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Abstract

The 3D reconstruction of a face from a single frontal
image is an ill-posed problem. This is further accentu-
ated when the face image is captured under different poses
and/or complex illumination conditions. In this paper, we
aim to solve the shape recovery problem from a single facial
image under these challenging conditions. The local image
models for each patch of facial images and the local sur-
face models for each patch of 3D shape are learned using a
non-linear dimensionality reduction technique, and the cor-
respondences between these local models are then learned
by a manifold alignment method. By combining the local
shapes, the global shape of a face can be reconstructed di-
rectly using a single least-square system of equations. We
perform experiments on synthetic and real data, and vali-
date the algorithm against the ground truth. Experimental
results show that our method can yield accurate shape re-
covery from out-of-training samples with a variety of pose
and illumination variations.

1. Introduction

Human face modeling, due to its vast application from
biometric authentication to human-computer interactions,
is a very active topic in computer vision research. Re-
covering the 3-dimensional shape from a single facial im-
age is an under-constrained problem, since the same 2D
intensity images may be generated from different shapes.
Many algorithms have been developed to address this prob-
lem. Many approaches can be thought of as an extended
Shape-from-Shading approach, in which the 3D shape is
optimized so that its rendering matches the input image
(e.g., [1, 2, 5, 23]. Domain-specific constraints are typi-
cally added to reduce the solution space so that meaningful
results can be obtained. While some very impressive results
have been obtained, one of the biggest challenges of these
methods is that the optimization could be trapped in a local

minimum.
Another class of methods use machine learning tech-

niques to reconstruct the 3D shape(e.g., [4, 11, 16]). These
Learning-based methods take advantage of the availably of
prior training data, i.e., face images with the correspond-
ing shapes, from which the relationship of shapes and facial
images can be inferred. The reconstruction quality depends
heavily on the training data sets. Given the need for high-
quality 3D models and accurate data labeling, obtaining or
reproducing good results is always difficult. In addition,
they suffer from the curse of dimensionality problem, i.e.,
the requirement of a vast amount of training data to achieve
accurate reconstruction. As a result, most of these meth-
ods focus solely on frontal images taken under ambient (or
fixed) illuminations to reduce the amount of training data
needed.

We present a novel approach in this paper to address
these issues in current single-view 3D model methods.
More specifically, the technical contributions of our method
include:

• Instead of relying on explicit 2D-3D correspondences
in the training database, we applymanifold alignment
techniques to find the appropriate mapping between a
2D image and its corresponding shape. This eliminates
the need for tedious and manual labeling in the training
database.

• We introduce a new parametrization of the face model.
Rather than recording the absolute position of ver-
tices, we record the per-triangle affine transformation
between an individual model and a reference model.
This parametrization is invariant to pose changes of 3D
shapes and implicitly encodes the fact that the vertices
cannot move independently from one another.

• We divide the image and 3D shapes into overlapping
patches and apply non-linear dimensionality reduction
(DR) method to each patch. Working on the patch level
has two advantages over the whole face: it is easier to
compensate illumination locally, and the images and



shapes within a patch have considerably smaller vari-
ance [7]. Non-linear DR methods have been shown to
be more effective for deformation [19].

Using these novel components, our approach is able to
deal with the face images with both varying illumination
and very large pose variation–up to90◦ profile view, which
we believe has not been demonstrated before. Note that the
results are based on a training database without 2D-3D la-
beling or any illumination variations, making our method
more accessible. Furthermore the global reconstruction is
achieved by solving a linear system in closed form. No it-
erative step is needed.

The rest of the paper is organized as follows. Section 2
reviews the related work on 3D shape recovery from a sin-
gle image. Section 3 introduces the preprocessing of the
training data, images of face and the corresponding shapes.
Section 4 describes the fundamentals of the Gaussian Pro-
cess Latent Variable Model (GP-LVM) and its application
for learning the local image models and the local surface
models. The learning of correspondences between these
models using the manifold alignment method is detailed in
section 5. Section 6 presents the reconstruction procedure
of the global shape by combining the learned local surface
shapes. The experimental results and analytic analysis are
shown in section 7, and the conclusion is made in section 8.

