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Nonlinear and Mixed-Integer Optimization in Chemical
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ABSTRACT. The use of networks allows the representation of a variety of im-
portant engineering problems. The treatment of a particular class of network
applications, the Process Synthesis problem, is exposed in this paper. Process
Synthesis seeks to develop systematically process flowsheets that convert raw
materials into desired products. In recent years, the optimization approach to
process synthesis has shown promise in tackling this challenge. It requires the
development of a network of interconnected units, the process superstructure,
that represents the alternative process flowsheets. The mathematical model-
ing of the superstructure has a mixed set of binary and continuous variables
and results in a mixed-integer optimization model. Due to the nonlinearity
of chemical models, these problems are generally classified as Mixed-Integer
Nonlinear Programming (MINLP) problems.

A number of local optimization algorithms for MINLP problems are out-
lined in this paper: Generalized Benders Decomposition (GBD), Outer Ap-
proximation (OA), Generalized Cross Decomposition (GCD), Extended Cut-
ting Plane (ECP), Branch and Bound (BB), and Feasibility Approach (FA),
with particular emphasis on the Generalized Benders Decomposition. Recent
developments for the global optimization of nonconvex MINLPs are then in-
troduced. In particular, two branch-and-bound approaches are discussed: the
Special structure Mixed Integer Nonlinear BB (SMIN-aBB), where the bi-
nary variables should participate linearly or in mixed-bilinear terms, and the
General structure Mixed Integer Nonlinear aBB (GMIN-aBB), where the con-
tinuous relaxation of the binary variables must lead to a twice-differentiable
problem. Both algorithms are based on the BB global optimization algorithm
for nonconvex continuous problems.

Once some of the theoretical issues behind local and global optimization
algorithms for MINLPs have been exposed, attention is directed to their practi-
cal use. The algorithmic framework MINOPT is discussed as a computational
tool for the solution of process synthesis problems. It is an implementation of a
number of local optimization algorithms for the solution of MINLPs. The syn-
thesis problem for a heat exchanger network is then presented to demonstrate
the application of some local MINLP algorithms and the global optimization
SMIN-aBB algorithm.
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1. Introduction

Network applications exist in many fields including engineering, applied math-
ematics, and operations research. These applications include problems such as
facility location and allocation problems, design and scheduling of batch processes,
facility planning and scheduling, topology of transportation networks, and process
synthesis problems. These types of problems are typically characterized by both
discrete and continuous decisions. Thus, the modeling aspects of these applications
often lead to models involving both integer and continuous variables as well as non-
linear functions. This gives rise to problems classified as mixed-integer nonlinear
optimization problems.

Major advances have been made in the development of mathematical pro-
gramming approaches which address mixed-integer nonlinear optimization prob-
lems. The recent theoretical and algorithmic advances in mixed-integer nonlinear
optimization have made the use of these techniques both feasible and practical.
Because of this, optimization has become a standard computational approach for
the solution of these networking problems.

Some of the major contributions to the development of mixed-integer nonlin-
ear optimization techniques have come from the field of process synthesis. This is
due to the natural formulation of the process synthesis problem as a mixed-integer
nonlinear optimization problem. This has led to significant algorithmic develop-
ments and extensive computational experience in process synthesis applications.
The research in this area has focused on the overall process synthesis problem as
well as subsystem synthesis problems including heat exchanger network synthe-
sis (HENS), reactor network synthesis, distillation sequencing, and mass exchange
network synthesis.

The process synthesis problem is stated as follows: given the specifications
of the inputs (feed streams) and the specifications of the outputs, develop a pro-
cess flowsheet which transforms the given inputs to the desired products while
addressing the performance criteria of capital and operating costs, product quality,
environmental issues, safety, and operability. Three key issues must be addressed
in order to determine the process flowsheet: which process units should be in the
flowsheet, how the process units should be interconnected, and what the operating
conditions and sizes of the process units should be. The optimization approach
to process synthesis has been developed to address these issues and has led to
some of the major theoretical and algorithmic advances in mixed-integer nonlinear
optimization.

The next section describes the optimization approach to process synthesis which
leads to the formulation of a Mixed-Integer Nonlinear Program. In Section 3, the
Generalized Benders Decomposition, one of the optimization algorithms developed
for the solution of the posed optimization problem, is presented. Although this and
other MINLP algorithms have been developed for process synthesis, they are appli-
cable to models that result in other network applications. Section 4 reports some
recent developments for the global optimization of nonconvex MINLPs. Section 5
describes the algorithmic framework, MINOPT, which implements a number of
MINLP algorithms. The final part of the paper describes the application of both
global and local MINLP methods to a heat exchanger network synthesis problem.
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FiGUuRrE 1. Network representation of superstructure

2. Optimization Approach in Process Synthesis

A major advance in process synthesis has been the development of the opti-
mization approach. This approach leads to a mathematical programming problem
classified as a Mixed Integer Nonlinear Program. Significant progress has been made
in the development of algorithms capable of addressing this class of problems.

The optimization approach to process synthesis involves three steps: the repre-
sentation of alternatives through a process superstructure, the mathematical mod-
eling of the superstructure, and the development of an algorithm for the solution
of the mathematical model. Each of these steps is crucial to the determination of
the optimal process flowsheet.

The superstructure is a superset of all process design alternatives of inter-
est. The representation of process alternatives is conceptually based on elementary
graph theory ideas. Nodes are used to represent the inputs, outputs, and each unit
in the superstructure. One-way arcs represent connections from inputs to process
units, two-way arcs represent interconnections between process units, and one-way
arcs represent connections to the outputs. The result is a bi-partite planar graph
which represents the network of process units in the superstructure. This network
represents all the options of the superstructure and includes cases where nodes in
the graph may or may not be present. The idea of the process superstructure can
be illustrated by a process which has one input, two outputs, and potentially three
process units. The network representation of this is shown in Figure 1.

