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Learning and Cooperation in Sequential Games

Annapurna Valluri
Department of Operations and Information Management, The Wharton School of the University 
of Pennsylvania

The predictions of classical game theory for one-shot and finitely repeated play of many 2x2 simulta-
neous games do not correspond to human behavior observed in laboratory experiments. The promis-

ing results of learning models in tracking human behavior coupled with the growing electronic market

and the number of e-commerce applications has resulted in an increased interest in studying the
behavior of adaptive artificial agents in different economic games. We model agents with a reinforce-

ment learning algorithm and analyze cooperative behavior in a sequential prisoner’s dilemma game.

Our results demonstrate the ability of artificial agents to learn cooperative behavior even in sequential
games where defection is the subgame perfect Nash equilibrium. We attribute the reciprocal-like

behavior to the structural flow of information, which reduces the risks of exploitation faced by the

second-mover. Additionally, we analyze the impact of the second-mover’s temptation payoff and pay-
off risks on the rate of cooperative behavior.

Keywords reinforcement learning · prisoner’s dilemma · sequential games

1 Introduction and Motivation

Predictions of strategic behavior in classical game theory
are based on the assumptions of perfect foresight, knowl-
edge and complete rationality of economic actors. These
assumptions collapse in real-world situations, how-
ever, and researchers in experimental economics have
demonstrated, through numerous experiments encom-
passing a gamut of strategic interactions, how labora-
tory subjects very often do not behave according to the
predictions of classical game theory. McKelvey and
Palfrey (1992) have studied a simple centipede game
where players suffer from the conflict of self-interest and
mutual benefit. Although classical game theory reasons
through backward induction that the first player should
defect in the first round of the game, play in McKelvey

and Palfrey’s (1992) laboratory experiments conforms
to the predicted Nash equilibrium only 5% of the time.
Experimental evidence contradicting the predictions of
classical game theory in sequential bargaining and iter-
ated prisoner’s dilemma games has been found by Ochs
and Roth (1989) and Andreoni and Miller (1993), respec-
tively.

Since there is strong evidence which points to play-
ers not conforming to Nash equilibrium strategies in
many iterated strategic interactions, researchers in behav-
ioral economics have started to develop learning models
based on experimental play of simulated artificial
agents to explain the adaptive behavior of humans.
Many researchers such as Camerer and Ho (1999), Fel-
tovich (2000), Duffy (2001), and Erev and Roth (1998)
have simulated human behavior using different learn-
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ing models in various games, and have found that the
learning models track human behavior well. Most learn-
ing models can be broadly classified into belief-based
models (e.g., fictitious play) and reinforcement-based
models (Watkins, 1989). In belief-based models, play-
ers keep track of the history of play of the other play-
ers and form beliefs about the likely play of the other
players. Players’ actions are then chosen based on the
expected payoffs given their beliefs about their oppo-
nent. In reinforcement-based models, on the other
hand, players do not have beliefs about what the other
players will do and only consider the payoffs that differ-
ent strategies (actions) have yielded in the past. Actions
associated from past experience with positive rewards
have a higher probability of being taken by the agent.
Camerer and Ho (1999) have developed a general model
called “experienced-weighted attraction learning,” which
includes the belief-based and reinforcement-based
models as special cases. 

The promising results of learning models in tracking
human behavior coupled with the growing electronic
market and the number of e-commerce applications
where such results would be useful has resulted in an
increased interest in studying the behavior of adaptive
artificial agents in different types of economic models/
games. Fang, Kimbrough, Pace, Valluri, and Zheng
(2002), for instance, address the question of how arti-
ficial agents using reinforcement-based models perform
when playing an ultimatum game, whereas Wu, Kim-
brough, and Zhong (2002) focus on the emergence of
cooperation and trust among agents in a particular trust
game. Most of the literature that has analyzed the behav-
ior of adaptive artificial agents in discrete and small
action space economic games has focused on simulta-
neous games. However, many real-world decision sce-
narios are more sequential than simultaneous in nature,
meaning that different interacting economic actors
could have asymmetric knowledge about the environ-
ment. Examples of some sequential decision-making
situations are price setting in the market place by firms,
outsourcing decisions, or bidding in an auction (either
online or offline).

