
Efficient Detection of Motion Patterns
in Spatio-Temporal Data Sets

Joachim Gudmundsson∗
Dep. of Mathematics &

Computer Science
TU Eindhoven

h.j.gudmundsson@tue.nl

Marc van Kreveld
Inst. of Information &
Computing Sciences
Utrecht University

marc@cs.uu.nl

Bettina Speckmann
Dep. of Mathematics &

Computer Science
TU Eindhoven

speckman@win.tue.nl

Abstract

Moving point object data can be analyzed through the dis-
covery of patterns. We consider the computational efficiency
of detecting four such spatio-temporal patterns, namely flock,
leadership, convergence, and encounter, as defined by Laube
et al., 2004. These patterns are large enough subgroups of
the moving point objects that exhibit similar movement in
the sense of direction, heading for the same location, and/or
proximity. By the use of techniques from computational ge-
ometry, including approximation algorithms, we improve the
running time bounds of existing algorithms to detect these
patterns.

Categories and Subject Descriptors: F.2.2 [Analysis of
Algorithms and Problem Complexity]: Nonnumerical Algo-
rithms and Problems—Geometrical problems and computa-
tions

General Terms: Algorithms, Theory

Keywords: Spatio-temporal patterns, Moving objects, Geo-
metric algorithms, Approximation algorithms

1 Introduction

Moving point object data is becoming increasingly more
available since the development of GPS and radio transmit-
ters. One of the objectives of spatio-temporal data mining
is to analyze such data sets for interesting patterns. For
example, a group of caribou with radio collars gives rise to
the positions of each caribou at a sequence of time steps.
Analyzing this data gives insight into entity behavior, in
particular, migration patterns [15]. The analysis of moving
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objects also has applications in sports (e.g., soccer players
[8]) and in socio-economic geography [5].

The general objective of spatio-temporal data mining [12,
16] is to discover interesting patterns in spatio-temporal
data, which includes moving point object data. There is
ample research on data mining of moving objects (e.g., [9,
18, 19, 21]) in particular on the discovery of similar trajec-
tories or clusters. In general the input is a set of n moving
point objects whose locations are known at t consecutive
time steps, that is, the path of each moving object is a polyg-
onal line that can self-intersect (see Figure 1). For brevity,
we call moving point objects entities from now on.

The REMO framework (RElative MOtion) was developed
by Laube and Imfeld [10] to define similar behavior in groups
of entities. To this end, they define a collection of spatio-
temporal patterns based on similar direction of motion or
change of direction. These patterns are meaningful, for ex-
ample, with respect to data that represents the movement
of a caribou herd or data that represents change of political
opinions in a space where dimensions represent left-right,
liberal-conservative, and ecological-technocratic. Laube et
al. [11] extend the framework by not only including direc-
tion of motion, but also location itself. They define several
spatio-temporal patterns, including flock, leadership, con-
vergence, and encounter, and give algorithms to compute
them efficiently. We formalize these patterns below.

Each pattern can occur for a subset of the entities at a
given time step. The input consists of n entities, each with
t locations at consecutive time steps and we will treat each
time step separately. Hence, at each time step, we have
to analyze a set of n points with a given motion direction
and speed. The flock pattern describes entities moving in
the same direction while being close to each other (see Fig-
ure 1). We formalize “being close” as being inside a circle
of some specified radius r, whose position is initially not
known. A set of entities can have many flock patterns and
even one single entity can be involved in several flock pat-
terns. The leadership pattern is similar to the flock pattern,
except that one of the entities was already heading in the
specified direction for some time before the flock pattern
occurs. Convergence refers to moving to the same location,
given that the direction of motion does not change. The
entities need not arrive at the same time. Again, “same lo-
cation” is formalized as a circle whose radius can be specified
and whose position is unknown. Finally, encounter refers to
moving to and meeting at the same location, so it is a con-
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Figure 1: Left, a flock pattern at the eighth time step. It is also a leadership
pattern with p2 as the leader. Right, a convergence pattern for p2, p3, p4, p5.

vergence pattern where the entities arrive at the same time.
In all cases we are looking for “interesting” patterns, which
means that a large enough subgroup of all entities meets in
a small enough region. Formally, flock, leadership, conver-
gence, and encounter patterns for some given set of entities
with a position, direction, and speed are defined as follows:

Flock Parameters: m > 1 and r > 0. At least m entities
are within a circular region of radius r and they move
in the same direction.