Since all the possible candidates for the optimal process flowsheet are embedded
within this superstructure, the optimal process flowsheet that can be determined is
only as good as the postulated representation of alternatives. This superstructure
must be rich enough to allow for a complete set of alternatives, but it must also be
concise enough to eliminate undesirable structures.

A specific example of a superstructure is illustrated by the two component
distillation scheme presented by [KG89]. This process consists of two feed streams
of known composition and flowrate and two products streams with specified purities.
The superstructure consists of a flash unit and a distillation unit and is shown in
Figure 2.
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Through the process synthesis, the structure flowsheet and the optimal values
of the operating parameters are determined. The existence of process units leads
to discrete decisions while the determination of operating parameters leads to con-
tinuous decisions. Thus, the process synthesis problem is mathematically classified
as mixed discrete-continuous optimization.

The next step involves the mathematical modeling of the superstructure. Bi-
nary variables are used to indicate the existence of nodes within the network and
continuous variables represent the levels of values along the arcs. The resulting
formulation is a Mixed Integer Nonlinear Programming Problem (MINLP):
min  f(z,y)

z,y

'

st. h(z,y) = 0
r € XCR
y € Y integer

e x is a vector of n continuous variables representing flow rates, compositions,
temperatures, and pressures of process streams and sizing of process units.

e y is a vector of integer variables representing process alternatives.

e f(x,y) is the single objective function representing the performance crite-
rion.

e h(xz,y) = 0 are the m equality constraints that represent the mass and
energy balances, and equilibrium expressions.

e g(x,y) < 0 are the p inequality constraints that represent design specifica-
tions, restrictions, and logical constraints.

This formulation is completely general and includes cases where nonlinearities occur
in the x space, y space, and joint x — y space.
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The integer variables can be expressed as binary variables without loss of gen-
erality. Through an appropriate transformation, the general formulation can be
written as

min  f(z,y)
T,y
st. h(z,y) = 0
(2.2) glxz,y) < 0
r € XCR
y € Y ={01}

where the y are the g binary variables which represent the existence of process
units.

The final step of the optimization approach is the development and application
of algorithms for the solution of the mathematical model. This step is highly depen-
dent on the properties of the mathematical model and makes use of the structure
of the formulation. This step focuses on the development of algorithms capable of
addressing the MINLPs.

The solution of MINLPs is particularly challenging due to the combinatorial
nature of the problem (y domain) combined with the nonlinearities in the contin-
uous domain (x domain). The combinatorial nature of the problem becomes an
issue as the number of y variables increases creating a large number of possible
process structures. In the continuous domain, the models of chemical processes are
generally nonlinear. The nonlinearities in the problem imply the possible existence
of multiple solutions and lead to challenges in finding the global solution.

Despite the challenges involved in the solution of the MINLPs, there have been
significant advances in the area of MINLPs on the theoretical, algorithmic, and
computational fronts. Many algorithms have been developed to address problems
with the above form and a brief review of these developments with emphasis on the
Generalized Benders Decomposition is presented in the next section.

3. MINLP Algorithms

A number of algorithms have been developed to address the problem formula-
tion 2.2. The following is a listing of these algorithms.

Generalized Benders Decomposition, GBD [Geo72, PF89, FAC89]
Branch and Bound, BB [Bea77, Gup80, OOM90, BM91, QG92]
Outer Approximation, OA [DG86]

Feasibility Approach, FA [MM86|

Outer Approximation with Equality Relaxation, OA/ER [KG87]
Outer Approximation with Equality Relaxation and Augmented Penalty,
OA/ER/AP [VGY0]

Generalized Outer Approximation, GOA [FL94]

Generalized Cross Decomposition, GCD [Hol90]

9. Extended Cutting Plane, ECP [WPG94, WP95]

10. Logic Based Methods, [RG94, TG96]

11. Interval Analysis Based Methods, [VEH96]

An overview of MINLP algorithms and extensive theoretical, algorithmic, and
applications-oriented description of GBD, OA, OA/ER, OA/ER/AP, GOA,
and GCD algorithms is found in [Flo95].

S otk W=

N
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Some of these algorithms are applicable only to restricted classes of the general
problem formulation. The general strategy of algorithms used to solve MINLPs is
to formulate subproblems such that the subproblems are easier to solve than the
original problem. This may involve fixing certain variable types, relaxing certain
constraints, using duality, or using linearization. The algorithms iterate through
solutions of the subproblems which provide upper and lower bounds on the optimal
solution of the original problem. The nature of the subproblems and the quality of
bounds provided by the subproblems are different for the various algorithms.

Due to space limitations, only one of these algorithms, Generalized Benders
Decomposition, is discussed here. The work of [Geo72] generalized the work of
[Ben62] which exploits the structure of mathematical programming problems. The
algorithm addresses problems with the form of problem 2.2. In fact, the algorithm
is applicable to a broader class of problems for which the y variables may be contin-
uous. The focus here is on MINLP models and thus the y variables will be treated
as binary.

The basic idea behind GBD is the generation of upper and lower bounds on the
solution of the MINLP model through the iterative solution subproblems formulated
from the original problem. The upper bound is the result of the solution of the
primal problem while the lower bound is the result of the solution of the master
problem. The primal problem corresponds to the solution of the original problem
2.2 with the values of the y variables fixed. This problem is solved in the x space
only and its solution provides information about the Lagrange multipliers for the
constraints. The master problem is formulated by making use of the Lagrange
multipliers and nonlinear duality theory. Its solution provides a lower bound as
well as a new set of y variables. The algorithm iterates between the primal and
master problems generating a sequence of upper and lower bounds which converge
in a finite number of iterations.

3.1. Primal Problem. The primal problem results from fixing the values of
the y variables. For values of y fixed to y* where k is an iteration counter, the
primal problem has the following formulation:

min  f(z,y")
(3.1) st. h(z,y®) = 0
g(z.y*) < 0
r € XCR»

The primal formulation is an NLP which can be solved by using existing algo-
rithms. If the primal problem is feasible, then the optimal solution provides values
for zF, f(x*, y*), and the Lagrange multipliers A\* and p* for the equality and
inequality constraints.

