
Copyright 1999 Springer Verlag.

Chapter 15, pages 355-395, in "Intelligent Information Agents", edited by Matthias Klusch.

Available at http://agent.cs.dartmouth.edu/papers/brewington:ir.ps.Z.

Mobile agents in distributed information retrievalBrian Brewington, Robert Gray, Katsuhiro Moizumi,David Kotz, George Cybenko and Daniela RusThayer School of Engineering / Department of Computer ScienceDartmouth CollegeHanover, New Hampshire 03755�rstname.lastname@dartmouth.eduAbstractAmobile agent is an executing program that can migrate during execution from machine to machine ina heterogeneous network. On each machine, the agent interacts with stationary service agents and otherresources to accomplish its task. Mobile agents are particularly attractive in distributed information-retrieval applications. By moving to the location of an information resource, the agent can search theresource locally, eliminating the transfer of intermediate results across the network and reducing end-to-end latency. In this chapter, we �rst discuss the strengths of mobile agents, and argue that althoughnone of these strengths are unique to mobile agents, no competing technique shares all of them. Next,after surveying several representative mobile-agent systems, we examine one speci�c information-retrievalapplication, searching distributed collections of technical reports, and consider how mobile agents canbe used to implement this application e�ciently and easily. Then we spend the bulk of the chapterdescribing two planning services that allow mobile agents to deal with dynamic network environments andinformation resources: (1) planning algorithms that let an agent choose the best migration path throughthe network, given its current task and the current network conditions, and (2) planning algorithms thattell an agent how to observe a changing set of documents in a way that detects changes as soon as possiblewhile minimizing overhead. Finally, we consider the types of errors that can occur when informationfrom multiple sources is merged and �ltered, and argue that the structure of a mobile-agent applicationdetermines the extent to which these errors a�ect the �nal result.1 IntroductionA mobile agent is an executing program that can migrate during execution from machine to machine in aheterogeneous network. In other words, the agent can suspend its execution, migrate to another machine,and then resume execution on the new machine from the point at which it left o�. On each machine, theagent interacts with stationary agents and other resources to accomplish its task.Mobile agents have several advantages in distributed information-retrieval applications. By migrating to aninformation resource, an agent can invoke resource operations locally, eliminating the network transfer ofintermediate data. By migrating to the other side of an unreliable network link, an agent can continue exe-cuting even if the network link goes down, making mobile agents particularly attractive in mobile-computingenvironments. Most importantly, an agent can choose di�erent migration strategies depending on its taskand the current network conditions, and then change its strategies as network conditions change. Complex,e�cient and robust behaviors can be realized with surprisingly little code.Although each of these advantages is a reasonable argument for mobile agents, none of them are unique tomobile agents, and, in fact, any speci�c application can be implemented just as e�ciently and robustly withmore traditional techniques. Di�erent applications require di�erent traditional techniques, however, and1

many applications require a combination of techniques. In short, the true strength of mobile agents is notthat they make new distributed applications possible, but rather that they allow a wide range of distributedapplications to be implemented e�ciently, robustly and easily within a single, general framework.In this chapter, we �rst motivate mobile agents in detail, comparingmobile agents with traditional client/servertechniques and other mobile-code systems, and survey several existing mobile-agent systems. Then we con-sider a speci�c information-retrieval application, searching distributed collections of technical reports, andhow this application can be implemented easily using our own mobile-agent system, D'Agents. Our mobile-agent implementation performs better than (or as well as) a more traditional RPC implementation when thequery is complex or network conditions are poor, but worse when the query is simple and network conditionsare good. Complex queries and slow networks allow ine�ciencies in the core D'Agents and other mobile-agent systems to be amortized over a longer execution or data-transfer time. These ine�ciencies, which areintrinsic to the early stages of mobile-agent development, primarily cause large migration and communicationoverheads.1 Fortunately, solutions to many of the ine�ciencies already exist in high-performance servers andrecent mobile-agent work. Once these solutions are integrated into existing mobile-agent systems, mobileagents will perform competitively in a much wider range of network environments.Improving the performance of the core system does not address all of an agent's needs. In particular, ane�ective mobile agent is one that can choose dynamically all aspects of its behavior, i.e., how many agentsto send out, where to send them, whether those agents should migrate or remain stationary, whether thoseagents should send out children, and so on. The agent must have access to a wealth of network, machineand resource information, and a corresponding toolbox of planning algorithms, so that it can choose themost e�ective migration strategy for its task and the current network conditions. Therefore, a mobile-agentsystem must provide an extensive sensing and planning infrastructure.In this chapter, we describe several simple directory and network-sensing services in the context of thetechnical-report application. Then we present initial work on two more complex planning services: (1) aset of planning algorithms that allow an agent or a small group of cooperating agents to identify the bestmigration path through a network, and (2) a set of planning algorithms that tell an agent how to observe achanging set of documents (speci�cally the pages available on the World Wide Web) in a way that detectschanges as soon as possible while minimizing overhead. In the second case, the current planning algorithmsare oriented towards a stationary agent that has moved to some attractive proxy site and is now observingthe documents from across the network. We consider, however, how the algorithms can be extended to anagent that migrates continuously or sends out child agents.Section 2 explores the motivation behind mobile agents in more detail. Section 3 surveys nine representativemobile-agent systems, and brie
y mentions other mobile-agent systems. Section 4 describes the technical-report application and analyzes its performance. Finally, Section 5 discusses the two planning services.2 MotivationMobile agents have several strengths. First, by migrating to the location of a needed resource, an agent caninteract with the resource without transmitting intermediate data across the network, conserving bandwidthand reducing latencies. Similarly, by migrating to the location of a user, an agent can respond to useractions rapidly. In either case, the agent can continue its interaction with the resource or user even ifnetwork connections go down temporarily. These features make mobile agents particularly attractive inmobile-computing applications, which often must deal with low-bandwidth, high-latency, and unreliablenetwork links.Second, mobile agents allow traditional clients and servers to o�oad work to each other, and to change whoo�oads to whom according to the capabilities and current loads of the client, server and network. Similarly,mobile agents allow an application to dynamically deploy its components to arbitrary network sites, and to1Migration overhead is the time on the source machine to pack up an agent's current state and send the state to thetarget machine, plus the time on the target machine to authenticate the incoming agent, start up an appropriate executionenvironment, and restore the state. 2

re-deploy those components in response to changing network conditions.Finally, most distributed applications �t naturally into the mobile-agent model, since a mobile agent canmigrate sequentially through a set of machines, send out a wave of child agents to visit machines in par-allel, remain stationary and interact with resources remotely, or any combination of these three extremes.Complex, e�cient and robust behaviors can be realized with surprisingly little code. In addition, our ownexperience with undergraduate programmers at Dartmouth suggests that mobile agents are easier to under-stand than many other distributed-computing paradigms.Although each of these strengths is a reasonable argument for mobile agents, it is important to realize thatnone of these strengths are unique to mobile agents [CGH+95]. Any speci�c application can be implementedjust as e�ciently with other techniques. These other techniques include message passing, remote procedurecalls (RPC) [BN84], remote object-method invocation (as in Java RMI [WRW96] or CORBA [BN95]), queuedRPC [JdT+95] (in which RPC calls are queued for later invocation if the network connection is down), remoteevaluation [Fal87, SG90, Sto94] (which extends RPC by allowing the client to send the procedure code tothe server, rather than just the parameters for an existing procedure), process migration [DO91, LS92],stored procedures (such as [BP88], where SQL procedures can be uploaded into a relational database forlater invocation), Java applets [CW97] and servlets [Cha96] (which respectively are Java programs that aredownloaded by a Web browser or uploaded into a Web server), automatic installation facilities, application-speci�c query languages, and application-speci�c proxies within the permanent network. None of these othertechniques, however, share all of the strengths of mobile agents.Messaging passing and remote invocation. In contrast to message passing and remote invocation,mobile code (including mobile agents) allows an application to conserve bandwidth and reduce latency evenif an information resource provides low-level operations, simply because the mobile code can be sent tothe network location of the resource. The mobile code can invoke as many low-level server operations asneeded to perform its task without transferring any intermediate data across the network. Moreover, themobile code can continue its task even if the network link between the client and server machines goes down.The code has been sent to the other side of the link, and will not need the link again until it is ready tosend back a \�nal" result. The resource provider can implement a single high-level operation that performseach client's desired task in its entirety. Implementing these high-level operations, however, becomes anintractable programming task as the number of distinct clients increases. In addition, it discourages modernsoftware engineering, since the server becomes a collection of complex, specialized routines, rather thansimple, general primitives.Process migration. Typically, process-migration systems do not allow the processes to choose when andwhere they migrate. Instead, most are designed to transparently move processes from one machine to anotherto balance load. In addition, although some process-migration systems allow the processes to migrate acrossheterogeneous machines [BVW95], these facilities still are intended for \closed" environments, where securityis less of a concern. Mobile agents, on the other hand, can move when and where they want, according totheir own application-speci�c criteria. For example, although mobile agents can move solely to obtain CPUcycles, most mobile agents will move to colocate themselves with speci�c information resources. In addition,nearly all mobile-agent systems have been designed from the ground up to be both platform-independentand secure in open environments.Remote evaluation, stored procedures, applets and servlets. Mobile agents are much more
exiblethan these other forms of mobile code. First, a mobile agent can move from a client to server or from aserver to client. Most other forms of mobile code allow code transfer in a single direction only. Second,a mobile agent can move at times of its own choosing. Java applets, in particular, are downloaded onto aclient machine only when a human user visits an associated Web page. Third, a mobile agent can move asmany times as desired. For example, if a server is implemented as a mobile agent, it can continuously movefrom one network location to another to minimize the average latency between itself and its current clients[RASS97]. Conversely, a client agent can migrate sequentially through some set of machines, accessing someresource on each. For example, if a client agent needs to query one database to determine which query itshould run against a second database, it can migrate to the �rst database, run the �rst query, analyze thequery results to determine the second query, throw out the analysis code to make itself smaller, migratedirectly to the second database, run the second query, and carry just the �nal result back to its home3

machine. Most implementations of remote evaluation and stored procedures, along with all Web browsersand servers that support applets and servlets, do not allow the mobile code to spawn additional mobile codeonto di�erent machines, making any form of sequential migration impossible. Instead, the client machinemust interact with each resource in turn.Finally, a mobile agent can spawn o� child agents no matter where it is in the network. For example, amobile agent can move to a dynamically selected proxy site, send out child agents to search some distributeddata collection in parallel, and then merge and �lter the search results on the proxy site before carryingjust the �nal result back to the client. As with sequential migration, most implementations of the othermobile-code techniques do not support such behavior.Application-speci�c solutions. Finally, in contrast to application-speci�c solutions, such as specializedquery languages and dedicated proxies pre-installed at speci�c network locations, mobile agents are distin-guished by both their
exibility and their ease of implementation. An application can send its own proxyto an arbitrarily selected network location, and can move that proxy as network conditions change. In ad-dition, a server simply can make its operations visible to visiting mobile agents, rather than implementinghigher-level operations or some application-speci�c language to minimize network tra�c.Summary. In short, an application must use one or more of these other techniques to realize the samebehavior that mobile agents allow, and di�erent applications must use di�erent techniques. The true strengthof mobile agents is that a wide range of distributed applications can be implemented e�ciently, easily androbustly within the same, general framework, and these applications can exhibit extremely
exible behaviorin the face of changing network conditions. As we show in Section 4, mobile-agent systems are not e�cientenough yet to be competitive with the other techniques in every situation. However, the potential for mobileagents is clear, and mobile-agent researchers now share a common, realizable goal: a mobile-agent systemin which (1) inter-agent communication is as fast as traditional RPC, (2) migration of code is only a smallfactor slower than an RPC call that transfers an equivalent amount of data, (3) computation-intensiveagents execute no more than twice as slowly as natively compiled code, and (4) a wide range of network-status information is available to agents for use in their decision-making process. In such a system, migrationwould be advantageous even if the task involved only a few operations at each information resource, and amobile agent could use its knowledge of the task, the needed information resources and the current networkconditions to decide whether to migrate or remain stationary. In other words, mobile agents would performno worse than equivalent solutions implemented with the other techniques, and would often perform muchbetter.3 Survey of mobile-agent systemsIn this section, we examine nine representative mobile-agent systems, and then brie
y discuss their similar-ities and di�erences.3.1 Representative mobile-agent systems3.1.1 Multiple-language systemsAra. Ara2 [PS97, Pei98] supports agents written in Tcl and C/C++. The C/C++ agents are compiled intoan e�cient interpreted bytecode called MACE; this bytecode, rather than the C/C++ code itself, is sent frommachine to machine. For both Tcl and MACE, Ara provides a go instruction, which automatically capturesthe complete state of the agent, transfers the state to the target machine, and resumes agent execution at theexact point of the go. Ara also allows the agent to checkpoint its current internal state at any time duringits execution. Unlike other multiple-language systems, the entire Ara system is multi-threaded; the agentserver and both the Tcl and MACE interpreters run inside a single Unix process. Although this approachcomplicates the implementation, it has signi�cant performance advantages, since there is little interpreter2http://www.uni-kl.de/AG-Nehmer/Ara/ 4