Leadership Parameters: m > 1, r > 0, and τ > 0. At
least m entities are within a circular region of radius
r, they move in the same direction, and at least one of
the entities was already heading in this direction for
at least τ time steps.

Convergence Parameters: m > 1 and r > 0. At least m
entities will pass through the same circular region of
radius r (assuming they keep their direction).

Encounter Parameters: m > 1 and r > 0. At least m
entities will be simultaneously inside the same circular
region of radius r (assuming they keep their speed and
direction).

For each of the four patterns, we must specify what we want
to find and report in a given data set. One possibility is
simply to detect whether a pattern occurs. If so, we may
want to report one example of such a pattern. Secondly, we
may want to find all patterns that occur. Thirdly, we may
want to report the largest size subset of entities that form a

pattern. We refer to these pattern problems as detect, find
all, and find largest.

In the following sections we address the algorithmic prob-
lems of computing flock, leadership, convergence, and en-
counter patterns. Exact algorithms solving these problems
were already given in [11] and here we improve the exact
results only for the encounter pattern—albeit in three dif-
ferent ways (see Table 1). However, recall that our patterns
always involve a “sufficiently large” group of entities being
in or passing through a “sufficiently small” area which we
formalize by using a threshold m for the number of enti-
ties and a radius r defining the circle that represents the
area. Any exact values of m and r hardly have a special
significance—20 caribou meeting in a circle with radius 50
meters form as interesting a pattern as 19 caribou meeting
in a circle with radius 51 meters. Therefore the problem of
computing these patterns is ideally suited for approximation
algorithms.

Recall that the input consists of locations of n entities at
t consecutive time steps. We only look for patterns defined
by these input locations and time steps, not for patterns
defined by locations in between. This is referred to as the
snapshot view of time [14]. If time is sampled sufficiently
densely, this is no severe limitation. Furthermore, we con-
centrate on approximation algorithms with possibly slightly
different radius and subgroup size. On the other hand, we
will find the patterns convergence and encounter at any time
instance, not only at the given time steps.

In the next three sections we describe efficient approxima-
tion algorithms for all four patterns where we let either the

Pattern Exact (from [11]) Exact (new) Approximate

Flock O(nm2 + n log n) - O( 1
ε2 n log 1

ε
+ n log n) (radius)

Leadership O(nτ + nm2 + n log n) - O(nτ + 1
ε2 n log 1

ε
+ n log n) (radius)

Convergence O(n2) - O(n2+δ/(εm)) (subset)

O(n3) (all) O( 1
ε
n2 log n) (radius)

Encounter O(n4) O((m + log n)n2) (detect)

O((M + log n)n2 log M) (largest)

Table 1: Running time bounds for finding patterns; δ > 0 is an arbitrarily small positive
constant, ε is the relative approximation error, and M is the size of the largest pattern.

In the “find all” problems, the time needed to report the output must be added.



size of the region or the specified subset size deviate slightly
from what is specified (see Table 1). In particular, approx-
imating the size of the region means that a region with a
radius between r and (1+ ε)r that contains at least m mov-
ing entities may or may not be reported as a pattern while
a region with a radius of at most r that contains at least
m entities will always be reported. Approximating the size
of the subset, m, implies that we will find all patterns that
involve at least (1 + ε)m entities, we may or may not find
patterns that involve between m and (1 + ε)m entities, and
we will not find patterns with less than m entities.

