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Abstract

The analysis of time-oriented data is an important task in many application scenarios. In recent years, a variety of techniques for
visualizing such data have been published. This variety makes it difficult for prospective users to select methods or tools that are useful

for their particular task at hand.

In this article, we develop and discuss a systematic view on the diversity of methods for visualizing time-oriented data. With the
proposed categorization we try to untangle the visualization of time-oriented data, which is such an important concern in Visual
Analytics. The categorization is not only helpful for users, but also for researchers to identify future tasks in Visual Analytics.
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1. Introduction

Time is an outstanding dimension. For ages, scientists
have been thinking about meaning and implications of
time. Understanding temporal relations enables us to learn
from the past to predict, plan, and build the future. This
rationale can be found throughout sciences. Hence, it is
no surprise that time is also a key concern in Visual
Analytics, where the goal is to support the knowledge
crystallization process with appropriate analytical and
visual methods [1].

Visualizing time-oriented data, which is the focus of this
paper, is not an ecasy business. Even though many
approaches to this task have been published in recent
years, most of them are specific to only a particular analysis
problem. The reason why most methods are highly
customized is simple: it is enormously difficult to consider
all aspects involved when visualizing time-oriented data.
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Time itself has many theoretical and practical aspects. For
instance, time points and time intervals use different sets of
temporal relations. It also matters if we interpret time as a
linearly ordered set of temporal primitives, or if we assume
the temporal primitives to recur cyclically. The data that tie
to the time axis are another decisive concern. Do we have a
single variable per temporal primitive or are there multiple
variables we have to consider? Moreover, data can be
abstract or can be bound to a spatial frame of reference.
Many more data-related questions have to be thought of
when designing visual analysis methods. Only if the
characteristics of the data are taken into account is it
possible to generate expressive visual representations.
Finally, visual representations themselves imply the need
of thinking about representational and perceptual issues.
All these aspects are important when applying or
developing visual methods for analyzing data that are
connected to time. The problem is that the diversity of the
involved aspects makes it difficult for practitioners to find
appropriate solutions for their task at hand, and difficult
for researchers to identify directions for future work to
bring forward the visualization of time-oriented data.
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In this paper, we develop a systematic view on the
visualization of time-oriented data. We are aware that this
is not an easy endeavor. Our categorization must be
specific to be useful for others. A too general view would
not be of much help in alleviating the addressed problem.
A very fine-grain categorization is not desirable because
categories would hardly be distinctive. What we aim for
with this article is to initiate categorization of visual
concepts for analyzing time-oriented data.

In Section 2, we will explain the basics of visualizing
time-oriented data. We describe why time is important and
what makes time worth special consideration in the context
of visual analysis methods. Our attempt to categorize
approaches for visualizing time-oriented data is presented
in Section 3. The categorization will be illustrated with
examples from visualization literature; it is not our intent
to provide a comprehensive state-of-the art overview. A
discussion of the proposed categorization and its implica-
tion is provided in Section 4. Our paper summarizes the
made statements and gives an outlook on future work in
Section 5.

2. Basic considerations

When analyzing time-oriented data, users are commonly
interested in the evolution of their data over time. To
achieve this goal, the users’ primary task is to compare data
located at different positions of the time axis. Detecting
trends and pattern are second-order goals that lead to
insight, and to understanding the data. In giving this coarse
description of analysis goals we do not neglect that there is
certainly an interplay of further basic visualization tasks
(e.g., as described in [2,3]: check for existence of data
elements, locate data elements in time, determine rates of
change).

Many different types of data are related to time. One can
think of stock exchange data, census data, simulation data,
and much more. But also news articles, photo collections,
or project plans can contain temporal information. From a
theoretical point of view, all these data are time-oriented
and should be representable with one and the same
approach. From a practical point of view, each of these
types of data requires a dedicated visualization. For
instance, stock exchange data can be visualized with
Flocking Boids [4], census data can be represented as
described in [5], SimVis [6] is efficient for visualizing
simulation data. News articles (or contained keywords) can
be analyzed with ThemeRiver [7], photo collections can be
mapped via MyLifeBits [§], and project plans can be made
comprehensible with PlanningLines [9]. Apparently, this
list of techniques is not exhaustive. The aforementioned
approaches are examples out of many that recognize the
special role of the dimension time.

