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ABSTRACT

We present a FPGA-synthesizable version of the Intel Ne-
halem processor core, synthesized, partitioned and mapped

to a multi-FPGA emulation system consisting of Xilinx Virtex-

4 and Virtex-5 FPGAs. To our knowledge, this is the first
time a modern state-of-the-art x86 design with the out-of-
order micro-architecture is made FPGA synthesizable and
capable of high-speed cycle-accurate emulation. Unlike the
Intel Atom core which was made FPGA synthesizable on a
single Xilinx Virtex-5 in a previous endeavor, the Nehalem
core is a more complex design with aggressive clock-gating,
double phase latch RAMs, and RTL constructs that have
no true equivalent in FPGA architectures. Despite these
challenges, we are successful in making the RTL synthesiz-
able with only 5% RTL code modifications, partitioning the
design across five FPGAs, and emulating the core at 520
KHz. The synthesizable Nehalem core is able to boot Linux
and execute standard x86 workloads with all architectural
features enabled.
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1. INTRODUCTION

Intel Nehalem [4, 8, 14] is the latest microarchitecture de-
sign and the foundation of the Intel Core™ i7 and Core™
i5 processor series. Like its predecessor (Intel® Core™ mi-
croarchitecture), Intel Nehalem microarchitecture continues
to focus on improvements in how the processor uses avail-
able clock cycles and power, rather than just pushing up
ever higher clock speeds and energy needs. Its goal is to
do more in the same power envelope or even reduced en-
velopes. In turn, Intel Nehalem microarchitecture includes
the ability to process up to four instructions per clock cy-
cle on a sustained basis compared to just three instructions
per clock cycle or less processed by other processors. In
addition, Intel Nehalem incorporates a few essential perfor-
mance and power management innovations geared towards
optimizations of the individual cores and the overall multi-
core microarchitecture to increase single-thread and multi-
thread performance.

In addition to backward compatibility to the rich Intel
Architecture legacy, the Intel Nehalem sports several salient
new features: (1) Intel Turbo Boost Technology which en-
ables judicious dynamical management cores, threads, cache,
interfaces and power, (2) Intel Hyper-Threading Technol-
ogy which in combination with Intel Turbo Boost Technol-
ogy can deliver better performance by dynamically adapting
to the workloads which can automatically take advantage
of available headroom to increase processor frequency and
maximize clock cycles on active cores and (3) Intel SSE4
instruction set extensions that center on enhancing XML,
string and text processing performance.

In this paper, we share our experience and present the
methodology to make the Intel Nehalem processor core FPGA
synthesizable. The emulated Nehalem processor core is par-
titioned across multiple FPGAs and can boot the standard
off-the-shelf x86 OSes including Linux and run x86 work-
loads at 520Khz. Compared to the Intel Atom core that we
previously made FPGA synthesizable, the Nehalem core is
much more challenging due to the microarchitectural com-
plexity and sheer size of the design. The key contributions
of this paper are

e We present our methodology to synthesize and judi-
ciously partition the fully featured Nehalem RTL de-
sign to an emulator with multiple Virtex-4 [18] and
Virtex-5 [19] FPGAs.



e We demonstrate a systematic and scalable cycle-by-
cycle verification methodology to ensure the functional
and timing correctness of the synthesizable design.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews related work and provides background infor-
mation on the Intel Nehalem processor core and a multi-
FPGA emulator platform. Section 3 elaborates our expe-
rience in making the Nehalem core RTL FPGA synthesiz-
able and introduces our verification methodology. Section 4
describes how we partition the Nehalem core design across
multiple FPGAs and provide memory interface between the
core and the DDR memory. Section 5 evaluates the func-
tionality and performance of the synthesized Nehalem core
in comparison with the Intel Atom core on the same emula-
tor platform. Section 6 concludes the paper.

2. BACKGROUND
2.1 Related Work

Intel Nehalem processor is representative of a general trend
in designing the modern high performance energy efficient
CPU. Beyond the traditional incremental microarchitectural
enhancements at processor pipeline level, the state-of-the-
art CPU designs tend to incorporate a variety of new tech-
nologies through a high degree of integration. Resembling a
system-on-a-chip (SoC), modern CPU usually embodies very
sophisticated on-chip resource managements and complex
interactions amongst many building blocks. These building
blocks work in concert to deliver the architecturally visible
features in energy efficient ways.

The increase in design complexity will inevitably impact
the pace of silicon development. In particular, pre-silicon
RTL validation has long been a vital yet time-consuming
phase of microprocessor development. Due to the heavy re-
liance on the software based RTL simulation tools, despite
the rich test environments, throughput of validation is usu-
ally limited by simulation speed, which is in the range of the
single-digit hertz. Such speed of system level tests is pro-
hibitive for long running simulations as processor designs
are ever increasing in size and complexity. One alternative
has typically been emulation. Emulation, however, requires
expensive hardware and software tools. The cost of the em-
ulation hardware and tools usually scale up when the size of
designs reaches the level of modern CPU. Consequently the
speedups achieved in large emulation platforms actually de-
crease as designs grow larger, potentially negating benefits
of emulation

Thanks to Moore’s Law, the capacity and speed of mod-
ern FPGAs have continued to improve. As more productive
EDA tools become available for FPGA, the FPGAs have
become well suited for implementing complex processor de-
signs with their high density logic and embedded compo-
nents. Should CPU design be made FPGA synthesizable
throughout product development as part of the pre-silicon
validation process, it would bring significant benefit to ex-
ercise the design with much more simulation cycles. For
example, booting an off-the-shelf operating system can re-
quire execution of 100 million to 1 billion instructions. It
is impossible to run such long instruction sequence within
a reasonable amount of time with today’s RTL simulators,
however it only takes under an hour with FPGA synthesiz-
able designs. With additional optimizations in FPGA map-
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Figure 1: Intel Nehalem Microarchitecture [3].

ping and partitioning, FPGA synthesizable designs usually
can be emulated at speed of 10’s Mhz thus making it pos-
sible to work as software development vehicle before silicon
becomes available [10].