startup or communication overhead. When a new agent arrives, it simply begins execution in a new thread,and when one agent wants to communicate with another, it simply transfers the message structure to thetarget agent, rather than having to use inter-process communication. Nearly all Java-only systems are alsomulti-threaded, and see the same performance advantages.At the time of this writing, the Ara group is adding support for Java agents, and �nishing implementationwork on their initial security mechanisms [Pei98]. An agent's code is cryptographically signed by its manu-facturer (programmer); its arguments and its overall resource allowance are signed by its owner (user). Eachmachine has one or more virtual places, which are created by agents and have agent-speci�ed admissionfunctions. A migrating agent must enter a particular place. When it enters the place, the admission functionrejects the agent or assigns it a set of allowances based on its cryptographic credentials. These allowances,which include such things as �le-system access and total memory, are then enforced in simple wrappersaround resource-access functions.D'Agents. D'Agents3 [GKCR98], which was once known as Agent Tcl, supports agents written in Tcl,Java and Scheme, as well as stationary agents written in C and C++. Like Ara, D'Agents provides a goinstruction (Tcl and Java only), and automatically captures and restores the complete state of a migratingagent. Unlike Ara, only the D'Agent server is multi-threaded; each agent is executed in a separate process,which simpli�es the implementation considerably, but adds the overhead of inter-process communication.The D'Agent server uses public-key cryptography to authenticate the identity of an incoming agent's owner.Stationary resource-manager agents assign access rights to the agent based on this authentication andthe administrator's preferences, and language-speci�c enforcement modules enforce the access rights, eitherpreventing a violation from occurring (e.g., �le-system access) or terminating the agent when a violationoccurs (e.g., total CPU time). Each resource manager is associated with a speci�c resource such as the �lesystem. The resources managers can be as complex as desired, but the default managers simply associate alist of access rights with each owner. Unlike Ara, most resource managers are not consulted when the agentarrives, but instead only when the agent (1) attempts to access the corresponding resource or (2) explicitlyrequests a speci�c access right. At that point, however, the resource manager forwards all relevant accessrights to the enforcement module, and D'Agents behaves in the same way as Ara, enforcing the access rightswith short wrapper functions around the resource access functions.Current work on D'Agents falls into four broad categories: (1) scalability, (2) network-sensing and planningservices, which allow an agent to choose the best migration strategy given the current network conditions;(3) market-based resource control, where agents are given a �nite supply of currency from their owner'sown �nite supply and must spend the currency to access needed resources [BKR98]; and (4) support formobile-computing environments, where applications must deal with low-bandwidth, high-latency and unre-liable network links [KGN+98]. Some scalability issues are discussed in the next section, where we analyzethe performance of a distributed retrieval application running on top of the D'Agents system. Network-sensing and planning is discussed in section 5, where we examine some services necessary for a distributedinformation-retrieval to make e�cient use of available network resources.D'Agents has been used in several information-retrieval applications, including the technical-report searcherthat is discussed in the next section, as well as 3DBase [CBC97], a system for retrieving three-dimensionaldrawings (CAD drawings) of mechanical parts based on their similarity to a query drawing.Tacoma. Tacoma4 [JSvR98a, JSvR98b] supports agents written in C, C++, ML, Perl, Python, Schemeand Visual Basic. Unlike Ara and D'Agents, Tacoma does not provide automatic state-capture facilities.Instead, when an agent wants to migrate to a new machine, it creates a folder into which it packs its code andany desired state information. The folder is sent to the new machine, which starts up the necessary executionenvironment and then calls a known entry point within the agent's code to resume agent execution. Althoughthis approach places the burden of state capture squarely onto the agent programmer, it also allows the rapidintegration of new languages into the Tacoma system, since existing interpreters and virtual machines can3http://www.cs.dartmouth.edu/~agent/4http://www.tacoma.cs.uit.no:8080/TACOMA/ 5

be used without modi�cation. Tacoma is used most notably in StormCast, which is a distributed weather-monitoring system, and the Tacoma Image Server, which is a retrieval system for satellite images [JSvR98b].The public versions of Tacoma rely on the underlying operating system for security, but do provide hooksfor adding a cryptographic authentication subsystem so that agents from untrusted parties can be rejectedoutright. In addition, the Tacoma group is exploring several interesting fault-tolerance and security mecha-nisms, such as (1) using cooperating agents to search replicated databases in parallel and then securely voteon a �nal result [MvRSS96], and (2) using security automata (state machines) to specify a machine's securitypolicy and then directly using the automata and software fault isolation to enforce the policy [Sch97].3.1.2 Java-based systemsAglets. Aglets5 [LO98, LC96] was one of the �rst Java-based systems. Like all commercial systems,including Concordia [WPW+97, WPW98], Jumping Beans [AA98], and Voyager [OBJ97], Aglets does notcapture an agent's thread (or control) state during migration, since thread capture requires modi�cations tothe standard Java virtual machine. In other words, thread capture means that the system could be used onlywith one speci�c virtual machine, signi�cantly reducing market acceptance.6 Thus, rather than providingthe go primitive of D'Agents and Ara, Aglets and the other commercial systems instead use variants ofthe Tacoma model, where agent execution is restarted from a known entry point after each migration. Inparticular, Aglets uses an event-driven model. When an agent wants to migrate, it calls the dispatchmethod. The Aglets system calls the agent's onDispatching method, which performs application-speci�ccleanup, kills the agent's threads, serializes the agent's code and object state, and sends the code and objectstate to the new machine. On the new machine, the system calls the agent's onArrival method, whichperforms application-speci�c initialization, and then calls the agent's run method to restart agent execution.Aglets includes a simple persistence facility, which allows an agent to write its code and object state tosecondary storage and temporarily \deactivate" itself; proxies, which act as representatives for Aglets, andamong other things, provide location transparency; a lookup service for �nding moving Aglets; and a rangeof message-passing facilities for inter-agent communication. The Aglet security model is similar to boththe D'Agent and Ara security models, and to the security models for the other Java-based systems below.An Aglet has both an owner and a manufacturer. When the agent enters a context (i.e., a virtual place)on a particular machine, the context assigns a set of permissions to the agent based on its authenticatedowner and manufacturer. These permissions are enforced with standard Java security mechanisms, such asa customized security manager.Concordia. Concordia7 [WPW+97, WPW98] is a Java-based mobile-agent system that has a strong focuson security and reliability. Like most other mobile-Java agent systems, they move the agent objects codeand data, but not thread state, from one machine to another. Like many other systems, Concordia agentsare bundled with an itinerary of places to visit, which can be adjusted by the agent while en route.8 Agents,events, and messages can be queued, if the remote site is not currently reachable. Agents are carefully savedto a persistent store, before departing a site and after arriving at a new site, to avoid agent loss in the eventof a machine crash. Agents are protected from tampering through encryption while they are in transmissionor stored on disk; agent hosts are protected from malicious agents through cryptographic authentication ofthe agent's owner, and access control lists that guard each resource.Jumping Beans. Jumping Beans9 [AA98] is a Java-based framework for mobile agents. Computerswishing to host mobile agents run a Jumping Beans agency, which is associated with some Jumping Beans5http://www.trl.ibm.co.jp/aglets/6D'Agents, which does use a modi�ed Java virtual machine to capture thread state, is a research system and is under nosuch market constraints.7http://www.concordia.mea.com/8Aglets calls the same method at each stop on the itinerary, while Jumping Beans, Concordia, and Voyager all allow theagent to specify a di�erent method for each stop.9http://www.JumpingBeans.com/ 6

domain. Each domain has a central server, which authenticates the agencies joining the domain. Mobileagents move from agency to agency, and agents can send messages to other agents; both mechanisms areimplemented by passing through the server. Thus the server becomes a central point for tracking, managing,and authenticating agents. It also becomes a central point of failure or a performance bottleneck, althoughthey intend to develop scalable servers to run on parallel machines. Another approach to scalability is tocreate many small domains, each with its own server. In the current version, agents cannot migrate betweendomains, but they intend to support that capability in future versions. Security and reliability appear to beimportant concerns of their system; public-key cryptography is used to authenticate agencies to the server,and vice versa; access-control lists are used to control an agent's access to resources, based on the permissionsgiven to the agent's owning user.Although they claim to move all agent code, data, and state, it is not clear from their documentation whetherthey actually move thread state, as in Agent Java. They require that the agent be a serializable object, so itseems likely that they implement the weaker form of mobility common to other Java-based agent systems.3.1.3 Other systemsMessengers. The Messenger10 project uses mobile code to build
exible distributed systems, not specif-ically mobile-agent systems [TDM+94, DMTH95, Muh98]. In their system, computers run a minimal Mes-senger Operating System (MOS), which has just a few services. MOS can send and receive messengers,which are small packets of data and code written in their programming language M0. MOS can interpret M0programs, which may access one of their two bulletin-board services: the global dictionary, which allows dataexchange between messengers, and the service dictionary, which is a searchable listing of messengers thato�er services to other messengers. Ultimately, most services, including all distributed services, are o�eredby static and mobile messengers. In one case, they allow the messengers to carry native UNIX code, whichis installed and executed on MOS; system calls are re
ected back to the interpreted M0 code, allowing fastexecution of critical routines, while maintaining the
exibility of mobile code [TMN97].Obliq. Obliq [Car95, BN97] is an interpreted, lexically scoped, object-oriented language. An Obliq objectis a collection of named �elds that contain methods, aliases, and values. An object can be created at a remotesite, cloned onto a remote site, or migrated with a combination of cloning and redirection. Implementingmobile agents on top of these mobile objects is straightforward. An agent consists of a user-de�ned procedurethat takes a briefcase as its argument; the briefcase contains the Obliq objects that the procedure needs toperform its task. The agent migrates by sending its procedure and current briefcase to the target machine,which invokes the procedure to resume agent execution.Visual Obliq11 [BC95] builds on top of Obliq's migration capabilities. Visual Obliq is an interactive appli-cation builder that includes (1) a visual programming environment for laying out graphical user interfaces,and (2) an agent server that allows Visual Obliq applications to migrate from machine to machine. Whenthe application migrates, the state of its graphical interface is captured automatically, and recreated exactlyon the new machine. Obliq does not address security issues. Visual Obliq does provide access control,namely, user-speci�ed access checks associated with all \dangerous" Obliq commands, but does not haveauthentication or encryption mechanisms. Typically, therefore, the access checks will simply ask the userwhether the agent should be allowed to perform the given action.Telescript. Telescript12 [Whi94b, Whi94a, Whi97], developed at General Magic, Inc., was the �rst com-mercial mobile-agent system, and the inspiration for many of the recent mobile-agent systems. In Telescript,each network site runs a server that maintains one or more virtual places. An incoming agent speci�es whichof the places it wants to enter. The place authenticates the identity of the agent's owner by examining theagent's cryptographic credentials, and then assigns a set of access rights or permits to the agent. One permit,10http://www.ics.uci.edu/~bic/messengers/11http://www.cc.gatech.edu/gvu/people/Phd/Krishna/VO/VOHome.html12http://www.genmagic.com/technology/mobile agent.html7