Time-oriented data can also be visualized using generic
approaches. Since time is mostly seen as a quantitative
dimension (or at least can be mapped to a quantitative
domain), common visualization frameworks like the

Xmdv-Tool [10] or Visage [11], standard visualization
techniques like parallel coordinates' [13], or more or less
sophisticated diagrams and charts [14] have their eligibility
for visualizing time-oriented data. For simple data and
basic analysis tasks, these approaches outperform specia-
lized techniques, because they are easy to learn and
understand (e.g., common time diagram). However, in
many cases, time is treated as one quantitative variable
among many others, as for instance in parallel coordi-
nates—not more, not less. Therefore, generic approaches
usually do not support establishing a direct visual
connection between multiple variables and the time axis,
and they are limited in their capabilities to enable direct
interactive exploration and browsing of time-oriented data,
which is essential for a successful visual analysis.

Interaction is indeed crucial for the analysis process. To
allow users to explore their data, direct manipulation (as
already suggested in [15]) and brushing are the means of
choice in many interactive visualization tools (e.g.,
[16—18]). Particularly, browsing the time axis and switching
between different levels of temporal aggregation (e.g.,
daily, weekly, or monthly data) are important. Such
interactions are rather uncommon for other quantitative
variables, and hence, are uncommon in generic visualiza-
tion frameworks.

The bottom line is that time must be especially
considered in Visual Analytics. Different types of time-
oriented data need to be visualized with dedicated
methods. Additionally, visualization tools must provide a
high degree of interactivity. As the cited examples suggest,
a variety of concepts for analyzing time-oriented data are
known in literature [19-21]. This variety makes it difficult
to assess the current state-of-the art in visualization of
time-oriented data. What is required is a systematic view.
In the next section, we will present a categorization schema
that is intended to help in untangling this important
subarea of information visualization and Visual Analytics.

3. Categorization of techniques for visualizing time-oriented
data

As indicated earlier, devising a categorization that is
broadly applicable is not an easy task. We decided to
develop a systematic view that is geared to three practical
questions, so that prospective users and researchers find an
easy entry to the ideas behind it:

(1) What are the characteristics of the time axis?
(2) What is analyzed?
(3) How is it represented?

These three questions correspond to the categorization
criteria: time, data, and representation. The criterion time

nterestingly, the class parallel coordinates visualization of the InfoVis
Toolkit [12] derives from a super class time series visualization, which gives
evidence of the importance of time in a visualization environment.
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addresses the time axis itself. Question (2) considers the
data that tie to the time axis. How the data are represented
is covered by the third criterion. The following sections will
provide detailed explanations of each criterion, including
sub-criteria and respective categories.

3.1. Criterion: time

Self-evidently, the temporal dimension itself is an
interesting aspect for any approach to temporal Visual
Analytics. It is virtually impossible to design effective
analysis methods, without knowledge about the character-
istics of the time axis. From a theoretical perspective,
different models and algorithmic representations of time
have been studied well in literature [22]. However, we
adhere to a more practical categorization of different types
of time as presented in [23]. From Frank’s taxonomy, the
following two sub-criteria are worth discussing.

Temporal primitives: time points vs. time intervals: This
first differentiation addresses the temporal primitives that
make up the time axis. A time axis can be composed of time
points or of time intervals. A time point can be considered
an instant in time. In contrast to that, a time interval is a
temporal primitive with an extent. It can be specified by
two time points or by a time point plus a duration.

When reasoning about time, the question of whether
time points or time intervals are considered is decisive. As
described in [22], different relations are possible among
time points and among time intervals (see Fig. 1).
Accordingly, different analysis tasks or goals can be
accomplished depending on the addressed temporal
primitives.

One might think that the distinction between time points
and time intervals is of minor relevance for visualization.
However, when considering the validity of data, which is
an important concern in Visual Analytics, it becomes clear
that this is not true. If data are given on a time axis that is
composed of time points, then particular data values are
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valid only at certain points in time; there is nothing said
about how the data look like between adjacent time points.
This fact should be reflected in the visual representation to
avoid misinterpretations. On the other hand, it is necessary
to visualize the range in which interval-based data are
valid.