While FPGA emulation has long been employed in SoC
design and prototyping (SPARC [6], MIPS [7], ARM [9]),
it is only recently that FPGA synthesis is taken into account
for modern PC-compatible CPU designs. In [11] and [17],
the Pentium processor and the Atom processor were made
synthesizable to a single FPGA. However, compared to Atom,
the Nehalem core requires roughly 4x more FPGA capacity.
Due to this size increase, multiple-FPGA partitioning must
be employed for the Nehalem core requiring time multiplex-
ing of wires [2] between FPGAs and various partitioning
tools [1] and techniques [5, 12].

2.2 The Intel Nehalem Processor

The Intel Nehalem processor is a 64-bit multithreaded pro-
cessor with an aggressive out-of-order pipeline. Nehalem in-
cludes a 32KB L1 data cache, a 32KB L1 instruction cache
and a shared 256KB L2 cache. Figure 1 shows the layout
and clusters making up the Nehalem core. Four clusters
make up the Nehalem core

FE Frontend to fetch bytes, decode instructions
EXE  Floating point and integer execution

OOO Out of order resource allocation

MEU Memory execution unit (load/store handling)

The FE cluster fetches instructions, decodes the x86 in-
structions into an internal micro-op (uop) stream, and queues
those uops for execution downstream. Branch prediction is
performed in FE as well. The OOO cluster takes uops and
schedules their execution to the various reservation stations.
The EXE cluster holds all the ALUs and floating point ex-
ecution units and there is highly optimized and specialized
circuitry to complete these computations. The MEU han-
dles all loads and stores from the shared L2 cache, known as
the MLC (midlevel cache). The MEU is the sole interface
to the Uncore. It contains many other miscellaneous com-
ponents of the Nehalem processor including the interrupt
controller and the TAP (test and access port).

The Nehalem Uncore, also shown in Figure 1, connects the
cores to each other, holds the Last level cache, and contains
an on-die memory controller. In this paper, our focus is on



Figure 2: One MCEMU Board with Five FPGAs.

Table 1: MCEMU board FPGAs.
Name FPGA LUTs | BRAMs
U1 Virtex-4 FX140 | 126,336 552
U2 Virtex-5 LX330 | 207,360 576
U3 Virtex-4 LX200 | 178,176 336
U4 Virtex-5 LX330 | 207,360 576
U5 Virtex-4 LX200 | 178,176 336

the four core clusters in the Nehalem. The Uncore cluster is
outside the scope of this paper.

2.3 The Many-Core Emulation System

The Many-Core Emulation System (MCEMU), is the em-
ulation platform we targeted for this work. MCEMU is
an FPGA emulation platform developed at Intel [13]. An
MCEMU system consists of a series of identical rackable
custom boards, each holding five FPGAs. Table 1 lists the
name, type, and key resources for each of the five FPGAs,
while Figures 2 and 3 show a single board and a full rack-
able system respectively. To expand capacity beyond five
FPGAs, multiple boards are interfaced together using the
Xilinx RocketIO high-speed serial transceivers connected by
external cabling.

Within a single MCEMU board, board traces wire input
pins on one FPGA to output pins of another, leading to a
fixed number of physical wires between each FPGA pair.
While the number of physical wires connecting two FPGAs
is fixed and small, any arbitrarily large number of logical
signals can be sent across the physical wires by time division
multiplexing (TDM) using muxes at the sending FPGA and
demuxes at the receiving FPGA. A greater ratio of logical
signals to physical signals requires more time steps for TDM,
and thus lowers emulated frequency.

Because of varying resources among the FPGAs and fixed
physical traces on the boards not all FPGAs have direct ac-

Figure 3: One MCEMU System with Nine Boards.

cess to all board level features. For example, each board con-
tains 1GB DDR DIMM accessible by FPGA Ul and a 1GB
DDR DIMM accessible by U5. Access to these DIMMs by
logic within another FPGA would need to be routed through
U1 or U5 to reach the appropriate DIMM. Similarly, only
U1 contains the RocketlO transceivers that interface over
the cabling. Therefore, signals destined for another board
must pass through the Ul FPGAs on both the sending and
receiving board.

In addition, the number of physical pins interconnecting
pairs of FPGAs is neither uniform nor symmetric. The
MCEMU synthesis flow includes a sophisticated intercon-
nect generation tool that when given a set of interconnected
netlist modules generates and configures the TDM multi-
plex and demultiplex logic to properly connect the mod-
ules over the appropriate physical interconnects (intraboard
traces and interboard cables). In the MCEMU flow, parti-
tioning a large netlist into multiple modules (each suitable
size for 1 FPGA) can be done either manually or with vary-
ing level of automation through partitioning tools.

