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Abstract

The 3D reconstruction of a face from a single frontal
image is an ill-posed problem. This is further accentu-
ated when the face image is captured under different poses
and/or complex illumination conditions. In this paper, we
aimto solve the shaperecovery problemfroma singlefacial
image under these challenging conditions. The local image
models for each patch of facial images and the local sur-
face models for each patch of 3D shape are learned using a
non-linear dimensionality reduction technique, and the cor-
respondences between these local models are then learned
by a manifold alignment method. By combining the local
shapes, the global shape of a face can be reconstructed di-
rectly using a single least-square system of equations. e
perform experiments on synthetic and real data, and vali-
date the algorithm against the ground truth. Experimental
results show that our method can yield accurate shape re-
covery from out-of-training samples with a variety of pose
and illumination variations.

1. Introduction

Human face modeling, due to its vast application from
biometric authentication to human-computer interactions
is a very active topic in computer vision research. Re-
covering the 3-dimensional shape from a single facial im-

minimum.

Another class of methods use machine learning tech-
nigues to reconstruct the 3D shape(e.g., [4, 11, 16]). These
Learning-based methods take advantage of the availably of
prior training data, i.e., face images with the correspond-
ing shapes, from which the relationship of shapes and facial
images can be inferred. The reconstruction quality depends
heavily on the training data sets. Given the need for high-
quality 3D models and accurate data labeling, obtaining or
reproducing good results is always difficult. In addition,
they suffer from the curse of dimensionality problem, i.e.,
the requirement of a vast amount of training data to achieve
accurate reconstruction. As a result, most of these meth-
ods focus solely on frontal images taken under ambient (or
fixed) illuminations to reduce the amount of training data
needed.

We present a novel approach in this paper to address
these issues in current single-view 3D model methods.
More specifically, the technical contributions of our matho
include:

e Instead of relying on explicit 2D-3D correspondences
in the training database, we apphanifold alignment
techniques to find the appropriate mapping between a
2D image and its corresponding shape. This eliminates
the need for tedious and manual labeling in the training
database.

e We introduce a new parametrization of the face model.

age is an under-constrained problem, since the same 2D
intensity images may be generated from different shapes.
Many algorithms have been developed to address this prob-
lem. Many approaches can be thought of as an extended
Shape-from-Shading approach, in which the 3D shape is
optimized so that its rendering matches the input image
(e.0., [1, 2, 5, 23]. Domain-specific constraints are typi-
cally added to reduce the solution space so that meaningful
results can be obtained. While some very impressive results
have been obtained, one of the biggest challenges of these
methods is that the optimization could be trapped in a local

Rather than recording the absolute position of ver-
tices, we record the per-triangle affine transformation
between an individual model and a reference model.
This parametrization is invariant to pose changes of 3D
shapes and implicitly encodes the fact that the vertices
cannot move independently from one another.

e We divide the image and 3D shapes into overlapping

patches and apply non-linear dimensionality reduction
(DR) method to each patch. Working on the patch level
has two advantages over the whole face: it is easier to
compensate illumination locally, and the images and



shapes within a patch have considerably smaller vari- strated.
ance [7]. Non-linear DR methods have been shownto  Statistical SFS methods [1, 23, 5] represent face shapes
be more effective for deformation [19]. in the parametric eigenspace by applying PCA to a training
) . set of 3D faces. [1] seeks the shape-coefficients by fitting
Using these novel components, our approach is able tohe pcA model to satisfy the image irradiance constraints,
deal with the face images with both varying |IIum|rrat|on while [23] recovers the shape by fitting the PCA model to
and very large pose variation-up40° profile view, which  image prightness data using constraints on the surface nor-
we believe has not been demonstrated before. Note that the, 5| direction provided by Lambert's Law. Dovgard and
res_ults are ba;ed ona training Qatabase \rvithout 2D-3D lagggi [5] reconstruct the shape by combining the geomet-
beling or any illumination variations, making our method yic constraint [29] and the statistical constraints [1].€5&
more accessrble._ Furthermore the global reconstructlorj iSmethods are computationally expensive in the fitting proce-
achieved by solving a linear system in closed form. No it- qyre for minimizing the error between the rendered facial
erative step is needed. _ ~_surface and the intensity of the input face. And the opti-
The rest of the paper is organized as follows. Section 2 pization may not converge.
reviews the related work on 3D shape recovery from a sin-  3p Morphable Model (3DMM) [2] developed by Blanz
gle image. Section 3 introduces the preprocessing of theanq vetter is a well-known face reconstruction method. It
training data, images of face and the corresponding shapesapp”es to the images and shapes separately to derive the
Section 4 describes the fundamentals of the Gaussian Profnear models. The 3D shape reconstruction is an opti-
cess Latent Variable Model (GP-LVM) and its application mization process which aims to minimize the difference
for learning the local image models and the local surface patween the rendered model image and the input image.
models. The learning of correspondences between thesgqyever, 3DMM suffers from the same problem as Statis-
models using the manifold alignment method is detailed in tica| SFS methods, long runtime and multiple local minima.
section 5. Section 6 presents _the reconstruction procedurerpe approach is presented to accelerate fitting procedure of
of the global shape by combining the learned local surfacezpnMm in [18].

