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Abstract We study the global dimensions of the coherent functors over two categories that are linked

by a pair of adjoint functors. This idea is then exploited to compare the representation dimensions of

two algebras. In particular, we show that if an Artin algebra is switched from the other, then they

have the same representation dimension.
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1 Introduction

The importance of adjoint pairs of functors in the category theory, homological algebra and
the representation theory is well known. As we know, an adjoint pair of functors between two
categories provides a bridge to transfer information on morphism sets of one category to that
of the other, and thus produces an elegant linkage between two categories. This philosophy is
widely used in establishing a homological and structural relationship between two categories.

As one of the homological invariants of algebras, Auslander introduced in [1] the notion of
representation dimension for Artin algebras. It measures homologically how far away an Artin
algebra is from representation-finite algebras, a class of algebras which are better understood
than the other class of algebras in the representation theory. Unfortunately, before 1998 there
were not many investigations on this subject. Since 1998, many advances on the representation
dimension have been made. The recent developments on this subject established many inter-
esting connections with different problems in representation theory, as well as with other areas.
In particular, there is a connection of representation dimension with the finitistic dimension
conjecture (see [2], [3, Theorem 4.2]).

In this paper, we try to use the idea of adjoint functors to compare the representation
dimension or the global dimension of an Artin algebra with that of the other. First, we establish
results on the relationship of global dimensions in terms of category language. Among them is
the following result:

Theorem 1.1 Suppose C and D are additive k-categories, and F : C −→ D and G : D −→ C
are an adjoint pair of additive functors with F a left adjoint and G a right adjoint. We denote
by Ĉ the category of coherent functors over C . Then :

(1) Suppose that gl.dim(D̂) ≥ 2. If G is full and quasi-dense, then gl.dim(Ĉ ) ≤ gl.dim(D̂).
(2) Suppose that gl.dim(Ĉ ) ≥ 2. If F and G are dense, then gl.dim(D̂) ≤ gl.dim(Ĉ ).
(3) Suppose that gl.dim(Ĉ ) ≥ 2, gl.dim(D̂) ≥ 2, and F has a left adjoint functor. If both

F and G are full and quasi-dense, then gl.dim(Ĉ ) = gl.dim(D̂).
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As applications we apply our results to group algebras with trivial intersection subgroups,
and stable equivalences of Morita type between self-injective algebras.

Next, we state our results on the representation dimension.
Theorem 1.2 Let A be an Artin algebra. Then :

(1) Suppose that there is an ideal I in A such that I rad(A) = 0 = rad(A)I. If A/I is
representation-finite, then rep.dim(A) ≤ 3.

(2) Suppose T = τ−1S ⊕ P is an APR-tilting module with S a simple A-module. If
inj.dim(S) = 1, then rep.dim(A) = rep.dim(B), where B = End(AT ).

(3) Suppose T = τ (I) ⊕ Q is an APR-cotilting module with I a simple A-module. If
proj.dim(I) = 1, then rep.dim(B) = rep.dim(A), where B = End(AT ).

Note that the algebras A and B in Theorem 1.2 may not be stably equivalent in general.
The paper is detailed in the following way. In Section 2 we recall some definitions and basic

results concerning the adjoint functors and coherent functors. In Section 3 we investigate the
global dimensions of coherent functors defined on the categories linked by an adjoint pair of
functors. In Section 4 we apply our results to both group algebras and stable equivalences of
Morita type. In Section 5 we study the representation dimensions of Artin algebras and their
factor algebras by using a canonical adjoint pair of functors. In Section 6 we investigate the
representation dimension via APR-tilting functors which are a special kind of adjoint pairs of
functors.

2 Preliminary

In this section we recall some basic definitions and results on adjoint functors, which are needed
in our discussion.

Given an Artin algebra A, we denote by rad(A) the Jacobson radical of A, and by A-mod
the category of all finitely generated left A-modules. Given an A-module M in A-mod, we
denote by proj.dim(M) the projective dimension of M . The global dimension of A, denoted by
gl.dim(A), is the supremum of all proj.dim(M) with M ∈ A-mod.

For any Artin algebra A, Auslander in [1] defined the representation dimension of A, denoted
by rep.dim(A), as follows:

rep.dim(A) = inf {gl.dim(Λ) | Λ is an Artin algebra with dom.dim(Λ) ≥ 2 and End(ΛT ) is

Morita equivalent to A, where T is the maximal injective summand of Λ}.
As was pointed out in [1], this is equivalent to

rep.dim(A) = inf{gl.dim End(AM) |M is a generator-cogenerator for A-mod},
where an A-module M is called a generator for A-mod if each module in A-mod is a homo-
morphic image of a direct sum of copies of M , and a cogenerator for A-mod if each module in
A-mod is a submodule of a direct sum of copies of M . Clearly, rep.dim(A) = rep.dim(Aop),
where Aop stands for the opposite algebra of A.

Representation dimension was used in [1] to describe the representation-finite algebras,
namely, an Artin algebra is representation-finite if and only if its representation dimension is
at most 2. Recently, there are some advances on this subject [3–8]. As have been seen from the
definition, the study of representation dimension involves the global dimension, and the latter
is linked to coherent functors which have been used to solve problems in algebraic space curves
recently by Hartshorne [9]. First, let us recall the definition of coherent functors.
Definition 2.1 Given an additive k-category A , we say that a functor F : A op −→ Ab is
coherent if there is an exact sequence (−, A1) −→ (−, A0) −→ F −→ 0 with Ai ∈ A for i = 0, 1.
Here Ab is the category of all Abelian groups, and (−, Ai) stands for the functor HomA (−, Ai).
The full subcategory of the functor category (A op, Ab) consisting of all coherent functors, is
denoted by Â .
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By Yoneda’s lemma, the projective objects in Â are of the form (−, X) with X an object
in A , and each coherent functor F can be determined by a morphism f : A1 −→ A0, that is,

there is an exact sequence (−, A1)
(−,f)−→ (,A0) −→ F −→ 0 in A . As in the case of a module

category, we may define the global dimension of the category Â to be the supremum of the
projective dimensions of all functors in Â . For more information on coherent functors we refer
to [10] and [9].

The precise connection between the global dimension of an Artin algebra and that of the
coherent functor category is recorded in the following lemma due to Auslander in [11].

Lemma 2.2 Let M be in A-mod. Then the category ̂add(M) and End(AM)-mod are equiv-
alent. In particular, gl.dim(End(AM)) = gl.dim( ̂add(M)).

Thus the study of the global dimensions of the categories of coherent functors over two
categories, which are linked by a pair of adjoint functors, would have a potential application
to the comparison of the representation dimensions of Artin algebras. The following lemma
is well-known in [11] for the calculation of global dimensions for endomorphism algebras of
modules that are generator-cogenerators.