2. Related Work

A classic method to recover 3D shape from a single im-
age is Shape-from-Shading (SFS) [3, 28]. Direct applica-
tion of SFS to face modeling has limited success since a
face has large albedo variation and both concave and con-
vex regions. Some SFS-based methods have been devel-
oped to improve the shape recovery using specific domain
constraints. The symmetric SFS method [29, 20] recon-
structs the faces by exploiting the bilateral symmetry of
faces. However, it is difficult to establish the point-wise
correspondence between the symmetric parts. Pradoset
al. [15, 14] use a unique critical point over the face im-
age to enforce convexity for the shape recovery. All the
parameters of the light source, the surface reflectance and
the camera have to be known.

Kemelmacher and Basri [8] presented an example-based
SFS method for 3D shape recovery of a face from a sin-
gle image using a single 3D reference model of a differ-
ent person’s face. To achieve a desired reconstruction, the
method seeks the shape, albedo and lighting that best fit the
input image while preserving the rough shape and albedo
of the reference model. While this method provides accu-
rate reconstruction of novel faces, it makes the assumption
of Lambertian reflectance and rough alignment of the in-
put image and the reference model. Similar methods in-
clude [22], results from only frontal face images are demon-

strated.
Statistical SFS methods [1, 23, 5] represent face shapes

in the parametric eigenspace by applying PCA to a training
set of 3D faces. [1] seeks the shape-coefficients by fitting
the PCA model to satisfy the image irradiance constraints,
while [23] recovers the shape by fitting the PCA model to
image brightness data using constraints on the surface nor-
mal direction provided by Lambert’s Law. Dovgard and
Basri [5] reconstruct the shape by combining the geomet-
ric constraint [29] and the statistical constraints [1]. These
methods are computationally expensive in the fitting proce-
dure for minimizing the error between the rendered facial
surface and the intensity of the input face. And the opti-
mization may not converge.

3D Morphable Model (3DMM) [2] developed by Blanz
and Vetter is a well-known face reconstruction method. It
applies to the images and shapes separately to derive the
linear models. The 3D shape reconstruction is an opti-
mization process which aims to minimize the difference
between the rendered model image and the input image.
However, 3DMM suffers from the same problem as Statis-
tical SFS methods, long runtime and multiple local minima.
The approach is presented to accelerate fitting procedure of
3DMM in [18].

Some learning-based methods have been developed for
the shape reconstruction. Reiteret al. [16] recover the
3D shape from a NIR facial image by learning the canoni-
cal correlation analysis (CCA) mapping from near infrared
(NIR) facial images to 3D shape, which are both trans-
formed to vectors. Leiet al. [11] present an approach
(Tensor+CCA) similar to [16], while the mapping is learned
from the NIR tensor space to the 3D shapes. Castelan and
Hancock [4] apply coupled statistical models (CSM) to re-
cover surfaces from brightness images of faces. However,
these statistical learning approaches can handle the shape
recovery only from a frontal face image. Georghiades et al
[6]. developed a generative method to handle pose and illu-
mination varations for face recognition. The change of pose
is limited to be less than +/- 30 degrees, while we can deal
+/- 90◦.

3. Training Data Preprocessing
2D Image Preprocessing All the training facial images
are first automatically aligned to the reference imagesIr

i

using the method in [26]. The indexi denotes the pose vari-
ation. We use different reference images for different poses.
Estimating a 3D shape from a facial image withM pixels
can be viewed as a generic non-linear M-dimensional re-
gression problem. Even for small images, this dimensional-
ity is still too large. To overcome this dimensionality issue,
we adopt local, low-dimensional estimation based on small
image patches. For each facial image of a specific pose, we
divide it intoNz overlappingp×q rectangular patches. This
patch representation not only reduces the problem dimen-



sion, but also makes illumination correction easier. Instead
of applying global and complex methods (such as [17]), we
can use simply local image normalization to correct non-
uniform illumination or shading artifacts for each patch by:

J(x, y) =
I(x, y) − mI(x, y)

σI(x, y)
(1)

whereI(x, y) is the original image patch,mI(x, y) and
σI(x, y) are, respectively, the mean and the variance of
I(x, y), andJ(x, y) is the output image patch. After that
histogram equalization is performed onJ(x, y). Figure 1
demonstrates the effectiveness of this approach. The cor-
rected patches show little effect of lighting. Applying the
same approach to an entire image is unlikely to be effective.

Figure 1. Local image patches before and after illuminationcor-
rection.

As shown in Figure 2, after image subdivision and
the normalization, we construct the data{Yi,j =
[yi,j,1, · · · , yi,j,k, · · · , yi,j,N ], j = 1 · · ·Nz}, whereyi,j,k

is the transformed column vector from the facial image re-
gion with posei and patch indexj of thekth person, andN
is the number of subjects.