shape;. The .experimental results z?md_analytic_analys_is are  gome learning-based methods have been developed for
shown in section 7, and the conclusion is made in section 8.ihe shape reconstruction. Reiter al. [16] recover the
3D shape from a NIR facial image by learning the canoni-
2. Related Work cal correlation analysis (CCA) mapping from near infrared
. . . (NIR) facial images to 3D shape, which are both trans-
A_classsrc m_fethoc_jstﬁ rgr:oveggg sgar;eSfrogj astrnglel_rm-_ formed to vectors. Lekt al. [11] present an approach
age is Shape-from-Shading ( ) [3, 28]. Direct applica (Tensor+CCA) similar to [16], while the mapping is learned

tion of SFS to face mode.hn.g has limited success since 8from the NIR tensor space to the 3D shapes. Castelan and
face has large albedo variation and both concave and con;

vex regions. Some SFS-based methods have been devet'anCOCk [4] apply coupled statistical models (CSM) to re-

oped to improve the shape recovery using specific Olornaincover surfaces from brightness images of faces. However,
constraints. The symmetric SFS method [29, 20] reCOn_these statistical learning approaches can handle the shape

structs the faces by exoloiting the bilateral svmmetry of recovery only from a frontal face image. Georghiades et al
u Oy explorting na ymmetry [6]. developed a generative method to handle pose and illu-
faces. Howeuver, it is difficult to establish the point-wise

; mination varations for face recognition. The change of pose
correspondence between the symmetric parts. Prados ._ . . .
: o . . is limited to be less than +/- 30 degrees, while we can deal
al. [15, 14] use a unique critical point over the face im-

age to enforce convexity for the shape recovery. All the +- 900" ) )
parameters of the light source, the surface reflectance and- 1raining Data Preprocessing
the camera have to be known. 2D Image Preprocessing All the training facial images
Kemelmacher and Basri [8] presented an example-basedire first automatically aligned to the reference images
SFS method for 3D shape recovery of a face from a sin- using the method in [26]. The indéxienotes the pose vari-
gle image using a single 3D reference model of a differ- ation. We use different reference images for different pose
ent person’s face. To achieve a desired reconstruction, theestimating a 3D shape from a facial image with pixels
method seeks the shape, albedo and lighting that best fit thean be viewed as a generic non-linear M-dimensional re-
input image while preserving the rough shape and albedogression problem. Even for small images, this dimensional-
of the reference model. While this method provides accu- ity is still too large. To overcome this dimensionality issu
rate reconstruction of novel faces, it makes the assumptionwe adopt local, low-dimensional estimation based on small
of Lambertian reflectance and rough alignment of the in- image patches. For each facial image of a specific pose, we
put image and the reference model. Similar methods in-divide itinto N, overlapping x ¢ rectangular patches. This
clude [22], results from only frontal face images are demon- patch representation not only reduces the problem dimen-



sion, but also makes illumination correction easier. ladte 4. The Local Image and Surface M odels
of applying global and complex methods (such as [17]), we
can use simply local image normalization to correct non-
uniform illumination or shading artifacts for each patch by

In the previous sections, we explain how we gathered
data as patches of facial images and 3D shapes. We will
show how to learn the local image and surface models from
such data. Generally, it is difficult to work with the data
in the original high-dimensional space, since the number
of training examples needed to to fully cover the space of
possible deformations grows exponentially with the num-
. . ber of dimentions. A large amount of research work on
or(xz,y) are, respectively, the mean and the variance of : . .

