenbinary variable is as follows:1. Set the variable to be updated to one of its bounds y = yB .2. Perform interval evaluations of the constraints in the nonconvex MINLP,using the bounds on the solution space for the current node.3. If any of the constraints are found infeasible, �x the variable to y = 1� yB .4. If both bounds have been tested, repeat this procedure for the next variableto be updated. Otherwise, try the second bound.4.1.4. Algorithmic Procedure. The algorithmic procedure for the SMIN-�BBalgorithm is formalized as follows:Step 1 Set absolute tolerance �; set LBD� = �1 and UBD� =1.Set node counter k = 0; initialize set of nodes to be bounded, J = f0g;N , the list of nodes to be explored, is empty.Step 2 BoundingFor each node Nj ; j 2 J :Perform variable bound updates if desired.Generate a convex lower bounding MINLP.Solve convex MINLP using OA or GBD. Solution is LBDj .If MINLP is infeasible, fathom the current node.If LBDj � UBD�, add the current node to N .Else, fathom the current node.Step 3 Set LBD� to the lowest lower bound from the list N .If UBD� � LBD� � �, terminate with solution UBD�.Otherwise, proceed to Step 4.Step 4 BranchingSelect the node from the list N with the lowest lower bound forbranching, Ni (i < k). Its lower bound is LBDi.Select a branching variable yB or xB .Create two new regions Nk+1 and Nk+2.Set J = k + 1; k + 2 and k = k + 2. Go back to Step 2.4.2. The GMIN-�BB algorithm. This algorithm operates within a clas-sical branch-and-bound framework. Branch-and-bound algorithms have been pro-posed by a number of researchers [GR85, OOM90, BM91]. The basic idea behindbranch-and-bound approaches is the generation of two converging sequences of up-per and lower bounds on the objective function through partitioning of the solutionspace. Valid lower bounds on the original MINLP are obtained by relaxing it toa continuous NLP problem, where the y variables can take on any value between0 and 1. If the NLP relaxation has an integer solution, this solution provides anupper bound on the global solution. The generation of lower and upper bounds inthis manner is referred to as the bounding step of the algorithm. At �rst, all thebinary variables are relaxed and the continuous problem corresponds to the �rstnode of a branch-and-bound tree. At the second level, two new nodes are created



NONLINEAR AND MIXED-INTEGER OPTIMIZATION 13by forcing one of the binary variables to take on a value of 0 or 1. This is thebranching step. Nodes in the tree are pruned when their lower bound is greaterthan the best upper bound on the problem, or when the relaxation is infeasible.The algorithm terminates when the lowest lower bound is within a pre-speci�edtolerance of the best upper bound.The main contribution of the GMIN-�BB algorithm is its ability to identify theglobal optimum solution of a much larger class of problems than previously proposedalgorithms. The only condition imposed on the functions f(x;y), g(x;y) andh(x;y) in problem (2.2) is that they possess continuous second-order derivativesin the x and relaxed y space. This increased applicability is possible because ofthe use of the �BB global optimization algorithm for continuous twice-di�erentiableNLPs [AMF95, AF96, ADFN97]. The basic concepts behind the �BB algorithmwere exposed in Section 4.1. Its use to solve the relaxed MINLP at each each nodeallows the identi�cation of rigorously valid lower bounds and therefore ensuresconvergence to the global optimum. In general, it is not necessary to let the �BBalgorithm run to completion as each one of its iterations generates a lower boundon the global solution of the NLP being solved. A strategy of early terminationleads to a reduction in the computational requirements of each node of the binarybranch-and-bound tree and faster overall convergence. This strategy has been usedto solve a number of small nonconvex MINLP test problems as well as the pumpcon�guration problem of [WPG94].5. Algorithmic FrameworkAlthough there are a number of algorithms available for the solution of MINLPs,there are relatively few implementations of these algorithms. The recent advances inthe development of these algorithms has led to several automated implementationsof these MINLP algorithms.The �rst implementations made use of the modeling systemGAMS [BKM92]which allows algebraic model representation and automatic interfacing with linear,nonlinear and mixed integer linear solvers. The algorithmic procedure, APROS[PF89], was developed for the automatic solution of mathematical programmingproblems involving decomposition techniques such as those used in the solution ofMINLPs. APROS is an implementation of GBD and OA in GAMS where themodeling language is used to generate the NLP and MILP subproblems which aresolved through the GAMS interface. GAMS also includes a direct interface toan implementation of OA/ER in the package DICOPT++ [VG90]. The modelcan be written algebraically as an MINLP and the solver will perform the necessarydecomposition.More recently, the framework MINOPT[SF97b] has been developed for thesolution of general mathematical programming problems. The primary motivationfor its development has been brought about by the need for implementations of al-gorithms applicable to MINLPs. Further development has been done to address thesolution of problems which involve dynamic as well as algebraic models. Extensivedevelopment of MINOPT has led to a highly developed computational tool.MINOPT has a number of features including:� Extensive implementation of optimization algorithms� Front-end parser� Extensive options