for example, might specify a maximum agent lifetime, while another might specify a maximum amount ofdisk usage. An agent that attempts to violate its permits is terminated immediately [Whi94b]. In additionto maintaining the places and enforcing the security constraints, the server continuously writes the internalstate of executing agents to non-volatile store, so that the agents can be restored after a node failure.A Telescript agent is written in an imperative, object-oriented language, which is similar to both Java andC++, and is compiled into bytecodes for a virtual machine that is part of each server. As in D'Agentsand Ara, a Telescript agent migrates with the go instruction. A Telescript agent can communicate withother agents in two ways: (1) it can meet with an agent that is in the same place; the two agents receivereferences to each other's objects and then invoke each other's methods; and (2) it can connect to an objectin a di�erent place; the two agents then pass objects along the connection. Despite the fact that Telescriptremains one of the most secure, fault-tolerant and e�cient mobile-agent systems, it has been withdrawnfrom the market, largely because it was overwhelmed by the rapid spread of Java.3.2 Similarities and di�erencesAll mobile-agent systems have the same general architecture: a server on each machine accepts incomingagents, and for each agent, starts up an appropriate execution environment, loads the agent's state infor-mation into the environment, and resumes agent execution. Some systems, such as the Java-only systemsabove, have multi-threaded servers and run each agent in a thread of the server process itself; other systemshave multi-process servers and run each agent in a separate interpreter process; and the rest use some combi-nation of these two extremes. D'Agents, for example, has a multi-threaded server to increase e�ciency, butseparate interpreter processes to simplify its implementation. Jumping Beans [AA98] is of particular notesince it uses a centralized server architecture (in which agents must pass through a central server on theirway from one machine to another), rather than a peer-to-peer server architecture (in which agents movedirectly from one machine to another). Although this centralized server easily can become a performancebottleneck, it greatly simpli�es security, tracking, administration and other issues, perhaps increasing initialmarket acceptance.Currently, for reasons of portability and security, nearly all mobile-agent systems either interpret theirlanguages directly, or compile their languages into bytecodes and then interpret the bytecodes. Java, whichis compiled into bytecodes for the Java virtual machine, is the most popular agent language, since (1) it isportable but reasonably e�cient, (2) its existing security mechanisms allow the safe execution of untrustedcode, and (3) it enjoys widespread market penetration. Java is used in all commercial systems and in severalresearch systems. Due to the recognition that agents must execute at near-native speed to be competitivewith traditional techniques in certain applications, however, several researchers are experimenting with \on-the-
y" compilation [LSW95, HMPP96]. The agent initially is compiled into bytecodes, but compiled intonative code on each machine that it visits, either as soon as it arrives or while it is executing. The mostrecent Java virtual machines use on-the-
y compilation, and the Java-only mobile-agent systems, which arenot tied to a speci�c virtual machine, can take immediate advantage of the execution speedup.Mobile-agent systems generally provide one of two kinds of migration: (1) go, which captures an agent'sobject state, code, and control state, allowing it to continue execution from the exact point at which it lefto�; and (2) entry point, which captures only the agent's object state and code, and then calls a known entrypoint inside its code to restart the agent on the new machine. The go model is more convenient for theend programmer, but more work for the system developer since routines to capture control state must beadded to existing interpreters. All commercial Java-based systems use entry-point migration, since marketconcerns demand that these systems run on top of unmodi�ed Java virtual machines. Research systems useboth both migration techniques.Finally, existing mobile-agent systems focus on protecting an individual machine against malicious agents.Aside from encrypting an agent in transit and allowing an agent to authenticate the destination machinebefore migrating, most existing systems do not provide any protection for the agent or for a group of machinesthat is not under single administrative control.Other di�erences exist among the mobile-agent systems, such as the granularity of their communication8

mechanisms, whether they are built on top of or can interact with CORBA, and whether they conformto the emerging mobile-agent standards. Despite these di�erences, however, all of the systems discussedabove (with the exception of Messengers, which is a lighter-weight mobile-agent system) are intended forthe same applications, such as work
ow, network management, and automated software installation. All ofthe systems are suitable for distributed information retrieval, and the decision of which one to use must bebased on the desired implementation language, the needed level of security, and the needed performance.4 Application: The technical-report searcherMobile agents are commonly used in distributed information-retrieval applications. By sending agents toproxy sites and to the information sources themselves, the applications can avoid the transfer of intermediatedata, can continue with the retrieval task even if the network link with the client machine goes down, and canmerge and �lter the results from the individual document collections inside the network, rather than pullingall the results back to the client machine. In addition, many retrieval tasks require the application to simplyinvoke a sequence of server operations with only a modest amount of \glue" code to decide which serveroperation should be invoked next. Since such tasks are bound by the execution time of the server operations,rather than the execution time of the glue code, a mobile agent can perform well even when implementedin one of the interpreted languages that are found in most existing mobile-agent systems. In this section,we consider such a retrieval application, namely the retrieval of documents from a distributed collectionof technical reports. This application is representative of many other distributed locating, gathering andorganizing applications, and results from its study are applicable to other applications with similar structure.4.1 DescriptionFigure 1 shows the structure of the technical-report application, which was implemented on top of ourmobile-agent system, D'Agents. The technical reports themselves come from the Department of ComputerScience at Dartmouth College. We distributed the reports across multiple Dartmouth machines, each ofwhich is running the D'Agents system and the Smart system. The Smart system is a successful statisticalinformation-retrieval system that uses the vector-space model to measure the textual similarity betweendocuments [Sal91]. The Smart system on each machine is \wrapped" inside a stationary agent, which islabeled as Smart IR agent in the �gure. This stationary agent provides a three-function interface to theSmart system: (1) run a textual query and obtain a list of relevant documents, (2) obtain the full text of adocument, and (3) obtain pair-wise similarity scores for every pair of documents in a list of documents. Thepair-wise similarity scores are used to construct di�erent graphical representations of the query results.When each stationary Smart agent starts execution, it registers with a virtual yellow pages [RGK97]. Theyellow pages are a simple, distributed, hierarchical directory service. When the Smart agent registers withthe yellow pages, it provides its location (i.e., its identi�er within the D'Agents namespace) and a set ofkeywords that describe its service (i.e., smart, technical-reports, text). A client agent searches for a serviceby sending a keyword query to the yellow pages. The yellow pages return the locations of all services whosekeyword lists match the keyword query (more speci�cally, all services whose keyword lists are a supersetof the keyword query). A forthcoming version of the yellow pages will allow the client agents to search byinterface de�nition as well [NCK96].The main application agent is a GUI that runs on the user's machine. This GUI is shown at the top of Figure1. The GUI �rst lets the user enter a free-text query and optionally select speci�c document collections froma list of known document collections. Once the GUI has the query, it spawns a mobile agent onto thelocal machine. This mobile agent �rst consults one or more local network-sensing agents [RGK97, Moi98],which keep track of the network connection between the user's machine and the rest of the network. Thesenetwork-sensing agents know what type of network hardware is in the machine, the maximum bandwidthof that hardware, an uptime/downtime history of the network link, and the current observed latency andbandwidth of the network link. The uptime/downtime history is used to calculate an approximate reliabilityfactor, i.e., the probability that the network connection will go down at some point in the next few minutes.9

2 2

1

Stationary IR agent Stationary IR agent

3

Child Agent

Jump

Jump

smaller final result

Dynamically selected
proxy site where agent

to return only a much
merges partial results

on mobile device
Application front-end

Agent

Spawn child / get result Spawn child / get result

...

Muir

Messages

Child Agent

Tuolomne

Messages

Figure 1: An example application. Here a mobile agent is searching a distributed collection of technicalreports. The agent �rst decides whether to move to a dynamically selected proxy site. Then it decideswhether to spawn child agents or simply interact with the individual document collections from across thenetwork. muir and tuolomne are two machines at Dartmouth. Note that the yellow pages, which the agentuses to discover the locations of the document collection, are not shown in this �gure.10

Our reliability factor is quite simple|it is just the percentage of time that the network connection has beendown during the past n hours|but is su�cient for our purposes.After consulting the network-sensing agents, it makes its most important decision. If the network connectionbetween the user's machine and the network is reliable and has high bandwidth, the agent stays on the user'smachine. If the connection is unreliable or has low bandwidth, the agent jumps to a proxy site within thepermanent network. This proxy site is shown in the middle of Figure 1. With our current reliability andbandwidth thresholds, the agent typically will remain on the user's machine if the machine is a workstationwith a 10 Mbit/s Ethernet link or a laptop with a 1 Mbit/s wireless Ethernet link. The agent will jump to aproxy site if the user's machine is a laptop with a modem link. The proxy site is dynamically selected by theagent. In the current system, the selection process is quite simple|there is a designated proxy site for eachlaptop and for some subnetworks. The agent will go to the proxy associated with the subnetwork to whichthe laptop is attached, or to the laptop-speci�c proxy if there is no known subnetwork proxy. Currently, theproxy sites are hardcoded, but eventually, they will be listed in the yellow pages along with other services.Then an agent can search for the closest proxy site (to its current location or to the document collections),the closest proxy site owned by its owner's Internet Service Provider (ISP), the fastest proxy site, etc.Whether or not the agent migrates to a proxy site, it consults the yellow pages to determine the locationsof the document collections (assuming that the user did not select speci�c document collections). Oncethe agent has the list of document collections, it must interact with the stationary agents that serve as aninterface between D'Agents and Smart. Here the agent makes its second decision. If the query requires onlya few operations per document collection, the agent simply makes RPC-like calls across the network (usingthe D'Agent communication mechanisms as described in [NCK96]). If the query requires several operationsper document collection, or if the operations involve large amounts of intermediate data, the agent sendsout child agents that travel to the document collections and perform the query operations locally, avoidingthe transfer of intermediate data. In our case, the number of operations per document collection dependson whether the user wants to see a graphical representation of the query results (one additional operationper collection), whether the user wants to retrieve the document texts immediately or at a later time (oneadditional operation per document), and whether the user has speci�ed alternative queries to try if the mainquery does not produce enough relevant documents (one additional operation per alternative query). Thesize of the intermediate data depends on the average size of the documents in each collection and the averagenumber of relevant documents per query. Since the average document size and average number of relevantdocuments per query is nearly the same for all of our document collections, our current agent makes itsdecision based solely on the number and type of the required query operations. Later, once our yellow pagesaccept interface descriptions, we will allow each Smart agent to annotate its interface description with theexpected result size for each operation (and to update those annotations based on its observations of its ownbehavior).When the main agent receives the results from each child agent, it merges and �lters those results, returnsto the user's machine with just the �nal list of documents, and hands this list to the GUI. Although thebehavior exhibited by this agent is complex, it is actually quite easy to implement and involves only about50 lines of Tcl code. In particular, the decisions whether to use a proxy site and create children, althoughadmittedly simplistic in our current implementation, involve little more than two if statements that checkthe information returned from the network sensors and the yellow pages. It is hard to imagine any othertechnique that would allow us to provide an equally
exible solution with the same small amount of work.More importantly, once some ine�ciencies in the D'Agents implementation are addressed (and as long asthe agent carefully chooses when and where to migrate), its performance should be comparable to or betterthan that of any other technique, regardless of the current network conditions and without any application-speci�c support at the collection or proxy sites. Indeed, the collection owners merely had to provide an agentwrapper that made the existing Smart operations visible to visiting agents, and the proxy site did not need todo anything at all (aside from running the agent system itself). As we will see in the next section, the criticaline�ciencies involve communication and migration overhead. Due to the communication overhead, the agentperforms worse than traditional client/server techniques if it chooses to remain stationary. Similarly, due tothe migration overhead, the agent is better o� migrating only when network conditions are poor, or wheneach query requires a large number of operations per collection. Fortunately, techniques to reduce these11