I(2,), and.J(z, y) is the output image patch. After that non-linear mgnlfolq embeddmg has been done_to handle
the curse of dimensionality. We adopt the Gaussian Pro-

histogram equalization is performed oitz, y). Figure 1 . . .
demonstrates the effectiveness of this approach. The cor<€ss Latent Variable Model (GP-LVM) [3], which provides

. - . a good generalization from very small data sets using non-
rected patches show |Itt|§ e_ffect Of Ilght_lng. Applying the Iingear m%dels. An important ch);racteristic of the GP-?_VM
same approach to an entire image is unlikely to be effective.. . T .

is the reconstruction of a new point in the latent space with
ease and accuracy. GP-LVM represents a Gaussian process
(GP) mapping from the latent spaee (low-dimensional
embedding) to the data spade (high-dimensional data
set), whereX = [xq,Xo,---,Xy]T € RV*? is the non-
linear embedding matrix whose rows represent the cor-
responding positions in the latent spacg, € R¢, and
Y = [y, Ya o, YN]T € RVXP s the data matrix in
which each row is a single training sampye,c ®”. For a
Figure 1. Local image patches before and after illuminatior detailed discuss on GP and GP-LVM, see [9, 12]. Given a
rection. kernel function for the GRK(x;, X; ), the likelihood of the
data given the latent positions is

I(Iay)_ml(xvy) (1)

J(Iay) = 0'](,@ y)

where I(z,y) is the original image patchy;(z,y) and

.

As shown in Figure 2, after image subdivision and

1 1
the normalization, we construct the dafy,; = p(Y[X,0) = ———exp(—=tr(K'YYT))
oy ey o]l d=1---N.Y, wherey. . V (2m)NPIK|P 2
[yh%l’ Yigko ’yh%N]' J = = w Erey; jx 2)
is the transformed column vector from the facial image re-

whereK denotes the kernel matrix whose elements are
defined by the kernel functiofK), ; = K(x;,X;), and

O is the kernel hyper-parameters. In our experiments we
use the form of the radial basis function (RBF) kernel,
which controls the output variance, the RBF support width,
the bias and the variance of the additive noise. GP-LVM
learning consists of maximizing the posterigX, ©]Y)
p(Y|X, ©)p(X)p(©) with respect to the latent spaxe and

the hyper-parametefs.

gion with pose and patch index of thek!” person, andV
is the number of subjects.

3D Shape Preprocessing We select one 3D facial shape
M, as a reference model, and every other facial model
Mp, h = 1...N, is registered taM,. using the coher-
ent point drift (CPD) algorithm. CPD is a probabilistic
method for non-rigid registration of point sets; details ca

be found in [13]. After the registration, each facial shape To reduce the computational complexity from an often

has the same number of vertices and triangles (in our ex- L 3 9 S
periments, 2500 vertices and 4624 triangles for each facialp.rOhlb'tlveo(N ) 1o O(NE*), sparse approximation tech-
nigues were proposed [10] and were proven more accurate

shape), which provides us convenience for later process- : . .
ing. Then, we parameterize the 3D shape model with de—than simply using a subset of the dafais the number of

formation transfer, which describes the shape transforma—pomts specified by the user in the sparse representation. Al

tion from the sourceM,) to the target ;) [24]. The ;pep;?;(il:i]r?tlor(l)sir::]svs Ive ;l}'\?f;erx:?hg éh(ifufnctlon \f/aIuTes at
source deformation is represented as a collection of affine 9p < : = [f1 1w

i i coxd
transformations tabulated for each triangle Mf., e.g., :gda:jhd?tif:r?gr Isgt\g?l\l::zaitlg?x,e tzsgtgggﬁiéﬁe?m du'c?ril
Tn = [Ay, -+ ,0,,]T, wherem is the number of trian- u ’ 9

gles, andg, denotes the affine transformation of tiié variables. Learning the sparse GP-LVM involves maximiz-

triangle. We also decompo3g, into N, overlapped parts. ing with respect tX, X, and® the posterior
With this, we construct the representations of 3D shapes p(Y|X,Xy,0)) = N(Kf,uKJqu,A +021) 3)