14 C. S. ADJIMAN, C. A. SCHWEIGER, AND C. A. FLOUDAS� Expandable platform� Interface routines callable as a subroutineMINOPT is capable of handling a wide variety of problems described by thevariable and constraint types employed. MINOPT handles the following variabletypes:� continuous time invariant� continuous dynamic� control� integerand recognizes the following constraint types:� linear� nonlinear� dynamic� dynamic path� dynamic pointDi�erent combinations of variable and constraint types lead to the following prob-lem classi�cations:� Linear Program (LP)� Nonlinear Program (NLP)� Mixed Integer Linear Program (MILP)� Mixed Integer Nonlinear Program (MINLP)� Nonlinear Program with Di�erential and Algebraic Constraints (NLP/DAE)� Mixed Integer Nonlinear Program with Di�erential and AlgebraicConstraints (MINLP/DAE)� Optimal Control Program (OCP)� Mixed Integer Optimal Control Program (MIOCP)The MINOPT program has two phases: problem entry and problem solu-tion. During the �rst phase MINOPT reads the input from a �le, saves theproblem information, and then determines the structure and consistency of theproblem by analyzing the constraints and variables. After the problem has beenentered, MINOPT proceeds to the second phase to solve the problem. Based onthe problem structure determined byMINOPT and options supplied by the user,MINOPT employs the appropriate algorithm to solve the problem.The entry phase of MINOPT features a parser which reads in the dynamicand/or algebraic problem formulation from an input �le. The input �le has a clearsyntax and allows the user to enter the problem in a concise form without needingto specify the steps of the algorithm. The input �le includes information suchas variable names, variable partitioning (continuous, integer, dynamic), parameterde�nitions, and option speci�cations. The parser features index notation whichallows for compact model representation. The parser allows for general constraintnotation and has the ability to recognize and handle the various constraint types(i.e. linear, nonlinear, dynamic, point, path) and ultimately the overall structureof the problem. The MINOPT parser also determines the necessary analyticalJacobian information from the problem formulation.The solution phase ofMINOPT features extensive implementations of numer-ous optimization algorithms. Once the parser has determined the problem type, thesolution phase applies the appropriate method to solve the problem. MINOPT