2 Flock and leadership

This section discusses the flock pattern and its extension,
the leadership pattern. The leadership pattern is discussed
only briefly at the end of the section, since its detection is a
fairly straightforward extension of the flock algorithm. For
flock detection, we are given a set of n moving entities as
well as a radius r and the minimum size m ≤ n for a subset
to form a pattern. As in [11] we first separate the input
data into eight subsets according to their motion direction
and then treat each subset separately. (Ideally, we should
repeat the process with the eight subsets which we obtain
after splitting the input according to motion directions that
are rotated by π/8 degrees.) Laube et al. [11] propose an
algorithm that is based on higher-order Voronoi diagrams
with a running time of O(nm2 +n log n). We are presenting
an approximation algorithm that approximates the size of
the significant region and requires O( n

ε2 log 1
ε
+n log n) time.

2.1 Approximating the radius

We will use a quadtree [17] as a building block for our algo-
rithm. Let S = {p1, . . . , pn} be a set of n points in the plane
contained in a square C of length �. A quadtree T for S is re-
cursively constructed as follows: The root of T corresponds
to the square C. The root has four children corresponding to
the four subsquares of C of side length �/2. The leaves of T
are the nodes whose corresponding square contains exactly
one point. Using a compressed quadtree [1] for T reduces its
size to O(n) by removing nodes not containing any points

Figure 3: (a) The input set S contained in a
square. (b) The arrangement A of the squares

obtained from the quadtree for S.

of S and eliminating nodes having only one child. A com-
pressed quadtree for a set of n points in the plane can be
constructed in O(n log n) time.

Now consider a subset S of the input as described earlier.
We already know that all entities in S move into roughly the
same direction so it remains to report all circles of radius r
that contain the positions of at least m entities. That implies
that we can treat S simply as a set of points in the plane
for the remainder of this section.

We first construct a compressed quadtree T for S with
the additional property that every non-empty square C cor-
responding to a node ν has side length less or equal to ε

4
r.

That is, we stop the recursion as soon as we reach a small
enough side length. We then build the arrangement A of
all squares in T (see Fig. 3). A can be built from T in
O(n log n) time. Each non-empty face/cell C of A stores
information about the number of points of S within the cell,
denoted by SC .

A simple packing argument yields the following observa-
tion:

Observation 1 A disc D of radius O(r) intersects O(1/ε2)
cells of A.

We now process the O(n) non-empty cells in A one-by-one.
Consider a non-empty cell C of A, and denote the center
of C by c. We traverse A, starting at C, and find all cells

c
ε
4
r

(1 + ε
4
)r

D

ε
4
r

c

D

Ci

Figure 2: Sweeping A with a circle D of radius (1 + ε
4
)r.

Starting position of D (left), the non-empty cell Ci enters D (right).



of A within distance (2 + ε
4
)r of c. By using a standard

breadth-first search in the arrangement this can be done
in time proportional to the number of cells reported, thus
in O(1/ε2) time according to Observation 1. We then sort
the reported cells into an event queue for a rotational plane
sweep around c with a disc D of radius (1 + ε

4
)r and with c

fixed at distance ε
4
r from the boundary of D, as illustrated

in Fig. 2. (Note that for the sake of illustration ε is chosen
very large with respect to r in the figures.) Each non-empty
cell Ci can cause at most two events since it can enter or
leave D at most once. The event queue can be built in time
O(1/ε2 log 1/ε) by using a standard sorting algorithm.

Initially D is placed such that its bottom point is at dis-
tance ε

4
r from c (see Fig. 2 (left)). We compute the number

of points of S which are contained in the cells of A that
have a non-empty intersection with D. This number is de-
noted by SD and can be computed in O(1/ε2) time since
each cell contains information about the number of points
within it. Now we rotate D clockwise around c and process
events as they occur. If a non-empty cell Ci enters D then
we increment SD by SCi , if Ci leaves D then we decrement
SD by SCi . If SD ≥ m then we report the disc D′ with
radius (1 + ε)r centered at the center cD of D. (Note that
every non-empty cell of A that intersects D necessarily lies
entirely within D′.)

c

D

ε
4
r

p

DF
cF

cD

ε
4
r

Figure 4: The center cD of D lies on
the line through c and cF .