3D Shape Preprocessing We select one 3D facial shape
Mr as a reference model, and every other facial model
Mh, h = 1 . . .N , is registered toMr using the coher-
ent point drift (CPD) algorithm. CPD is a probabilistic
method for non-rigid registration of point sets; details can
be found in [13]. After the registration, each facial shape
has the same number of vertices and triangles (in our ex-
periments, 2500 vertices and 4624 triangles for each facial
shape), which provides us convenience for later process-
ing. Then, we parameterize the 3D shape model with de-
formation transfer, which describes the shape transforma-
tion from the source (Mr) to the target (Mh) [24]. The
source deformation is represented as a collection of affine
transformations tabulated for each triangle ofMr, e.g.,
Th = [q

1
, · · · , qm]T , wherem is the number of trian-

gles, andqv denotes the affine transformation of thevth

triangle. We also decomposeTh into Nz overlapped parts.
With this, we construct the representations of 3D shapes
Ỹj = [ỹj,1, · · · , ỹj,k, · · · , ỹj,N ], as shown in Figure 2,
wherẽyj,k is from thejth patch ofTk, corresponding to the
facial image patches with patch indexj of thekth person.

4. The Local Image and Surface Models

In the previous sections, we explain how we gathered
data as patches of facial images and 3D shapes. We will
show how to learn the local image and surface models from
such data. Generally, it is difficult to work with the data
in the original high-dimensional space, since the number
of training examples needed to to fully cover the space of
possible deformations grows exponentially with the num-
ber of dimentions. A large amount of research work on
non-linear manifold embedding has been done to handle
the curse of dimensionality. We adopt the Gaussian Pro-
cess Latent Variable Model (GP-LVM) [9], which provides
a good generalization from very small data sets using non-
linear models. An important characteristic of the GP-LVM
is the reconstruction of a new point in the latent space with
ease and accuracy. GP-LVM represents a Gaussian process
(GP) mapping from the latent spaceX (low-dimensional
embedding) to the data spaceY (high-dimensional data
set), whereX = [x1, x2, · · · , xN ]T ∈ ℜN×d is the non-
linear embedding matrix whose rows represent the cor-
responding positions in the latent space,xi ∈ ℜd, and
Y = [y

1
, y

2
, · · · , yN ]T ∈ ℜN×D is the data matrix in

which each row is a single training sample,yi ∈ ℜD. For a
detailed discuss on GP and GP-LVM, see [9, 12]. Given a
kernel function for the GP,K(xi, xj), the likelihood of the
data given the latent positions is

p(Y|X, Θ) =
1√

(2π)ND|K|D
exp(−

1

2
tr(K−1YYT ))

(2)
whereK denotes the kernel matrix whose elements are

defined by the kernel function(K)i,j = K(xi, xj), and
Θ is the kernel hyper-parameters. In our experiments we
use the form of the radial basis function (RBF) kernel,
which controls the output variance, the RBF support width,
the bias and the variance of the additive noise. GP-LVM
learning consists of maximizing the posteriorp(X, Θ|Y) ∝
p(Y|X, Θ)p(X)p(Θ) with respect to the latent spaceX, and
the hyper-parametersΘ.

To reduce the computational complexity from an often
prohibitiveO(N3) to O(Nk2), sparse approximation tech-
niques were proposed [10] and were proven more accurate
than simply using a subset of the data.k is the number of
points specified by the user in the sparse representation. All
approximations involve augmenting the function values at
the training points,F ∈ ℜN×d, with F = [f1, · · · , fN ]T

and the function values at the test points,F∗ ∈ ℜ∞×d, by
an additional set of variables,Xu ∈ ℜk×d, called inducing
variables. Learning the sparse GP-LVM involves maximiz-
ing with respect toX, Xu andΘ the posterior

p(Y|X, Xu, Θ)) = N(Kf,uK−1

u,uXu, Λ + σ2I) (3)

whereΛ = diag[Kf,f − Kf,uK−1

u,uKf,fKu,f] anddiag(A) is a
diagonal matrix whose elements match the diagonal ofA,
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Figure 2. Data flow chart of our algorithm.Yi,j is constructed from the image regions of all training faces with posei and patch indexj,
while Ỹj is from the representations of all 3D shapes with patch indexj. Yi,j andỸj are projected into the low dimensional space using
GP-LVM and generateXi,j andX̃j . For eachXi,j , its correspondence,̃Xtj

, is found as the one with the minimal alignment error by the
manifold alignment algorithm.