Yj = Yj1 Y65 YjN) @s shown in Figure 2, . 1 . .
] I ’ . whereA = diag[Kts — Kt uK, (Kt Ky ] anddiag(A) is a

whgre_yj_k is from the; ) patch Or_r’“ F:orrespondlngto the diagonal matrix whose elements match the diagonal of

facial image patches with patch indgxof the k" person.
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Figure 2. Data flow chart of our algorithnY.; ; is constructed from the image regions of all training facéb wose: and patch indey,
while Y ; is from the representations of all 3D shapes with patch index;,; andY ; are projected into the low dimensional space using
GP-LVM and generat¥; ; andX;. For eachX; ;, its correspondence.,, is found as the one with the minimal alignment error by the

manifold alignment algorithm.

Kty denotes the covariance function computed betwéen
and Xy, Ky y is the kernel matrix for the elements Xf,,
Kt is the symmetric covariance betwe¥nando? is the
noise variance.

Given a new test poimt,, the predictive distribution of
its high-dimensional positiop, can be obtained [9] by

p(y*|x*aY7XU7®):N(M*7of) (4)

where the mean and variance are
e = YTK K. (5)
02 =Ko — KITK K, (6)

whereK . is a vector with elements (x.., x; ) for latent po-
sitionsx; € Xy, andK ... = K(X,, X,).

Given a new test poinly,, its latent position can
be inferred in the sparse GP-LVM by minimizing
—Inp(y,, XY, Xy, ©), up to an additive constant [19],

_ Ay, = el

D 2 1 2
[(X*,y*) - 20’2(X*) +51HO’ (X*)+§HX*|| (7)

with the mean and variance given by

n(x.) = YT'K{ATK, (8)

0% (Xs) = Ko =KL (K i — a?ATHK, (9)

whereA = 2Ky + Ky iKf .

The localimage mod@; ; and the low dimensional em-
beddingX;; = [Xij1, - ,Xi;n] are learned by the in-
put image patche¥; ;, wherej = 1--- N,. Similarly, we

can get the local surface modef and the low-dimensional
embeddinX; = [X; 1, -, X;,~] fromthe input 3D patches
Y.

5. Learning the Correspondences

Previous methods in single-image 3D face modeling
usually require explicit registration between the 2D inmge
and the 3D models. Registration between different modal-
ity is a difficult problem. Typically this is done with user
interaction. However, given our intention to deal with both
pose and illumination variations, manually labeling ak th
images in the combinatory space is too time-consuming.
Rather we develop an automatic procedure to estimate the
correspondences via manifold alignment with procrustes
analysis [25].

More specifically, we have two collections of low-
dimensional embeddings, 2D image patcfi¥s; } and 3D
shape patche§(t}. We estimate a transformation (i.e. pro-
crustes analsyis) to best align one data configuradqnX
to anotherf(t). Each element oX; ; and)N(t is first trans-
lated so that its centroid is at the origin, by

Xigk = Xijk — Zszl Xijk/N, j=1---N,
(10)
Xi =Xep—Son  Xex/N, t=1---N,
Then, we try to aligrX;_; to all X,. The alignment error of
matchingX; ; and X, is defined by||X; ; — X\ :X¢Pi¢|| F,
where|| - || denotes Frobenius norm, ; is a re-scaling



Algorithm 1. Locally Estimating the Shape

|. Learning phase
Input: A set of N, training examples(Y; 1, \71),
T (Yinz7YNz)

Output: the N, local models of image patches and
shape patche®); ,---,0] y_andef,. .-,
@15\,2, the correspondences (patch index) and the
optimal mapping parameters between the models:
(tla Aopt Popt) ’ (th’ Aopt opt )