Like most FPGA synthesizable designs, the choice of the
emulator platform can affect the particular strategy to par-
tition the design and interface the design to the memory
system. In the Atom synthesis project, the platform was a
single FPGA emulator that fits in a Pentium CPU socket. It
was necessary to build a bridge between the Atom processor
core and the Pentium front-side bus so as to allow the emu-
lated Atom core to communicate with the memory and I/O
resources on the motherboard. Similarly, with the MCEMU
platform, which has on-board DDR memory, we also need
to build a bridge between the Nehalem core and a DDR con-
troller so that the emulated CPU core can boot from the OS
image and execute code, all resident in the DDR memory.
The original OS image and workload can be updated by the
host CPU board on the MCEMU.

When a design is ready to be run on the MCEMU it is
loaded on the FPGA boards by a control/debug host board
that sits along side the FPGA boards. The host board is
a full x86 computer with hard-disk and network interface
and runs Linux. A Linux application running on the host
board can program and reset the MCEMU FPGAs, write



to control registers inside the FPGA, read and write the
MCEMU DRAM DIMMs, and control the emulation clock
all over the shared cPCI bus. As we show in Section 4.4,
this built-in hardware/software interface can be a powerful
tool for system bring-up and verification.

3. SYNTHESIS

Nehalem is designed in SystemVerilog, with wrapper Ver-
ilog code. Finding a tool that can parse the design is there-
fore of primary importance. There are actually only a few
FPGA frontend synthesis tools that can parse SystemVer-
ilog. While many tools do support a subset of SystemVer-
ilog, from our experience, there are usually certain features
of the language that either cause the tools to report syntax
errors, die silently, or synthesize netlists incorrectly.

Even though Synopsys ceased its development and sup-
port of DC-FPGA [15] in 2005, it is the only tool that can
correctly parse all SystemVerilog features used in Nehalem’s
RTL. Since DC-FPGA supports these features, we are able
to minimize the code changes necessary to build netlists.
With fewer modifications we must make to the Nehalem
codebase, we are less prone to introduced bugs.

Ultimately, however, some source code modifications were
still necessary due to some deficiencies in this tool. DC-
FPGA works well enough for creating netlists from the Sys-
temVerilog. However, as a discontinued tool, DC-FPGA
sometimes is prone to create erroneous circuits from the
given RTL. This was observed in the synthesized Atom core,
and was observed in the Nehalem synthesis with new Sys-
temVerilog constructs. For example, a certain XOR macro
within the Nehalem execution cluster is not mapped cor-
rectly to the Xilinx FPGA architecture. We are able to
discover these bugs as described later in Section 3.4, and
replace the code snippet with a Xilinx macro block. Addi-
tionally, some modules that did not synthesize correctly were
synthesized using Synopsys Synplify Pro [16] if the code is
syntactically similar to Verilog. EDA tools are slowly being
patched to handle SystemVerilog constructs, and we pre-
dict that SystemVerilog will be fully supported in the near
future.

The entire synthesis flow is shown in Figure 4. Once
the netlist is produced by DC-FPGA, the compete Nehalem
netlist is partitioned using Auspy’s ACE compiler v5.0, and
the final bitstreams are generated using Xilinx ISE 10.1.03.
This section will focus on preparing the Nehalem codebase
to pass through DC-FPGA synthesis.

3.1 Clock Gating

Modern processor designs all use gated clocks to save on
power. With latch-based designs tolerant to clock-skew, a
gated clock is quite effective in driving a low-power clock
tree through the design. In fact, this gated clock can hi-
erarchically pass down into the processor subsystems, each
subsystem having its own additional enable signal, provid-
ing designers the ability to clock gate the circuit at many
levels.

For FPGA synthesis, we need to separate the enable from
the original clock. FPGA architectures rely on a global clock
tree that is low-skew to drive the flip-flops within FPGA
slices. Most EDA vendors provide clock-gating removal syn-
thesis that can do this separation automatically. This sepa-
ration of the clock and enable signals allows the free-running
global clock to travel along the FPGA'’s dedicated low-skew
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DC-FPGA Wrapper Code
¢ Netlist l Verilog
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Figure 4: Toolflow: From Nehalem RTL to FPGA
Bitstreams.

clock tree and have the enable signal travel over standard
routing resources.

Every bit-wide clock is turned into a struct consisting of
the global clock and its enable signal. The Nehalem RTL
codebase consists of various macros that transform the clock
as it is passed through the hierarchy of modules. Most trans-
forms simply add another enable signal (e.g. powerdown or
test port access enables) or invert the clock for double phase
latch RAMs. The inversion clock macro is the only macro
that modifies the global clock, while all other clocks affect
the enable signal. To handle the clock inversion macro, we
pass into all modules a global inverted clock that is driven
from a DCM, not by actually inverting a clock signal in logic.

There are 400% more unique clock macros within the Ne-
halem codebase as compared to the Atom codebase. Our
methodology of separating the clock and the enable is com-
pletely portable between the two synthesizable processors.