NONLINEAR AND MIXED-INTEGER OPTIMIZATION 15Table 1. Solution algorithms implemented by MINOPTProblem Type Algorithm SolverLP Simplex method CPLEXMINOSLSSOLMILP Branch and Bound CPLEXNLP Augmented Lagrangian/Reduced Gradient MINOSSequential Quadratic Programming NPSOLSequential Quadratic Programming SNOPTDynamic Integration (Backward Di�erence Formula) DASOLVOptimal Control Control Parameterization DAEOPTMINLP Generalized Benders Decomposition MINOPTOuter Approximation/Equality Relaxation MINOPTOuter Approximation/Augmented Penalty MINOPTGeneralized Cross Decomposition MINOPTutilizes available software packages for the solution of various subproblems. Thesolution algorithms implemented by MINOPT are listed in Table 1. The solu-tion algorithms implemented by MINOPT are callable as subroutines from otherprograms.MINOPT has an extensive list of options which allows the user to �ne tunethe various algorithms.� selection of di�erent algorithms for a problem type� selection of parameters for various algorithms� solution of the relaxed MINLP� auto-initialization procedure|relaxed MINLP solved to determine startingvalues for the y-variables.� integer cuts for the GBD algorithm� radial search technique for problems with discrete and continuous y variables(GBD)� alternative feasibility formulation for infeasible primal� solution of the GBD master problem in terms of both x and y rather thanin y alone� speci�cation of parameters for external solversThe ow of the program is described in Figure 3. The program is invoked fromthe command line and parses the input �le and stores the information into a prob-lem structure. The program then determines the appropriate method to solve theproblem based on the problem type and options provided by the user. Based on thealgorithm and parameters,MINOPT solves the problem by formulating and solv-ing various subproblems. When needed, MINOPT draws necessary informationfrom the problem structure.The code for MINOPT has been written in portable ANSI C and can becompiled on any computer. MINOPT has been developed with an expandableplatform in both the entry and solution phases of the program. This parser can beexpanded to recognize additional options, variable types, commands, and constrainttypes that may be required of an algorithm. The solution phase of the program canbe expanded to implement additional algorithms should they become available.
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Figure 3. Program ow for MINOPT6. Computational Study|Heat Exchanger Network SynthesisThe design of a heat exchanger network involving two hot streams, two coldstreams, one hot and one cold utility is studied. The formulation of [YG91] isused. The annualized cost of the network is expressed as the summation of theutility costs, the �xed charges for the required heat-exchangers and an area-basedcost for each each exchanger. The area is a highly nonlinear function of the heatduty and the temperature di�erences at both ends of the heat exchanger. The bi-nary variables, which represent the existence of a given heat-exchanger, participatelinearly in the problem. All the constraints are linear. This nonconvex MINLPtherefore provides an opportunity to test the SMIN-�BB global optimization algo-rithm proposed in Section 4.1.The stream data for the problem are summarized in Table 2. There are twotemperature intervals. The steam utility costs $80/kW-yr and the cooling watercosts $15/kW-yr. The �xed charges for the heat exchangers amount to $5500/yr.The cost coe�cient for the area-dependent part of the heat exchanger costs is$300/yr. The overall heat transfer coe�cients are 0.5 kW/m2K for the hot stream-cold stream units, 0.83333 kW/m2K for the cold stream-hot utility units and 0.5kW/m2K for the hot stream-cold utility units.Stream Tin (K) Tout (K) Fcp (kW/K)Hot 1 650 370 10.0Hot 2 590 370 20.0Cold 1 410 650 15.0Cold 2 350 500 13.0Steam 680 680 |Water 300 320 |Table 2. Stream data for heat exchanger network problem.