It remains to show that our circular sweeps do indeed find
all patterns. Consider a set F of entities that form a flock
pattern. There exists a disc DF of radius r that contains
F and whose boundary passes through a point p ∈ S, as
shown in Fig. 4. Consider the cell C of A containing p and
let c be its center. Since C is non-empty we will perform a
circular sweep around c. At some point during this sweep
the center cD of D will necessarily lie on the line through
c and the center of cF of DF . The triangle inequality then
implies that cD lies within a circle of radius ε

4
r around cF

and therefore DF is completely contained in D. This means
that F is contained in D and so SD ≥ m.

Theorem 2 Given a set of n moving entities, a radius r,
the minimum size m ≤ n for a subset to form a pattern,
and a positive constant ε. Using a (1 + ε)-approximation
with respect to the radius of the flocking pattern in 2D, one
can compute:

1. proof of the existence of flock patterns in
O( n

ε2 log 1
ε

+ n log n) time.

2. all flock patterns in O( n
ε2 log 1

ε
+ n log n + N) time,

where N is the number of reported flock patterns.

Proof. The two claims follow from the fact that there are
O(n) non-empty cells, and the event queue for each cell
can be built and processed in O( 1

ε2 log 1
ε
) time. Building

the quadtree requires O(n log n) time, thus the theorem fol-
lows.

To detect or find all leadership patterns we are given an
additional parameter τ that prescribes during how many
time steps the leader was already moving in the specified
direction. We modify the flock pattern algorithm to find
leadership patterns as follows. Before starting flock detec-
tion, we decide for each entity whether it can be a leader,
that is, whether that entity was already heading in the same
direction during the previous τ − 1 time steps. This takes
O(nτ) time. For each grid cell obtained from our compressed
quadtree, we also store whether it contains a leader. During
the sweep we maintain whether the circle D contains some
leader. When a flock pattern with a leader is discovered, it is
a leadership pattern. We conclude that the time bounds in
the theorem above also hold for the leadership pattern if we
add an additional O(nτ) time term. Note that to find lead-
ership patterns for all t time steps of the input data, only
O(nt) additional time is needed (and not O(nτ · t) time).

3 Convergence

In this section we discuss the detection of the convergence
pattern. Again, we are given a set of n moving entities as
well as a radius r and the minimum size m ≤ n for a subset
to form a pattern. If we draw a line from the current position
of each entity that corresponds to its direction then we create
a set of directed half-lines (see for example Fig. 1 (right)).
In [11] Laube et al. show how to use this representation to
detect convergence patterns in O(n2). They compute the
arrangement formed by the thickened half-lines which are
turned into half-strips of width 2r. For each of the O(n2)
cells of the arrangement they compute the number of half-
strips that cover it and report each cell that is covered by
at least m half-strips.

If r = 0, that is, the region of interest consist of only a sin-
gle point, then the dual of the convergence problem (where
lines are turned into points and vice versa) can be expressed
as follows. Given a set of n points in the plane, test whether
there is a line that passes through at least m points. For
this special case Guibas et al. [6] show how to report all lines

containing at least m points in time O(min{n2

m
log n

m
, n2}).

Furthermore, Erickson [4] shows that the problem of decid-
ing if any three lines have a common intersection point has
a lower bound of Ω(n2) in a particular model of computa-
tion which in addition to standard operations also allows
sidedness queries.

We are presenting an approximation algorithm that ap-
proximates the minimum size of a subset to form a pattern.
Our algorithm reports all N regions that are visited by at
least (1 + ε)m moving entities in O(n2+δ/(εm) + N) time
for any constant δ > 0. A region that is visited by less than
m entities will not be reported, while a region visited by at
least m entities and less than (1 + ε)m entities may, or may
not, be reported.



3.1 Approximating the subset size

We are using the representation of the problem proposed
in [11], that is, we study the arrangement of the thickened
half-lines of width 2r described above. The approximation
algorithm is a simple divide-and-conquer algorithm using
the well-known cutting lemma which we state here for com-
pleteness.

For a given set of lines L and a parameter s, we seek a
partition of the plane into a set of t (possibly unbounded)
triangles ∆1, . . . , ∆t such that the interior of each triangle
∆i is intersected by at most n/s lines of L. A partitioning
of the plane with this property is called a 1/s-cutting of the
arrangement A(L). Chazelle proved the following lemma:

Lemma 3 (Cutting lemma [2]) A 1/s-cutting of A(L)
that uses Θ(s2) triangles can be computed in O(ns) time .