3.2 Latch Conversions

Due to the inability of DC-FPGA to correctly map trans-
parent latches to the Xilinx primitives, we use two approaches
to do latch conversion ensuring correct generation of netlists.
The first approach is to directly instantiate Xilinx FPGA
latch primitives (LDEs) forcing all latches as blackboxes
during synthesis. However, the high count of latches in
the Nehalem codebase makes applying this technique to all
latches impossible. The backend place and route tools sim-
ply cannot meet the timing constraints in handling so many
latches in the resulting netlist. The second approach is to
convert latches to edge-triggered flip-flops — possible when
the data and enable arrive one phase earlier than the clock
edge. Most often this conversion is possible, however, in



some instances, the data or the enable signal arrive late.
Since the latches in Nehalem are instantiated in a macro
form, we can detect this race condition while running the
simulation and determine if data OR the enable is chang-
ing with the clock edge. If this behavior is seen, an edge
triggered flip-flop conversion is incorrect and data will not
propagated correctly through the latch. Therefore, we adopt
a combination of both approaches. That is, for those latches
with the input data or the enable signals ready before the
leading clock edge, we convert those latches to flip-flops. For
the remaining latches, we instantiate them directly to latch
primitives.

Interestingly, the Nehalem core also has some latch struc-
tures that do not have an equivalent FPGA macro or clock-
and-enable structure. For example, a LATCH_P macro is
an inverted latch. By DeMorgan’s theorem, the equivalent
circuit is:

LATCH == CLK & ENABLE
LATCH_P == ~LATCH
LATCH_P == ~(CLK & ENABLE)
LATCH P == ~CLK || ~ENABLE

The latch can essentially be open by the inverted clock
or the inverted enable signal. The latch can no longer be
consistently opened by the clock since the inverted enable
signal may change in either phase of the clock. In order
to faithfully comply to the latching behavior of the original
RTL, our solution is to use a clock2x180 to produce a
positive edged 2x clock that can capture data on each phase
of the clock. This solution is feasible for most latches in the
system, but leads to tight timing constraints, therefore it is
used sparingly.

3.3 RAM Replacements

Latch and flip-flop RAM structures are used heavily within
the Nehalem RTL. The latch RAMs are extremely power effi-
cient, are tolerant to clock skew, allow time borrowing, and
are amenable to clock-gated circuits. The flip-flop RAMs
can be mapped to optimized cells in the ASIC backend flow,
whereas the behavioral model is written in standard edge
triggered SystemVerilog code. From looking at the RAM
instantiations, it is clear that the memories that we end up
replacing range in size and complexity across a range of pa-
rameters.

e Size. Memory structures within the Nehalem core
range from several kilobytes down to bits. Small mem-

ories map better to distributed memory structures (gran-

ularity of 1bx16 or 1bx64 on Xilinx-V4 and Xilinx-
V5 FPGAs per reconfigurable logic block), while larger
memories map best to Xilinx block RAMs (granulari-
ties of 18Kb per RAM).

e Read and write ports. RAM structures found within
Nehalem range from simple 1-read and 1-write port FI-
FOs, to highly complex banked register files. FPGA
distributed memories natively can handle 1 shared read
and write port (distributed memory) and up to 2 in-
dependent shared read and write ports (block RAMs).

e Reset and set behavior. The RAM structures in

Nehalem have various flash reset, flash copy, and multiple-

entry read behavior. Xilinx FPGAs have the connec-
tivity available to connect these heavily interconnected

Nehalem RAM Replacements per Cluster
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Figure 5: RAM Replacements for Nehalem Clusters.

and multiplexed structures. However, we want to take
the effort to emulate more complex RAMs whenever
possible, with the goal of better FPGA resource uti-
lization.

As an example of RAMs that exhibits the behaviors de-
scribed above, the out-of-order cluster holds many complex
RAM structures. This cluster has many highly ported mem-
ories structures to implement the reorder buffer that vary in
size from single to hundreds of bits per entry. The reorder
buffer allows instructions to complete in any order but only
affect machine state in program order. In an out-of-order
machine, many instructions are in flight speculatively, are
waiting for loads or stores to complete, or being used in var-
ious ALU operations. Instructions completing within the re-
order buffer have to update other reorder buffers as quickly
as possible to keep instructions retiring quickly. The RAM
structures to hold the reorder buffer, therefore consist of
highly ported memories. These RAMs also have flash reset
behaviors, since a reorder buffer entry can be invalidated on
a mispredicted branch.

We are able to emulate the complex read, write, and in-
validate behaviors using the following techniques:

e Entry Invalidations We can keep a separate valid bit
per RAM entry held in a flip-flop array. We can set this
bit on a write and reset this bit on an invalidate. On
a read operation, we can check this bit to determine
whether to output the RAM contents or a reset value.

e Multiple Write Ports We can use 2 write ports per
BRAM structure. For higher write ported memories,
like found in the reorder buffer, we keep multiple copies
of the RAM structures, each having 2 logical write
ports attached to the physical write ports. The most
uptodate write location is kept in another flipflop array
that can be used to multiplex a read operation from
the logical RAM structures.

e Multiple Read Ports We can also have 2 read ports
per BRAM structure. We emulate higher read ports
by again duplicating the BRAM structures by having
each physical write port map to multiple write ports,
where each logical BRAM structure is mapped to a
multiplicity of read ports.

FPGA architectures are not suited to map these latch
structures with complex behaviors. However, with our clock-
gating methodology, we are able to separate out the read



and write clocks from the enable signals and convert these
RAMs all to flip-flop implementations. Once we are able
to confirm all RAMs can be converted to a flip-flop imple-
mentation, we can translate the largest ones to either dis-
tributed or Block RAM implementations. Whenever these
memory replacements are done using explicit Xilinx mem-
ory instantiations, these new instantiations are black boxed
throughout the DC-FPGA synthesis step. Then later in the
FPGA design flow, the generated memory netlists targeting
FPGA architectures can be dropped in for the final FPGA
bitstream assembly.