Lemma 2.3 Let A be an Artin algebra and let M be a generator-cogenerator for A-mod.
Suppose m is a non-negative integer. Then gl.dim(End(AM)) ≤ m if and only if for each
A-module Y there is an exact sequence

0 −→Mm−2 −→ · · · −→M1 −→M0 −→ Y −→ 0,

with Mj ∈ add(AM) for j = 0, . . . ., m− 2, such that

0 −→ HomA(X, Mm−2) −→ · · · −→ HomA(X, M1) −→ HomA(X, M0) −→ HomA(X, Y ) −→ 0

is exact for all X ∈ add(AM).

The dual statement of the above lemma is left to the reader. Now, let us recall the definition
of adjoint functors from a standard text book (for example see [12]).

Definition 2.4 Let C and D be two categories. Let F : C −→ D and G : D −→ C be two
functors. If, for each pair of objects x in C and y in D , there is a natural bijection

ϕx,y : HomD(Fx, y) −→ HomC (x, Gy),

then we say that F is left adjoint to G, and G is right adjoint to F . In this case, we denote the
pair by (F, G), or (F, G, ϕ).

Given a category C we may form the opposite category C op of C . Note that if (F, G, ϕ) is
an adjoint pair between C and D , then (G, F, ϕ−1) is an adjoint pair between C op and Dop.

Given an adjoint pair (F, G, ϕ) : C −→ D , there are two natural transformations: the unit
η from IdC to GF , and the co-unit ε from FG to IdD . Since (F, G, ϕ) and (F, G, η, ε) are
determined mutually, we denote the adjoint pair (F, G, ϕ) sometimes by (F, G, η, ε).

The following lemma collects some results on adjoint functors (see [13, Chapter IV]):

Lemma 2.5 Let (F, G, η, ε) be an adjoint pair of functors between categories C and D .
(1) (G, F, ε, η) is an adjoint pair between C op and Dop.
(2) G is faithful if and only if every counit εC of the adjunction is epi. G is full if and only

if each εC is split epi.

(3) The composition F
Fη−→ FGF

εF−→ F and the composition F
Fη−→ FGF

εF−→ F are
identity.

(4) For morphisms f : Fc −→ d, g : c −→ Gd, h : c′ −→ c and k : d −→ d′, with c, c′ objects
in C and d, d′ objects in D , we have

ϕ(fk) = (ϕf)Gk, ϕ((Fh)f) = h(ϕf), ϕf = ηcGf, ϕ−1(g) = (Fg)εd.
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(5) If either F or G is full, then Gε : GFG −→ G is invertible with inverse ηG : G −→
GFG.

Finally, we recall the definition of a stable module category. Given an algebra A, the
stable category A-mod of A is defined as follows. The objects of A-mod are the same as those
of A-mod, and the morphisms between two objects X and Y are given by HomA(X, Y ) =
HomA(X, Y )/P(X, Y ), where P(X, Y ) is the subspace of HomA(X, Y ) consisting of those
homomorphisms from X to Y which factor through a projective A-module.

For a detailed study on stable module categories one may refer to [14]. For more information
and basic knowledge on homological algebra and representation theory of Artin algebras we refer
to the excellent books [15] and [16], respectively.

3 Adjoint Functors and Global Dimensions
As we have seen, the definition of representation dimension of an Artin algebra is closely related
to global dimension. So it is of interest to develop a theory about the relationship of global
dimensions of coherent functor categories linked by an adjoint pair of functors. This section is
devoted to this purpose.

Let us start our consideration with an inclusion functor.
Theorem 3.1 Let C be an additive k-category and C ′ a full subcategory of C . If the inclusion
functor admits a right adjoint functor F : C −→ C ′ then gl.dim(Ĉ ′) ≤ gl.dim(Ĉ ).

Proof If gl.dim(Ĉ ) is infinite, then there is nothing to prove. So we assume that gl.dim(Ĉ ) =
m <∞.

Let G be a coherent functor in Ĉ ′, that is, there is a morphism f : Y ′
1 −→ Y ′

0 in C ′ such
that

C ′(−, Y ′
1) −→ C ′(−, Y ′

0) −→ G −→ 0

is exact on C ′. Since Y ′
1 and Y ′

0 are also objects in C , we may extend this functor G to a functor
Ḡ in Ĉ such that the restriction of Ḡ to C ′ is the given functor G. Since the global dimension
of Ĉ is m, we have the following exact sequence of functors on C :

0 −→ C (−, Ym) −→ · · · −→ C (−, Y2) −→ C (−, Y ′
1) −→ C (−, Y ′

0) −→ Ḡ −→ 0,

with Yj in C for 2 ≤ j ≤ m. Note that F is a right adjoint functor of the inclusion functor.
This implies that for all Y ′ ∈ C ′ and X ∈ C the adjoint isomorphism C ′(Y ′, FX) � C (Y ′, X)
is functorial. Since C ′ is a full subcategory of C , we have the following exact commutative
diagram for all Y ′ ∈ C ′:

0 −→ C (Y ′, Ym) → · · · → C (Y ′, Y2) −→ C (Y ′, Y ′
1) −→ C (Y ′, Y ′

0) −→ G→ 0

| 	 | 	
0 −→ C ′(Y ′, FYm) → · · · → C ′(Y ′, FY2).

Note that FYj is in C ′. Thus we have an exact sequence

0→ C ′(Y ′, FYm)→ · · · → C ′(Y ′, FY2)→ C ′(Y ′, Y ′
1)→ C ′(Y ′, Y ′

0)→ G→ 0

for each Y ′ ∈ C ′. This shows that proj.dim G ≤ m, and therefore we have that gl.dim(Ĉ ′) ≤
m = gl.dim(Ĉ ).

The following lemma, due to [17], describes when an inclusion functor has a right (or left)
adjoint functor. Before we state the lemma, we recall a few concepts from [18, 19]. A full
subcategory C of a category D is called contravariantly finite in D if each object D in D has
a right C -approximation, that is, there is a morphism f : C −→ D in D with C ∈ C such that
Hom(C ′, f) : (C ′, C) −→ (C ′, D) is surjective for all C ′ ∈ C . Dually, one may define the notion
of a left C -approximation and the notion of a covariantly finite subcategory.
Lemma 3.2 Suppose C and D are two full subcategories of an Abelian category, which
are closed under direct summands and direct sums. If C is a full subcategory of D , then the
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inclusion functor i : C −→ D has a right adjoint if and only if C is contravariantly finite
in D and for each object D, there is a right C -approximation f : C −→ D of D such that
Hom(C ′, Ker(f)) = 0 for all C ′ in C . Dually, the inclusion functor has a left adjoint if and
only if C is covariantly finite in D and for each object D, there is a left C -approximation
f : D −→ C of D such that Hom(Cok(f), C ′) = 0 for all C ′ in C .