If the primal problem is found to be infeasible when applying a solution al-
gorithm, a feasibility problem is formulated. This problem can be formulated by
minimizing the #; or o, sum of constraint violations. One possible formulation of
the feasibility problem is the following:
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min ai+aj+a;
x,x
s.t. gz, y*) —a; < 0
(3.2) h(z,y*)+af —a; = 0
r € XCR»
a,af,a; >0

Another possible form for the infeasible primal problem is the following where
the equality constraints are not relaxed:

min  «
st g(z,y") <a
(3.3) h(z,y*) =0
reX CR?
a>0

The solution of the feasibility problem provides values for Z* and the Lagrange
multipliers A*¥ and fi* for the equality and inequality constraints.

3.2. Master Problem. The formulation of the master problem for GBD
makes use of nonlinear duality theory. The key aspects of the master problem
formulation are the projection of the problem onto the y space and the dual repre-
sentation.

For the projection of the problem onto the y space, problem 2.2 can be written

as
mininf  f(x,y)
y @
st. h(z,y) = 0
(3.4) g(z.y) < 0
t € XCR"
y € Y ={0,1}¢
Let v(y) and V be defined as follows:
v(y) = inf  f(z,y)
4. h(xz,y) = 0
(3.5) § ’
g(z,y) < 0
r € XCR»
(3.6) V ={y:h(z,y) =0,9(xz,y) <0 forsome ze€X CR"}
The projected problem can now be written as:
min  v(y
(3.7 Y )

st. yeYNnV

The difficulty in solving this problem is that V' and v(y) are known only im-
plicitly. In order to overcome this, dual representations of V' and v(y) are used.

The dual representation of V' is described in terms of a collection of regions
that contain it. An element of Y also belongs to the set V' if and only if it satisfies
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the system:
0 > infL(x,y,\f), YA\EZEA
_ P
where A = {/\GIRm,ue]Rp:uZO,Zuizl}

i=1

(3.8)

This system corresponds to the set of constraints that have to be incorporated for
the case of infeasible primal problems.

The dual representation of v(y) is the pointwise infimum of a collection of
functions that support it.

(3.9)
{ min f(xz,y) w
_ s.t. h(:c y) =0 — sup min L(ﬂ)‘,y, A:M) YVyeY NV
'U(y) g(m7y) < 0 [ A,u>0 zeX Yy
[ re X CR" J

where L(z,y,\.p) = f(z,y) + \'h(z,y) + 1" g(z,y).

Now, the representation for V' (3.8) and the representation for v(y) (3.9) are
substituted into problem 3.7 and the scalar u; is introduced to obtain the following
master problem:

min unB
yeY ,un
(3.10) st. pp 2 minl(z,yAp) YAVE>0
0o > mi}gi(w,y,;\ﬂ) V(;\HI])GA
EdS

where L(z,y, M\, 1) = f(x,y) + \Th(z,y) + n"g(x,y)
L(z,y, A\ i) = ANTh(z,y) + i’ g(z,y)

The key issue in the development of an algorithmic implementation of GBD
is the solution of the master problem. The master problem consists of an outer
optimization with respect to y whose constraints are two optimization problems
with respect to x corresponding to the feasible and infeasible primal problems.
These inner optimization problems need to be considered for all possible values of
the Lagrange multipliers which implies that an infinite number of constraints need
to be considered for the master problem.

One way to solve the master problem is to use relaxation of the problem where
only a few of the constraints are considered. The inner optimization problems
are considered only for fixed values of the multipliers which correspond to the
multipliers from the solution of the primal problem. Furthermore, the inner opti-
mization problems can be eliminated by evaluating the Lagrange function for fixed
values of the x variables corresponding to the solution of the primal problem. This
elimination assumes that the Lagrange function evaluated at the solution to the
corresponding primal is a valid underestimator of the inner optimization problem.
This is true when the projected problem v(y) is convex in y.

(3.11)

3.3. GBD Algorithm. The algorithm for GBD is stated as follows:
Step 1
Obtain initial values: y
Set the counter: £ =1
Set the lower bound: LBD = —o0

1
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Set the upper bound: UBD = +o0
Initialize the feasibility set: F = ()
Initialize the infeasibility set: F = ()
Set the convergence tolerance: € > 0
Step 2
Solve the primal problem for the fixed values of y = y*:
min  f(z,y")
st. g(z,y*) <0
h(z,y*) =0
Obtain the optimal solution, ¥, and Lagrange multipliers A\* and p*
If the primal is feasible
Update the feasibility set: F =F Uk
If the primal solution is less than the current upper bound
update the upper bound

Else
Solve the infeasible primal problem for the fixed values of y = y*:
min a; +af +a;
@,
s.t. gz, y*) —a; < 0
h(z,y*)+af —a; = 0
a,af a7 > 0

Obtain the optimal £* and the Lagrange multipliers A and gt

Update the infeasibility set: F = F Uk

Step 3
Solve the relaxed master problem:
min  pp
Y:Hlb
st > fl@y)+ (N)Tg(a',y) + (W) h(z',y) L€F
0 > (A)'g@,y)+ (") h@'y) leF
Obtain optimal y**' and ps
Set the lower bound: LBD = p,
IfUBD — LBD <e¢
Terminate
Else
Update the counter: k =k + 1
Go to step 2

This algorithm can be applied to general MINLP models, however it is only
guaranteed to converge to the global solution for problems which meet specific
conditions. First X must be a nonempty convex set, the functions f and g must
be convex for each fixed y € Y, and the function A must be linear in « for each
yeyY.

4. Recent Developments in Global Optimization for MINLPs

Two new optimization algorithms, the Special Structure Mixed-Integer Non-
linear aBB (SMIN-aBB) and the General Structure Mixed-Integer Nonlinear «BB
(GMIN-aBB), have been designed to solve large classes of nonconvex MINLPs to

global optimality. They are described in the following two sections.