We observed 300 instances of these latch RAMs within
the Nehalem code base and were able to convert them all
to flip-flop RAMs, distributed memory RAMs, or BRAMs.
Figure 5 shows the breakdown of how these RAMs were con-
verted for each cluster. This number of RAMs is 8x over the
number of RAMs seen in the Atom codebase. The synthe-
sizable Atom core also had low count read and write ported
RAMs structures, where in Nehalem, extremely high count
write/read RAMs were observed in several instances. Again
within Nehalem, the out of order cluster proves to hold a
high count of RAM instantiations. The frontend cluster
holds complex branch prediction RAMs, is multithreaded,
and can decode multiple instructions in parallel. For this
reason, FE holds a high count of smaller RAMs, with com-
plex behavior.

3.4 Verification Methodology

With all these changes to the Nehalem codebase, special
care has to be taken that our code does not break the func-
tionality of the various clusters. The Nehalem model comes
with a rich regression test environment with a large number
of both full-chip and unit-level regression tests. These tests
check not only for successful completion of the test case, but
additionally instrument the code within the RTL, monitor
produced output files, and poke and peek signals throughout
the design.

Unexpectedly, due to the nature of the RTL changes nec-
essary to for FPGA synthesis, such as converting the RAMs
and converting 1-bit clock signals to clock structures, these
regression tests frequently fail to execute unmodified due
to non-existent or renamed signals and clocks that are no
longer accessible in bit operations. Full-chip regressions are
less invasive and more likely to continue working with min-
imal modifications, but take a significant amount of time
to execute (on average 6 hours). Further, the full-chip re-
gressions also interact with the Uncore code, which shares
some macros and modules with our converted clusters, lead-
ing to naming mismatches. Given that most FPGA-related
RTL changes are highly localized and only require changes to
individual files, we used the following methodology for vali-
dating such changes, which yields both a rapid turnaround
time on simulation execution but can be employed without
requiring any changes to existing regression tests.

1. Modify the original Nehalem RTL to log all input and
output values on every phase for a given target of in-
terest (a full cluster or smaller RTL component)

2. Execute an existing full-chip regression test to generate
the signal trace of interest

3. Modify the FPGA-synthesizable RTL to feed the logged
inputs into the target of interest on each simulated

phase, and check that produced outputs match those
logged to the trace. Comment out all other RTL (e.g.
other clusters) to speed compilation and simulation
time

4. Simulate the reduced Nehalem design to test the cor-
rectness of the FPGA-synthesizable RTL changes

Additionally, we track every latch replacement’s input and
output signals. Within a simulation, a latch macro will re-
port if its input data is not being latched correctly by our
ported code. This is easy enough to do, by having the orig-
inal code in place and comparing outputs. By having this
fine grained verification in place, we can quickly see a bug
and replace that latch macro with a Xilinx native latch. It is
bad for timing to use too many latches, but the Xilinx tools
can handle a few of them. Also we are running the FPGA at
a relatively low clock rate and the tools can handle placing
and timing some latches.

We have made extensive use of this strategy in this project.
Doing so significantly reduces the time to verify a particular
RTL change (e.g. one minute to recompile the EXE clus-
ter compared to 10 minutes for the full model and three
minutes to simulate a simple test on EXE compared to one
hour for the full-chip) but also gives a more rigorous val-
idation as any deviation from the baseline behavior, even
changes which might not cause a particular test to fail, will
be detected. We have written scripts to automatically in-
sert the necessary trace generation and trace consumption
code (steps 1 and 3 above), and no manual RTL changes
are necessary to employ this methodology. This methodol-
ogy was not used for the FPGA synthesizable Atom core.
With a small codebase, the Atom core can run full simula-
tions within minutes compared to Nehalem taking one hour
for short system level tests. Therefore, this strategy is ex-
tremely beneficial for large circuits and scales extremely well
as the design grows.

Additionally, this methodology can also be applied on
FPGA to synthesized code, in order to validate that the
synthesis flow and tools have produced the correct output.
Inputs to the targeted module can be driven either by spe-
cialized software control or by an embedded ROM. We can
typically synthesize a bitfile for testing an individual Ne-
halem RTL file in approximately 15 minutes, significantly
faster than the time necessary to synthesize a full cluster or
the full design.

Individual modules can be synthesized and tested on-FPGA
with a similar methodology in order to validate that the syn-
thesis flow and tools have produced the correct output. The
MCEMU hardware and software platform provide a power-
ful logic analyzer and injector capability which allows signals
on individual FPGAs to be read or written under software
control. FEach clock phase, the inputs to the synthesized
logic block are read from the associated trace file and pro-
vided to the corresponding logic block via this signal injec-
tion mechanism, and the outputs which had been generated
on the prior clock phase, are read out are checked against
the signal trace to identify any deviation from the expected
behavior.

We can typically synthesize a bitfile for testing an indi-
vidual Nehalem RTL file in approximately 15 minutes, sig-
nificantly faster than the time necessary to synthesize a full
cluster or the full design. Additionally, by ensuring each
module was tested using this methodology in additional to
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Figure 6: FPGA Resource Assessment of the Ne-
halem Clusters.

simulation testing, a handful of bugs due to tool miscon-
figuration and incorrect synthesis output were caught at an
early stage, allowing fixes and workarounds to be quickly
applied.