Now, let us also give the dual statement of Theorem 3.1.

Theorem 3.3 Let C be an additive k-category and C ′ a full subcategory of C . If the inclusion
functor admits a left adjoint functor F : C −→ C ′, then gl.dim(Ĉ ′op) ≤ gl.dim(Ĉ op).

We say that a functor F from an additive category C to another additive category D is
said to be dense if for each object D ∈ D , there is an object C ∈ C such that D � FC; and
quasi-dense if for each object D ∈ D , there is an object C ∈ C such that D is a direct summand
of FC.

For a general adjoint pair of functors, we can prove the following result:

Theorem 3.4 Suppose C and D are additive k-categories and F : C −→ D and G : D −→ C
an adjoint pair of additive functors with F a left adjoint and G a right adjoint.

(1) Suppose that gl.dim(D̂) ≥ 2. If G is full and quasi-dense, then gl.dim(Ĉ ) ≤ gl.dim(D̂).
(2) Suppose that gl.dim(Ĉ ) ≥ 2. If F and G are dense, then gl.dim(D̂) ≤ gl.dim(Ĉ ).
(3) Suppose that gl.dim(Ĉ ) ≥ 2, gl.dim(D̂) ≥ 2, and F has a left adjoint functor. If both F

and G are full and quasi-dense, then gl.dim(Ĉ ) = gl.dim(D̂).

Proof (1) We assume that gl.dim( D̂) = m < ∞. Let H be a functor in Ĉ . Then there is a

morphism f : C1 −→ C0 such that C (−, C1)
f̄−→ C (−, C0) −→ H −→ 0 is exact on C . Since

G is quasi-dense, there are D1 and D0 ∈ D such that G(Di) � Ci ⊕ C ′
i for i = 1, 2. We form

the morphism
(

f 0
0 0

)
: C1 ⊕C ′

1 −→ C0 ⊕C ′
0. Thus we have the following commutative diagram:

C (−, C1 ⊕ C′
1)

�
−,

� f 0

0 0

��

−−−−−−−−−−−−−→ C (−, C0 ⊕ C′
0) −−−−−−→ H ⊕ C (−, C′

0) −−−−−−→ 0
���|�

���|�

C (−, G(D1)) −−−−−−→ C (−, G(D0))
���|�

���|�

D(F−, D1)
g′

−−−−−−→ D(F−, D0).

Since G is full, there is a morphism f ′ : D1 −→ D0 such that Gf ′ =
(

f 0
0 0

)
: C1⊕C ′

1 −→ C0⊕C ′
0.

This means that g′ is induced from f ′.

Now we consider the coherent functor D(−, D1)
(−,f ′)−→ D(−, D0) −→ H̄ → 0. Since

gl.dim D̂ = m, there is an exact sequence

0→ D(−, Dm)→ · · · → D(−, D2)→ D(−, D1)→ D(−, D0)→ H̄ → 0

defined on D , and we get the following exact commutative diagram:
0 −→ D(FC, Dm)→· · ·→D(FC, D2)−→D(FC, D1)−→D(FC, D0)−→H̄(FC)−→ 0

| 	 | 	 | 	 | 	
0 −→ C (C, GDm)→· · ·→C (C, GD2)−→C (C, GD1)−→C (C, GD0)−→H(C)⊕ C (C, C ′

0)−→0,

for all C ∈ C . This shows that the projective dimension of H ⊕ (−, C ′
0) is at most m, and thus

the projective dimension of H is at most m. Hence gl.dim(Ĉ ) ≤ gl.dim(D̂).
(2) Suppose H is a coherent functor in D̂ . Then there exists a morphism f : D1 −→ D0

in D such that the sequence D(−, D1)
f̄−→ D(−, D0) −→ H −→ 0 is exact on D . This yields
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another functor H̄ on C and the following commutative diagram:

C (−, G(D1))
Gf−−−−→ C (−, G(D0)) −−−−→ H̄ −−−−→ 0⏐⏐��

⏐⏐��

D(F−, D1)
f−−−−→ D(F−, D0).

If gl.dim Ĉ = n ≥ 2, then there is an exact sequence of functors on C :

0→ C (−, Cn)→ · · · → C (−, C2)→ C (−, G(D1))→ C (−, G(D0))→ H̄ → 0,

where Ci ∈ C . Since G is dense, we may replace each Ci by G(Di) for some Di ∈ D . Thus, by
the adjoint isomorphism, we have the following exact sequence:

0→ D(F−, Dn)→ · · · → D(F−, D2)→ D(F−, D1)
f̄−→ D(F−, D0)→ H̄ → 0.

Since F is dense, the image of F is D , and we may consider the functor (F−, Di) as a functor
on D by putting D = FC for some C ∈ C , and the morphism is defined in a natural way.
The density of F implies also that the natural transformation (F−, Di) −→ (F−, Di−1) is
induced by a homomorphism from Di −→ Di−1, which is the image of the idDi

under the
transformation. Thus the last exact sequence can be considered as sequence of functors on D ,
and this shows that the projective dimension of H is bounded above by n. Thus gl.dim(D̂) ≤
gl.dim(Ĉ ).

(3) Since (F, G) is an adjoint pair with G full and quasi-dense, we have gl.dim(Ĉ ) ≤
gl.dim(D̂) by (1). If H is the left adjoint of F , then we have an adjoint pair (H, F ) with
F full and quasi-dense, and therefore gl.dim(D̂) ≤ gl.dim(Ĉ ) by (1).

Remark In the above result, we assume that gl.dim(D̂) ≥ 2. However, if gl.dim(D̂) ≤ 1,

then one can see that gl.dim(Ĉ ) ≤ 2. This remark is valid also for the later statements in the
paper.

Of particular interest is the following special case. The proof is similar to that of Theo-
rem 3.4; we leave it to the reader.
Theorem 3.5 Suppose A and B are two algebras. Let C = add(AW ) for an A-module W and
D = add(BM) for a B-module BM . Suppose that F : C −→ D and G : D −→ C are an adjoint
pair of additive functors with F a left adjoint and G a right adjoint. Assume that AA ∈ C and
F (AA) =B B. If G is quasi-dense and if gl.dim(D̂) ≥ 2, then gl.dim(Ĉ ) ≤ gl.dim(D̂).

Next, we consider the case where the unit of an adjoint pair splits.
Theorem 3.6 Suppose C and D are additive k-categories and F : C −→ D and G : D −→ C
an adjoint pair of additive functors with F a left adjoint and G a right adjoint. If there is an
endofunctor E : C −→ C such that GF is naturally equivalent to IdC ⊕ E, then gl.dim(Ĉ ) ≤
gl.dim(D̂).