NONLINEAR AND MIXED-INTEGER OPTIMIZATION 17The superstructure for this problem is shown in Figure 4. There are 12 possi-ble matches and therefore 12 binary variables. The global optimum con�gurationinvolves six heat exchangers and is shown in Figure 5. Given the set ST of tem-perature K locations, the set HP of hot process streams and the set CP of coldprocess streams, the general problem formulation is as follows:min Pi2HP CCUQCU;i + Pj2CP CHUQHU;j+ Pi2HP Pj2CP Pk2ST CFijzijk + Pi2HP CFi;CUzCU;i + Pj2CP CFj;HU zHU;j+ Pi2HP Pj2CP Pk2ST CijQijkUij [�Tijk�Tijk+1(�Tijk+�Tijk+1)=2] 13+ Pi2HP Ci;CUQCU;iUCU;i[�TCU;i(Tout;i�Tin;CU )(�TCU;i+Tout;i�Tin;CU )=2] 13+ Pj2CP Cj;HUQHU;jUHU;j [�THU;j(Tin;HU�Tout;j )(�THU;j+Tin;HU�Tout;j )=2] 13
(6.1)
(Tin;i � Tout;i)Fcpi = Pk2ST Pj2CP Qijk +QCU;i 8 i 2 HP(Tout;j � Tin;j)Fcpj = Pk2ST Pi2HP Qijk +QHU;j 8 j 2 CP(Ti;k � Ti;k+1)Fcpi = Pj2CP Qijk 8 k 2 ST; 8 i 2 HP(Tj;k � Tj;k+1)Fcpj = Pi2HP Qijk 8 k 2 ST; 8 j 2 CPTin;i = Ti;1 8 i 2 HPTin;j = Tj;K 8 j 2 CPTi;k � Ti;k+1 8 k 2 ST; 8 i 2 HPTj;k � Tj;k+1 8 k 2 ST; 8 j 2 CPTout;i � Ti;K 8 i 2 HPTout;j � Tj;1 8 j 2 CP(Ti;K � Tout;i)Fcpi = QCU;i 8 i 2 HP(Tout;j � Tj;1)Fcpj = QHU;j 8 j 2 CPQijk �
zijk � 0 8 k 2 ST; 8 i 2 HP; 8 j 2 CPQCU;i �
zCU;i � 0 8 i 2 HPQHU;j �
zHU;j � 0 8 j 2 CPzijk; zCU;i; zHU;j 2 f0; 1g 8 k 2 ST; 8 i 2 HP; 8 j 2 CPTi;k � Tj;k + �(1� zijk) � �Tijk 8 k 2 ST; 8 i 2 HP; 8 j 2 CPTi;k+1 � Tj;k+1 + �(1� zijk) � �Tijk+1 8 k 2 ST; 8 i 2 HP; 8 j 2 CPTi;K � Tout;CU + �(1� zCU;i) � �TCU;i 8 i 2 HPTout;HU � Tj;1 + �(1� zHU;j) � �THU;j 8 j 2 CP�Tijk � 10 8 k 2 ST; 8 i 2 HP; 8 j 2 CP

(6.2)

where the parameters are CCU , the per unit cost of cold utility; CHU , the per unitcost of hot utility; CF , the �xed charged for heat exchangers; C, the area costcoe�cient; Tin, the inlet temperature of a stream; Tout, the outlet temperature;Fcp, the heat capacity owrate of a stream; 
, the upper bound on heat exchange;�, the upper bound on the temperature di�erence. The continuous variables areTik, the temperature of hot stream i at the hot end of stage k; Tjk, the temperatureof cold stream j at the cold end of stage k, Qijk , the heat exchanged between hot



18 C. S. ADJIMAN, C. A. SCHWEIGER, AND C. A. FLOUDASstream i and cold stream j at temperature location k; QCU;i, the heat exchangedbetween hot stream i and the cold utility at temperature location k; QHU;j , theheat exchanged between cold stream j and the hot utility at temperature locationk; �Tijk , the temperature approach for the match of hot stream i and cold stream jat temperature location k; �TCU;i, the temperature approach for the match of hotstream i and the cold utility at temperature location k; �THU;j , the temperatureapproach for the match of cold stream j and the hot utility at temperature locationk. The binary variables are zijk, for the existence of a match between hot streami and cold stream j at temperature location k; zCU;i, for the existence of a matchbetween hot stream i and the cold utility at temperature location k; zHU;j , forthe existence of a match between cold stream j and the hot utility at temperaturelocation k.
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Figure 4. Superstructure for the heat exchanger network prob-lem.Due to the linear participation of the binary variables, the problem can besolved locally using the Outer Approximation algorithm [DG86, KG87, VG90]or the Generalized Benders Decomposition algorithm described in Section 3, andglobally using the SMIN-�BB algorithm of Section 4.1.This problem can be solved locally using MINOPT. For both GBD andOAER the problem is solved 30 times with random starting values for the bi-nary variables. The starting values for the continuous variables are set to theirlower bounds. The results of these runs are shown in Table 3. Whereas GBDgenerally takes more iterations than OAER, it converges to fewer local minima.Both algorithms obtain the global optimum roughly the same number of times.When using the SMIN-�BB algorithm, the area-dependent cost of the heatexchangers must be underestimated using the general convex lower bounding func-tion (4.2), in order to generate valid lower bounds on the objective function. TheOuter Approximation algorithm is used to solve a lower bounding convex MINLPat each node of the tree. When this MINLP is feasible, an upper bound on theobjective function is obtained by solving the nonconvex MINLP locally in the same