2,t17 7 1,11 LN, Y LN,

l:forj=1---N,

_ | I : d C | embeddi oD 2:  Learn the local image and shape model5;
Figure 3. (Top) Example low-dimensional em_ eddings 0_ 2D |m_ ande?, and get the low-dimensional
age patches and 3D shape patches from different subjedts wit 77 ~ -
pose changes; They are in different coordinate systemsta@p embeddings of; ; andY ;, X; ; andX;; by
the two embeddings after alignment. maximizing the posterior of Eq. 3.
3: end for
_ 4:forj=1---N,
factor to either stretch or shrin; ;, andP; , is an orthonor- 5: Learn the correspondencetgfand the optimal

mal matrix, defining a rotation and possibly a reflection. We
denote the correspondenceXf; asX;, with patch index
t;, which has the minimal alignment error wiky ;. That

is, the problem is simplified to find the patch indgxof

3D shape representations’;’ and the transforr®;" such

mapping parameters;”’ , P%’, between
X;; andX;, via Eq. 10 and 11.
6: end for
I1. Reconstruction phase

that Input: the test facial image patches,, - - - ,y3y.
a Output: the recoveredV, local shapesy], - - - ,YNZ
¢ ’Aopt7popt _ . xz ’_)\i X Pi 1: for J =1- N
t; bt )= rgt {1~»J{fil§1At,t,Pt,t 1Xis=iXePuell e 2: Compute the low-dimensional embeddirg, of
e (11) y; by minimizing the negative log likelihood of
It is shown that/\‘i’f;j = trace(X)/trace(X, X;) and Eqg. 7 with the learned local image mode; ;.
pfizt = UVT in [25], whereU, V andX. are given by the 3:  Mapx; intoX; of low-dimensional space using
’ ’ the Iearned\‘”"t andP?%’ via Eq. 12.
SVD ofX Xt , thatis,UxV SVD(X Xt ). Ly Ly
Recover the local shape )o)‘ Yy, by computing
Our method is based on the assumptron that correspond- J
. the mean of posterior in Eq. 4 with the learned
ing 2D and 3D embedding will have similar shape, yielding g
- : . . local shape modeb); .
the minimum amount of registration error. Figure 3 shows 5 end for i

that this assumption is likely to be valid.
Give a new poink; ; . in the embedding space &f; ;,
the pointx;, . corresponding ta; ; . can be computed by

P"Pt (12)

patches before the shape recovery via Eq. 1. After prepro-
cessing, the local shape for each patch can be estimated as
outlined in the reconstruction phase of Algorithm 1.

Global Reconstruction The recovered representative of
the local shapeg;, - - - , ¥y, need to be combined into the
In summary, from the training data set, the local im- representative of a global shage,= [y ---¥y_]. s* can
age models, the surface models, and their correspondencdse considered as a collection of vectorized affine transfor-
are learned using manifold embedding and alignment tech-mations of the triangles of the reference moddls The
nigues, as outlined in the learning phase of Algorithm problem that we need to solve here is to find the target
1. Then we can recover the corresponding local shapesshapeM, = {vy,--- ,V, } to satisfy the constraints. For
Vi, ,yN of a single image in the reconstruction phase of each target trrangle anl.,, and the affine transformation
algorithm 1. We first estimate the posef this image. We  can be written a§ = VV ! in terms of the original and
use the algorithm in [27], which is robust to large illumina- deformed vertices. The elements\f ! are coordinates
tion and pose variations. The facial image is then aligned toof the known, original vertices df1,., while the elements
the reference facial imagg with the estimated pose using of V are coordinates of the unknown deformed vertices of
the method in [26] and divided inty, overlapped patches, M,,. From this definition, we see that the element3 aire
Yi,-++,Yn,.- We have to correct the illumination of these linear combinations of the coordinates of the unknown de-

_ 0pt~
Xijox = Ait,

6. Shape Recovery from a Single Image



formed vertices. Thus we can formulate the problem as a
minimization problem [24]:
|M|
Jnin SIS - Tl (13)
oV

whereS; is the known source transformatiod/| is the
number of transformations in the constraint, andis the
unknown target transformation. Since the targettranséerm
tions are defined in terms of the unknown deformed target
vertices, the problem can be rewritten in the matrix form,

“min ||s* — AX||3 (14)
Vi...Vp

(d) (e) (f)
Figure 4. Shape recovery from a single frontal image w/olloca
illumination normalization. (a) the input frontal imagegwillu-
mination; (b,c) different views of the reconstruction résuithout
illumination normalization; (d,e,f) different views of éhrecon-
struction result with illumination normalization.

whereX is a vector of unknown deformed vertex coordi-
nates, and4 is a large, sparse matrix that relateso s*.
Thus, all the vertices of the target shayle¢ can be solved
in the least-square sense.