Now consider the set H of the n half-strips of width 2r in
the plane, and the set L of 3n lines supporting the edges and
half-lines that bound the half-strips. Initially we construct
a triangle ∆ that contains all intersections between the half-
strips. The number of half-strips that completely cover ∆,
denoted by |∆|, is zero.

In a generic step of our algorithm we receive a triangle
∆ as input. If the number of lines from L intersecting ∆ is
greater than εm then we apply the cutting lemma with the
parameter s to partition ∆ into t = O(s2) smaller triangles
∆1, . . . , ∆t. For each triangle ∆i we compute |∆i| by adding
|∆| to the number of half-strips that intersect ∆ and cover
∆i. Hence, if n half-strips intersect ∆ then we can compute
|∆i| for 1 ≤ i ≤ t in O(ns2) time.

Otherwise, the number of lines from L intersecting ∆ is
less than or equal to εm and so is the number of half-strips
from H. If |∆| ≥ m, then a disc of radius r and center
within ∆ forms an approximate convergence pattern and
is therefore reported. Note that any disc of radius r and
center within ∆ forms an approximate convergence pattern,
but only one is reported.

Theorem 4 Given a set of n moving entities, a radius r,
the minimum size m ≤ n for a subset to form a pattern, and
a positive constant ε. Using a (1+ε)-approximation with re-
spect to the minimum size of a subset to form a convergence
pattern, one can compute:

1. a proof of existence of convergence patterns in
O(n2+δ/(εm)) time, for any constant δ > 0.

2. the approximate largest convergence pattern in
O(n2+δ/(εm)) time, for any constant δ > 0.

3. all convergence patterns in O(n2+δ/(εm) + N) time,
where N is the number of reported convergence pat-
terns and δ > 0 is a constant.

Proof. Using the cutting lemma we get the following re-
cursion: T (n) = ns2 + t · T (n/s). If we set t = O(s2) to be
a constant we have T (n) = O(1) in the case when n ≤ εm.
Now we apply the master theorem [3] which solves the re-
cursion to O(n2+δ/(εm)), for any constant δ > 0.

4 Encounter

This section discusses the encounter pattern. Assume that
a set of n entities is given, as well as a radius r and the
minimum size m ≤ n of a subset required to form a pattern.
We consider how to report all patterns, consisting of some
location specified by a point p and radius r, a time t, and a
subset S′ ⊆ S of entities that are within distance r from p
at time t.

We model the problem as a 3D geometric problem by
adding time as the third dimension to the position of each
entity. This creates a half-line for each entity, starting at the
plane z = t0 and extending upwards. The slope of the half-
lines with respect to the horizontal plane represents speed
in this representation, and the point (xi, yi, ti) on a half-line
for the i-th entity tells that the i-th entity is expected to be
at position (xi, yi) at time ti.

4.1 Exact: find all

For an exact algorithm that finds all patterns, we start out
with the set of half-lines just described. For any entity pi,
the region of all points that are within distance r from pi

at some moment in time is represented by a cylinder-like
region, such that every cross-section with a horizontal plane
is a disc of radius r.

The subdivision of space induced by the n cylinders con-
sists of O(n3) cells, which is a tight bound in the worst case.
For any point inside a cell, the subset of cylinders containing
that point is the same, and hence, also the subset of enti-
ties that are within distance r at a given time. If the cell is
inside at least m cylinders, then it represents a pattern.

One way to convert this idea into an algorithm is the fol-
lowing. Take the cylinder-like region of one entity pi and
call it Ci. All other cylinders C1, . . . , Ci−1, Ci+1, . . . , Cn in-
tersect it in saddle-like curves. Build the arrangement of
these curves on the boundary of the cylinder Ci. It has
quadratic complexity and can be constructed in quadratic
expected time [7, 13]. More precisely, the running time is
O(n log n + k) expected, where k is the number of inter-
section points of the curves on Ci. We then traverse the
arrangement on Ci and determine for every cell (a curved
2D facet) how many cylinders contain it. Using the fact that
two adjacent cells have a count that differs by only 1, we can
fill in the numbers in O(n + k) time. We add one more, for
Ci itself, so that the arrangement represents the counts for
the 3D cells inside the cylinder Ci. We do this for all cylin-
ders, resulting in an O(n2 log +K) = O(n3) expected time
bound, where K is the total size of all arrangements that
were built. The storage requirements for the algorithm are
O(n + kmax) = O(n2).