Dually, suppose C and D are additive k-categories and F : C −→ D and G : D −→ C
an adjoint pair of additive functors with F a left adjoint and G a right adjoint. If there is an
endofunctor E : D −→ D such that FG is naturally equivalent to IdD ⊕E, then gl.dim(D̂op) ≤
gl.dim(Ĉ op).

Proof Suppose that gl.dim(D̂) = n <∞. Let H be a coherent functor in Ĉ . Then there is a
homomorphism f : C1 −→ C0 in C such that the following sequence of functors on C is exact:

C (−, C1)
(−,f)−→ C (−, C0) −→ H −→ 0.

From F (f) : F (C1) −→ F (C0) we have a functor H ′ in D̂ :

D(−, F (C1))
(−,F (f))−→ D(−, F (C0)) −→ H ′ −→ 0.
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Since gl.dim(D̂) = n, we know that the above projective presentation of H ′ can be extended to
a projective resolution of H ′:

0 −→ D(−, Dn) −→ · · · −→ D(−, D2) −→ D(−, F (C1))
(−,Ff)−→ D(−, F (C0)) −→ H ′ −→ 0,

where all Di are in D . Now we apply the functors to the module FC for an arbitrary C in C
and get the following exact sequence:

D(FC, Dn) −→ · · · −→ D(FC, D2) −→ D(FC, F (C1))
(FC,Ff)−→ D(FC, F (C0)−→H ′(FC)−→0.

Since (F, G) is an adjoint pair, we have the following exact sequence:

C (C, GDn)−→· · · −→ C (C, GD2)−→C (C, GF (C1))
(C,GFf)−→ C (C, GF (C0)) −→ H ′(FC) −→ 0.

By our assumption, we have that GF (f) � f ⊕ E(f), this implies that H ′(FC) is isomorphic
to H(C)⊕E(FC). Since C is an arbitrary object in C , the functor H ⊕E(F−) has projective
dimension at most n. Thus the direct summand H has also projective dimension at most n.
This shows that gl.dim(Ĉ )≤ gl.dim(D̂).

The dual statement follows from the following fact: If (F, G, η, ε) is an adjoint pair between
C and D , then (G, F, ε, η) is an adjoint pair between the categories Dop and C op.
Lemma 3.7 Suppose C and D are additive k-categories and F : C −→ D and G : D −→ C
an adjoint pair of additive functors with F a left adjoint and G a right adjoint. Let M be
an object in D . If G is full, then End(C GM) � End(DFGM). In particular, the two rings
End(C GM) and End(DFGM) have the same global dimension.
Proof Since (F, G) is an adjoint pair with G full, we know from Lemma 2.5 that GFGM �
GM . Now the lemma follows from the adjunction.

4 Examples
In this section we display several examples to show that the previous results can be used to
compare the global dimensions or representation dimensions of Artin algebras.

4.1 Adjoint Functors from Representation Theory of Finite Groups
Now we prove the following result on the representation dimensions of group algebras. Given
a group Q, we denote by kQ the group algebra of Q over a field k. (Here I use the letter “Q”
to denote a group because Q is the first letter of the pronunciation of the word “group” in
Chinese.) Recall that a Sylow p-subgroup P of Q is called a trivial intersection subgroup of Q
if, for any g ∈ Q, the intersection P ∩ gPg−1 is either P or 1.
Proposition 4.1 Let k be an algebraically closed field of characteristic p. Suppose Q is a finite
group such that the group algebra kQ of Q is representation-infinite, and suppose P is a trivial
intersection Sylow p-subgroup of Q. Let H = NQ(P ). Then rep.dim(kH) ≤ rep.dim(kQ).
Proof Suppose that U1, . . . , Un are non-projective indecomposable kQ-modules such that
gl.dim (EndkQ(

⊕
j Uj⊕kQ)) = rep.dim(kQ). Suppose that Vj is the corresponding kH-module

under Green correspondence. Let F and G denote the induction and restriction functor, re-
spectively. Then F (Vj) = Uj ⊕ Rj and G(Uj) = Vj ⊕Qj , where Qj and Rj are projective kQ
and kH-modules, respectively. Note that the projectivity of the modules Qj and Rj follows
from the trivial intersection property of P (see [20, Theorem 1, p. 71]).

Now we define C = add(
⊕

j Vj ⊕ kH) and D = add(
⊕

j Uj ⊕ kQ). Clearly, F is a functor
from C to D , and G is a functor from D to C . Moreover, the pair (F, G) is an adjoint pair, and
G is quasi-dense. Note that F (kH) = kQ, and that kH and kQ have the same representation
type by [20, Theorem 1, p. 81]. So gl.dim( Ĉ ) ≤ gl.dim( D̂) = rep.dim(kQ) by Theorem 3.5,
this means that rep.dim(kH) ≤ gl.dim( Ĉ ) ≤ rep.dim(kQ) by definition.

In general, given a subgroup H of a finite group Q, the induction F = kQ ⊗kH − and
the restriction G = HomkQ(kQkQkH ,−) is an adjoint pair. For this adjoint pair, the unit
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IdkH-mod −→ GF is split injective, that is, each component is split injective. By [21, VII,
Theorem 4.3, pp. 46–47], we may associate a kH-module V ′ with each kH-module V . Note
that V ′ = ⊕t∈T�H t⊗V , where T is a transversal of H in Q. If f : V −→W is a homomorphism
between kH-modules V and W , we define a kH-module homomorphism f ′ : V ′ −→ W ′ by
sending t ⊗ v to t ⊗ (v)f . In this way, we have a functor E′ : kH-mod −→ kH-mod and a
natural equivalence GF −→ IdkH-mod ⊕ E′.
Proposition 4.2 Let H be a subgroup of a finite group Q, and let V be a kH-module such that
add(GFV ) ⊆ add(V ) (for example, the inertia group of V is Q). Then gl.dim(End(kHV )) ≤
gl.dim(End(kQFV )). If, in addition, [Q : H] is invertible in k, then gl.dim(End(kHV )) =
gl.dim(End(kQFV )).
Proof Since add(GFV ) ⊆ add(V ), the restriction functor G can be considered as a functor
from add(FV ) to add(V ). In case the inertia group of the kH-module V is Q, we know that
each t⊗V is isomorphic to V as kH-modules. So we have add(GFV ) = add(V ). Thus the pair
(F, G) is an adjoint pair between the categories add(V ) and add(FV ). Now the first statement
of our result follows from Theorem 3.6 by the above observation.