4.1. The SMIN-aBB Algorithm. This algorithm, proposed by [AAFT7a],
is designed to address the following class of problems to global optimality:
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min  f(z) + 2" Agy + cly

st. h(z)+z"Aiy+cly

(4.1) g(x)+x" Ayy +cl'y
T

)

m M IA I
isxoo
=N

=
<
S

where cOT, c? and cg are constant vectors, Ag, A; and A, are constant matrices

and f(x), h(x) and g(x) are functions with continuous second-order derivatives.

The solution strategy for problems of type (4.1) is an extension of the BB
algorithm for twice-differentiable NLPs [AMF95, AF96, ADFN97]. It is based
on the generation of two converging sequences of upper and lower bounds on the
global optimum solution. A rigorous underestimation and convexification strategy
for functions with continuous second-order derivatives allows the construction of
a lower bounding MINLP problem with convex functions in the continuous vari-
ables. If no mixed-bilinear terms are present (A; = 0,Vi), the resulting MINLP
can be solved to global optimality using the Outer Approximation algorithm (OA)
[DG86]. Otherwise, the Generalized Benders Decomposition (GBD) can be used,
as discussed in Section 3, or the Glover transformations [Glo75] can be applied to
remove these bilinearities and permit the use of the OA algorithm. This convex
MINLP provides a valid lower bound on the original MINLP. An upper bound on
the problem can be obtained by applying the OA algorithm or the GBD to prob-
lem (4.1) to find a local solution. This bound generation strategy is incorporated
within a branch-and-bound scheme: a lower and upper bound on the global solu-
tion are first obtained for the entire solution space. Subsequently, the domain is
subdivided by branching on a binary or a continuous variable, thus creating new
nodes for which upper and lower bounds can be computed. At each iteration, the
node with the lowest lower bound is selected for branching. If the lower bounding
MINLP for a node is infeasible or if its lower bound is greater than the best upper
bound, this node is fathomed. The algorithm is terminated when the best lower
and upper bound are within a prespecified tolerance of each other.

Before presenting the algorithmic procedure, an overview of the underestima-
tion and convexification strategy is given, and some of the options available within
the algorithm are discussed.

4.1.1. Convex Underestimating MINLP Generation. In order to transform an
MINLP problem of the form (4.1) into a convex problem which can be solved to
global optimality with the OA or GBD algorithm, the functions f(x), h(x) and
g(x) must be convexified. The underestimation and convexification strategy used
in the aBB algorithm has previously been described in detail [AAMF96, AF96,
ADFN97]. Its main features are exposed here.

In order to construct as tight an underestimator as possible, the nonconvex
functions are decomposed into a sum of convex, bilinear, univariate concave and
general nonconvex terms. The overall function underestimator can then be built
by summing up the convex underestimators for all terms, according to their type.
In particular, a new variable is introduced to replace each bilinear term, and is
bounded by the convex envelope of the term [AKF83]. The univariate concave
terms are linearized. For each nonconvex term nt(x) with Hessian matrix H:(x),
a convex underestimator L(x) is defined as
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(4.2) L(x) = nt(z) — Z a;(zV — z)(z; — 2b)

where 2V and ¥ are the upper and lower bounds on variable z; respectively and the
a parameters are nonnegative scalars such that H,,;(x) + 2diag(«;) is positive semi-
definite over the domain [z% 2£"]. The rigorous computation of the a parameters
using interval Hessian matrices is described in [AAMF96, AF96, ADFN97].

The underestimators are updated at each node of the branch-and-bound tree
as their quality strongly depends on the bounds on the variables.

4.1.2. Branching Variable Selection. An unusual feature of the SMIN-aBB al-
gorithm is the strategy used to select branching variables. It follows a hybrid
approach where branching may occur both on the integer and the continuous vari-
ables in order to fully exploit the structure of the problem being solved. After
the node with the lowest lower bound has been identified for branching, the type
of branching variable must be determined according to one of the following two
criteria:

1. Branch on the binary variables first.

2. Solve a continuous relaxation of the nonconvex MINLP locally. Branch on
a binary variable with a low degree of fractionality at the solution. If there
is no such variable, branch on a continuous variable.

The first criterion results in the creation of an integer tree for the first ¢ levels
of the branch-and-bound tree, where ¢ is the number of binary variables. At the
lowest level of this integer tree, each node corresponds to a nonconvex NLP and
the lower and upper bounding problems at subsequent levels of the tree are NLP
problems. The efficiency of this strategy lies in the minimization of the number of
MINLPs that need to be solved. The combinatorial nature of the problem and its
nonconvexities are handled sequentially. If branching occurs on a binary variable,
the selection of that variable can be done randomly or by solving a relaxation of
the nonconvex MINLP and choosing the most fractional variable at the solution.

The second criterion selects a binary variable for branching only if it appears
that the two newly created nodes will have significantly different lower bounds.
Thus, if a variable is close to integrality at the solution of the relaxed problem,
forcing it to take on a fixed value may lead to the infeasibility of one of the nodes
or the generation of a high value for a lower bound, and therefore the fathoming
of a branch of the tree. If no binary variable is close to integrality, a continuous
variable is selected for branching.

A number of rules have been developed for the selection of a continuous branch-
ing variable. Their aim is to determine which variable is responsible for the largest
separation distances between the convex underestimating functions and the original
nonconvex functions. These efficient rules are exposed in [AAF7b].