overheads already exist.4.2 AnalysisA full performance analysis of the technical-report searcher is beyond the scope of the chapter. Here we con-sider only the case where the user's machine has a reliable, high-bandwidth network connection, speci�cally,a wired 10 Mb/s Ethernet link. Under these network conditions, the searcher will not use a proxy site, butstill must decide whether to make cross-network calls or send out child agents. To understand the searcher'sperformance under these conditions, we ran a series of experiments, some involving traditional RPC-basedclients and servers, others involving test agents. Each experiment was performed on the same two machines,two 200 MHz Pentium II laptops,13 which were connected with a dedicated 10 Mb/s Ethernet link. Thetraditional clients and servers were written in C/C++, and since the technical-report searcher was writtenin Tcl, the test agents were written in Tcl also.Base performance. First, we consider the base performance of the core D'Agents system. Figure 2a showsthe results of three performance experiments. The �rst experiment, the results of which are shown as theRPC line in Figure 2a, measures the time needed for a client on one laptop to make a Sun RPC call intoa server on the second laptop. The total size of the arguments to the RPC call was 256 bytes; the resultsize varied from 512 bytes to 8192 bytes. The server did no work aside from immediately responding to theclient with a dummy result of the desired size. This �rst experiment does not involve the agent system inany way, but instead is used to place the D'Agent performance numbers in context.The second and third experiments do involve the agent system. In the second experiment, an agent on the�rst laptop sent a request message to an agent on the second laptop, and the agent on the second laptop sentback a response. The Agent (send/receive) line in Figure 2a shows the total round trip time as a functionof response size; the request size was again 256 bytes. In addition, as in the RPC experiment, the \server"agent did no work aside from immediately sending back a dummy response message. Finally, in the thirdexperiment, an agent on the �rst laptop sent a child agent to the second laptop; the child agent then sentback a response message to its parent. The Agent (submit/receive) line in Figure 2 shows the total time fromagent submission to result reception. The size of the child agent was 256 bytes, and the child agent did nowork aside from immediately sending back a dummy result.Unlike previous performance results for D'Agents [Gra97], these agent experiments were measured with thenew multi-threaded version of the D'Agents server, which eliminates signi�cant interprocess communication.In addition, the new server maintains a pool of \hot" interpreters; it starts up a set of interpreter processesat boot time, and then hands incoming agents o� to the �rst free interpreter in that set. In addition,an interpreter process does not die when an agent �nishes, but instead stays alive to execute the nextincoming agent. Although this approach still runs each agent in a separate process, it eliminates nearly allof the interpreter-startup overhead.14 Also, the agent experiments were performed with encryption turnedo�. The agents would perform signi�cantly worse with encryption turned on, but so would an equivalentlysecure version of RPC. Turning encryption o� is reasonable, since many document collections would not careabout the identity of the agent's owner.The base performance numbers illustrate two important points: (1) inter-agent communication involvessigni�cantly more overhead than RPC, and (2) migration involves even more overhead than inter-agentcommunication. Fortunately, this overhead comes from several clear sources. First, the agents are written inTcl, which is a relatively slow scripting language. D'Agents, however, includes two faster languages, Java andScheme. In addition, the newest version of the Tcl interpreter, which has not been integrated into D'Agentsyet, uses on-the-
y compilation (into virtual machine bytecodes) and is more than ten times faster thanprevious Tcl interpreters. Second, even though the multi-threaded server uses a pool of hot interpreters,13The laptops had 200 MHz Pentium II processors, 64 MB of main memory, 128 MB of swap space, and 1.7 GB of disk space.The operating system on each laptop was Slackware Linux, kernel version 2.0.30. All C/C++ code used in the experiments(including the D'Agent interpreters and server) was compiled with GNU gcc version 2.7.2.3 with an optimization level of 2.14It does not eliminate all of the overhead since each interpreter process is only allowed to handle a certain number of agentsbefore it is killed and replaced with a new process. In addition, even though the interpreter process remains active from oneagent to another, there is still some interpreter initialization and cleanup that must be done for each agent.12

(a) (b)

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100

T
im

e
(m

ill
is

ec
on

ds
)

Number of documents

Sending an agent (20% of documents relevant)
Sending an agent (no relevant documents)

Downloading the documents

0

10

20

30

40

50

60

0 2000 4000 6000 8000

T
im

e
(m

ill
is

ec
on

ds
)

Response size (bytes)

Agent: submit/receive
Agent: send/receive

RPC

0

100

200

300

400

500

0 20 40 60 80 100

T
im

e
(m

ill
is

ec
on

ds
)

Number of queries

Migrating agent (messages)
RPC

Migrating agent (meetings)
Migrating agent (library)

(c)

Figure 2: (a) Base performance of D'Agents. (b) Retrieval time as a function of the number of queries perdocument collection. (c) Retrieval time as a function of the number of relevant documents per query. Eachdata point is the average of either 100 (agent experiments) or 1000 (RPC experiments) trials. These graphsare explained in the chapter text.

13

each Tcl interpreter must still execute several hundred lines of Tcl code to re-initialize itself before executingan incoming agent. This re-initialization adds nearly ten milliseconds to the migration time. Some of there-initialization can be eliminated, and the rest can be made much faster, either by switching to the newestTcl interpreter or re-implementing the initialization code in C.Finally, whereas the RPC client and server use UDP, every communication between machines in the agentsystem involves a TCP connection. Thus, there is one TCP connection for the request message or migratingagent, and a second connection for the response. In addition, all communication goes through the agentservers, which, although necessary in the case of a migrating agent, is not necessary when one agent issimply sending a message to another. Possible implementation changes include using UDP for some agentcommunication, increasing the speed with which the agent server forwards incoming messages to the correctinterpreter processes, allowing the agent servers to hold open connections to machines with which theyare communicating heavily, and possibly even associating unique network addresses with stationary serviceagents so that client agents can communicate with those service agents directly. Unfortunately, this lastchange complicates the security implementation, since the agent server will no longer be the single point atwhich the system needs to authenticate incoming messages.Performance when the searcher must perform multiple queries. With the base performance resultsin mind, it becomes straightforward to understand the results for the actual technical-report searcher. Fig-ure 2b considers the case where the searcher needs to perform multiple queries against a single documentcollection. Perhaps, for example, the user has speci�ed several alternative queries that should be tried ifthe main query does not retrieve the desired number of relevant documents. The RPC line shows the timeneeded for a traditional client (written in C) to run the queries from across the network. The query sizewas 256 bytes, and the result size for each query was 2048 bytes, which is consistent with the data volumesobserved when we perform queries against our current document collections. In addition, the server did notactually perform the query, but instead sent back a dummy result. This approach allows us to run moreiterations of each test. Moreover, it will not change the relative performances shown in the �gure since thesame query backend would be used in all four cases. In other words, we have removed exactly that portionof the code that is identical in all four cases, namely, the shared C library that actually runs the queriesthrough the Smart system.The remaining three cases shown in Figure 2b involve agents rather than RPC. In each case, an agent wassent to the location of the document collection, where it ran the queries locally to the collection and sentback only the �nal document list. The size of each test agent was 1024 + 256 + 128n bytes, where n is thenumber of queries that will be performed; the 1024 is approximately the size of the real agent's code, the 256the size of the main query, and the 128 the size of the additional code and data that is needed to representand perform the alternative queries. The �nal result size was 2048 bytes. In the �rst agent case, Migratingagent (messages), the agent used D'Agent messages to communicate with the stationary Smart agent. Inthe second case, Migrating agent (meetings), the agent �rst established a direct inter-process connection15or meeting with the stationary agent; the queries and results were sent across the meeting. Finally, in thethird case, the agent loaded the Smart library itself and simply invoked the query procedures directly.The agent that loads the Smart library itself performs quite well. As can be seen, even though the agentwas written in Tcl, and the network link between the laptops was relatively fast, the agent performed betterthan RPC when it needed to invoke more than a dozen queries, and performed much better as the numberof queries increases. Once the migration and communication overhead is reduced as discussed above, itshould be competitive for even just �ve queries. This suggests that a useful abstraction will be services thatappear to be stationary agents, but, in fact, are provided through libraries. D'Agents includes an RPC-likemechanism, which allows agents to invoke each other's procedures. This mechanism would provide a naturalway of making a library appear as a stationary agent, since the client agent could make the same procedureinvocations in both cases; only the hidden implementation of the stubs would be di�erent.On the other hand, when the client agent had to communicate with an actual stationary agent, it didworse than RPC unless it performed more than forty queries with meetings, and always did worse with15In the current implementation, this connection is a Unix-domain Berkeley socket, which is not the most e�cient connectionpossible, but is easy to port from one version of Unix to another.14

messages. There are several reasons why the agent performed worse, all of which were considered above.Most importantly, the overhead of inter-agent communication is large even when the agents are on the samemachine. When an agent sends a message to another local agent, the message �rst is sent to the serverprocess (over a pipe), and then sent to the interpreter process that is executing the recipient agent (overanother pipe). The response message follows the reverse path back to the sending agent. Thus, each messageis sent twice, from agent to server, and then from server to agent. The overhead of the double transmission islarger than the overhead of making RPC calls across the good network link. This can be seen clearly in theMigrating agent (messages) line of Figure 2b, which has a larger slope than the RPC line. It also comes intoplay, however, when the agents are using meetings, since establishing a meeting requires the exchange of twomessages, a meeting request and a meeting acceptance. One possible solution is to allow direct inter-processcommunication between agents, even when the agents have not established a meeting. For example, eachinterpreter process could have a Unix domain socket for accepting messages from other local agents. Sincethe agents are local to each other, the security concerns are signi�cantly less than if each process has anetwork socket for accepting messages from remote agents.Performance when the searcher must examine the document texts. Figure 2c shows a set ofexperiments where the Smart search operations do not match the application's needs exactly. Here theapplication must perform a query to get a list of potentially relevant documents, and then examine thetext of each document to decide which documents are actually relevant. The Downloading the documentsline shows how long it takes for a client (written in C) to open a TCP connection to the document server(also written in C) and send the query, plus the time needed for the server to send back the full text of allpotentially relevant documents. The two Sending an agent lines shows how long it takes to send an agentto the document collection, and then for that agent to perform the query locally, examine the text of thedocuments, and send back all relevant documents. Each agent was 1024 bytes, the query was 256 bytes, andeach document was 4096 bytes; the agent performed the query by loading a library and directly invoking aprocedure (i.e., the fastest case considered in the previous set of experiments); the query procedure returneda dummy result of the appropriate size; the agent opened the document �les directly to examine their fulltext16; and the agent decided that a document was relevant if its text contained a particular two-wordsubstring.The di�erence between the two Sending an agent lines is that in the �rst case, twenty percent of the examineddocuments are actually relevant, while in the second case, none of the documents are actually relevant. Ascan be seen, when there are no relevant documents, the agent does slightly worse than the downloadingsolution, and when twenty percent of the documents are relevant, the agent does signi�cantly worse. Allof the implementation issues considered above are in
uencing these results. Three factors, however, havethe most impact. First, the time to read the document �les from disk, which must be done in both theclient/server and agent cases, takes nearly half of the total time (even though the document �les were inthe �le cache for all but the �rst run). Second, Tcl is slow enough that it takes nearly as long to performthe substring search with a Tcl agent as to send the entire document text across our good network link.Third, and most importantly, the ine�ciencies in the inter-agent communication mechanisms hurt the overallperformance more and more as the number of relevant documents increases. In the worst case, 80 kilobytesof document text are sent inside an agent message. Clearly, it is necessary to implement a more e�cientmeans of \streaming" data from an agent on one machine to an agent on another. At the same time, it isworthwhile to note that if a separate network connection must be established for each downloaded document(as with some Web servers), the agent solution performs far better than the document-downloading solution[RGK97].Summary. Taken together, these results mean that the technical-report searcher agent generally will takelonger to complete its query than the corresponding client/server solution, since (1) inter-agent communica-tion across machines is slower than RPC, (2) inter-agent communication on the same machine is also slow,making migration less useful, and (3) the searcher and all its agents are written in Tcl. At the same time,even with 10 Mb/s links and slow Tcl agents, the searcher does outperform the client/server solution in sev-eral cases, particularly when the document collections provide their search operations as a loadable library.16It is reasonable to assume that the query procedure or agent would include the �lesystem location of the document �les inthe result list. 15