Kf,u denotes the covariance function computed betweenX
andXu, Ku,u is the kernel matrix for the elements ofXu,
Kf,f is the symmetric covariance betweenX, andσ2 is the
noise variance.

Given a new test pointx∗, the predictive distribution of
its high-dimensional positiony∗ can be obtained [9] by

p(y∗|x∗, Y, Xu, Θ) = N(µ∗, σ
2

∗) (4)

where the mean and variance are

µ∗ = YT K−1

u,uK∗ (5)

σ2

∗ = K∗∗ − KT
∗ K−1

u,uK∗ (6)

whereK∗ is a vector with elementsK(x∗, xi) for latent po-
sitionsxi ∈ Xu, andK∗∗ = K(x∗, x∗).

Given a new test pointy∗, its latent position can
be inferred in the sparse GP-LVM by minimizing
− ln p(y∗, x∗|Y, Xu, Θ), up to an additive constant [19],

ℓ(x∗, y∗) =
‖y∗ − µ(x∗)‖

2

2σ2(x∗)
+

D

2
lnσ2(x∗) +

1

2
‖x∗‖2 (7)

with the mean and variance given by

µ(x∗) = YT KT
f,uA−1K∗ (8)

σ2(x∗) = K∗∗ − KT
∗ (K−1

u,u − σ2A−1)K∗ (9)

whereA = σ2Ku,u + Ku,fKf,u.
The local image modelΘI

i,j and the low dimensional em-
beddingXi,j = [xi,j,1, · · · , xi,j,N ] are learned by the in-
put image patchesYi,j , wherej = 1 · · ·Nz. Similarly, we

can get the local surface modelΘS
t and the low-dimensional

embedding̃Xt = [x̃t,1, · · · , x̃t,N ] from the input 3D patches
Ỹt.

5. Learning the Correspondences

Previous methods in single-image 3D face modeling
usually require explicit registration between the 2D images
and the 3D models. Registration between different modal-
ity is a difficult problem. Typically this is done with user
interaction. However, given our intention to deal with both
pose and illumination variations, manually labeling all the
images in the combinatory space is too time-consuming.
Rather we develop an automatic procedure to estimate the
correspondences via manifold alignment with procrustes
analysis [25].

More specifically, we have two collections of low-
dimensional embeddings, 2D image patches{Xi,j} and 3D
shape patches{X̃t}. We estimate a transformation (i.e. pro-
crustes analsyis) to best align one data configuration (Xi,j)
to another (̃Xt). Each element ofXi,j andX̃t is first trans-
lated so that its centroid is at the origin, by

xi,j,k = xi,j,k −
∑N

k=1
xi,j,k/N, j = 1 · · ·Nz

x̃t = x̃t,k −
∑N

k=1
x̃t,k/N, t = 1 · · ·Nz

(10)

Then, we try to alignXi,j to all X̃t. The alignment error of
matchingXi,j andX̃t is defined by‖Xi,j − λi,tX̃tPi,t‖F ,
where‖ · ‖F denotes Frobenius norm,λi,t is a re-scaling
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Figure 3. (Top) Example low-dimensional embeddings of 2D im-
age patches and 3D shape patches from different subjects with
pose changes; They are in different coordinate systems. (Bottom)
the two embeddings after alignment.

factor to either stretch or shrink̃Xi,t, andPi,t is an orthonor-
mal matrix, defining a rotation and possibly a reflection. We
denote the correspondence ofXi,j asX̃tj

with patch index
tj , which has the minimal alignment error withXi,j . That
is, the problem is simplified to find the patch indextj of
3D shape representations,λopt

i,tj
and the transformPopt

i,tj
such

that

{tj, λ
opt
i,tj

, Popt
i,tj

} = arg min
t∈{1···Nz},λi,t,Pi,t

‖Xi,j−λi,tX̃tPi,t‖F

(11)

It is shown thatλopt
i,tj

= trace(Σ)/trace(X̃
T

tj
X̃tj

) and

Popt
i,tj

= UVT in [25], whereU, V andΣ are given by the

SVD of X̃
T

tj
X̃tj

, that is,UΣVT = SV D(X̃
T

tj
X̃tj

).
Our method is based on the assumption that correspond-

ing 2D and 3D embedding will have similar shape, yielding
the minimum amount of registration error. Figure 3 shows
that this assumption is likely to be valid.