The cubic running time is not particularly efficient, but
the quadratic working storage requirement is an even bigger
problem. Below we present an O(n3 log n) time algorithm
that only uses linear storage. We make use of the following
observation:

Observation 5 If a subset S′ ⊆ S of entities at time t′

consists of at least m entities, then the pattern also occurs
for a subset S′′ ⊂ S where S′ ⊆ S′′, at a time t′′ ≤ t′ for
which at least three entities define a circle of radius exactly r.

Consider a pair of half-lines �i and �j from the set. At any
time, there are at most two circles with radius r that have a
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Figure 5: (a) Two discs of radius r through two points.
(b) Swept volume V = Vij,1. (c) The cylinder Ci,j for pi.

point of �i and a point of �j on the boundary (see Figure 5
(a)). Such circles exist at any time when the (horizontal)
distance between �i and �j is less than 2r. There is only
one interval in time where this occurs for �i and �j . Let us
consider one of the two discs, and the swept volume it makes
in the relevant time interval. This volume is a cylinder-like
shape with a curved central axis. The pair of lines �i and �j

gives rise to two such volumes which we denote by Vij,1 and
Vij,2 (see Figure 5 (b)).

Let V = Vij,1; later we will test Vij,2 in the same way.
Any third half-line �h can intersect V in at most two disjoint
time intervals. When at least m− 2 intervals intersect V at
the same time, we have found a pattern. This will happen
for the first time at an endpoint of an interval, which is an
intersection point of some half-line with V .

The algorithm to find all patterns is as follows. For any
two half-lines �i and �j (for entities pi and pj), compute
the volumes Vij,1 and Vij,2. For each of these, compute
all intervals of intersections with the other half-lines and
consider only the time-interval. We sort the endpoints of
the intervals by time, and traverse them in increasing order
of time. Every endpoint of an interval is an addition of an
entity to a subset within radius r, or the removal of an entity
from a subset. We can report all subsets of size at least m.

The algorithm takes O(n3 log n) time to detect all pat-
terns, and O(n4) time in the worst case if we report all
patterns explicitly, with the whole subset involved. If we
only report the time and place of a pattern, we spend O(n3)
time on reporting, and the algorithm takes O(n3 log n) time
overall.

Theorem 6 All encounter patterns of at least m entities
can be found in O(n3 log n + N) time using linear storage,
where N is the time needed to report the output. The pat-
terns can also be found in O(n3 + N) expected time using
O(n2) storage.

Alternatively, we can identify the first subset in which pi

and pj participate. Since we find the first pattern for pi and
every other entity, we can select the first one of these to get
the first pattern for pi. Hence, we can find the first pattern
for every entity using O(n3 log n) time overall.

4.2 Exact: detect

Next we show that the detection of a pattern can also be
done in O(mn2 log n) time. If m is considerably smaller
than n, then this method is more efficient. We again make
use of the cylinders centered at each one of the half-lines.
The intersection of the cylinder with a horizontal plane is
a disc of radius 2r. Many half-lines may have an interval
of intersection with the cylinder, but it is not the case that
m− 1 half-lines that intersect the cylinder at the same time
form a pattern. This is because the cylinder has twice the
radius. Our method is based on the following:

Lemma 7 Let �i be a half-line for entity pi, and let Vi be
the region of points that are within distance 2r of pi at some
time. If at least 7m half-lines intersect Vi at the same time,
then a pattern of size at least m exists (this pattern need not
include pi itself).

Proof. Follows by a packing argument. A disc of radius 2r
can be covered by at most 7 discs of radius r. By the pigeon-
hole principle, one of the radius-r discs must be intersected
by at least 7m/7 = m half-lines [20].