4.1.3. Variable Bound Updates. Variable bound updates performed before the
generation of the convex MINLP have been found to greatly enhance the speed of
convergence of the aBB algorithm for continuous problems [AAF7b]. For contin-
uous variables, the variable bounds are updated by minimizing or maximizing the
chosen variable subject to the convexified constraints being satisfied. In spite of its
computational cost, this procedure often leads to significant improvements in the
quality of the underestimators and hence a noticeable reduction in the number of
iterations required.
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In addition to the update of continuous variable bounds, the SMIN-aBB algo-
rithm also relies on binary variable bound updates. Through simple computations,
an entire branch of the branch-and-bound tree may be eliminated when a binary
variable is found to be restricted to 0 or 1. The bound update procedure for a given
binary variable is as follows:

1. Set the variable to be updated to one of its bounds y = yp.

2. Perform interval evaluations of the constraints in the nonconvex MINLP,
using the bounds on the solution space for the current node.

3. If any of the constraints are found infeasible, fix the variable to y =1 —yp.

4. If both bounds have been tested, repeat this procedure for the next variable
to be updated. Otherwise, try the second bound.

4.1.4. Algorithmic Procedure. The algorithmic procedure for the SMIN-aBB
algorithm is formalized as follows:

Step 1
Set, absolute tolerance €; set LBD* = —oo and UBD* = oo.
Set node counter k = 0; initialize set of nodes to be bounded, J = {0};
N, the list of nodes to be explored, is empty.
Step 2 Bounding
For each node IV;, j € J:
Perform variable bound updates if desired.
Generate a convex lower bounding MINLP.
Solve convex MINLP using OA or GBD. Solution is LBD;.
If MINLP is infeasible, fathom the current node.
If LBD; < UBD*, add the current node to IV.
Else, fathom the current node.
Step 3
Set LBD* to the lowest lower bound from the list INV.
If UBD* — LBD* < ¢, terminate with solution U BD*.
Otherwise, proceed to Step 4.
Step 4 Branching
Select the node from the list N with the lowest lower bound for
branching, N; (i < k). Its lower bound is LBD,;.
Select a branching variable y? or 28,

Create two new regions Ngy; and Ngyo.
Set J=k+1,k+ 2 and k = k+ 2. Go back to Step 2.

4.2. The GMIN-aBB algorithm. This algorithm operates within a clas-
sical branch-and-bound framework. Branch-and-bound algorithms have been pro-
posed by a number of researchers [ GR85, OOM90, BM91]|. The basic idea behind
branch-and-bound approaches is the generation of two converging sequences of up-
per and lower bounds on the objective function through partitioning of the solution
space. Valid lower bounds on the original MINLP are obtained by relaxing it to
a continuous NLP problem, where the y variables can take on any value between
0 and 1. If the NLP relaxation has an integer solution, this solution provides an
upper bound on the global solution. The generation of lower and upper bounds in
this manner is referred to as the bounding step of the algorithm. At first, all the
binary variables are relaxed and the continuous problem corresponds to the first
node of a branch-and-bound tree. At the second level, two new nodes are created
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by forcing one of the binary variables to take on a value of 0 or 1. This is the
branching step. Nodes in the tree are pruned when their lower bound is greater
than the best upper bound on the problem, or when the relaxation is infeasible.
The algorithm terminates when the lowest lower bound is within a pre-specified
tolerance of the best upper bound.

The main contribution of the GMIN-aBB algorithm is its ability to identify the
global optimum solution of a much larger class of problems than previously proposed
algorithms. The only condition imposed on the functions f(x,y), g(x,y) and
h(x,y) in problem (2.2) is that they possess continuous second-order derivatives
in the  and relaxed y space. This increased applicability is possible because of
the use of the BB global optimization algorithm for continuous twice-differentiable
NLPs [AMF95, AF96, ADFN97|. The basic concepts behind the aBB algorithm
were exposed in Section 4.1. Its use to solve the relaxed MINLP at each each node
allows the identification of rigorously valid lower bounds and therefore ensures
convergence to the global optimum. In general, it is not necessary to let the BB
algorithm run to completion as each one of its iterations generates a lower bound
on the global solution of the NLP being solved. A strategy of early termination
leads to a reduction in the computational requirements of each node of the binary
branch-and-bound tree and faster overall convergence. This strategy has been used
to solve a number of small nonconvex MINLP test problems as well as the pump
configuration problem of [WPG94].

5. Algorithmic Framework

Although there are a number of algorithms available for the solution of MINLPs,
there are relatively few implementations of these algorithms. The recent advances in
the development of these algorithms has led to several automated implementations
of these MINLP algorithms.

The first implementations made use of the modeling system GAMS [BKM92]
which allows algebraic model representation and automatic interfacing with linear,
nonlinear and mixed integer linear solvers. The algorithmic procedure, APROS
[PF89], was developed for the automatic solution of mathematical programming
problems involving decomposition techniques such as those used in the solution of
MINLPs. APROS is an implementation of GBD and OA in GAMS where the
modeling language is used to generate the NLP and MILP subproblems which are
solved through the GAMS interface. GAMS also includes a direct interface to
an implementation of OA /ER in the package DICOPT++ [VG90]. The model
can be written algebraically as an MINLP and the solver will perform the necessary
decomposition.

More recently, the framework MINOPT[SF97b] has been developed for the
solution of general mathematical programming problems. The primary motivation
for its development has been brought about by the need for implementations of al-
gorithms applicable to MINLPs. Further development has been done to address the
solution of problems which involve dynamic as well as algebraic models. Extensive
development of MINOPT has led to a highly developed computational tool.