Structure of time: linear vs. cyclic vs. branching: Now that
time points and time intervals have been described as basic
temporal primitives, we approach the question of the
possible structure of a time axis. We will distinguish three
different structures: linear, cyclic, and branching time (see
Fig. 2). Linear time corresponds to our natural perception
of time as being a (totally or partially) ordered collection of
temporal primitives, i.e., time proceeds from the past to the
future. A cyclic time axis is composed of a finite set of
recurring temporal primitives (e.g., the seasons of the year).
On a cyclic time axis, any temporal primitive A is
proceeded and succeeded at the same time by any other
temporal primitive B (e.g., winter comes before summer,
but winter also succeeds summer). In practical applications
it is often useful to unroll a cyclic time axis to a linear time
axis. Branching time axes are modeled as graphs. Temporal
primitives are the vertices of the graph. Directed edges
describe temporal order. Vertices with more than one
outgoing edge indicate a split of the time axis into
alternative scenarios, which is particularly relevant for
planning or prediction. Apparently, linear time and cyclic
time can be seen as special cases of branching time where
the graph obeys certain constraints (i.e., for linear time,
every vertex has no more than one outgoing edge; for cyclic
time, the graph is a circle).

Linear and cyclic time are covered well by existing visual
and analytical approaches. However, methods for analyz-
ing branching time are still rare. Here we see a potential
task for future work in Visual Analytics.

The decision to which category a time-oriented data set
belongs is not always fully determined, but can depend on
the interpretation of the user, on the task, or on the
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Fig. 1. Temporal relations: (a) relations between time points; (b) relations between time intervals [24]; respective inverse relations are possible as well.
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Fig. 2. Structure of time: (a) linear time; (b) cyclic time; (c) branching time.
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application. If for instance a user seeks to find a general
trend in the data, a linear interpretation of the time axis
makes sense. On the other hand, detecting seasonal effects
in the data can be easier if a cyclic time axis is assumed.
Similarly, it is a question of interpretation whether a date is
considered as a time point (a day) or a time interval
(a period of 24h or 86,400s). This dependence on
interpretation implies a need for highly flexible Visual
Analytics methods.

We also point out that branching time is important in
Visual Analytics, because data analysts commonly have to
assess alternative scenarios from a whole bunch of facts
from heterogenous data sources. In this context, it is worth
noting that Frank suggests a further category—multiple
perspectives [23]. In contrast to branching time where only
one path through time will actually happen (e.g., in
planning applications), multiple perspectives facilitate
simultaneous (even contrary) views on time (as for instance
required to structure eyewitness reports). Both branching
time and multiple perspectives introduce the need for
taking care of probability (or uncertainty), to convey, for
instance, which path through time will most likely be
taken, or which evidence is believable.

3.2. Criterion: data

We will now take a look at the data that ties to the time
axis. Like the time axis, also the data have major impact on
analytical and visual approaches. As indicated in Section 2,
time-oriented data can be manifold. To answer the
question “What is analyzed?”, we suggest categorization
based on the following sub-criteria.

Frame of reference: abstract vs. spatial: To categorize
time-oriented data, it makes sense to consider their context
(or frame of reference). Without going into too much
detail, we distinguish abstract and spatial data. By abstract
data we mean data that have been collected in a non-spatial
context, i.e., data that are not per se connected to some
spatial layout. In contrast to that, spatial data contain an
inherent spatial layout, which can be conditioned by
natural circumstances or modeled realities.

The distinction between abstract and spatial data reflects
the crystallization of different subfields of visualization
research in the last decade. Information visualization,
graph visualization, or software visualization are more
concerned with abstract data, whereas spatial data are
addressed by scientific visualization (flow visualization,
volume visualization) or geographic information systems.
Each field handles time-oriented data differently, despite
the fact that a unified view would be more desirable.

However, the main reason for a distinction between
abstract and spatial data is the way of how data are
processed in Visual Analytics. For spatial data, the
inherent spatial information can be exploited to find a
suitable mapping of data to screen. The representation of
time has to be incorporated into that mapping, where it is
not always easy to achieve an emphasis of the time domain.

For abstract data, no a priori spatial mapping is given. On
the one hand, that implies, it is first of all necessary to
contrive an expressive spatial layout. This requires creative
thinking and experience. On the other hand, screen
dimensions can be used almost exclusively to expose the
time domain.

Number of variables: univariate vs. multivariate: The
second data-related categorization criterion concerns the
number of time-dependent variables. When speaking of
variables, we do not limit our consideration to basic data
types like integers, real numbers, or categorical enumera-
tions. We also consider a vector, a matrix, or a news article
as possible data variables if this is required by the
application at hand. Obviously, it makes a difference if
we have to represent data where each temporal primitive is
associated with a single data value (i.e., univariate data) or
if multiple data values (i.e., multivariate data) must be
considered. With the latter case, an additional visualization
goal—the detection of correlations—is introduced.