NONLINEAR AND MIXED-INTEGER OPTIMIZATION 19
S

C2

H2

H1
C1

C1

H1

CW

CW

C1

C2

H1

H2

Stage 1 Stage 2

Figure 5. Optimum con�guration for the heat exchanger networkproblem.Table 3. Local solutions for Heat Exchanger Network Synthesisproblem obtained with MINOPTGBDLocal Solutions number of times average numberobtained of iterations154997 (Global) 11 16155510 18 18161010 1 14OAERLocal Solutions number of times average numberobtained of iterations154997 (Global) 10 3.1155510 6 3.8167602 3 6180848 1 5189521 1 5197983 7 3.6199196 1 5212678 1 3
region. For the heat exchanger between hot stream i and cold stream j, the convexunderestimator is expressed as



20 C. S. ADJIMAN, C. A. SCHWEIGER, AND C. A. FLOUDASCijQijkUij [�Tijk�Tijk+1(�Tijk+�Tijk+1)=2] 13� �Qijk(QUijk �Qijk)(Qijk �QLijk)� ��Tkijk (�TUijk ��Tijk)(�Tijk ��TLijk)� ��Tk+1ijk (�TUijk+1 ��Tijk+1)(�Tijk+1 ��TLijk+1):(6.3)where �Qijk , ��Tkijk and ��Tk+1ijk are non-negative scalars obtained through one of themethods described by [ADFN97]. The convex underestimator for process stream-utility exchangers is similar, expect that one of the �T 's is constant and only two� terms are therefore required. At the �rst level of the branch-and-bound tree, allbinary variables can take on a value of either 0 or 1. As a result, every nonconvexterm in the objective function must be underestimated to obtain a lower boundvalid for the entire solution space. However, if branching occurs on the binaryvariables, the existence of some units is pre-determined for subsequent levels ofthe branch-and-bound tree. Thus, if some variable zijk is �xed to 0 at a node ofthe tree, proper updating of the variable bounds yields Qijk = QLijk = QUijk = 0.The bounds on �Tijk and �Tijk+1 become 10 � �Tijk � Ti;k � Tj;k + � and10 � �Tijk+1 � Ti;k+1 � Tj;k+1 + �. Since � is a large number, the convex termscorresponding the �T 's do not naturally vanish from Equation (6.3). Even thoughthe area of unit (ijk) is 0, its cost appears in the underestimating objective functionas ���Tkijk (�TUijk ��Tijk)(�Tijk ��TLijk)� ��Tk+1ijk (�TUijk+1 ��Tijk+1)(�Tijk+1 ��TLijk+1):(6.4)In order to eliminate this redundant term, it is therefore necessary to introducemodi�ed � parameters which account for the non-existence of a unit. These newparameters are de�ned as ��;�Tkijk = ��Tkijk zUijk��;�Tk+1ijk = ��Tk+1ijk zUijk :(6.5)where zUijk is the current upper bound on variable zijk . According to Equation (6.5),if zijk is �xed to 0, its upper bound zUijk is 0 and ��;�Tkijk and ��;�Tk+1ijk vanish. Theconvex underestimator for unit (ijk) no longer participates in the lower boundingobjective function. On the contrary, if zijk is �xed to 1 or remains free to take onthe value of 0 or 1, the convex underestimator is preserved.This analysis of the objective function emphasizes the importance of the branch-ing strategy in the generation of tight lower bounds on the objective function. Sev-eral branching strategies were used for this problem. First, the continuous variableswere branched on exclusively (Run 1). Then, for Runs 2 and 3, the binary variableswere branched on �rst, followed by the continuous variables. Finally, the \almost-integer" strategy described in Section 4.1.2 was used for Runs 4, 5 and 6. A binaryvariable was declared to have a low degree of fractionality if its value z� at thesolution of the relaxed MINLP was such that minfz�; 1� z�g � zdist. For Run 4,zdist = 0:1 was used and for Runs 5 and 6, zdist = 0:2 was used.