Moreover, as network bandwidth, reliability, latency or load become worse, the technical-report searcher willhave better and better performance relative to the client/server solution [Gra97], since it transmits less dataacross the network and requires fewer network-communication steps.In addition, the performance bottlenecks in the current D'Agents system are easy to identify, and severalsolutions exist. In fact, in some mobile-agent systems, particularly the Java-based systems where each agentexecutes in its own thread, some of the D'Agent bottlenecks have been eliminated already. For D'Agentsitself, a speedup of at least two can be realized with moderate implementation e�ort, without abandoningTcl as an agent language or resorting to multi-threaded interpreters. For the many applications where eventhe newest version of the Tcl interpreter is not fast enough, D'Agents already includes two faster executionenvironments, a Scheme interpreter and a Java virtual machine. Most other agent systems have similar, fasterenvironments, and securely executing agents less than twice as slowly as the corresponding natively-compiledcode (through on-the-
y compilation and other techniques) is a realizable goal [LSW95].In short, although current mobile-agent implementations, such as D'Agents, do not o�er better performancethan competing solutions in as many cases as desired, these systems are far from their maximum possibleperformance. As the implementations improve, mobile agents will become more and more attractive fordistributed information retrieval. Finally, it is important to note that all of the experiments above involveddummy query operations, whereas the real Smart system does signi�cant work per query. The overhead ofthe current D'Agents system becomes much more reasonable when considered against the Smart retrievaltimes, For this and other retrieval tasks, the
exibility of D'Agents makes up for the performance penalties.5 Planning5.1 Planning a routeIn the example of the technical-report searcher, we launched a mobile information-retrieval agent to eachdestination machine, and we assumed that each dispatched agent could de�nitely �nd the information itwas tasked to send. A more general class of information-retrieval problem anticipates the possibility that anagent may not be able to �nd its desired information at a destination machine. Additionally, we may wantto use less network resources by sending fewer agents than the number of possible destination machines. Inthis case, there is a need for planning that decides the best sequence (itinerary) of machines to be visited byeach agent so that the desired information can be found in minimum time. In this section, we will discussthese planning problems, along with their solutions and some limited experimental results.An itinerary determined by planning will be based on three things: a list of machines where an agent may beable to �nd its desired information, the uncertainty in the quality of the data available on those machines,and the current network conditions. The list of machines and document uncertainty are provided by a moreadvanced yellow pages service than that used in the technical report searcher. The uncertainty degree isde�ned to be the probability that an agent can successfully �nd information at each of those machines.Last, the network conditions include information regarding connectivity of links, operability of machines inthe network, latency and available bandwidth of links. These statistics are collected by a network-sensingmodule.5.1.1 Architecture of the Mobile Agent Planning SystemThe architecture of our planning system for mobile agents is depicted in Figure 3. The planning systemconsists of three main components: a planning module, a network-sensing module and a yellow-pages module.In our system, when a mobile agent is tasked with searching for information, it consults with the planningmodule �rst. The planning module then asks a yellow-pages module for possible locations where the mobileagent might �nd this desired information.Although the current implementation of the yellow-page service does not have a function to measure thisprobability of success, we assume that this probability is measurable. For example, the probability might16

pages
YellowPlanning

module

Network-
sensing
module

Locations Network statistics

Query

Information

Query

Locations

infomation
Network

Mobile
Agent

User
inputs

Figure 3: The architecture of the planning systembe as simple as the ratio of data cached at a proxy server to the full amount of data available at the actualserver.After obtaining the list of machines and their corresponding probabilities of success, the planning modulepasses the list to the network-sensing module, which returns the latencies and bandwidths between themachines and their current CPU loads. The network-sensing module keeps track of these statistics byprobing the network at �xed intervals.As soon as the network statistics are returned to the planning module, the sequence in which agents areto visit machines (to minimize total expected execution time) is calculated from the network statistics andprobabilities of success. The calculation is done using the algorithms and theorems described in the followingsubsection.5.1.2 Traveling Agent ProblemsThe planning problem can formulated as deciding the sequence of machines to visit to minimize the totalexpected time until the desired information is found. We name the planning problem the Traveling AgentProblem (TAP) due to the analogy with the Traveling Salesman Problem [GJ79]. Formally, the TravelingAgent Problem is de�ned as follows:The Traveling Agent Problem { There are n+ 1 sites, si with 0 � i � n. Each site has a knownprobability, 0 � pi � 1, of being able to successfully complete the agent's task, and a timeti > 0, required for the agent to attempt the task at si regardless of whether it is successful.These probabilities are independent of each other. Travel times or latencies for the agent to movebetween sites are also known and given by lij � 0 for moving between site i and site j. Whenthe agent's task has been successfully completed at some site, the agent must return to the sitefrom which it started (i.e., site 0). For site 0, p0 = t0 = 0. The Traveling Agent Problem is tominimize the expected time to successfully complete the task.A solution to the Traveling Agent Problem consists of specifying the order in which to visit the sites, namelya permutation < i1; i2; :::; in > of 1 through n. Such a permutation will be called a tour in keeping with thetradition for such problems.The expected time to complete the task or visit all sites in failure, for a tour T =< i1; i2; :::; in > isCT = l0i1 + ti1 + pi1 li10 + nXk=28<:(j=k�1Yj=1 (1� pij))9=; (lik�1ik + tik + pik lik0) + nYj=1(1� pj)ln0: (1)This formula can be understood as follows. The �rst site, si1 , on the tour is always visited and requires traveltime l0i1 to be reached. Upon arrival, time ti1 must be spent there regardless of success. With probability pi117

Case # of agents Latency Probability Computation Time Complexity1 Single Variable Variable Variable NP -Complete2 Single Constant Variable Variable Sorting (P)3 Single Constant in the Variable Variable Dynamicsame subnetwork Programming4 Multiple Constant Variable Variable NP -Complete5 Multiple Constant Constant (0) Variable Partitioning (PP)6 Multiple Constant Constant (> 0:5) Variable Sorting (P)7 Multiple Constant Variable Constant Sorting (P)Table 1: Variation of Traveling Agent Problemsthe task is successfully completed in which case the agent can return to site 0 with time cost li10. However,with probability (1�pi1) there was failure and the agent proceeds to site i2. The contribution to the expectedtime to moving from site i1 to site i2 and succeeding there is(1� pi1)(li1i2 + ti2 + pi2 li20):Here the factor (1 � pi1) is the probability of failing at site i1. Similarly, the contribution to the expectedtime due to moving from site i2 to site i3 and succeeding there is(1� pi1)(1� pi2)(li2i3 + ti3 + pi3 li30):Here the (1�pi1)(1�pi2) term is the probability of failing at both sites i1 and i2. In general, the contributionto the expected time due to site ik is(probability of failure at the �rst k � 1 sites)� (expected time for success at site ik):Adding all these contributions together gives us the summation in (1). Finally, the last term in (1) ariseswhen failure occurs at all nodes and we must return to the originating site. We have used independence ofthe various probabilities here. Not surprisingly, this problem is NP -complete [Moi98].5.1.3 Variation of Traveling Agent ProblemsBecause of its NP -complete complexity, some simplifying assumptions have to be employed so as to moreeasily obtain optimal solutions for the Traveling Agent Problem. There are several variations of TravelingAgent Problems depending upon the assumptions employed. These assumptions are made regarding thefour entities of Traveling Agent Problems, (1) the number of mobile agents, (2) the network latencies, (3)probabilities of success and (4) the task computation time at each machine. Table 1 shows the complexityof each of the Traveling Agent Problems when these assumptions are employed.We present only the single-agent cases in this section. Please see [Moi98] for a thorough discussion of themultiple-agent cases.The complexity of the single Traveling Agent Problem can be reduced when latencies between nodes areassumed to be equal. For example, if the processing time at each node is extremely large (compared tothe latency between the nodes), di�erences among the latencies could be ignored, or even taken to bezero. Alternately, if no information about internodal latencies is known, we might assume all of them to beconstant. The constant latency assumption is reasonable in the case of a single subnetwork as well.Theorem 1 Under the assumption that the all the latencies are constant, the TAP can be solved in poly-nomial time. The optimal solution for the TAP is attained if the nodes are visited in decreasing order ofpi=(ti + l). 18

Refer to [Moi98] for the proof. The proof uses an interchange argument commonly used in �nance andeconomics [Ber87], in which we determine the relative merit of exchanging the order of visiting two machines.The criteria for exchange is precisely that the machine with a larger value of pi=(ti+ l) be visited �rst. Whenall necessary exchanges have been made, a sorted list of pi=(ti + l) results.Many more complicated situations can be modeled by variable latencies that are constant within subnetworksand across subnetworks. Speci�cally, consider the case of two subnetworks separated by a great distance(say, one in Japan and one in the US). Latencies between any two nodes within the same subnetwork aretreated as constant, as are latencies across the two subnetworks. That is, for sites in Japan, latencies are aconstant, lJ , and in the USA they are lU . Latencies between two nodes, one in Japan and one in the USA,are known to be a third constant, lJU . Formally, we de�ne the Two Subnetwork Traveling Agent Problem(TSTAP) as follows.Two Subnetwork Traveling Agent Problem | The relevant sites belong to two subnetworks, S1and S2. Sites in Si are sij where 1 � j � ni. ni is the number of sites in subnetwork Si.There are three latencies: L1; L2; L12 � 0. For s1j 2 S1; s2k 2 S2, l1j2k = l2k1j = L12 while fors1j ; s1k 2 S1, we have l1j1k = l1k1j = L1. Similarly, for s2j ; s2k 2 S2, we have l2j2k = l2k2j = L2.Probabilities, pij > 0 are nonzero and independent as before. Computation times tij � 0 arearbitrary but nonnegative. The home site, s0 can be in a third sub-network. Latencies betweens0 and sites in Si are L0i. We assume that L0i; L12 � Li. That is, latencies within a subnetworkare smaller than latencies across networks and to the home sites.Theorem 2 The Two Subnetwork Traveling Agent Problem (TSTAP) can be solved in polynomial time usingthe algorithm in Theorem 1 and dynamic programming.Outline of algorithm { The algorithm in Theorem 2 consists of two steps. The �rst step is to sort machineswithin the same subnetwork in decreasing order of pi=(ti + l), which can be accomplished in ni logni steps.This sorted ordering is used in the second step, where a dynamic programming algorithm is used to computethe optimal solution. Actions taken in the dynamic programming are either to stay in the same subnetworkand migrate the next unvisited machine there, or to migrate the next unvisited machine in other subnetwork.Even though the problem is stochastic, it can be solved by a deterministic dynamic programming algorithmin roughly O((n1 + 1)(n2 + 1)) steps [Moi98].5.1.4 Experimental resultsNext, we show the result of an experiment where a single mobile information-retrieval agent must search forinformation in the network with the assistance of the planning (module) agent.In the experiment, information-retrieval agents were launched, and the time each agent takes was measured.The task of the agent is to open a certain text �le (the size is 234KB) in a text database on a machine, andparse the �le to determine if the �le satis�es a given query. The outcome on a machine is determined bya random number generator, so that the probability of success is the same as that given by the directoryservice agent. Note that the result of parsing the text while looking for a given query does not a�ect thesuccess of the task, which is in fact decided by the random generator. If the search at a machine is successful,the information retrieval agent returns to the home machine where it was launched. Otherwise, it migratesto the next unvisited machine.We ran experiments using seven laptop computers distributed in three subnetworks; one subnetwork con-tained the home site, and the other two subnetworks contained the document collections. We introducedarti�cial delays on network links so that the latencies between sub-networks were much larger than thelatencies between machines within the same subnetwork. To use the TSTAP algorithm, we set the latenciesboth within and across subnetworks to be constant.For the sake of comparison with our optimal planning algorithm, two greedy algorithms are employed, oneof which is based on the probability of success and the other on the estimated computation time at each19

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

E
xe

cu
tio

n
tim

e
(s

)

v.s. Greedy method : probability

Optimal algorithm
Greedy method (probability)

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

Experiment runs

E
xe

cu
tio

n
tim

e
(s

)

v.s. Greedy method : computation time

Optimal algorithm
Greedy method (computation time)

Figure 4: Performance comparison: execution time. For each experimental run, we generated a new setof probabilities, and ran both the optimal and greedy algorithms with the same set. On the two graphs,the x-axis is the run number, and the run numbers are assigned in order of increasing optimal-algorithmexecution time.machine. Note that the estimated computation time at each machine is obtained based on its current CPUload, its benchmarked CPU performance, and the estimated size of a task.The results of the experiment are shown in Figure 4 and Table 2. The top graph shows the results forthe greedy algorithm that uses success probabilities, while the bottom graph shows the results for thegreedy algorithm that uses estimated computation times. As we can see in the �gure, the optimal planningalgorithm does not always outperform the other two methods. This is due to the stochastic nature of theplanning problem. For example, an agent may �nd the information at the �rst machine even if it has asmall probability of success. The optimal algorithm only guarantees the minimum expected time until thedesired information is found, not the minimum time in all cases. Thus, due to the stochastic character of theplanning problem, it is more appropriate to compare algorithms based on the average values shown in Table2. According to the results in the table, we can see the optimal algorithm outperforms the other algorithms.The weighted arithmetic mean and the geometric means in Table 2 are de�ned as follows:Optimal algorithm Greedy algorithm Greedy algorithm(probability) (computation time)First place �nishes 27 15 8Geometric mean 1 1.31 1.79Weighted arithmetic mean 1 1.26 1.67Table 2: Performance comparison: TAP. The geometric and arithmetic means are de�ned in the text, butessentially are normalized execution times. 20