Approaches for single-valued data have been around for
a long time. There are also various techniques that allow
the visualization of two or three data values (which are
literally already multivariate). However, the big challenge
in Visual Analytics is to handle larger numbers of
variables. This is where analytical methods come into play.
Usually, it is necessary to apply dimension reduction
methods (e.g., principle component analysis) to derive
major temporal trends.

Level of abstraction: data vs. data abstractions: *Above
all else, show the data” is what Tufte claims in [25]. The
majority of visual methods follow that claim. Visualizing
data is useful in many application scenarios. However, if
larger data sets must be analyzed, Tufte’s postulation is
hard to fulfill without introducing new problems like
overcrowded and cluttered displays. In such cases, it makes
sense to melt down the data to condensed form, i.e., to
derive data abstractions (see [26] for a survey) that reflect
interests and needs of users. Calculating aggregated data
values [27] is one example for deriving abstractions, which
is particularly useful to drive overview + detail interfaces
[28]. Feature visualization also follows the idea of
computing data abstractions. Features are data portions
that obey certain user-defined constraints [29]. In the
context of time-oriented data, a third derivable informa-
tion unit must be mentioned—events. Events are special
situations in the development of time-oriented data. Events
can be user-defined or found by methods of artificial
intelligence. Focusing on events lifts the data analysis to yet
a higher level of abstraction [30-32]. The essence of this
categorization criterion is that visually driven analysis
of time-oriented data should not be limited to a mere
representation of data. Visual Analytics methods have
to consider task- and user-centered higher order data
abstractions specifically designed for time-oriented
data. To communicate such data abstractions efficiently,
a better integration of analytical and visual methods is
required [1].
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These three criteria for data-centric aspects are inten-
tionally settled at a quite high level of abstraction. We are
aware that the data aspect is certainly worth further
discussion. However, we do not want to overemphasize
data aspects, but refer the interested reader to Shneider-
man’s “Task by Data Type Taxonomy’ [28] and Wilk-
inson’s “The Grammar of Graphics” [33], which are widely
accepted references already available in literature.

3.3. Criterion: representation

Finally, this last criterion addresses the visual represen-
tation of time-oriented data. We do not try to investigate
subtle details of the variety of visual approaches available,
but concentrate on two fundamental sub-criteria that
concern the time dependency and the dimensionality of
the presentation space.

Time dependency: static vs. dynamic. Static representa-
tions visualize time-oriented data in still images (i.e.,
representations that do not change automatically over
time). In contrast to that, dynamic representations utilize
the physical dimension time to convey the time dependency
of the data (i.e., representations that change automatically
over time such as slide shows or animations). The presence
or absences of interaction facilities has no influence on
whether a visualization approach is categorized as static or
dynamic.

Distinguishing between static and dynamic representa-
tions is crucial for Visual Analytics, because different tasks
and goals are supported. Dynamic representations are well
suited to convey the general development of the analyzed
data over time. However, there are also critical voices on
animation (e.g., [34,35]). Especially, when longer multi-
variate time series have to be visualized, animation-based
approaches reach their limits. Users simply cannot follow
all changes in the visual representation and the animation
takes too long for the user to remember its course. Static
representations show all information on one screen, which
is advantageous to fully concentrate on the data and to
compare different parts of the time axis. However, in
contrast to animations, static representations require
screen real estate to represent the time axis itself. Therefore,
it is challenging to develop representations that avoid
visual clutter. Again larger data sets aggravate this
problem.

Dimensionality: 2D vs. 3D: This sub-criterion simply
distinguishes between 2D and 3D presentation spaces. The
question of whether or not it makes sense to exploit three
dimensions for visualization is discussed heavily in the
community. One camp of researchers argues that two
dimensions are sufficient for effective data analysis. In their
thinking the third dimension involves unnecessary difficul-
ties like occlusion and lost information on back faces. The
other camp of researches see the third dimension as a
possibility to encode further information. Undoubtedly,
certain types of data (e.g., flow data or volume data) even
require the third dimension for expressive data visualiza-

tion. The mentioned disadvantages of a three-dimensional
presentation space are tackled with advanced interaction
techniques or additional visual cues. We will not take either
position, but think that both options are required
depending on task and data at hand.