For the second statement, we note that under the assumption, there is a natural equivalence
FG −→ IdkQ-mod⊕E′ with E′ an endofunctor from kQ-mod to itself by [21, VII, Theorem 4.3].
Thus gl.dim(End(kQFV )op ) ≤ gl.dim(End(kHV )op) by Theorem 3.6. Note that for a Noether
ring A, we have gl.dim(A) = gl.dim(Aop). Thus the second statement follows.
Corollary 4.3 If Q is a finite group and if H is any subgroup contained in the center of Q,
then, for any kH-module V , gl.dim(End(kHV )) ≤ gl.dim(End(kQFV )).
Proof As H lies in the center of Q, we have that add(GFV ) = add(V ) for any kH-module
V . Thus the corollary follows from Proposition 4.2.

The above result suggests the following conjecture:
Conjecture 4.4 Let k be a field. If Q is a finite group and H is a subgroup of Q, then
rep.dim(kH) ≤ rep.dim(kQ).

4.2 Adjoint Functors Induced from Stable Equivalences of Morita Type
In this subsection, we shall use the idea in the previous section to compare the global dimensions
of two endomorphism algebras of modules which are connected by an adjoint pair of functors
arising from a stable equivalence of Morita type.

Let us first recall the definition of a stable equivalence of Morita type [22].
Definition 4.5 Two algebras A and B are said to be stably equivalent if there is an equivalence
F : A-mod→B-mod of the stable categories.

Two algebras A and B are stably equivalent of Morita type if there exist an A-B-bimodule
AMB and a B-A-bimodule BNA such that

(1) M and N are projective as left and right modules, respectively; and,
(2) M⊗B N � A⊕P as A-A-bimodules for some projective A-A-bimodule P , and N⊗AM �

B ⊕Q as B-B-bimodules for some projective B-B-bimodule Q.
Suppose A and B are stably equivalent of Morita type. If A and B are self-injective algebras,

then the functors (F := N⊗A−, G := M⊗AB−) are an adjoint pair. In fact, by [23, Lemma 4.8],
we may further assume that (M ⊗B −, N ⊗A −) is also an adjoint pair.
Theorem 4.6 Let A and B be two self-injective k-algebras without separable summands.
Suppose that A and B are stably equivalent of Morita type under the adjoint pair (F, G). If X
is an A-module, then gl.dim(End(A⊕X))= gl.dim(End(B ⊕ FX)).
Proof Let C = add(A⊕X) and D = add(B⊕FX). It follows from the definition of a stable
equivalence of Morita type that GF (X) lies in C . Thus we have an adjoint pair of functors
(F, G) between the categories C and D . If we define E = P ⊗A −, then GF � IdC ⊕E. Thus,
by Theorem 3.6 and Lemma 2.2, we have that gl.dim(End(A⊕X)) ≤ gl.dim(End(B ⊕ FX)).
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On the other hand, we may assume that (G, F ) is an adjoint pair which defines a stable
equivalence of Morita type between A and B. Similarly, we can prove that gl.dim(End(B ⊕
FX)) ≤ gl.dim(End(A⊕X)). This finishes the proof.

Let us remark that an alternative proof of the above result follows from [24, Corollary 3.3(1)]
since stable equivalences of Morita type preserve global dimension.

5 Representation Dimensions between Algebras and Their Factor Algebras

In this section, we shall use the adjunction isomorphism of an adjoint pair of functors to compare
the representation dimensions of an algebra and its factor algebras. Our general question is: If
I is an ideal in A such that I2 = 0 and rep.dim(A/I) ≤ 2, is rep.dim(A) ≤ 3?

While we cannot answer this question in general, we get some results when we impose
certain restrictions on I. Our first result in this direction is the following result:

Proposition 5.1 Let A be an indecomposable algebra and let P be a left ideal in A such that
P is an indecomposable projective-injective A-module. Then there is a generator-cogenerator
M for A-mod such that

(1) rep.dim(A/soc(P )) ≤ gl.dim(End(AM)).
(2) If rep.dim(A/soc(P )) ≥ 2, then rep.dim(A) ≤ gl.dim(End(AM)) = rep.dim (A/soc(P )).
(3) If A is non-semi-simple, then the representation dimension of the one-point extension

of A by a simple injective A-module coincides with that of A.

Proof Note that (a) I : = soc(P ) is an ideal in A and (b) each indecomposable A-module X
is either an A/I-module (that is, IX = 0), or isomorphic with P .

(1) Let W be a generator-cogenerator for A/I-mod such that m := rep.dim(A/I) = gl.dim
(EndA/I(W)). Then M := W ⊕ P is a generator-cogenerator for A-mod. We define C =
add(W ⊕ P ), C ′ = add(W ) and F = (A/I) ⊗A − : C → C ′. Clearly, FP � P/IP , which
is a projective A/I-module, thus in C ′. This shows that F is a functor from C to C ′. More-
over, F is a left adjoint functor of the inclusion functor since HomA/I((A/I) ⊗A X, Y ′) �
HomA(X, HomA/I(A/I, Y ′)) � HomA(X, Y ′) for X ∈ A-mod and Y ′ ∈ A/I-mod.

Thus gl.dim ̂C ′op ≤ gl.dim Ĉ op by Theorem 3.3. Since gl.dim(EndA(W)) = gl.dim Ĉ ′ and
gl.dim(EndA(W)) = gl.dim(EndA(W)op), we have that rep.dim(A/soc(P )) ≤gl.dim(End(AM)).

(2) Suppose m ≥ 2; one has to prove that for each X ∈ A-mod, there is an exact sequence

0→ Ym−2 → · · · → Y1 → Y0 → X → 0,

with Yj ∈ C such that

0→ (−, Ym−2)→ · · · → (−, Y1)→ (−, Y0)→ (−, X)→ 0

is exact on C . However, this follows from the existence of such exact sequences for A/I-modules
X. Thus rep.dim(A) ≤ gl.dim(End(AM)) ≤ m = rep.dim(A/I).

Let F := A(A/I) ⊗A/I − be the inclusion functor. Then F has a right adjoint func-
tor HomA(A/I,−) which is given by G = HomA(A/I, X) = {x ∈ X | Ix = 0}. (Note
that HomA(A/I, P ) = rad(P ) which is an injective A/I-module, thus the functor G is well-
defined.) Now it follows from Theorem 3.1 that gl.dim(Ĉ ′) ≤ gl.dim(Ĉ ). This implies that
m ≤ gl.dim(End(AM)). Thus m = gl.dim(End(AM)), and rep.dim(A) ≤ gl.dim(End(AM)) =
rep.dim(A/I). So (2) follows.

(3) Since the indecomposable projective module P (ω) over the one-point extension with
rad(P (ω)) being the simple injective A-module is projective-injective, we may apply (2) together
with [7, Proposition 6.1] to get the statement (3).