� Geometric mean: The geometric mean of the times for each method isGk = nYi=1 T imeMk(i)T imeMOPT (i)! 1n :where T imeMk(i) stands for the execution time of method Mk on its ith run, T imeMOPT (i)stands for the execution time of the optimal algorithm on its ith run, and n is the numberof runs.� Weighted arithmetic mean: The weighted arithmetic mean of the times for each method isAk = 1n nXi=1 T imeMk(i)Pmj=1 T imeMj(i)!where T imeMk(i) is the execution time of method Mk on its ith run, T imeMj(i) is theexecution time of method Mj on its ith run, n is the number of runs, and m is the numberof methods.This value is the average percentage of the combined execution time used by method Mk.5.2 Observation agentsThe planning methods described in the previous section all relied upon information provided by the yellowpages service. This service provided the probability of success in a search for certain kinds of information atpossible machines. As the information available on the network is in constant
ux, the yellow pages must bekept up-to-date by adding new sites, removing old ones, and re-indexing sites that have changed. Our yellowpages index entire document sites; other yellow pages might index particular documents, such as World WideWeb pages. We consider the best ways to maintain such indices so as to catch changing content quickly.During the discussion, we will use the word document extensively, but the approaches apply equally well todocument collections.To solve the indexing problem, limited computational, network, and storage resources are devoted to scouringavailable collections for new documents, and also re-examining old documents to inspect them for changes.Whether done in sequence or in parallel, a search engine must always decide what document or documentsto examine next. There are many questions to consider: when is the best time to re-examine a document,given knowledge of the document's history and the priority placed on having correct knowledge of its state?Indeed, how should we describe a document's state?If resources were unlimited, the solution is simple: each and every document could be monitored as frequentlyas desired, watching for changes to appear. Of course, an observation does have obvious costs associatedwith it: a machine uses time (some network latency and some CPU cycle time) to retrieve and inspect adocument, and disk space to store the results. In exchange for this cost, the search engine bene�ts from amore current index of previously explored documents, a more comprehensive collection (if new documentsare discovered), and an accurate picture of the \dynamics" of the document in question.An understanding of how documents change is necessary to maximize the recency of such an index. Knowinga document's change dynamics allows us to make fewer wasteful observations. When the engine must decidewhich document to examine next, some documents will be more likely to have changed since last inspectionthan others. If looking for changes, it makes sense to re-examine these documents more often than documentswhich exhibit greater stability. Algorithms for selecting which observation to make next can also account forwhat the collection may look like as a result of document checks yet to be run. That is, planning observationscan take into account the likely outcome of making those observations. This gives rise to planning problemssimilar to those discussed in the context of the traveling agent problem (TAP). If the index is being usedfor user searches, then it has the most value for frequently-requested documents. It seems reasonable thatresources should be preferentially allocated to the documents that are popular, fast-changing, or both.21

5.2.1 Analysis and modelingTo mathematically demonstrate how this allocation should proceed, three things are essential: a represen-tation of the document's state, the dynamics of state evolution, and a formalization of the value of perfectstate knowledge.Time-since-modi�cation as a Markov chain If probability distributions on document ages can bedetermined, we can use the age to de�ne the modi�cation state of a document. This rests on the assumptionthat probability of modi�cation is a strong function of the time since the previous modi�cation, which istrue for a large class of document changes [Bre98]. Any reasonable discretization of this time will serve ourpurpose, such as the number of days since the last change, for example. Using this de�nition of state, aprobability distribution of the time intervals between changes can be viewed as a Markov chain. Given astate s = n days since the last change, there are only two things that can occur next: either the state willadvance to s = n + 1, or it will reset to s = 0. If we model N + 1 states, then the state s = N + 1 can betreated as \N or more days since last change." In this way, we can de�ne a matrix of transition probabilitiesas M = 264 preset (0) 1� preset (0) 0 :::preset (1) 0 1� preset (1) :::::: ::: ::: :::preset (N) 0 ::: 1� preset (N)375 (2)The function preset (t) can be determined either from knowledge of the distribution of time intervals betweenchanges, or from the distribution of observed ages for a particular document. Either distribution impliesthe conditional probability that a reset will occur in the following time interval, given that no change hasoccurred for t time steps. Further discussion can be found in [Bre98].Generally, by raisingM to an integer power k, we can �nd the probability (for initial age i) that the systembecame age j after k time steps have elapsed since the last observation:P (st+k = jjst = i) = �Mk�ij (3)De�ning a cost function. Using this model, we can de�ne an objective function that can be optimizedfor the collection. The objective in a real system could be fairly complex; for our discussions, more simplisticcriteria are su�cient. In this section we restrict ourselves using some simplifying assumptions. First, weconsider a document collection containing d documents. Second, assume that documents can be retrievedat a rate of � documents per day, and that all document fetches have identical cost. Assume the statescorresponding to the rows of matrix Mr denote the age in days of the rth document in the collection. Anyunit of time could be used, so long as it is consistent across the collection and the rate � is expressed inthe same unit. For each document r, we know that it was last observed kr days ago to have age ir. Theprobability that document r has changed during this kr-step interval isP (changej fir;Mr; krg) = Pj2[0;ir+kr�1] �Mkrr �irj= 1� �Mkrr �ir(ir+kr) (4)Using this result, we can formulate a cost function for the collection. One simple cost function is the expectedtotal number of documents that are incorrectly indexed (the indexed version is out-of-date), which is justthe sum of the probabilities listed in (4) over the entire collection:C = dXr=1 �1� �Mkrr �ir(ir+kr)� (5)22

Greedy cost minimization. Using (5) we can �nd the best way to reduce the costs that we will incur inthe coming day. By our assumption, we can check � documents per day. The smallest possible cost for thefollowing day can be obtained if we fetch and re-index the � documents corresponding to the largest termsin the cost summation. These terms correspond to those documents with the largest probability of beingout of date (5). For all of the � documents we fetch, the probability of them now being out of date is zero.If there is no single best choice for the � documents, then we can select � at random from the pool of \bestchoices." This situation occurs when applying (5) if more than � documents have probability 1 (to workingprecision).\Liveness" conditions. While having the advantage of being relatively simple, greedy algorithms mayforce a situation in which long-term performance is not optimal. For example, in the re-indexing system,there is the possibility of never checking some subset of the documents. This is a situation the indexingsystem must avoid, especially if all items to be indexed are equally important. In queuing models forcomputer operating systems, the analogous constraint that all processes be served is termed a \liveness"condition, which would not be met if there were a subset of documents that changed so quickly that itsmembers always contributed the largest terms in the cost function (5). Liveness can be shown to hold for(5) under some simple constraints. The proof centers on the fact that all terms in the cost summationmonotonically approach unity if the documents to which they correspond go unchecked. An uncheckeddocument's contribution to the cost will eventually exceed any threshold value 1 � �; 0 < � < 1. This isusually su�cient to give assurance of its inclusion in the set of largest terms. See [Bre98] for more.Extending the cost horizon. Having an assurance of liveness is not enough to be satis�ed with thelong-term performance of the indexing system. The one-step algorithm does not take into account anythingother than the current probability of change for various documents. Indeed, no one-step method can takeadvantage of knowing the di�erence in change rates among documents.Consider the following simplistic system that demonstrates how to take advantage of knowing documentchange rates. There are two documents, A and B, and we can check one per day. Page A changes quickly:it has a probability of 85% of having been changed today, and if unobserved, it will have a 95% chancetomorrow. If, however, we observe today, there will be a 25% chance of having been changed by the endof tomorrow. Page B changes more slowly. It has an 80% chance today, which becomes 81% tomorrow ifB is unchecked today. If it is checked today, then tomorrow's probability will be 5%. Assume we can onlychoose one of these to observe per day, and that we wish to minimize the total number expected number ofdocuments out-of-date over the two-day period:1Xt=0 �t [Prob(A changed; t) + Prob(B changed; t)] (6)There are four possible strategies in this situation. We can write these as two-day sequences of observations,namely AA, AB, BA, and BB. If we observe a document, then it contributes zero cost on that day, sincewe consider it \up-to-date" if checked within the last day. Therefore, the cost for observing A on both daysis exactly the cost of not observing B on those days, namely, 0:8 + 0:81 = 1:61. Likewise, we can �nd thetwo-day cost for each possible sequence of observations, as shown in Table 3.To implement a two-day cost function in practice, we need to determine the possible costs we might see onthe second day for each document. Since we are assuming that observation forces the document to contributezero cost on the day in question, the three nonzero costs we need to be able to determine are (i) the costof not observing on the �rst day (same as in previous section), (ii) the cost of not observing on the secondday if we did not observe on the �rst day either, and (iii) the cost of not observing on the second day if wedid observe on the �rst day. Moving through these in order, we know that the cost on the �rst day is of theform:
23

Sequence Cost CommentAB 0:8 + 0:25 = 1:05 lower �rst day cost; one-day algorithm would pick this oneBA 0:85 + 0:05 = 0:90 lower total cost; two-day algorithm would pick this oneAA 0:8 + 0:81 = 1:61 document B ignoredBB 0:85 + 0:95 = 1:80 document A ignoredTable 3: Possible costs in example two-document, one-check systemPc = Xj2[0;ir+kr�1] �Mkrr �irj = 1� �Mkrr �ir(ir+kr) (7)After two days, the form is exactly the same, only the document has aged by one day, accounted for byincrementing the value of kr. Therefore, if we choose not to observe on the second day, the cost for that dayis: Xj2[0;ir+kr] �Mkr+1r �irj = 1� �Mkr+1r �ir(ir+kr+1) (8)If we do choose to observe a document on the �rst day, we can calculate the expected second-day cost ofnot observing. The second day's costs will be calculated using the new value of k+r = 1 (days since lastobservation) and the newly observed age i+r . Since we only know a distribution of possible values for i+r ,second-day costs will necessarily consist of weighted values from the matrix Mr. These correspond to one-day state transition probabilities in (2). If the document was observed to be in state jr on the �rst day, thenthe probability of it being out-of-date at the end of the second day is just preset(jr), as used in (2). Theseprobabilities are also the �rst column of the matrix Mr. In our cost function, the values in this columnvector will contribute in proportion to their probability of occurrence. These probabilities are obtained fromthe row over which we sum in (7), or the distribution of possible ages on the previous day. Therefore, theprobability that the document is out-of-date at the end of the second day, given that the document wasobserved on the �rst day, is NXjr=0 �Mkrr �irjrMjr1 (9)If we choose not to observe on the second day, then (9) would be the cost contributed for this document.Note that this cost, being a probability, can be no greater than 1.Even though we can now �nd the probabilities for a general collection, the computational situation is stillrather grim. In a collection of d documents, in which we can check � per day, there are dC2� possiblestrategies. A brute-force approach, in which we evaluate a cost for every strategy, is entirely infeasible forthe collection sizes under consideration. Even a simple algorithm will be fairly intimidating for a collectioncontaining literally millions of documents. Our current research [Bre98] includes methods by which toguarantee optimal long-term performance.5.2.2 Accounting for unequal cost of observationThroughout the above discussion, we have assumed that we were capable of checking � documents perday. While this may be true in the long run, there is de�nitely a variation in service times required forthe processing of documents. Further, service times can vary dramatically even for a single document.Download and processing times are both proportional to document size, and available bandwidth dependsstrongly upon the time of day (e.g., one expects long service time around 4:00 PM EST). Our cost functionshould be modi�ed to account for this variation both among di�erent documents and for a single document.24