Give a new pointxi,j,∗ in the embedding space ofXi,j ,
the point̃xtj ,∗ corresponding toxi,j,∗ can be computed by

xi,j,∗ = λopt
i,tj

x̃tj ,∗Popt
i,tj

(12)

6. Shape Recovery from a Single Image

In summary, from the training data set, the local im-
age models, the surface models, and their correspondences
are learned using manifold embedding and alignment tech-
niques, as outlined in the learning phase of Algorithm
1. Then we can recover the corresponding local shapes,
ỹ∗
1
, · · · , ỹ∗Nz

of a single image in the reconstruction phase of
algorithm 1. We first estimate the posei of this image. We
use the algorithm in [27], which is robust to large illumina-
tion and pose variations. The facial image is then aligned to
the reference facial imageIr

i with the estimated pose using
the method in [26] and divided intoNz overlapped patches,
y∗
1
, · · · , y∗Nz

. We have to correct the illumination of these

Algorithm 1. Locally Estimating the Shape

I. Learning phase
Input: A set ofNz training examples,(Yi,1, Ỹ1),

· · · , (Yi,Nz
, ỸNz

)
Output: theNz local models of image patches and

shape patches,ΘI
i,1, · · · , ΘI

i,Nz
andΘS

1
, · · · ,

ΘS
Nz

; the correspondences (patch index) and the
optimal mapping parameters between the models:
(t1, λ

opt
i,t1

, Popt
i,t1

), · · · , (tNz
, λopt

i,tNz
, Popt

i,tNz
)

1: for j = 1 · · ·Nz

2: Learn the local image and shape models,ΘI
i,j

andΘS
j , and get the low-dimensional

embeddings ofYi,j andỸj , Xi,j andX̃j by
maximizing the posterior of Eq. 3.

3: end for
4: for j = 1 · · ·Nz

5: Learn the correspondence oftj and the optimal
mapping parameters:λopt

i,tj
, Popt

i,tj
, between

Xi,j andX̃i,tj
via Eq. 10 and 11.

6: end for
II. Reconstruction phase

Input: the test facial image patches,y∗
1
, · · · , y∗Nz

Output: the recoveredNz local shapes,̃y∗
1
, · · · , ỹ∗

Nz

1: for j = 1 · · ·Nz

2: Compute the low-dimensional embedding,x∗
j , of

y∗
j by minimizing the negative log likelihood of

Eq. 7 with the learned local image model,ΘI
i,j .

3: Mapx∗
j into x̃∗j of low-dimensional space using

the learnedλopt
i,tj

andPopt
i,tj

via Eq. 12.
4: Recover the local shape ofx̃∗j , ỹ∗j , by computing

the mean of posterior in Eq. 4 with the learned
local shape model,ΘS

tj
.

5: end for

patches before the shape recovery via Eq. 1. After prepro-
cessing, the local shape for each patch can be estimated as
outlined in the reconstruction phase of Algorithm 1.

Global Reconstruction The recovered representative of
the local shapes,̃y∗

1
, · · · , ỹ∗

Nz
, need to be combined into the

representative of a global shape,s∗ = [ỹ∗
1
· · · ỹ∗Nz

]. s∗ can
be considered as a collection of vectorized affine transfor-
mations of the triangles of the reference modelsMr. The
problem that we need to solve here is to find the target
shapeMu = {ṽ1, · · · , ṽn} to satisfy the constraintss∗. For
each target triangle ofMu, and the affine transformation
can be written asT = ṼV−1 in terms of the original and
deformed vertices. The elements ofV−1 are coordinates
of the known, original vertices ofMr, while the elements
of Ṽ are coordinates of the unknown deformed vertices of
Mu. From this definition, we see that the elements ofT are
linear combinations of the coordinates of the unknown de-



formed vertices. Thus we can formulate the problem as a
minimization problem [24]:

min
ṽ1...̃vn

|M|∑

j=1

‖Sj − Tj‖
2

F (13)

whereSj is the known source transformation,|M | is the
number of transformations in the constraint, andTj is the
unknown target transformation. Since the target transforma-
tions are defined in terms of the unknown deformed target
vertices, the problem can be rewritten in the matrix form,

min
ṽ1...̃vn

‖s∗ − Ax̃‖2

2
(14)

wherex̃ is a vector of unknown deformed vertex coordi-
nates, andA is a large, sparse matrix that relatesx̃ to s∗.
Thus, all the vertices of the target shapeMu can be solved
in the least-square sense.