Remarks (1) The statement 5.1(2) is not true if rep.dim(A/soc(P )) = 0. The two-by-two
upper triangular matrix algebra provides a desired counter-example.

(2) An alternative proof of the statement 5.1(3) is also given in [4].
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(3) In case (2) of the above proposition, if there is a generator-cogenerator V for A-mod such
that rad(P ) and P/soc(P ) are contained in add(V ), and that rep.dim(A)=gl.dim(End (AV )),
then rep.dim(A) = rep.dim(A/soc(P )). In fact, suppose V is such a generator-cogen-erator for
A-mod. Then we know that (A/I)⊗A V is a generator-cogenerator for A/I-mod, and that the
functors F := A/I(A/I) ⊗A − and G:= HomA/I(A/I,−) define an adjoint pair between X =
add(V ) and Y = add((A/I)⊗A V ). In fact, G is an embedding functor. Thus gl.dim Ŷ op ≤
gl.dim ̂X op by Theorem 3.3. This means that gl.dim(EndA/I(A/I ⊗A V )) ≤ gl.dim(End(AV ))
= rep.dim(A). By definition, we have rep.dim(A/I) ≤ gl.dim(EndA/I(A/I⊗AV ))≤ rep.dim(A).
Thus rep.dim(A)= rep.dim(A/I).
Theorem 5.2 Let A be an Artin algebra and I an ideal in A such that I rad(A) = 0 =
rad(A)I. If A/I is representation-finite, then rep.dim(A) ≤ 3.

Proof Let B = A/I. Note that we have an adjoint pair (F, G) of functors given by the
restriction functor F = AB ⊗B − : B-mod−→ A-mod and G = HomA(ABB,−) : A-mod−→
B-mod. The canonical surjection from A to A/I defines an injective homomorphism βX :
HomA(ABA, X) −→ X of A-modules. We denote the A-module HomA(ABA, X) by X+, it is
also a B-module. The adjunction HomA(AY,A X) � HomB(BY, X+), with Y ∈ B-mod, shows
that

(∗) Given any B-module Y , A-module X and a homomorphism f :A Y −→A X, there is a
B-homomorphism f ′ :B Y −→ X+ such that f = f ′βX .

Let M1, . . . , Mn be a complete list of all non-isomorphic indecomposable B-modules. We
define V = A ⊕D(A) ⊕⊕n

i=1 Mi and shall show that for any A-module X, there is an exact
sequence

0 −→ V1 −→ V0 −→ X −→ 0,

with Vi ∈ add(V ) such that

0 −→ (V, V1) −→ (V, V0) −→ (V, X) −→ 0

is exact.
If X is in add(V ), then there is nothing to prove. So we assume that X is an indecomposable

A-module which does not belongs to add(V ). Let C be the cokernel of βX , and let π′ : P −→ C
be a projective cover of the A-module C and π : P −→ X a lifting of π′ along the canonical
projection μ : X −→ C. Then we may have the following commutative diagram with exact
rows and columns:

0 0⏐⏐�
⏐⏐�

ΩA(C) ΩA(C)⏐⏐�i

⏐⏐�i

0 −−−−→ X+
(1,0)−−−−→ X+ ⊕ P

(0,1)T

−−−−→ P −−−−→ 0∥∥∥
⏐⏐�(βX ,π)T

⏐⏐�π′

0 −−−−→ X+
βX−−−−→ X

μ−−−−→ C −−−−→ 0.⏐⏐�
⏐⏐�

0 0
Now we define V1 = ΩA(C) and V0 = X+ ⊕ P and shall prove that the exact sequence

0 −→ V1
i−→ V0

(βX ,π)T

−→ X −→ 0
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has the desired property.
Clearly, X+ ⊕ P lies in add(V ). To see that ΩA(C) belongs to add(V ), we note that

IΩA(C) ⊆ I rad(P ) ⊆ I rad(A)P = 0, that is, ΩA(C) is a B-module.
If V ′ is a projective A-module, then we have an exact sequence

(∗∗) 0 −→ (V ′, V1) −→ (V ′, V0) −→ (V ′, X) −→ 0.

If V ′ is a B-module, then any homomorphism from V ′ to X factors through βX by (∗), and
thus through (βX , π)T . So we get the exact sequence (∗∗) again.

If V ′ is an indecomposable injective A-module, then any non-zero homomorphism from V ′

to X factors through V ′/soc(V ′) � D(e rad(A)), for some primitive idempotent element e in
A. Since rad(A)I = 0, we know that V ′/soc(V ′) is a B-module. Thus, any homomorphism
from V ′ to X factors through βX by (∗), and then through (βX , π)T . So we also get the exact
sequence (∗∗) in this case. This finishes the proof.

Let us mention that the argument in [8] shows the following result:

Proposition 5.3 Let A be an algebra and I an ideal in A with I rad(A) = 0. If A is self-
injective, then rep.dim(A) ≤ rep.dim(A/I) + 1. In particular, if A is a self-injective algebra
with an ideal I such that (A/I) is representation-finite, then rep.dim(A) ≤ 3.

6 APR-tilting and Representation Dimension

As a typical example of adjoint functors, we consider the tilting functors in this section and
compare the representation dimensions of two algebras A and B when B is an endomorphism
algebra of a tilting module over A. First we recall the definition of a tilting module.

Definition 6.1 Let A be an Artin algebra. An A-module T is called a tilting module if the
following conditions are fulfilled :

(1) The projective dimension of T is at most 1;
(2) Ext1A(T, T ) = 0;
(3) There is an exact sequence 0 −→ AA −→ T ′ −→ T ′′ −→ 0 such that both T ′ and T ′′

belong to add(T ).
Dually, one has the notion of a co-tilting module.

Given a tilting module T , we have a torsion pair (F (T ), T (T )) in A-mod:

T (T ) := {X ∈ A-mod | Ext1A(T, X) = 0} = {X ∈ A-mod | X is generated by AT},
F (T ) := {X ∈ A-mod | HomA(T, X) = 0} = {X ∈ A-mod | X is cogenerated by τT},

where τ is the Auslander–Reiten translation DTr, and where T (T ) is the torsion class and
F (T ) is the torsion-free class. Let B be the endomorphism algebra of T . Then there is a
torsion pair (Y (T ), X (T )) in B-mod:

Y (T ) := {Y ∈ B-mod | TorB
1 (T, Y ) = 0} = {Y ∈ B-mod | Y is cogenerated by D(TB)},

X (T ) := {Y ∈ B-mod | T ⊗B Y = 0} = {Y ∈ B-mod | Y is generated by τ−1D(TB)},
where τ−1 = TrD is the inverse of the Auslader-Reiten translation.