Deterministic document retrieval times. We assume that all documents require some constant timeto process, but that this time may not be the same for di�erent documents. This requires us to restate ourobjective, since we can no longer count on a constant number of documents processed per day. Speci�cally,we wish to discover incorrectly indexed documents as quickly as possible.To quantify this, we introduce some notation. We would like to determine an optimal ordering of documentsto check, S� = fs1; s2; : : : ; sdg, such that the expected time t taken to �nd an incorrectly indexed documentis minimized. Each document i has a �xed probability Pi of having been changed. In order to consider Piconstant and calculable from (4), we must create a new list S whenever the probabilities Pi have changed.Corresponding to each document, a time Ti is required for processing. The time t expected to �nd anincorrectly indexed document can be expressed by a probability-weighted sum of these times. If we assumesome ordering S as listed above, then this time can be written:t = Ps1Ts1 + (1� Ps1) [Ps2Ts2 + (1� Ps2) [Ps3Ts3 + (1� Ps3) [: : :]]] (10)This is the same as the constant-latency TAP presented earlier as (1), in which the solution was to sort bydecreasing order of Pi=Ti: S� = fs1; s2; : : : ; sdg ; where Ps1Ts1 � Ps2Ts2 � � � � � PsdTsd (11)This result is intuitively pleasant|we have moved from obtaining some �xed amount of bene�t per document,to an expected bene�t per unit time. In an economic context, we think of comparing salaries being o�eredby di�erent employers. In order to minimize the time taken to acquire our next unit of income, we willalways wish to work for the highest salary for as long as we are allowed to do so. This corresponds tothe intuitive notion that a document having Ti = 1 second and Pi = 0:9 would have a payo� rate of 0.9changed documents observed per second, and would provide the same utility as checking a sequence of twodocuments both having Ti = 0:5 seconds and Pi = 0:45. These two could be checked within one second, andif their changes were independent, then the expected changed documents observed per second would alsobe 0:9. In this formulation, we also assume that there is no reason to prefer a correct index entry for onedocument over that for another; the value of a correctly indexed document is independent of the document.Correspondingly, in the TAP problem presented earlier, we assumed that there was no reason to prefer oneinformation source over another.Nonetheless, the earlier problem (TAP) di�ers from this one in some important ways. First, both theprobability of \success" and the processing latency are both strong functions of time. Planning by thePi=Ti method will only be valid for time scales on which both the probability and time spent are essentiallyconstant. While this may be an appropriate assumption for timescales on the order of a few minutes, it iscertainly not correct when used for longer scales. The tradeo� for ignoring variation in the probability andthe retrieval time is that we accept that some error will develop in the ordering as time elapses. That is,it is possible that by accepting lower immediate bene�t, better long-term bene�ts might be achieved, justas was the case in the Table 3 example. If using single-step planning, then we must reexamine the orderin which we had planned to fetch documents after either the probability or the retrieval time has changedsigni�cantly.Problems due to variation in retrieval times. Using the methods suggested above for documentswith non-constant retrieval times will result in indexing preference being given to documents that are eithercloser to the database or smaller in size. That is, we select between two documents with identical changeprobability based upon either how far away they are (if of identical size) or how large they are (if at thesame location). If we truly value only the expected number of current documents or some other metric thatdoes not account for how the entire collection is treated, then this is not a problem. Intuitively, though,an index should not assign preference based strictly upon convenience of indexing. Methods are needed forremoving unwanted bias against documents that are either larger or farther away.25

B

download send an agent

A A

B

C faster download at CFigure 5: Remote observation5.2.3 Reducing observation costs using mobile agentsThese two biases naturally lead into two targeted solutions whereby we might make limited use of remotesites. First, it is critical that observation time be reduced. The two sources of this time are network-relateddelay and document size. In this section, we discuss how these di�culties can be ameliorated by moving theobserver closer to the data and using encoding schemes so as to enable more frequent observation of largedocuments.In order to even consider use of a remote observation post, there must be more machines available for thislimited use. We may or may not have signi�cant privileges on these machines, but even a very narrow use,such as simply making an observation from a remote machine, could be useful. Mobile agents are a means bywhich such limited access might be granted. If we have this access, then we can choose to make observationsfrom machines if it bene�ts us to do so. By adding mobility to the observer, we give it the freedom to observein closer proximity to the resource and the chance to perform pre-�ltering on the result.As with the technical report searcher, mobile agents are only a good choice if the additional machines at ourdisposal can only be utilized through an agent server; if we have full access to a machine, there is no reasonnot to have a search robot permanently resident on the machine. Mobile agents enable us to take advantageof situations in which one has such limited privileges on a machine. Since relatively few permissions arenecessary in order to make observations and perform simple �ltering, mobile agents are a viable solution.The simplest type of remote observer might migrate to the vicinity of a document (or collection) of interest,compress the documents and send them back to the home machine, where they would be decompressed andanalyzed. If the remote machines are at a great distance, this could result in a signi�cant time savings. Morecomplicated agents might transmit only the changes in document state in some compressed form. This wouldbe especially appropriate for large documents that only experienced minor changes. Being able to transmitchanges in state this way is a large step towards the use of \delta encoding" (analogous to MPEG) schemesfor HTTP transmissions [MDFK97]. The key to making this type of encoding work is to package the agentwith knowledge of the previous state of the document. Then, when a change is observed, the agent needonly transmit the change in the document's index entry, not the entire document or even the entire indexentry. This scheme has the desired features of reducing network tra�c as well as removing bias against largeor distant documents.As packaging agents with an index entry and a lookup mechanism might produce a rather large piece ofcode, a better candidate for a remote observer would probably be a simpler �lter. Large routines such ascompression algorithms might be made available as part of standard libraries on remote machines, preventingus from having to carry compression code from machine to machine. The proxy server agent could be modi�edso that it would only return requested documents if they did not match a previously hashed version of thedocument, carried with the agent. This agent could observe these documents more frequently (being closer tothe resource of interest) and then send documents back to the server (compressed, if utilities are available tothe agent) only if they had changed. A typical retrieval task would entail sending an agent with instructionsto look at some set of documents and return compressed versions of those that do not match a hash carried bythe agent. Alternatively, the agent could simply notify the home machine that the document had de�nitelychanged.While mobility may be a valuable option, we need to know the relative merit of observing locally versususing a mobile agent on a remote machine. Consider three machines, A, B, and C. Machine A containsthe main document index database, machine B contains a document of interest, and machine C is availablefor use to a mobile agent. We emphasize that this is the only mode in which machine C can be used; forwhatever reason, we are not allowed to compile and install code there on a permanent basis. We wish to26

determine what observation scenarios favor the use of a mobile observer in this situation. To do this, weconsider a comparison of the two scenarios shown in Figure 5. We wish to compare the time it takes totransfer a document directly from B to A versus the time it takes to send a remote observer to C, observethe document at B and return relevant information. Making this more concrete, the document has size SDbytes. The link from machine i to j has latency Lij seconds, and an e�ective transfer rate of Nij secondsper byte . If observed directly from machine A, the time for k observations would be:t1 = k (2LAB +NABSD) (12)The request for the document is assumed to be small enough that the time taken to transfer it is essentiallythe same as the link latency. Half of the latency term is due to this request, and half is due to the response.We compare t1 with the time t2 taken to perform the same k observations using a mobile agent of sizeSA = �SD transferred to machine C. Further, we assume that the agent is clever enough to compress thedocument to a fraction � of its original size before transmitting �SD bytes of index information back to A.The total time is thent2 = (LAC +NAC�SD + Cstartup) + k [(2LCB +NCBSD) +
 (LAC +NAC�SD)] (13)To initiate the agent on the remote machine takes a time Cstartup. For simple agents, this should be theonly computation time on the same order as the transfer times. Other computation times, such as compres-sion/decompression times, are assumed negligible by comparison. Also, notice that the agent's messages tothe home machine are only required for the fraction
 of the observations on which a changed documentis observed. It is immediately clear that the download portion of t2, namely the term k (2LCB +NCBSD),must be strictly less than t1 in order to even consider the use of a remote observer. If this is the case, thenthe sum of the outer terms in (13) must be less than the savings in download time in order for it to beworthwhile to observe remotely. In other words, remote observation is a good option when we save more bydownloading at the alternate site than we spend in sending an agent and returning results. The two timescan be estimated in advance in order to determine the relative bene�t of the two modes of observation.5.2.4 Multiple tasks, �ltering, and change assessmentThis was a relatively simple comparison, but we state it to emphasize that agents can present advantageseven in simple situations. But an observation agent can be given tasks that are arbitrarily complex. Forexample, it need not perform observations of only a single document, and it can be free to move to a bettervantage point if this saves time. In fact, the agent will multiply its e�ciency if it observes many documentsthat might be resident on the target machine, B. Multiple observations of multiple documents will serve toamortize costs over time. Additionally, as an agent completes observations, it can \diet" by dumping codecorresponding to completed tasks, whereupon it can migrate more quickly to the next observation site.Whether observed by an remote agent, or by a robot running on the home machine, there must be a well-de�ned means by which to determine whether or not a document has \changed."We have been rather slipperyabout avoiding explanation of what might be meant by this, so as allow for more general types of observation.For example, the yellow pages index entire document sites according to the content types available at eachsite, rather than indexing speci�c documents. Our formulation above, however, is completely general, andthe description we gave of document dynamics applies equally well to collection dynamics. We simply needto use a di�erent change-detection function.If one de�nes a change in the strict sense of whether or not any bytes were altered, this may be problematic,especially if we are considering changes within an entire collection. There will be situations in which theobject in question has certainly changed, but the change that occurred was insigni�cant. For example,if the documents are Web pages, unimportant changes include the \counter" images on some web pages,randomized advertisements chosen for display, extra whitespace in the HTML source, and anything elseessentially unrelated to the page's content. Furthermore, it may be simple to assess what portion of a page'scontent is of interest. For example, certain robots may be tasked with looking for new links. Changed pages27

that do not have new links are then no longer of interest. Simple �ltering tasks such as this could be carriedout in order to determine if a change is of interest.6 ConclusionMobile agents have the potential to be a single, general framework in which a wide range of distributed,information-retrieval applications, such as the technical-report searcher described in this chapter, can beimplemented e�ciently, easily and robustly. By migrating to the location of a data repository, an agent canaccess the repository locally and avoid the network transfer of all intermediate data, regardless of whetherthe server provides low- or high-level operations. By migrating to a high-powered or lightly loaded machine,an agent can gain additional CPU cycles for its computation. By migrating to the other side of an unreliablelink, the agent can continue its task even if the link goes down. By migrating to the other side of a low-bandwidth or high-latency link, an agent can avoid transferring partial results and intermediate operationsacross that link, reducing its total completion time. Most importantly, the agent can decide dynamically howto behave { i.e., migrate sequentially through a set of machines, send out child agents, or remain stationary{ according to its task, repository characteristics, machine capabilities, and current network conditions.To make mobile agents attractive in as wide a range of applications as possible, two key issues must beaddressed. First, mobile-agent systems must become more scalable. In the short term, the main scalabilityproblem is the raw performance of the low-level agent infrastructure. Speci�cally, the overhead of inter-agent communication must be reduced, so that stationary agents can compete with traditional client/serverimplementations. The overhead of agent migration must be reduced, so that an agent will �nd migrationadvantageous even in the best network environments and even if it needs to invoke only a few operationsper information resource. Lastly, agent execution environments must be able to run agents nearly as fastas if they were natively compiled code; then agents could be used for load balancing tasks, and the loadon a \server" machine due to an agent's presence would be only a modest amount worse than if the serverimplemented the agent's functionality itself. Solutions to all of these implementation problems exist in bothtraditional high-performance servers and the mobile-agent literature, and the main task now is to identifyand combine the most suitable. In the long term, more research-oriented scalability issues revolve aroundhigher-level services, such as agent tracking, debugging and visualization.Second and more importantly, mobile agents require a wealth of information to make reasonable decisionsabout when and where to migrate. Numerous support services are needed to obtain and analyze currentnetwork, machine, and repository conditions, and then make an e�ective plan for accomplishing the desiredtask. Some of these services, such as directories and network-sensing modules, have seen extensive devel-opment within other distributed-computing contexts. Much work remains, however, to make these serviceswork well within mobile-agent systems, where software components move rapidly and continuously from onemachine to another. Other services are more unique to mobile-agent systems. Such services include planningalgorithms that allow a single agent or a small group of cooperating agents to identify the best migrationpath through the network, as well as algorithms that allow an agent application to determine how to best\observe" a changing document collection. Promising work on both these services was described in thischapter.AcknowledgmentsMany thanks to the O�ce of Naval Research (ONR), the Air Force O�ce of Scienti�c Research (AFOSR),the Department of Defense (DOD), and the Defense Advanced Research Projects Agency (DARPA) fortheir �nancial support of the D'Agents project: ONR contract N00014-95-1-1204, AFOSR/DOD contractF49620-97-1-03821, and DARPA contract F30602-98-2-0107; to the legion of graduate and undergraduatestudents who have worked on D'Agents, particularly Katya Pelehkov, Debbie Chyi, Pablo Stern and RonPeterson, who implemented signi�cant portions of the technical-report application (and associated supportservices) and are now implementing the next-generation version of the technical-report application; and to28