4. NEHALEM EMULATION IN MCEMU

Once our code changes have been verified through sim-
ulation and have a body of RTL ready for MCEMU, the
netlists are taken and partitioned across the five FPGAs on
one MCEMU board.

4.1 Initial Sizing of the Nehalem Clusters

With changes made to the clocking structure, RAMs con-
verted, and the code verified, the various code bodies are
combined. Preliminary synthesis results for the ported Ne-
halem code are gathered before partitioning the RTL across
the five FPGAs. As shown in Figure 6, the clusters’ FPGA
utilization is presented. The synthesis tool targets all the
clusters for the Virtex-5 FPGAs on the MCEMU platform,
but of course some of the RTL will have to be targeted to
Virtex-4 architectures. As can be seen, the Out-of-Order
cluster clearly cannot fit on a single FPGA. Due to the high
connectivity of the reorder buffers and the number of buffers
themselves, the out of order cluster requires further parti-
tioning.

4.2 Memory Interface

The standard Nehalem core connects to the Uncore through
the MLC (midlevel cache). The Uncore at the interface to
the MLC shown in Figure 7. This cut is necessary, as the
FPGAs cannot fit the 256 KB midlevel cache on the emula-
tion platform or its the associated logic. Once that logic is
cut out however, the necessary interfaces are created to our
custom memory controller, which can communicate to the
onboard DRAM. Any other signals that are driven by the
Uncore must be emulated correctly such as clock synchro-
nization and reset signals. This cut is similar to the synthe-
sizable Atom core, where there the cut occurred at the L2
cache. The cut is chosen to maximize original functionality,
but cut out the larger lower level caches and complex Un-
core interfaces that are not inherently part of the processing
pipeline.

This translation step is not trivial and the emulated in-
terfaces are briefly described below.

e Memory Load / Stores. For memory operations in our

I-CACHE

NHM
CORE
D-CACHE

UNCORE

(a)

I-CACHE MEMORY.

TRANSLATOR 2GB DDR

D-CACHE UNCORE
| LLCS |

(b)

Figure 7: Nehalem Core to Memory Interface. (a)
Original Design (b) Memory Translator.

emulated codebase, the Nehalem core is forced to allow
only one outstanding memory request and translated
to communicate with a standard DDR controller. Ad-
ditionally, the bridge must respond correctly to data
accesses that correspond to the cache coherency pro-
tocol. There are multiple memory requests types due
to locks, read-for-ownership, and self-snoops that are
handled as well.

e CRAB (Control Register Access Bus) Read/Writes.
The CRAB bus is a distributed register file that allows
a control registers to be read/written to by communi-
cating over a ring. This ring has stops within the ML.C
and Uncore that are emulated.

e APIC (Advanced Processor Interrupt Controller) Ac-
cess. The timer interrupt is the only functionality that
must be emulated correctly. This timer is used for
operating system functionality and must be emulated
correctly. As the Uncore can run at a different clock-
speed than the cores ondie, the Uncore clock synchro-
nization signals are emulated as well. The functional-
ity of the APIC timer can be verified in short tests.

4.3 Multi-FPGA Partitioning on MCEMU

Once the code changes are verified through simulation and
a body of RTL is ready for MCEMU, the full design is par-
titioned into modules to target individual FPGAs on the
MCEMU.

Before describing how Nehalem is mapped to the MCEMU
emulator, its important to understand a fundamental differ-
ence between single- and multi-FPGA emulation. Although
in single FPGA emulator it is the resulting critical path
timing from the place and route tools that sets emulation
speed, in a partitioned multi-FPGA design it is the critical
path of a logical signals between FPGAs that sets the em-
ulation speed. For a logical signal between 2 FPGAs, Ul
and U3, this critical path depends on the degree of TDM
sharing of the physical wires. If the TDM ratio is 10 logical
signals per physical wire, the maximal emulation frequency
is 1/10th the speed of the physical interconnect. In addi-
tion, if a logical signal must hop from Ul to U2 and then to



Table 2: Logical Connectivity and TDM Ratio be-

tween FPGAs.

Ul |U2(|U3|U4| U5
Ul | - 18 [ 18 | - -
U2 | 24| - 18 | 21 -
U3 | 18 | 18 - 18 | -
U4 | - 21 | 21 - 24
Us | - - - 18 | -

U3 in one emulation cycle, assuming both hops have TDM
ratio of 10, the resulting frequency is cut by another fac-
tor of 2 because the logical signal must traverse both hops
within one emulated cycle. Clearly, the frequency limit due
to logical signal transmission quickly dominates the PAR
frequency limit of the FPGA. As such, attaining a high em-
ulation frequency becomes an exercise of mapping the logic
across FPGAs in a way that minimizes the number of logi-
cal signals between FPGAs, minimizes the number of hops
between the source and destination of logical signals and
distributes logical signals to best balance TDM ratios. In
other words a good partitioning of emulated logic should be
found so that the partitioned topology most closely matches
the emulator topology.