The following result describes the relationship between these subcategories (see [25]):

Theorem 6.2 [Brenner–Butler theorem] The functor F =HomA(T,−) : T (T ) −→ Y (T ) is
an equivalence with the inverse G = T⊗B−, and the functor E = Ext1A(T,−) : F (T ) −→X (T )
is an equivalence with the inverse Z =TorB

1 (T,−).

Note that the image of A-mod under the functor F is X (T ), and the image of A-mod under
the functor E is Y (T ).

A special case of tilting modules is the BB-tilting modules, due to Brenner and Butler,
which is a proper generalization of the APR-tilting module. Let us recall the definitions and
basic properties.
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Let A be an Artin algebra and S a simple non-injective A-module with the properties: (a)
proj.dim τ−1S ≤ 1; and, (b) Ext1A(S, S) = 0. We denote the projective cover of S by P (S).
Then we may assume that AA = P (S)⊕P such that there is no direct summand of P isomorphic
to P (S) and define T = τ−1S ⊕ P . It is well known that T is a tilting module. Such a tilting
module is called a BB-tilting module. In particular, if S is a projective non-injective simple
module, then T is automatically a BB-tilting, this special case was first studied in [26], and the
tilting module of this form is called an APR-tilting module in the literature.

Let T be an APR-tilting A-module. Then we have:
(1) F (T )= add(S), and X (T )= add(E(S)).
(2) E(S) is a simple B-module. The minimal projective presentation of the B-module E(S)

is given by
0 −→ FP0 −→ F (τ−1S) −→ E(S) −→ 0,

which is induced from the Auslander–Reiten sequence 0 −→ S −→ P0 −→ τ−1S −→ 0 with P0

projective. Moreover, If inj.dim(S) ≤ 1, then E(S) is injective.
(3) If E(S) is injective, then Y (T )= add(B-ind\E(S)), where B-ind denotes the subcategory

consisting of all the indecomposable B-modules.
(4) If inj.dim(S) ≤ 1, then E(S) is injective, and the torsion pair (Y (T ), X (T )) splits, that

is, every indecomposable B-module lies either in X (T ) or in Y (T ).
(5) If Q is an indecomposable injective A-module which is not isomorphic to the injective

hull of S, then FQ is an injective B-module.
When we consider the representation dimensions of Artin algebras, we would like to compare

the representation dimension of the algebra A with that of B, where B is the endomorphism
algebra of a tilting A-module T . In general, one could not hope that their representation
dimensions are equal. This can be seen from the following example: If A is a tame hereditary
algebra, one may have a tilting A-module T which contains both non-zero preprojective and
non-zero preinjective direct summand. Then B = End(AT ) is representation-finite. Hence
rep.dim(A) = 3 and rep.dim(B) = 2. However, we shall prove that certain APR-tilting modules
preserve the representation dimension.
Proposition 6.3 Let A be an Artin algebra, T = τ−1S ⊕ P an APR-tilting module and B
= End(AT ). If inj.dim(S) = 1, then rep.dim(B) ≤ rep.dim(A).
Proof Note that for an APR-tilting module T , the torsion class T (T ) can be described as
{X ∈ A-mod | HomA(X, S) = 0}. Suppose V = U ⊕ P ⊕ D(A) ⊕ V ′, with V ′ ∈ T (T ),
and U ∈ add(S), is an A-module which gives the representation dimension of A, that is,
rep.dim(A) = m = gl.dim(End(AV )). We shall prove that for the module M = FP (S)⊕FP ⊕
FD(A) ⊕ FV ′ ⊕ F (τ−1S) ⊕DHomA(τ−1S, T ) we have gl.dim(End(BM)) ≤ m. Note that M
is a generator-cogenerator for B-mod by (4) and (5). If m ≤ 2, then A is representation-finite
with a non-trivial radical, this means that the categories X (T ) and Y (T ) are finite, so B is
representation-finite, and therefore, rep.dim(B) ≤ rep.dim(A). We may assume that m ≥ 3.

Suppose Y is a B-module which has no direct summands in add(M). Then Y lies in Y (T )
by (4) and (1), and there is an X in T (T ) such that FX = Y. Since gl.dim(End(AV )) = m,
there is an exact sequence

0 −→ Vm−2

fm−2−−→ · · · −→ V1
f1−→ V0

f0−→ X −→ 0

with Vi ∈ add(V ) such that 0 −→ (U, Vm−2) · · · −→ (U, V1) −→ (U, V0) −→ (U, X) −→ 0 is
exact for all U ∈add(V ).

Let Ki be the image of fi. Then we have an exact sequence

0 −→ Ki+1
μi−→ Vi

πi−→ Ki −→ 0

with fi = πiμi−1. From this exact sequence we have the following exact sequence:

0 −→ FKi+1 −→ FVi −→ FKi −→ EKi+1.
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Since the image of A-mod under the functor E belongs to X (T ) = add(E(S)), the cokernel
Ci of Fπi is a semi-simple B-module by (2). We may assume that the minimal projective
presentation of Ci is

0 −→ FP li
0

βi−→ Fτ−1Sli γi−→ E(S)li = Ci −→ 0.

Let αi : F (τ−1S)li −→ FKi be a lifting of γi.
Now we consider the following exact commutative diagram:

0 −−−−→ FKi+1 −−−−→ FKi+1 ⊕ FP li
0 −−−−→ FP li

0 −−−−→ 0⏐⏐�
⏐⏐�

⏐⏐�βi

0 −−−−→ FVi
(1,0)−−−−→ FVi ⊕ F (τ−1S)li

(0,1)T

−−−−→ F (τ−1S)li −−−−→ 0⏐⏐�
⏐⏐�

⏐⏐�γi

0 −−−−→ Im(Fπi) −−−−→ FKi −−−−→ Ci −−−−→ 0,

and shall show that the exact sequence

(♣) 0 −→ FKi+1 ⊕ FP li
0

�
Fμi 0
0 βi

�

−−−− −→ FVi ⊕ F (τ−1S)li

�
Fπi
αi

�

−−−− −→ FKi −→ 0

has the following property: For any L in add(M), the sequence

(∗) 0 −→ (L, FKi+1 ⊕ FP0)li) −→ (L, FVi ⊕ F (τ−1S)li) −→ (L, FKi) −→ 0

is exact.
Clearly, this is true for all projective B-modules. If E(S) = DHomA(τ−1S, T ), then, since

E(S) is a torsion module and FKi is a torsion-free module with respect to the torsion pair
(Y (T ), X (T )), we have that HomB(E(S), FKi) = 0. So it is sufficient to show that for any L
in add

(
FV ′ ⊕ FD(A)

)
the sequence (∗) is exact. Let f be a homomorphism from L to FKi,

with L = FV ′, or L = FD(A). Then there is a morphism g : X ′ −→ K ′
i, with X ′ = V ′ or

X ′ = D(A) such that FX ′ = L and Fg = f since F is an equivalence. By the choice of the
sequence for X, we have a homomorphism h : X ′ −→ Vi such that the following diagram is
commutative:

X ′

Vi Ki = K ′
i ⊕ Si.