the editors, Matthias Klusch and Katia Sycara, for their invitation to contribute a chapter.BiographiesBrian Brewington received his his B.S. in Engineering and Applied Science, emphasizing robotics andcontrol systems, from the California Institute of Technology in 1995. He is currently in his fourth year ofPh.D. work at the Thayer School of Engineering at Dartmouth College, where he is focusing on problemsof optimal allocation of observation resources. His other research interests include signal processing, datamining, and aspects of information theory.Robert Gray is a Research Assistant Professor in the Thayer School of Engineering. He is the lead researcherand programmer for the D'Agents system, one of the mobile-agent systems discussed in this chapter. He isprimarily interested in the performance, security and fault-tolerance of mobile agents. He received his Ph.Din computer science from Dartmouth College in 1997.Katsuhiro Moizumi is a postdoctoral researcher in the Thayer School of Engineering. He received his Ph.D.degree in computer engineering from Dartmouth College in 1998. His research interests include planning,scheduling, Markov Decision processing, optimal control, machine learning, mobile computing, and agentsystems.David Kotz is an Associate Professor of Computer Science at Dartmouth College. He received the M.S.and Ph.D degrees in computer science from Duke University in 1989 and 1991, respectively. He receivedthe A.B. degree in computer science and physics from Dartmouth College in 1986. He rejoined DartmouthCollege in 1991 and was promoted with tenure to Associate Professor in 1997. His research interests includeparallel operating systems and architecture, multiprocessor �le systems, transportable agents, and parallelcomputing in computer-science education.George Cybenko, Dorothy and Walter Gramm Professor of Engineering in the Thayer School of Engi-neering, received his B.Sc. in mathematics at the University of Toronto, and an M.A. in mathematics andPh.D. in electrical engineering from Princeton. He has taught on the computer science faculty at TuftsUniversity and was professor of electrical engineering and computer science at the University of Illinois,Champaign-Urbana. At Illinois, he was also a director of the university's Center for Supercomputing Re-search and Development. He has served as editor for several mathematics, computer and information-theorypublications, and has published over �fty journal papers, book chapters and conference papers.Daniela Rus is an Assistant Professor of Computer Science at Dartmouth College. Previously, she was aresearch associate and director of the Information Capture and Access project at Cornell University. Sheholds a Ph.D degree in computer science form Cornell University. Her research interests include distributedmanipulation, three-dimensional navigation, self-recon�guring robotics, mobile agents, and information or-ganization. She holds an NSF Career award and a Sloan fellowship.References[AA98] Jumping Beans white paper. Ad Astra Engineering, Inc., September 1, 1998. Seehttp://www.JumpingBeans.com/.[BC95] Krishna A. Bharat and Luca Cardelli. Migratory applications. In Proceedings of the EighthAnnual ACM Symposium on User Interface Software and Technology, November 1995.[Ber87] D. M. Bertsekas. Dynamic Programming. Prentice Hall, 1987.[BKR98] Jonathan Bredin, David Kotz, and Daniela Rus. Market-based resource control for mobileagents. In Proceedings of the Second International Conference on Autonomous Agents, pages197{204. ACM Press, May 1998. 29

[BN84] A. D. Birrell and B. J. Nelson. Implementing remote procedure calls. ACM Transactions onComputer Systems, 2(1):39{59, February 1984.[BN95] Ron Ben-Natan. CORBA: A guide to Common Object Request Broker Architrecture. McGraw-Hill, 1995.[BN97] Marc H. Brown and Marc A. Najork. Distributed active objects. Dr. Dobb's Journal, (263):34{41, March 1997.[BP88] Andrea J. Borr and Franco Putzolu. High performance SQL through low-level system integra-tion. In Proceedings of the ACM SIGMOD International Conference on Management of Data,pages 342{349, Chicago, Illinois, 1988. ACM Press.[Bre98] Brian Brewington. Ph.D. thesis proposal: Optimal observation with WWW applications. Avail-able from http://comp-engg-www.dartmouth.edu/~brew/research/proposal.ps, 1998.[BVW95] Matt Bishop, Mark Valence, and Leonard F. Wisniewski. Process migration for heterogeneousdistributed systems. Technical Report PCS-TR95-264, Dept. of Computer Science, DartmouthCollege, August 1995.[Car95] Luca Cardelli. A language with distributed scope. Computing Systems, 8(1):27{59, Winter 1995.[CBC97] George Cybenko, Aditya Bhasin, and Kurt D. Cohen. Pattern recognition of 3D CAD objects:Towards an electronic yellow pages of mechanical parts. Smart Engineering Systems Design,1:1{13, 1997.[CGH+95] David Chess, Benjamin Grosof, Colin Harrison, David Levine, Colin Parris, and Gene Tsudik.Itinerant agents for mobile computing. IEEE Personal Communications, 2(5):34{49, October1995.[Cha96] Phil Inje Chang. Inside the JavaWeb Server: An overview of JavaWeb Server 1.0, Java Servlets,and the JavaServer architecture. Sun Microsystems White Paper, Sun Microsystems, 1996.[CW97] Mary Campione and Kathy Walrath. The Java tutorial: Object-oriented programming for theInternet. Addison Wesley, 1997.[DMTH95] Giovanna Di Marzo, Murhimanya Muhugusa, Christian Tschudin, and J�urgen Harms. TheMessenger paradigm and its implications on distributed systems. In Proceedings of the ICC'95Workshop on Intelligent Computer Communication, 1995.[DO91] Fred Douglis and John Ousterhout. Transparent process migration: Design alternatives and theSprite implementation. Software: Practice and Experience, 21(8):757{785, August 1991.[Fal87] Joseph R. Falcone. A programmable interface language for heterogeneous systems. ACM Trans-actions on Computer Systems, 5(4):330{351, November 1987.[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory ofNP -Completeness. W.H. Freeman and Company, 1979.[GKCR98] Robert S. Gray, David Kotz, George Cybenko, and Daniela Rus. D'Agents: Security in amultiple-language, mobile-agent system. In Giovanni Vigna, editor, Mobile Agent Security,Lecture Notes in Computer Science. Springer-Verlag, 1998. To appear.[Gra97] Robert Gray. Agent Tcl: A
exible and secure mobile-agent system. PhD thesis, Dept. ofComputer Science, Dartmouth College, June 1997. Available as Dartmouth Computer ScienceTechnical Report TR98-327.[HMPP96] John Hartman, Udi Manber, Larry Peterson, and Todd Proebsting. Liquid software: A newparadigm for networked systems. Technical Report TR96-11, Department of Computer Science,University of Arizonia, 1996. 30

[JdT+95] Anthony D. Joseph, Alan F. de Lespinasse, Joshua A. Tauber, David K. Gi�ord, and M. FransKaashoek. Rover: A toolkit for mobile information access. In Proceedings of the FifteenthACM Symposium on Operating Systems Principles, pages 156{171, Copper Mountain, Colorado,December 1995. ACM Press.[JSvR98a] Dag Johansen, Fred B. Schneider, and Robbert van Renesse. Operating system support formobile agents. In Dejan Milojicic, Frederick Douglis, and Richard Wheeler, editors, Mobility,Mobile Agents and Process Migration { An Edited Collection. Addison Wesley, 1998. Originallyappeared in the Proceedings of the 5th IEEE Workshop on Hot Topics in Operating Systsems.[JSvR98b] Dag Johansen, Fred B. Schneider, and Robbert van Renesse. What TACOMA taught us. InDejan Milojicic, Frederick Douglis, and Richard Wheeler, editors, Mobility, Mobile Agents andProcess Migration { An Edited Collection. Addison Wesley, 1998.[KGN+98] David Kotz, Robert Gray, Saurab Nog, Daniela Rus, Sumit Chawla, and George Cybenko.Mobile agents for mobile computing. In Dejan Milojicic, Fred Douglis, and Rick Wheeler, editors,Mobility, Mobile Agents and Process Migration| An Edited Collection. Addison Wesley, 1998.[LC96] Danny B. Lange and Daniel T. Chang. IBM Aglets Workbench: Programming mobile agentsin Java. IBM White Paper, 1996.[LO98] Danny B. Lange and Mitsuru Oshima. Programming and Deploying Java mobile agents withAglets. Addison Wesley, 1998.[LS92] Michael Litzkow and Marvin Solomon. Supporting checkpointing and process migration outsidethe Unix kernel. In Proceedings of the 1992 Winter USENIX Technical Conference, pages 283{290, 1992.[LSW95] Steven Lucco, Oliver Sharp, and Robert Wahbe. Omniware: A universal substrate for webprogramming. World Wide Web Journal, (1), December 1995.[MDFK97] J. Mogul, F. Douglis, A. Feldmann, and B. Krishnamurthy. Potential bene�ts of delta-encodingand data compression forHTTP. In Proceedings of ACM SIGCOMM'97 Conference, pages 181{194, September 1997.Available from http://www.research.digital.com/wrl/techreports/abstracts/97.4.html.[Moi98] Katsuhiro Moizumi. The mobile agent planning problem. PhD thesis, Thayer School of Engi-neering, Dartmouth College, November 1998.[Muh98] Murhimanya Muhugusa. Implementing distributed services with mobile code: The case of theMessenger environment. In Proceedings of the IASTED International Conference on Paralleland Distributed Systems (Euro-PDS'98), Austria, July 1998.[MvRSS96] Yaron Minsky, Robbert van Renesse, Fred B. Schneider, and Scott D. Stoller. Cryptographicsupport for fault-tolerant distributed computing. In Proceedings of the Seventh ACM SIGOPSEuropean Workshop, pages 109{114, September 1996.[NCK96] Saurab Nog, Sumit Chawla, and David Kotz. An RPC mechanism for transportable agents.Technical Report PCS-TR96{280, Department of Computer Science, Dartmouth College, March1996.[OBJ97] ObjectSpace Voyager core package technical overview. ObjectSpace, Inc., December 1997. Ver-sion 1.[Pei98] Holger Peine. Security concepts and implementations for the Ara mobile agent system. InProceedings of the Seventh IEEE Workshop on Enabling Technologies: Infrastructure for theCollaborative Enterprises, Stanford University, USA, June 1998.31

[PS97] Holger Peine and Torsten Stolpmann. The architecture of the Ara platform for mobile agents.In Proceedings of the First International Workshop on Mobile Agents (MA '97), volume 1219 ofLecture Notes in Computer Science, Berlin, April 1997. Springer-Verlag.[RASS97] M. Ranganathan, Anurag Acharya, Shamik Sharma, and Joel Saltz. Network-aware mobileprograms. In Proceedings of the 1997 USENIX Technical Conference, pages 91{104, 1997.[RGK97] Daniela Rus, Robert Gray, and David Kotz. Transportable information agents. Journal ofIntelligent Information Systems, 9:215{238, 1997.[Sal91] G. Salton. The Smart document retrieval project. In Proceedings of the Fourteenth InternationalACM/SIGIR Conference on Research and Development in Information Retrieval, 1991.[Sch97] Fred B. Schneider. Towards fault-tolerant and secure agentry. In Proceedings of the 11th Inter-national Workshop on Distributed Algortithms, September 1997.[SG90] J. Stamos and D. Gi�ord. Remote evaluation. ACM Transactions on Programming Languagesand Systems, 12(4):537{565, October 1990.[Sto94] A. D. Stoyenko. SUPRA-RPC: SUbprogram PaRAmeters in Remote Procedure Calls. Software{Practice and Experience, 24(1):27{49, January 1994.[TDM+94] Christian Tschudin, Giovanna Di Marzo, Murhimanya Muhugusa, Christian Tschudin, andJ�urgen Harms. Messenger-based operating systems. Technical Report 90, University of Geneva,Switzerland, July 1994. Revised September 14, 1994.[TMN97] Christian Tschudin, Murhimanya Muhugusa, and Guy Neuschwander. Using mobile code tocontrol native execution of distributed UNIX. In Proceedings of the Third ECOOP Workshopon Mobile Object Systems, Finland, June 1997.[Whi94a] James E. White. Mobile agents make a network an open platform for third-party developers.IEEE Computer, 27(11):89{90, November 1994.[Whi94b] James E. White. Telescript technology: The foundation for the electronic marketplace. GeneralMagic White Paper, General Magic, Inc., 1994.[Whi97] James E. White. Mobile agents. In Je�rey M. Bradshaw, editor, Software Agents, chapter 19,pages 437{472. MIT Press, 1997.[WPW+97] David Wong, Noemi Paciorek, Tom Walsh, Joe DiCelie, Mike Young, and Bill Peet. Concordia:An infrastructure for collaborating mobile agents. In Proceedings of the First InternationalWorkshop on Mobile Agents (MA '97), pages 86{97, 1997.[WPW98] Tom Walsh, Noemi Paciorek, and David Wong. Security and reliability in concordia. In Proceed-ings of the Thirty-First Annual Hawaii International Conference on System Sciences, volumeVII, pages 44{53, January 1998.[WRW96] Ann Wollrath, Roger Riggs, and Jim Waldo. A distributed object model for the Java system.Computing Systems, 9(4):265{290, Fall 1996.
32