As shown in Figure 6, the cluster utilizations suggest that
neglecting OOQ’s high LUT utilization, a cluster level parti-
tioning would map very naturally to a single MCEMU board
and minimize the number of logical signals traversing the
on-board interconnect (i.e. logic within a cluster is more
tightly connected than logic in two different clusters). Be-
cause FE and OOO are the largest clusters its clear to map
them to our larger Virtex-5 FPGAs and map EXE and MEU
to the smaller Virtex-4 FPGAs. As mentioned in Section 2.3,
the number of physical wires between pairs of FPGA is not
uniform. The pair U2,U4 and the pair U3,U5 have many
more connecting wires than the other pairs of FPGAs. To
best balance TDM ratios, more highly connected clusters
are placed in the highly connected FPGA pairs. Analysis
of the cluster level connections shows highest coupling be-
tween the pair EXE; OOO and the pair MEU, FE. This gives
us the potential initial mappings of (FE—U2, MEU—U3,
000—U4, EXE—U5) or (O0O0—U2, EXE—U3, FE—U4,
MEU—US5). In the end a high Block RAM utilization by
auxiliary emulation logic on U5 (U5 is the central com-
munication node that dispatches control/debug messages
to other FPGAs) restricts us to mapping the lower Block
RAM utilizing EXE to U5 and selects the former mapping
above (FE—U2, MEU—U3, O00—U4, EXE—U5). As
mentioned above the OOO cluster is still too large for U4
(V5330). Here the resulting split occurs within the OOO
at its sub-partition hierarchy. The OOO subclusters on U4
consist of the Reservation Station (RS), Register Alias Ta-
ble (RAT), and Allocation (ALLOC), while the OOQ’s other
cluster ReOrder Buffer (ROB) resides on U1l [3].

The Auspy ACE partitioning software is used to restruc-
ture the top level netlist using the given Nehalem netlist par-
titions. Because this methodology keeps the natural cluster-
level partitioning, ACE’s ability to automatically find good
partitions is not used. The tool is still critically important
though, as it allows us to pull lower hierarchy structures (e.g.
ROB) up to top level entities. Without such a tool, this re-
structuring would be error-prone and tedious. In addition

10

to using ACE to spit out netlists into multiple partitions, it
can be used to route some internal signals to specific FPGAs.
In particular, the memory controller signals are routed from
MEU (U3) to the DRAM interface on Ul, and internal ar-
chitectural state (instruction pointer and architectural reg-
isters) and memory access signals is routed to U5 where aux-
iliary emulation logic records cycle-by-cycle traces of these
signals into the other onboard DRAM module. After par-
titioning, the MCEMU interconnect configuration tool (see
Section 2.3) runs to multiplex the interconnecting logical
signals over the available physical wires. The end result of
the partitioning and interconnect generation is an synthe-
sizable fabric with the connectivity matrix and TDM ratio
shown in Table 2. Empty entries show where no physical
direct connection exists, though logical connection may still
occur by using 2 or more adjoining physical direct connec-
tions. As shown in Table 2, the generated interconnect has
a TDM critical path of 24 in the path from U2—U1 and
the path U4—Ub. These large TDM ratios are a direct re-
sult of the high number of logical signals passing between
those FPGAs. The U4—US5 connection is the signals from
the OOO cluster to the EXE unit, which as described above,
are very tightly coupled clusters. Interestingly, the connec-
tions between U2—U1 is actually not dominated by the FE
unit talking to the DRAM interface or to the OOO cluster,
but is instead heavily utilized by signals passing through U2
from the OOO sub-clusters.

From this TDM data, potential emulation frequency can
be calculated. The physical interconnect is able to run at
10ns period. It therefore requires 240ns (24 TDM cycles)
for all logical signals to complete 1 hop, and the emulation
period could be 240ns. Because there are paths that need
to cross 2 FPGA hops with in a single emulation cycle, we
need to exercise these paths 24 TDM cycles at least twice
within every emulated cycle. This sets the maximum emu-
lation period then to 480ns. If we could guarantee that all
signals crossing the interconnect fabric could only change
at the emulation clock edge then 480ns would be the final
emulation period. This however is not the case, due to the
design having registers clocked on c1k2x and various level-
sensitive latches. With this added clock and existing latches,
there is a possibility that logical signals crossing the inter-
connect need to change before any edge of c1k2x. To allow
for this possibility (and maintain logical equivalence to the
unpartitioned design) we need to allow for all logical signals
to complete the 2 hops within each phase of c1k2x. This
means that the actual emulation period (clk1x) needs to be
4 x 480ns. This results in an emulation clock frequency of
520 KHz.

Interestingly, this partitioning step can be a one-time cost,
barring any single FPGA running out of logic resources.
Once the partition step is done, blackboxed Nehalem clus-
ters can be synthesized to EDIF files and quickly linked into
the bitstream generation step to create a new revision of
the FPGA synthesizable design. This ability to drop in new
synthesized clusters allows us to turn around a new design
within the time it takes to synthesize and place and route
a single FPGA (i.e. as opposed to synthesizing all the clus-
ters, running a partition step across the entire circuit, and
place and routing the individual FPGAs).

We take the five resulting netlists (each netlist includes
the emulated cluster wrapped with the generated auxiliary
interconnect logic) and push them through the typical Xil-



Table 3: FPGA Utlization after Xilinx Map.