�
�

�
��

�

�
�

��

h (g, 0)

πi

This shows that f = Fg = F (g, 0) = (Fh)(Fπi). Thus the sequence (∗) is exact for L = FV ′

or L = FD(A).
Now we define Ti = F (τ−1S)li and Qi = FP li

0 , and concatenate all short exact sequences
(♣). This provides us with an exact sequence:

0 −→ FVm−2 ⊕Qm−3 −→ FVm−3 ⊕ Tm−3 ⊕Qm−4 −→ · · ·
−→ FV2 ⊕ T2 ⊕Q1

d2−→ FV1 ⊕ T1 ⊕Q0
d1−→ FV0 ⊕ T0

d0−→ FX = Y −→ 0 (∗∗)
with ker(di) = FKi+1⊕Qi. As a consequence of the property (∗), we see that that this sequence
has the following property: When we apply HomB(Y ′,−) to (∗∗) for any Y ′ ∈ add(M) we always
get an exact sequence.

Thus gl.dim(End(BM))≤ m, this implies that rep.dim(B) ≤ rep.dim(A).
Let us state the dual statement of 6.3. Suppose I is a non-projective simple A-module with

inj.dim(τAI) ≤ 1 and Ext1(I, I) = 0. If D(A) = Q(I) ⊕ Q and there is no direct summand
of Q isomorphic to I, where Q(I) stands for the injective envelope of the A-module I, then
T = τI ⊕Q is a BB-cotilting A-module. Let B be the endomorphism algebra of T . A special
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case is that I is a non-projective simple injective A-module. In this case we have the notion of
a APR-cotilting module. The following is a dual statement of the previous proposition:
Proposition 6.4 Let A be an Artin algebra and T = τI ⊕ Q an APR-cotilting module. If
proj.dim(AI) = 1, then rep.dim(B) ≤ rep.dim(A), where B = End(AT ).

As a corollary of the above discussion, we have
Theorem 6.5 Let A be an Artin algebra.

(1) Suppose T = τ−1S⊕P is an APR-tilting module and B = End(AT ). If inj.dim(AS) = 1,
then rep.dim(A) = rep.dim(B).

(2) Suppose T = τI⊕Q is an APR-cotilting module and B = End(AT ). If proj.dim(AI) = 1,
then rep.dim(B) = rep.dim(A).
Proof By Proposition 6.3, we have rep.dim(B) ≤ rep.dim(A). Under our assumption, the
B-module E(S) is a simple injective non-projective module with projective dimension at most
one by (3). Let U be the direct sum of one copy of each indecomposable injective B-module
not isomorphic to E(S). Then the endomorphism algebra of the associated APR-cotilting B-
module T ′ = E(S)⊕U is isomorphic to Aop, the opposite algebra of A by [26, Proposition 2.5].
This implies that rep.dim(Aop) ≤ rep.dim(B) by 6.4. Since rep.dim(A) = rep.dim(Aop), we
have proved that rep.dim(A) = rep.dim(B).

To state our next result, it is convenient to introduce the following notion:
Definition 6.6 An APR-tilting A-module T = τ−1S ⊕ P is called a switch APR-tilting
module if inj.dim(AS) = 1. Dually, an APR-cotilting A-module T = τI ⊕Q is called a switch
APR-cotilting module if proj.dim(AI) = 1. An algebra B is said to be switched from an algebra
A if there is a finite series of algebras A = A1, A2, . . . , As = B with a switch APR-tilting or a
switch APR-cotilting module Ti over Ai for each i such that Ai+1 = End(Ai

Ti).
With this notion in hand, our main result in this section can be stated as follows:

Theorem 6.7 If an Artin algebra B is switched from an Artin algebra A, then rep.dim(B)
= rep.dim(A).

Next, we apply Theorem 6.7 to the finitistic dimension. Recall that the finitistic dimension of
an Artin algebra A is defined to be the supremum of projective dimensions of finitely generated
A-modules having finite projective dimension. The finitistic dimension conjecture says that for
any Artin algebra A the finitistic dimension of A is finite. Note that it was shown in [27] that
for a generalized tilting A-module T the finitistic dimension of A is finite if and only if the
finitistic dimension of End(AT ) is finite. For more information on advances of the conjecture
we refer to [3, 28, 29] and the references therein.

We have the following result:
Corollary 6.8 Suppose an Artin algebra B is switched from an Artin algebra A and C is a
subalgebra of B with rad(C) a left ideal in B. If rep.dim(A) ≤ 3, then the finitistic dimension
of C is finite.
Proof By Theorem 6.7, rep.dim(B) = rep.dim(A). Since rep.dim(B) ≤ 3 implies that the
finitistic dimension of C is finite by a result in [3], the corollary follows immediately.

Let us remark that the condition “ inj.dim(S) = 1” in Theorem 6.5 can not be dropped.
This can be seen from the following example.

Let A be the algebra (over a field k) given by the quiver with relations:
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The Auslander-Reiten quiver of this algebra is as follows:
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Thus A is representation-finite. For this algebra A we have only one APR-tilting module.
The endomorphism algebra B of the APR-tilting module is representation-infinite. So A and
B have different representation dimension. One can check that the injective dimension of the
simple projective A-module S is 2. This implies that the condition for the simple module S in
the previous results is necessary.

Although the two algebras A and B have different representation dimensions, their trivial
extensions do have the same representation dimension (see [8]).

We should note that even if an algebra B is obtained from an algebra A by an APR-tilting
module satisfying the conditions in Theorem 6.5, the two algebras A and B may not be stably
equivalent. This can be seen from two hereditary algebras since it was shown in [30] that two
stably equivalent hereditary algebras with no projective-injective modules are isomorphic. As
a simple example, we take A to be the path algebra (over a field k) of the quiver ◦ −→ ◦ ←− ◦
and B to be the path algebra of the quiver ◦ ←− ◦ −→ ◦, then B is obtained from A by
APR-tilting, and A and B are not stably equivalent.

Finally, let us remark that Assem, Platzeck and Trepode have recently determined the rep-
resentation dimension of tilted algebras and the laura algebras in [31]. An iterated application
of Theorem 6.7 might give another proof of their result for the case of tilted algebras.
Acknowledgements I would like to thank the referee for his or her kind suggestions for
improving my English language.
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