MINOPT has a number of features including;:

e Extensive implementation of optimization algorithms
e Front-end parser
e Extensive options
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e Expandable platform
e Interface routines callable as a subroutine

MINOPT is capable of handling a wide variety of problems described by the
variable and constraint types employed. MINOPT handles the following variable
types:
continuous time invariant
continuous dynamic
control
integer

and recognizes the following constraint types:

e linear
e nonlinear
e dynamic
e dynamic path
e dynamic point

Different combinations of variable and constraint types lead to the following prob-
lem classifications:

Linear Program (LP)

Nonlinear Program (NLP)

Mixed Integer Linear Program (MILP)

Mixed Integer Nonlinear Program (MINLP)

Nonlinear Program with Differential and Algebraic Constraints (NLP/DAE)
Mixed Integer Nonlinear Program with Differential and Algebraic
Constraints (MINLP/DAE)

Optimal Control Program (OCP)

e Mixed Integer Optimal Control Program (MIOCP)

The MINOPT program has two phases: problem entry and problem solu-
tion. During the first phase MINOPT reads the input from a file, saves the
problem information, and then determines the structure and consistency of the
problem by analyzing the constraints and variables. After the problem has been
entered, MINOPT proceeds to the second phase to solve the problem. Based on
the problem structure determined by MINOPT and options supplied by the user,
MINOPT employs the appropriate algorithm to solve the problem.

The entry phase of MINOPT features a parser which reads in the dynamic
and/or algebraic problem formulation from an input file. The input file has a clear
syntax and allows the user to enter the problem in a concise form without needing
to specify the steps of the algorithm. The input file includes information such
as variable names, variable partitioning (continuous, integer, dynamic), parameter
definitions, and option specifications. The parser features index notation which
allows for compact model representation. The parser allows for general constraint
notation and has the ability to recognize and handle the various constraint types
(i.e. linear, nonlinear, dynamic, point, path) and ultimately the overall structure
of the problem. The MINOPT parser also determines the necessary analytical
Jacobian information from the problem formulation.

The solution phase of MINOPT features extensive implementations of numer-
ous optimization algorithms. Once the parser has determined the problem type, the
solution phase applies the appropriate method to solve the problem. MINOPT
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TABLE 1. Solution algorithms implemented by MINOPT

Problem Type Algorithm Solver
LP Simplex method CPLEX
MINOS
LSSOL
MILP Branch and Bound CPLEX
NLP Augmented Lagrangian/Reduced Gradient | MINOS
Sequential Quadratic Programming NPSOL
Sequential Quadratic Programming SNOPT
Dynamic Integration (Backward Difference Formula) | DASOLV
Optimal Control | Control Parameterization DAEOPT
MINLP Generalized Benders Decomposition MINOPT
Outer Approximation/Equality Relaxation | MINOPT
Outer Approximation/Augmented Penalty | MINOPT
Generalized Cross Decomposition MINOPT

utilizes available software packages for the solution of various subproblems. The
solution algorithms implemented by MINOPT are listed in Table 1. The solu-
tion algorithms implemented by MINOPT are callable as subroutines from other
programs.

MINOPT has an extensive list of options which allows the user to fine tune
the various algorithms.

selection of different algorithms for a problem type

selection of parameters for various algorithms

solution of the relaxed MINLP

auto-initialization procedure—relaxed MINLP solved to determine starting

values for the y-variables.

integer cuts for the GBD algorithm

e radial search technique for problems with discrete and continuous y variables
(GBD)

e alternative feasibility formulation for infeasible primal

e solution of the GBD master problem in terms of both & and y rather than
in y alone

e specification of parameters for external solvers

The flow of the program is described in Figure 3. The program is invoked from
the command line and parses the input file and stores the information into a prob-
lem structure. The program then determines the appropriate method to solve the
problem based on the problem type and options provided by the user. Based on the
algorithm and parameters, MINOPT solves the problem by formulating and solv-
ing various subproblems. When needed, MINOPT draws necessary information
from the problem structure.

The code for MINOPT has been written in portable ANSI C and can be
compiled on any computer. MINOPT has been developed with an expandable
platform in both the entry and solution phases of the program. This parser can be
expanded to recognize additional options, variable types, commands, and constraint
types that may be required of an algorithm. The solution phase of the program can
be expanded to implement additional algorithms should they become available.
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Problem Structure

Input Parser Master
File
fixed X y
fixed y fixed x
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L— exit dx dx

FI1GURE 3. Program flow for MINOPT

6. Computational Study—Heat Exchanger Network Synthesis

The design of a heat exchanger network involving two hot streams, two cold
streams, one hot and one cold utility is studied. The formulation of [YG91] is
used. The annualized cost of the network is expressed as the summation of the
utility costs, the fixed charges for the required heat-exchangers and an area-based
cost for each each exchanger. The area is a highly nonlinear function of the heat
duty and the temperature differences at both ends of the heat exchanger. The bi-
nary variables, which represent the existence of a given heat-exchanger, participate
linearly in the problem. All the constraints are linear. This nonconvex MINLP
therefore provides an opportunity to test the SMIN-aBB global optimization algo-
rithm proposed in Section 4.1.

The stream data for the problem are summarized in Table 2. There are two
temperature intervals. The steam utility costs $80/kW-yr and the cooling water
costs $15/kW-yr. The fixed charges for the heat exchangers amount to $5500/yr.
The cost coefficient for the area-dependent part of the heat exchanger costs is
$300/yr. The overall heat transfer coefficients are 0.5 kW/m?K for the hot stream-
cold stream units, 0.83333 kW /m?K for the cold stream-hot utility units and 0.5
kW /m?K for the hot stream-cold utility units.

Stream | Ty, (K) | Tour (K) | Fep (kW/K)
Hot 1 650 370 10.0
Hot 2 590 370 20.0
Cold 1 410 650 15.0
Cold 2 350 500 13.0
Steam 680 680 —
Water 300 320 —

TABLE 2. Stream data for heat exchanger network problem.
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The superstructure for this problem is shown in Figure 4. There are 12 possi-
ble matches and therefore 12 binary variables. The global optimum configuration
involves six heat exchangers and is shown in Figure 5. Given the set ST of tem-
perature K locations, the set HP of hot process streams and the set C'P of cold
process streams, the general problem formulation is as follows:

(6.1)
min ). CeouvQcui+ >, CrnuQuu,;
i€EHP jeCP
+ > > > CFjzig+ ) CFicvzcvi+ )Y, CFjavzmu,;
i€HP jeCP keST z‘eféZQi]k jeCcP
* ze%I:P ]EZ(;P kEZS:’T Ui; [ATZJkAT1]k+1(AT1]k+AT1]k+1)/2]%
+ Z CicuQcu,i 1
ieaHp Ucv,ilATcu,i(Tout,i—Tin,cv)(ATcv,i+Tout,i —Tin,cu)/2]3
CijrvQnu,;
jecp UHU,J‘[ATHU,J‘(Tin,HU*Tout,j)(ATHU,j+Tin,HU7Tout,j)/2]%
(6.2)
(Tzn i out z) Fsz — Z Z Qijk + QCU,i Vie HP
kEST jECP
(Tout,j — Tinj) Fepj = 32 3. Qijp +Quu,; VjeCOP
kEST icHP
(T — Ty jgr) Feps = ZO:PQz’jk Vke ST, Vie HP
je
(Tjk — Tjks1) Fepy = 50 Qij Vke ST, VjecCOP
iEHP
Tznz:TiJ Vie HP
sz] = Tj,K VJ eCP
Tik > T ky1 Vke ST, Vie HP
Tir > Tt Vke ST, VjeCP
Tout,i S Ti,K Vie HP
Tout,j > Tj71 VJ e CP
(Ti,k — Tout,i) Fepi = Qcu,i Vie HP
(Tout,j — Tj1) Fepj = Quu,j VjeCP
Qijr — Qzijr <0 Vke ST, Vie HP,Vj € CP
Qcv,i — Qzcp,; <0 Vie HP
Quu,j —Qzuy,; <0 VjeCP
Zijk» Zcu,is 2HU,j € {0,1} VkeST,Vic HP,Vj € CP
Tiw —Tjp +T(1 = z458) > ATy VkeST,Vic HP,Vj € CP
Ti,k+1 — Tj’k+1 + F(]. — Zijk) > ATijIH-l Vke ST, Vie HP,Vj € CP
Tk — Touwt,cu + T(1 — zcu,i) > ATcu, Vie HP
Tout,av —Tj1 +T(1 — zauj) > ATHy VjeCP
ATijr > 10 Vke ST, Vie HP,Vj e CP

where the parameters are C'ory, the per unit cost of cold utility; Cgyr, the per unit
cost of hot utility; C'F, the fixed charged for heat exchangers; C, the area cost
coefficient; Tj,, the inlet temperature of a stream; T,,;, the outlet temperature;
Fcp, the heat capacity flowrate of a stream; €2, the upper bound on heat exchange;
I', the upper bound on the temperature difference. The continuous variables are
Tk, the temperature of hot stream ¢ at the hot end of stage k; T}, the temperature
of cold stream j at the cold end of stage k, Q;;x, the heat exchanged between hot
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stream ¢ and cold stream j at temperature location k; Qcu,i, the heat exchanged
between hot stream ¢ and the cold utility at temperature location k; Qny,j, the
heat exchanged between cold stream j and the hot utility at temperature location
k; AT, the temperature approach for the match of hot stream 4 and cold stream j
at temperature location k; ATg;, the temperature approach for the match of hot
stream ¢ and the cold utility at temperature location k; ATy ;, the temperature
approach for the match of cold stream j and the hot utility at temperature location
k. The binary variables are z;;;, for the existence of a match between hot stream
i and cold stream j at temperature location k; zcy,;, for the existence of a match
between hot stream ¢ and the cold utility at temperature location k; zpy ;, for
the existence of a match between cold stream j and the hot utility at temperature
location k.

I Stage 1 | Stage 2 I
H1 \CL/ ! 9( Cl, | cw
" /H'l\f | H1 |
| ; c2, | c2 |
S | | |
! I _—y 1 C2
) H2 | H2 ] |
| :(CJ | QQ?_J |
| | cw
S \ '

1

|
! g H2)= (ﬂ%« !
H2 €2 < :
I

FIGURE 4. Superstructure for the heat exchanger network prob-
lem.

Due to the linear participation of the binary variables, the problem can be
solved locally using the Outer Approximation algorithm [DG86, KG87, VG90]
or the Generalized Benders Decomposition algorithm described in Section 3, and
globally using the SMIN-aBB algorithm of Section 4.1.

This problem can be solved locally using MINOPT. For both GBD and
OAER the problem is solved 30 times with random starting values for the bi-
nary variables. The starting values for the continuous variables are set to their
lower bounds. The results of these runs are shown in Table 3. Whereas GBD
generally takes more iterations than OAER, it converges to fewer local minima.
Both algorithms obtain the global optimum roughly the same number of times.

When using the SMIN-aBB algorithm, the area-dependent cost of the heat
exchangers must be underestimated using the general convex lower bounding func-
tion (4.2), in order to generate valid lower bounds on the objective function. The
Outer Approximation algorithm is used to solve a lower bounding convex MINLP
at each node of the tree. When this MINLP is feasible, an upper bound on the
objective function is obtained by solving the nonconvex MINLP locally in the same
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F1GURE 5. Optimum configuration for the heat exchanger network
problem.

TABLE 3. Local solutions for Heat Exchanger Network Synthesis
problem obtained with MINOPT

GBD
Local Solutions number of times average number
obtained of iterations
154997 (Global) 11 16
155510 18 18
161010 1 14
OAER
Local Solutions number of times average number
obtained of iterations
154997 (Global) 10 3.1
155510 6 3.8
167602 3 6
180848 1 5
189521 1 )
197983 7 3.6
199196 1 5
212678 1 3

region. For the heat exchanger between hot stream i and cold stream j, the convex
underestimator is expressed as
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CijQijr
Ui [ATijk AT jre 41 (AT +ATi 51 41) /2]

— aZ (Y, — Qijr)(Qijr — QL)

ol

— aiAjka (ATgk — ATk ) (ATijn — AT#,C)
A 1
— cujka+ (ATng — ATijr41 ) (ATt — AT"?’““)'