3.4. Examples

We will now give some examples of visual methods for
analyzing time-oriented data. Some of the examples stem
from our own work on visualization of time-oriented data,
further examples are taken from literature. This selection
of techniques does not claim any completeness; a compre-
hensive overview can be found in [21]. Our goal is to
demonstrate the applicability of the developed classifica-
tion scheme. We will not provide introductions to the
examples, but refer the interested reader to the original
publications for detailed explanations. Fig. 3 shows, on the
one hand, the following methods and techniques:

(a) animated flow visualization [36]: smooth animations
created from streamline images;

(b) feature and event based flow visualization [30]: animated
visualization based on data abstraction and iconic
representations;

(c) ThemeRiver [7]: static representation of thematic
changes in document collections;

(d) TimeWheel [37]: axes-based visualization of multi-
variate data with focus on temporal dependencies;

(e) helix glyphs on maps [38]: emphasis of cyclic patterns in
spatio—temporal human health data;

(f) flocking boids [4]: stock market visualization based on
simulation and animation of flocking behavior;

(g) cluster and calendar based visualization [39]: visualiza-
tion of univariate time series on different levels of
aggregation;

(h) PlanningLines [9]: visualization of project plans with
temporal uncertainty;

and, on the other hand, also screenshots of a larger
visualization system:

(1) SimVis [6]: larger system that combines several views to
facilitate flow visualization.

The systematic view along with a categorization of the
aforementioned examples is presented in Table 1.

4. Discussion

In the previous section, we have elaborated on a
categorization of visual methods for analyzing time-
oriented data. In this section, we will discuss findings,
implications, and limitations of our systematic view. We
will use them as starting point to derive open problems and
future work in Visual Analytics of time-oriented data.
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Fig. 3. Examples of techniques for visualizing time-oriented data.

Preliminary remark: First of all, it must be mentioned
that we have considered only top-level criteria. Indeed, one
can easily figure out more criteria with several further
categories (e.g., representation method: pixel-based, map-
based, glyph-based, etc.). However, we think that such and
other criteria should not be added to an initial categoriza-
tion of the field by default, but only on demand. The
reason is that some aspects are not relevant in certain
specialized areas (e.g., distinguishing pixel-based, map-
based, and glyph-based techniques makes no sense for
volume visualization). Nonetheless, identifying further
general categories may turn out helpful once future
development in Visual Analytics yields first methodological
results.

Observation 1—multiple views: We noticed that the visual
methods currently available stand separate, i.e., are
suitable only for particular categories of time and data
characteristics. To our knowledge, there exists no visuali-
zation framework that can handle all types of times and

data, or provides a broader selection of possible represen-
tations. We think that an open framework fed with
pluggable visual and analytical components for analyzing
time-oriented data is useful. Such a framework will be able
to support multiple analysis tasks and data characteristics,
which is a goal of Visual Analytics.

Unfortunately, there is no ad hoc way of combining or
linking the available methods. However, from the example
of SimVis (see Fig. 3(1)) and from current research on
coordinated multiple views (e.g., [40,41]), we see that
linking several views together can extend the applicability
and usefulness of visual methods. Multiple views are
particularly helpful in analyzing time-oriented data. There-
fore, we underline the need for a flexible system that offers
various methods to support visual analysis and decision
making. The goal is to provide views that are dedicated to
different analysis aspects, are helpful in conveying different
levels of temporal granularity and data abstraction, or
are used to represent different parts of the time axis.
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Table 1

Categorization schema for visual methods for analyzing time-oriented data
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Temporal time points time intervals
, primitives (@ (®) (¢) (d) (e) () (2) (D) (g) (h)
Time
Structure of linear cyclic branching
time (a) (b) (0) (d) (F) (2)(h) (i) (e) (h)
Frame of abstract spatial
reference (c) (d) () () (h) () (a) (b) (o) (1)
Number of univariate multivariate
Data . .
variables (a) (b) (©) (2) (b) (c) (d) (e) (i)
Level of data data abstractions
abstraction (@) (b) (©) (@) ) () () () () ) @ ()
Time static dynamic
, dependency () (d) (o) (g) () (1) (a) (b) (O (1)
Representation
Dimensionalit 2D 3D
Y (a) (¢) (d) (g) () (D) (®) (e) (O (1)