7. Experimental Results
Data Sets To evaluate the performance of our approach,
we employed two data sets in our experiments. The first one
is a 3D face scans database [2], which contains shapes and
textures of 120 real faces obtained with a laser scanner. We
generate the synthetic facial images from them with pose
and illumination changes. The pose changes horizontally
from −90◦ to +90◦ at 5 degree increments. The illumina-
tion varies horizontally from−45◦ to +45◦ with a granular-
ity of 5. The resolution of facial images is256×256. Notice
that the images provided in this database are not identical to
the real albedos of the faces, due to noticeable effects of
the lighting conditions. The second one is the CMU-PIE
database [21], which contains 68 individuals with 9 hor-
izontal and 3 vertical pose variations and 21 illumination
variations.

Among these images, we use 2052 synthetic facial im-
ages as the training data set. They correspond to 108 sub-
jects under 19 pose variations. The illumination condition
is fixed at a natural (ambient) setting. To learn the local im-
age and surface models, we use 60 inducing variables, and
the latent dimensiond = 8.

Experiments Our first experiment shows the effective-
ness of our patch-based method for illumination varia-
tions. Note that our training database contains no sam-
ple under changing illumination. Figure 4 shows a com-
parison without and with illumination normalization. We
usemI(x, y) = σI(x, y) = 2 for synthetic images and
mI(x, y) = σI(x, y) = 0.5 for real images in Eq. 1 to
correct the illumination variation, and divided all the images
intoNz overlapped patches with the size of7×7. The value
of Nz depends on the pose of images, e.g., 252 patches for
the frontal faces in our experiments.

Synthetic Inputs We use the images and shapes from the
remaining 12 subjects in the first database as the testing data

(a) (b) (c)

(d) (e) (f)

Figure 4. Shape recovery from a single frontal image w/o local
illumination normalization. (a) the input frontal images with illu-
mination; (b,c) different views of the reconstruction result without
illumination normalization; (d,e,f) different views of the recon-
struction result with illumination normalization.

to run a controlled experiment. Our method is used to re-
cover their shapes from the synthetic images. This experi-
ment allows us to show comparisons of our reconstructions
to the ground truth shapes. The quantitative accuracy of re-
construction can be defined as [11]:

ε =
1

n

n∑

i=1

|Dr(i) − Dt(i)| (15)

whereDr is the recovered shape andDt is the ground truth
shape, andn is the number of vertices in the shape. Figure
5 shows a few results. For comparison we show the recon-
structed shapes and the ground truth, and plot the alignment
of the reconstructed shapes (in gray) with the ground truth
shapes (in blue). It can be seen that our algorithm can obtain
accurate reconstructions in spite of illumination and pose
variations. The reconstructed error in each pose is shown
in Figure 7, which shows that our algorithm is fairly in-
sensitive to pose variations and achieves the same level of
accuracy as the methods [11, 4, 16] in all poses. The recov-
ery accuracy for the frontal facial images in our method is
slightly better than that of those methods, but our method
can handle illumination and pose changes.

Real Inputs We apply our method to several real images
from CMU database using the same training data set. The
reconstructed results are shown in Figure 6.

8. Conclusion

In this paper we proposed a novel approach to the shape
recovery from a single side-view image. We studied the
limitation of related approaches in shape recovery for facial
images with illumination and pose variations and addressed
the problem using non-linear embedding and alignment. We
conducted experiments to evaluate our approach by com-
paring the reconstructed results to ground truth shapes and
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Figure 5. Results of shape recovery for the synthetic facialimages. (a) the input image rendered from 3D face scan database; (b,c) different
views of the ground truth shape; (d,e) the frontal view and side view of the recovered 3D shape; (f) the aligned image of theground truth
shape (in blue) and the recovered shape (in gray), which is used for measuring the reconstruction accuracy.

by applying the method to various real images. The exper-
imental results demonstrated that our method is robust to
variation in pose, illumination and identity of individuals.
Looking into the future, we would like to further evaluate
the performance of our approach with more appropriate real
training data. In addition, we plan to extend our approach to
reconstruct the shapes of other objects, such as the human
body.
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