AT AT, . .
where agk, aijk’“ and ozijk’“rl are non-negative scalars obtained through one of the

methods described by [ADFN97]. The convex underestimator for process stream-
utility exchangers is similar, expect that one of the AT’s is constant and only two
« terms are therefore required. At the first level of the branch-and-bound tree, all
binary variables can take on a value of either 0 or 1. As a result, every nonconvex
term in the objective function must be underestimated to obtain a lower bound
valid for the entire solution space. However, if branching occurs on the binary
variables, the existence of some units is pre-determined for subsequent levels of
the branch-and-bound tree. Thus, if some variable z;j;, is fixed to 0 at a node of
the tree, proper updating of the variable bounds yields Q;jr = Z-ij = Q%k =0.
The bounds on AT and ATjjp4q become 10 < ATy, < Ty — T + 1 and
10 < ATjjk+1 < Tig41 — Tj 41 + T Since I' is a large number, the convex terms
corresponding the AT"’s do not naturally vanish from Equation (6.3). Even though
the area of unit (ijk) is 0, its cost appears in the underestimating objective function
as

(6.4) —ag (AT, - AATZ»]',C)(ATZ-M - ATj)
. Ty
- aijkkH(ATng — ATijr41)(ATjpg1 — ATi§k+1)'

In order to eliminate this redundant term, it is therefore necessary to introduce
modified o parameters which account for the non-existence of a unit. These new
parameters are defined as

*7ATk _ ATk U
6.5 Qg = Qi 2k
( ’ ) *, ATy 41 ATyey1 U
ijk = Qg Zijk-

where zgk is the current upper bound on variable z;j;. According to Equation (6.5)

%, ATy, *, ATy 41
ik and «;

ik vanish. The
convex underestimator for unit (ijk) no longer participates in the lower bounding
objective function. On the contrary, if z;;; is fixed to 1 or remains free to take on
the value of 0 or 1, the convex underestimator is preserved.

This analysis of the objective function emphasizes the importance of the branch-
ing strategy in the generation of tight lower bounds on the objective function. Sev-
eral branching strategies were used for this problem. First, the continuous variables
were branched on exclusively (Run 1). Then, for Runs 2 and 3, the binary variables
were branched on first, followed by the continuous variables. Finally, the “almost-
integer” strategy described in Section 4.1.2 was used for Runs 4, 5 and 6. A binary
variable was declared to have a low degree of fractionality if its value z* at the
solution of the relaxed MINLP was such that min{z*,1 — z*} < zdist. For Run 4,
zdist = 0.1 was used and for Runs 5 and 6, zdist = 0.2 was used.

if z;;1, is fixed to 0, its upper bound zgk is 0 and «
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A number of variable bound update strategies were also tested for this problem.
In Runs 1 and 2, updates were performed only for the continuous variables. In all
other runs, the bounds on the binary variables were also updated. In Run 6, the
effect of updating the bounds on only a fraction of the continuous variables was
studied.

The results are shown in Figure 6 and Table 4. Branching on the continuous
variables only results in slow asymptotic convergence of algorithm to the global
optimum solution (Run 1). The rate of convergence is greatly improved when the
binary variables can be used for branching (Runs 2 to 6). Although the “almost-
integer” branching strategy exhibits the best performance in terms of iterations
(Runs 4 to 6), the lowest CPU requirements correspond to Run 3, which branches
on all the binary variables before turning to the continuous variables. The aver-
age time spent on each iteration of the algorithm is therefore greater when the
“almost-integer” strategy is applied. Two factors can account for this increase in
the computational requirements. First, the selection of a binary branching vari-
able requires the solution of a nonconvex MINLP. In addition, the generation of
a lower bound on the solution at almost every node of the branch-and-bound tree
for Runs 4 to 6 necessitates the solution of a convex MINLP. By comparison, only
58% of the nodes in the branch-and-bound tree for Run 3 involve the solution of a
convex MINLP. Lower bounds at the remaining nodes are obtained by solving less
expensive convex NLPs. Addressing the combinatorial aspects of the problem first
by branching on the binary variables thus leads to the better performance of the
SMIN-aBB algorithm.

Run | Tterations | CPU sec | Deepest | Binary
level | branches
1 800 2210 60 —
2 753 1116 26 343
3 604 755 23 173
4 451 1041 18 97
5 422 935 26 112
6 547 945 22 127

TABLE 4. Optimization of a heat exchanger network — Note that
Run 1 converges asymptotically.

7. Conclusions

As was demonstrated in this paper, mathematical programming techniques are
a valuable tool for the solution of network applications. The optimization approach
to process synthesis illustrates their use for an important industrial application.
It was shown that this procedure generates Mixed-Integer Nonlinear Programming
problems (MINLPs) and a decomposition based method, GBD, capable of address-
ing such problems was presented. Considerable progress has been made in handling
both the combinatorial aspects of the problem as well as nonconvexity issues so that
the global solution of increasingly complex problems can be identified. The devel-
opment of the SMIN-aBB and GMIN-aBB algorithms has extended the class of
problems that can rigorously be solved to global optimality.
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FIGURE 6. Progress of the lower bound for the heat exchanger

network

The increasing capability of MINLP algorithms has permitted the development
of automated frameworks such as MINOPT, in which general mathematical repre-
sentations can be addressed. These developments have led researchers in numerous
fields to employ mathematical modeling and numerical solution through MINLP
optimization techniques in order to address their problems.

A number of issues must be resolved in order to develop algorithms that can
handle more complex and realistic problems. Although computational power has
increased, the ability of MINLP algorithms to solve large scale problems is still
limited: a large number of integer variables leads to combinatorial problems, and
a large number of continuous variables leads to the generation of large scale NLPs.
In addition, rigorous models capable of accurately describing industrial operations
usually involve complex mathematical expressions and result in problems which are
difficult to solve using standard procedures. Finally, important challenges such as
the inclusion of dynamic models and optimal control problems into the MINLP
framework have only recently been addressed [SF97a].
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