Globally, our detection algorithm works as follows. For ev-
ery entity pi, consider its half-line �i and cylinder Vi as de-
fined above. For all other entities, compute the interval of
intersection and consider the time-dimension. Sort the end-
points of the interval by time and traverse the endpoints as
before. If we discover that at some moment in time there
are at least 7m half-lines in Vi, then we stop and report that
a pattern exists. If we have tested all entities and have not
discovered a pattern yet, we use a different algorithm that
makes use of the fact that for any cylinder, at most O(m)
half-lines can intersect it at the same time. In fact, the algo-
rithm is similar to the previous, O(n3 log n) time algorithm
for all patterns, but it is initialized differently. Observe that
so far, we have spent only O(n2 log n) time.

Consider one cylinder Vi and the time intervals I1, . . . , In′
of half-lines that intersect Vi. Consider the endpoints sorted
by time, which we have already done. For every interval Ij ,
define the subset overlap(Ij) ⊆ {I1, . . . , Ij−1, Ij+1, . . . , In′}
of intervals that have a non-empty overlap with Ij .



Lemma 8 Given a cylinder Vi for which at no time there are
7m or more half-lines inside, all subsets overlap(Ij) together
have size O(mn).

Proof. When two intervals Ij and Ih overlap, then they
occur in the subset of each other. We charge both occur-
rences to the smaller size subset, that is, if |overlap(Ij)| <
|overlap(Ih)|, then we charge both occurrences to Ij and
otherwise we charge both to Ih.

Consider the interval with the smallest overlap subset and
assume without loss of generality that it is Ij . We may as-
sume that no interval Ih is properly contained in Ij , other-
wise we take that interval as the smallest instead. We claim
that |overlap(Ij)| < 14m. Assume the contrary for a con-
tradiction. Observe that all intervals in overlap(Ij) contain
the left or the right endpoint of Ij (or both). Hence, the
left or the right endpoint is covered by at least 7m intervals.
But by assumption, there cannot be 7m half-lines in Vi at
the same time. We conclude that |overlap(Ij)| < 14m. We
charge all overlaps that include Ij to Ij , and since we charge
twice per overlap, Ij is charged at most 28m. Now we re-
move Ij from all subsets overlap(..) in which it occurs and
we repeat the argument until no intervals remain. Every
interval is charged O(m) times. Since there are up to n − 1
intervals I1, . . . , In′ , we charge O(mn) in total.

Our algorithm computes all subsets overlap(..) in O(mn)
time, finds the smallest one, and runs the exact, all patterns
algorithm on pi and pj and the subset overlap(Ij). If we
do not find a pattern, then we remove Ij from all other
subsets and continue with the interval with the next smallest
overlap(..) subset. If we maintain appropriate pointers, then
we can perform these updates in O(m) time and find the
next smallest in O(log n) time. Specifically, we store an
overlap subset overlap(Ij) by a counter and a pointer to a
doubly-linked list. If Ih is in overlap(Ij), it is a list element.
Also, Ij is a list element in the list for overlap(Ih). We
create cross-pointers between them. Every list element also
stores a back-pointer to the (representation of) overlap(Ij).
The counters store the number of elements in the lists.

When we treat overlap(Ij), we traverse its list, use the
cross-pointers to access all occurrences of Ij in other lists
overlap(Ih), delete this occurrence, and we use the back-
pointer to decrease the counter of overlap(Ih) by one.

Finally, all subsets are stored in a Fibonnacci Heap [3] on
the counters (current size of the subset). We can extract the
minimum from a Fibonnacci Heap in O(log n) time. When
we decrease a counter by one, we perform a Decrease-Key
on that subset, which takes O(1) amortized time. For Vi

and all intervals, we spend O(mn+n log n) time, and for all
cylinders this is O((m + log n) · n2) time.

Theorem 9 Detection of the existence of some encounter
pattern of m entities from a set of n entities can be done in
O((m + log n) · n2) time.