7. Experimental Results

Data Sets  To evaluate the performance of our approach, to run a controlled experiment. Our method is used to re-
we employed two data sets in our experiments. The first onecover their shapes from the synthetic images. This experi-
is a 3D face scans database [2], which contains shapes anghent allows us to show comparisons of our reconstructions

textures of 120 real faces obtained with a laser scanner. Weg the ground truth shapes. The quantitative accuracy of re-
generate the synthetic facial images from them with poseconstruction can be defined as  [11]:

and illumination changes. The pose changes horizontally 1

from —90° to +90° at 5 degree increments. The illumina- e=— Z | Dy (i) — Dy (i) (15)

tion varies horizontally from-45° to +45° with a granular- "o

ity of 5. The resolution of facial images2§6 x 256. Notice ~ WhereD,. is the recovered shape aiy is the ground truth

that the images provided in this database are notidentical t Shape, ana. is the number of vertices in the shape. Figure

the real albedos of the faces, due to noticeable effects ofo Shows a few results. For comparison we show the recon-

the lighting conditions. The second one is the CMU-PIE Structed shapes and the ground truth, and plot the alignment

database [21], which contains 68 individuals with 9 hor- Of the reconstructed shapes (in gray) with the ground truth

izontal and 3 vertical pose variations and 21 illumination Shapes (inblue). It can be seen that our algorithm can obtain

variations. accurate reconstructions in spite of illumination and pose
Among these images, we use 2052 synthetic facial im- variations. The reconstructed error in each pose is shown

ages as the training data set. They correspond to 108 subl? Figure 7, which shows that our algorithm is fairly in-

jects under 19 pose variations. The illumination condition Sensitive to pose variations and achieves the same level of

is fixed at a natural (ambient) setting. To learn the local im- accuracy as the methods [11, 4, 16] in all poses. The recov-

age and surface models, we use 60 inducing variables, an@'y accuracy for the frontal facial images in our method is
the latent dimensiod = S. slightly better than that of those methods, but our method

. . . . can handle illumination and pose changes.
Experiments Our first experiment shows the effective-

ness of our patch-based method for illumination varia- R€a&l Inputs We apply our method to several real images
tions. Note that our training database contains no sam-Tom CMU database using the same training data set. The
ple under changing illumination. Figure 4 shows a com- "econstructed results are shown in Figure 6.

parison without and with illumination normalization. We .

usem;(z,y) = o7(z,y) = 2 for synthetic images and 8- Conclusion

mr(x,y) = or(z,y) = 0.5 for real images in Eq. 1 to

correctthe illumination variation, and divided all the iges recovery from a single side-view image. We studied the
into \V; overlapped patches W'th the size7ot 7. The value limitation of related approaches in shape recovery foiafaci

of N. depends on the pose O,f images, e.g., 252 patches fofmages with illumination and pose variations and addressed
the frontal faces in our experiments. the problem using non-linear embedding and alignment. We
Synthetic Inputs We use the images and shapes from the conducted experiments to evaluate our approach by com-
remaining 12 subjects in the first database as the testiag datparing the reconstructed results to ground truth shapes and

In this paper we proposed a novel approach to the shape



(a)

(e) (f)

Figure 5. Results of shape recovery for the synthetic fatiages. (a) the inputimage rendered from 3D face scan dsgafiac) different
views of the ground truth shape; (d,e) the frontal view anig siew of the recovered 3D shape; (f) the aligned image ofjtband truth
shape (in blue) and the recovered shape (in gray), whicted o8 measuring the reconstruction accuracy.

by applying the method to various real images. The exper-0448185 and CPA-0811647, and Open Project of State Key
imental results demonstrated that our method is robust tolbab of CAD& CG, Zhejiang University (No.A0812).
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