LUTs (%) | BLOCK RAM (%)
U1-ROB 81 62
U2-FE 87 83
U3-MEU 75 75
U4-RAT/Alloc/RS 89 0
US5-EXE 89 55

inx backend flow of ngdbuild, map, and par. Table 3 shows
the resulting post-map resource utilization. All FPGAs are
heavily loaded, but still meet timing because only the high-
speed interconnect wrapper must run at 100MHz, and the
emulated Nehalem clusters are relaxed to meet only 520KHz.
With the set of bitfiles complete, we use the MCEMU con-
trol/debug application (Section 2.3) to load the bitfiles and
write memory images into the DRAM DIMM accessed by
Ul. Similarly, we use the MCEMU control/debug applica-
tions to pull out trace data from the DRAM DIMM accessed
by U5.

4.4 Nehalem Verification on MCEMU

As described in Section 3.4, individual modules and even
entire clusters can be separately synthesized and tested on
FPGA by feeding a trace of inputs to a synthesized chunk of
logic. With slight modifications, this technique can be ex-
tended to similarly verify that the fabric which multiplexes
the signals between the different clusters operates correctly.
An initial partition of the Nehalem core is produced, such
that each FPGA holds a portion of the core logic, but with-
out any connectivity between FPGAs. That is, each "island”
of logic is fully standalone, with inputs to each FPGA con-
trolled entirely through software which reads inputs and val-
idates outputs from a trace. This verifies that, in isolation,
the complete design produces behavior that matches 100%
with simulation.

Following this, in a piecewise fashion, connectivity be-
tween the different clusters is progressively established, al-
lowing signals to flow between the different FPGAs rather
than being read from a trace file. Ultimately only those in-
puts to the Nehalem core top level (e.g. clock, reset) are
read from the trace. Note that even in this configuration
the outputs produced at each FPGA can still be read out
and compared against the expected output recorded in the
trace.

In fact, this technique can be (and was) applied even be-
fore the complete Nehalem core is FPGA-synthesizable, al-
lowing the remaining portions of the design to be tested.
Logic which cannot be currently synthesized to an FPGA
due to, for example, capacity restrictions, can be freely re-
moved from the design. Its functionality is provided, in-
stead, by the MCEMU software, which injects the outputs
of that missing logic by reading from a separately captured
trace. This technique was used both in the early stages of
this work, when accommodating the extremely large OOO
cluster (which exceeds the capacity of a single Virtex-5 FPGA
as shown in Figure 4), as well as in the later stages when the
memory interface described in Section 4.2 was being written.

The correctness of the Nehalem core can be verified through
these trace-based methods for core reset and simple work-
loads such as computing a Fibonacci number, but this mech-
anism is too slow for more involved workloads. Therefore, an
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Figure 8: Screenshot of Synthesizable Nehalem Core
Booting up Linux.

EIP (instruction pointer) and register value tracing mech-
anism was also added. The original Nehalem RTL already
has instrumentation code which is capable of generating a
full log of retired instruction addresses and architected reg-
ister values, which, used in conjunction with a separate x86
functional model, validates the correctness of the RTL in
simulation. This capability can be added to the synthesized
core by simply removing the ifdef which guard this code,
and routing these signals to the dedicated MCEMU trace
collection hardware described in Section 2.3. This tracing
mechanism proved invaluable in fixing those final bugs in the
memory interface which were not identified through simula-
tion.

5. RESULTS

Our FPGA-synthesizable version of the Intel Nehalem core
correctly preserves all instruction set and microarchitectural
features implemented in the original Nehalem core. These
include the complete microcode ROM, full capacity L1 in-
struction and data caches, SSE4, Intel64, Intel Virtualiza-
tion Technology, and advanced power modes such as C6.
As expected, the synthesizable Nehalem core is capable of
executing the rich variety of legacy x86 software.

Figure 8 shows a screenshot of Nehalem core booting a
version of Linux on the MCEMU. A simple program is shown
to execute the CPUID instruction and display the result,
revealing that the emulated CPU is indeed a Nehalem core.

As an example to illustrate microarchitectural difference
between two families of Intel Architecture designs, Figure 9
shows a performance comparison the out-of-order Nehalem
core and the in-order Atom core, both synthesized to the
same MCEMU platform and to the same frequency. The five
benchmarks represent, respectively from left to right, differ-
ent optimizations of a handle-optimized compute-intensive
Mandelbrot fractal computation using (1) x87 single-precision
(2) SSES3 single precision (3) x87 double precision (4) SSE3
double precision, and (5) an integer workload designed to
stress a processor’s out-of-order capabilities. In all cases
these results show significant performance advantages for
the Nehalem core, with speedups ranging from 1.8x to 3.9x
over the Atom processor.
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Figure 9: Nehalem vs. Atom: Performance Com-
parison of Microbenchmarks.

6. CONCLUSIONS

In this paper we have presented our experience in mak-
ing the Intel Nehalem processor core FPGA synthesizable
and partitioning the design on a multi-FPGA emulator plat-
form. We also present the methodology for taking various
complex constructs, mapping them efficiently to FPGA re-
sources. The debugging methodology seamlessly employed
from RTL simulation through bitfile emulation proves to be
vital in ensuring high productivity. To our knowledge, this
is the first time that a full-featured state-of-the-art out-of-
order x86 processor design has been successfully made em-
ulation ready on the commodity FPGAs using the existing
EDA tools. With our previous work to make the Intel Atom
core FPGA synthesizable, this latest milestone with FPGA-
synthesizable Nehalem provides yet another cost-effective
approach to improve the efficiency and the productivity in
design exploration and validation for future x86 architec-
tural extensions and microarchitectural optimizations.
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