4.3 Exact: find largest

We can use the detection algorithm to search for the largest
pattern, which is the largest subset of entities that are ex-
pected to come within a disc of radius r. Let M be the
(unknown) size of this largest subset. We first guess m = 2
and run the detection algorithm. If a pattern is detected, we

know that M ≥ m, we set m to be 2m and repeat (run the
detection algorithm). As soon as detection fails for some m,
we know that m/2 ≤ M < m. Using a binary search in this
interval, we determine the exact value of M .

The detection algorithm is called O(log m) = O(log M)
times, and hence the total running time is O((M + log n) ·
n2 log M).

Theorem 10 The largest subset of entities that are involved
in an encounter pattern can be determined in O((M +log n)·
n2 log M) time.

4.4 Approximating the radius

The cubic time algorithms to find all patterns, or find the
first pattern for each entity, are rather time consuming. If we
let go of the precise value of r, the radius of the disc needed
to obtain a pattern, then we can obtain a near-quadratic
time algorithm. The value of r need only be relaxed slightly:
choose any constant value ε > 0, then we will be sure to find
a pattern consisting of m entities if they lie in a region of ra-
dius at most r, and we may or may not find any pattern with
a region of radius between r and (1 + ε) · r. The algorithm
runs in O((n2 log n)/ε) time.

The general idea is that the number of cylinders that we
are going to process will be 4/ε per half-line. Let an entity pi

and its half-line �i be given. Consider the cylinder-like shape
Ci with �i as the center and such that every cross-section
with a horizontal plane is a disc of radius r. Place 4/ε
evenly spaced markers, denoted v1, . . . , v4/ε, on some cross-
section boundary, and consider the half-lines �i,1, . . . , �i,4/ε

containing v1, . . . , v4/ε and in the boundary of Ci (they are
parallel to �i). For each half-line �i,j through vj we define
the cylinder-like shape Ci,j such that every cross-section is
a disc of radius (1 + ε)r (see Figure 5 (c)). Each cylinder
Ci,j is processed in the same way as described for the exact
problem: we determine the time intervals where other half-
lines intersect Ci,j , and find subsets of size at least m − 1.
The time complexity is, just as before, O(n log n) per cylin-
der. Since the number of cylinders is O(n/ε) we get a total

running time of O(n2

ε
log n).

No region of radius (1 + ε)r with less than m entities is
reported by the algorithm, hence it suffices to prove that
the algorithm returns all regions of radius r with at least
m entities. This is proven by showing that every horizontal
disc D of radius r and a half-line � intersecting its perimeter
must lie entirely within one of the cylinders of � that is
processed. Consider D and let Ci,j be the cylinder treated
for �i that is closest to D, i.e., whose center is closest to the
center of D. Finally, let D′ be the horizontal disc of Ci,j

at the same moment of time as D. We need to show that
D ⊂ D′. Note that the angle between the two horizontal
segments from the centers of D and D′ to �i is bounded by
επ/4, and the distance between the centers of D and D′ is
at most 2r sin(επ/8) < rεπ/4 < εr. Since the radius of D′

is (1 + ε)r it follows that D must lie within D′, hence, we
have proven the following theorem.

Theorem 11 An (1+ ε)-approximation of the radius of the

2D encounter problem can be computed in time O(n2

ε
log n+

N), where N is the time needed to report the patterns.

Therefore we can conclude:



Theorem 12 Given a set of n moving entities, a radius r,
the minimum size m ≤ n for a subset to form a pattern,
and a positive constant ε. Using a (1 + ε)-approximation
with respect to the radius of the encounter pattern in 2D,
one can compute:

1. proof of the existence of encounter patterns in

O(n2

ε
log n) time.

2. the approximate largest encounter pattern in

O(n2

ε
log n) time.

3. all encounter patterns in O(n2

ε
log n + N) time, where

N is the number of reported encounter patterns.

5 Conclusion

In this paper we described efficient approximation algorithms
to compute four spatio-temporal patterns, namely flock, lead-
ership, convergence, and encounter. Approximation algo-
rithms—a technique frequently used in computational geome-
try—are ideally suited for the algorithmic problems arising
from these patterns. The approximation algorithms pre-
sented in this paper are significantly faster than their exact
counterparts.
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