NONLINEAR AND MIXED-INTEGER OPTIMIZATION 21A number of variable bound update strategies were also tested for this problem.In Runs 1 and 2, updates were performed only for the continuous variables. In allother runs, the bounds on the binary variables were also updated. In Run 6, thee�ect of updating the bounds on only a fraction of the continuous variables wasstudied.The results are shown in Figure 6 and Table 4. Branching on the continuousvariables only results in slow asymptotic convergence of algorithm to the globaloptimum solution (Run 1). The rate of convergence is greatly improved when thebinary variables can be used for branching (Runs 2 to 6). Although the \almost-integer" branching strategy exhibits the best performance in terms of iterations(Runs 4 to 6), the lowest CPU requirements correspond to Run 3, which brancheson all the binary variables before turning to the continuous variables. The aver-age time spent on each iteration of the algorithm is therefore greater when the\almost-integer" strategy is applied. Two factors can account for this increase inthe computational requirements. First, the selection of a binary branching vari-able requires the solution of a nonconvex MINLP. In addition, the generation ofa lower bound on the solution at almost every node of the branch-and-bound treefor Runs 4 to 6 necessitates the solution of a convex MINLP. By comparison, only58% of the nodes in the branch-and-bound tree for Run 3 involve the solution of aconvex MINLP. Lower bounds at the remaining nodes are obtained by solving lessexpensive convex NLPs. Addressing the combinatorial aspects of the problem �rstby branching on the binary variables thus leads to the better performance of theSMIN-�BB algorithm.Run Iterations CPU sec Deepest Binarylevel branches1 800 2210 60 |2 753 1116 26 3433 604 755 23 1734 451 1041 18 975 422 935 26 1126 547 945 22 127Table 4. Optimization of a heat exchanger network { Note thatRun 1 converges asymptotically.7. ConclusionsAs was demonstrated in this paper, mathematical programming techniques area valuable tool for the solution of network applications. The optimization approachto process synthesis illustrates their use for an important industrial application.It was shown that this procedure generates Mixed-Integer Nonlinear Programmingproblems (MINLPs) and a decomposition based method, GBD, capable of address-ing such problems was presented. Considerable progress has been made in handlingboth the combinatorial aspects of the problem as well as nonconvexity issues so thatthe global solution of increasingly complex problems can be identi�ed. The devel-opment of the SMIN-�BB and GMIN-�BB algorithms has extended the class ofproblems that can rigorously be solved to global optimality.
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Figure 6. Progress of the lower bound for the heat exchangernetworkThe increasing capability of MINLP algorithms has permitted the developmentof automated frameworks such as MINOPT, in which general mathematical repre-sentations can be addressed. These developments have led researchers in numerous�elds to employ mathematical modeling and numerical solution through MINLPoptimization techniques in order to address their problems.A number of issues must be resolved in order to develop algorithms that canhandle more complex and realistic problems. Although computational power hasincreased, the ability of MINLP algorithms to solve large scale problems is stilllimited: a large number of integer variables leads to combinatorial problems, anda large number of continuous variables leads to the generation of large scale NLPs.In addition, rigorous models capable of accurately describing industrial operationsusually involve complex mathematical expressions and result in problems which aredi�cult to solve using standard procedures. Finally, important challenges such asthe inclusion of dynamic models and optimal control problems into the MINLPframework have only recently been addressed [SF97a].References[AAF7a] C. S. Adjiman, I. P. Androulakis, and C. A. Floudas, Global optimization of MINLPproblems in process synthesis and design, Comput. Chem. Eng. 21 (1997a), S445{S450.
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