The categorization developed in this paper can be used to
identify mandatory and optional views to be developed
(depending on the types of time and the data at hand).
Representational preferences as well as tasks and goals of
users must also be considered. For example, using an
animation to analyze data can be difficult (goal: analysis),
but using an animated view to present analysis results
might impress the director (goal: presentation). What this
example suggests is that different visual representations are
needed to fully support the analysis of time-oriented data
and the communication of analysis results. A similar
statement was already made by Bertin in 1981, although he
used different words:

“A graphic is not drawn once and for all; it is constructed
and reconstructed until it reveals all the relationships
constituted by the interplay of the data.” [42]

Observation 2—interaction: It is apparent that interac-
tion is a must particularly for analyzing time-oriented data.
All presented examples provide some level of interactivity.
However, scientific papers often discuss visual representa-
tions only; interaction is not always in the focus.
Navigating in time and switching between different levels
of temporal granularity are prominent examples of
interacting with time-oriented data. Note that such
interactions are rather uncommon for abstract quantitative
dimensions. Even though direct manipulation (direct
interaction with the visual representation, rather than with
buttons or sliders) or advanced brushing techniques are
known in literature (e.g., [15,16,18,43]), they are only rarely
considered to drive the visual analysis of time-oriented
data.

Therefore, it makes sense to put more effort in
investigating the potential of interaction in Visual Analy-

tics. We need evaluated and accepted interaction techni-
ques that allow intuitive exploration and analysis of time-
oriented data. At the same time, we have to take care not to
overload the user with functionality (e.g., hold shift and
control key then click and hold right mouse button and
move the mouse). This means, we need not only visual
methods that suit the task at hand, but also interaction that
is adapted to it.

A further aspect that infers from interaction and
multiple views is coordination, i.e., the propagation of
interaction originated from one view to all other views
(that are coordinated). To ease the use of multiple views,
coordination methods are commonly applied. To facilitate
reasoning about time-oriented data, coordination can be
targeted in accordance with the categories of our systema-
tic view. A particular challenge in temporal Visual
Analytics is to coordinate visual and analytical methods
that not necessarily share common parameters. For
instance, how can a view that shows derived principal
components be coordinated with a view that shows
predicted future trends, or is it impossible to coordinate
such views at all?

Observation 3—analytical methods: When looking at our
categorization, we see the following situation: most
examples visualize time-oriented data, only few of our
examples support temporal data abstractions [6,30,39].
That is, many methods focus on representing time-oriented
data, and neglect the analytical component.

To fully support the knowledge discovery process, visual
methods for analyzing time-oriented data should take
Keim’s Visual Analytics mantra into account:

“Analyse first, Show the Important, Zoom, filter and
analyse further, Details on demand.” [44]
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Keim’s mantra demands for a better integration of visual
and analytical methods. With ever increasing volumes of
data, temporal abstractions become more and more
indispensable. Only if analytical methods (e.g., segmenta-
tion, clustering, detection of events) are applied to compute
expressive abstractions is it possible to analyze larger data
sets efficiently. Moreover, data abstractions are necessary
for interactivity to prevail.

When speaking of analytical methods, a further aspect
must be taken into account: time-oriented data often
involves uncertainty [45]. Analytical methods (e.g., predic-
tion of trends) also might compute vague information. It is
mandatory to notify users of this circumstance, so that they
can adjust their confidence in the generated analysis results.

5. Conclusion

In this paper, we proposed a systematic view on methods
for visually analyzing time-oriented data. Our view is based
on three main criteria: time, data, and representation. We
presented examples and discussed implications of our
proposal in the context of Visual Analytics.

We see quite a lot methods available in literature [21].
Most of them support only certain parts of our categoriza-
tion. As a conclusion, we suggested the development of an
open framework for Visual Analytics of time-oriented
data. We identified the following directions for future
research on this aspect:

e Multiple views for different data aspects, different levels
of temporal aggregation/abstraction, and different parts
of the time axis.

e Sophisticated and adaptable interaction and coordina-
tion facilities particularly suited for time-oriented data,
and

e Tighter integration of visual and analytical methods.

An important issue that concerns all previous points is
task-orientation. This means that Visual Analytics systems
should automatically suggest and parameterize visual,
analytical, and interaction methods based on the users’
task at hand. Recently, an interesting analysis of possible
visualization tasks has been published in [3]. That list of
tasks can be used as a basis for future research on task-
oriented Visual Analytics. In that regard, perceptual issues
must be further investigated. Empirical tests have to be
conducted to judge which forms of presentation (2D or 3D,
static or dynamic, etc.) are best suited for particular
analysis tasks.
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