Prior research that has analyzed the behavior of
artificial agents has done so while focusing on a partic-
ular game. Although we conduct simulations of a spe-
cific game, our focus encompasses a broader class of
principal–agent problems which share certain essential
features with the game we focus on. Unlike those of
previous researchers, who have focused mainly on

simultaneous games, however, our contributions lie in
extending the research to sequential games with the
focus being on principal–agent games that are fraught
with the problem of moral hazard. Principal–agent
relationships are a common occurrence, and the associ-
ated problems arise whenever a principal depends on
an agent for production of goods, services rendered, or
the completion of some other task. Play in principal–
agent problems is sequential, with the second-mover
(agent) having an advantage through his knowledge of
the first-mover’s (principal) action before he makes his
decision. The second-mover’s action is only indirectly
observable by the first-movers through an outcome var-
iable, where certain possible second-mover actions
result in more positive outcomes for the principal than
other actions. In effect, the agent can exploit his infor-
mation advantage at the expense of the principal,
resulting in non-cooperation. Players act in their own
best interests and also face a conflict of interest, thus
causing moral hazard problems that prevent the socially
efficient equilibrium, which is also the cooperative
solution, from being reached.

An example of a principal–agent game is one of
an employer–employee relationship where the employer
depends on the employee for the completion of certain
tasks. While the employer faces the problem of fixing
a wage rate for the employee since the efforts of the
employee can’t be monitored, the employee faces a
disincentive to put in additional effort because he
knows that his effort level can’t be monitored. In this
paper, we conduct simulations and analysis focusing
on a specific model of one such game—the iterated
sequential prisoner’s dilemma (SPD)—which closely
resembles the simplified version of the principal–agent
game. In both cases, it is in the best interest of the
principal and the agent to defect, and so cooperative
outcomes are not imminent. In addition, both games
are played sequentially. In the simplified version of the
principal–agent game, the players have a discrete action
set, the outcome variable is a one-to-one deterministic
function of the agent’s effort level, and so the princi-
pal can without any ambiguity ascertain the true action
chosen by the agent.

The sequential iterated prisoner’s dilemma (IPD)
is a simple two-player multi-period game (see Figure 1).
In the sequential prisoner’s dilemma (SPD) game (Clark
& Sefton, 2001) Player 2 chooses an action only after
an action has been chosen by Player 1 and Player 1’s
choice of action is known to Player 2. Consequently,
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an asymmetry is created in the information available
to the two players.

Moreover, while the simultaneous prisoner’s dilem-
ma has been researched thoroughly through the use of
many techniques such as game theory (Poundstone,
1993), evolutionary game theory (Axelrod, 1984; Axel-
rod & Hamilton, 1981; Nowak, 1990; Nowak & May,
1992), behavioral economics (Andreoni & Miller, 1993;
Shubik, 1970), computational economics (Ashlock,
Smucker, Stanley, & Tesfatsion, 1996), and machine
learning (Miller, 1996; Rubinstein, 1986; Sandholm
& Crites, 1996), considerably less research has been
conducted on the sequential version of the prisoner’s
dilemma game.

We chose to study the iterated SPD game using arti-
ficial agents with a reinforcement learning (RL) model.
This was due both to the success of RL models in
explaining human behavior in a variety of games (Erev
& Roth, 1998) and to the large number of researchers
using artificial agents with RL models. An important
advantage of the RL model over game theoretic mod-
els is that it makes very few assumptions about rational-
ity, such as knowledge of the game, its parameters and
limited capacity of the agents. Moreover, it also makes
fewer assumptions about the agents than other learn-
ing models. For instance, belief-based models require
the agents to have prior beliefs about their opponent’s
strategies.

The purpose of this article is three-fold. Firstly,
while we focus on the cooperative behavior of agents
in the iterated SPD game, the results can be generalized
to the class of simple principal–agent problems that
possess the issue of moral hazard. Our simulation results
indicate a high level of cooperation between players

in the iterated SPD game, agreeing with experimental
findings but contradicting the predictions of classical
game theory; this may be because we focus on decision-
making in more realistic sequential environments instead
of using simultaneous scenarios. Secondly, we believe
that our article provides further evidence for the appli-
cability of adaptive learning algorithms to modeling
human behaviour with artificial agents because of their
ability to predict outcomes that match observed behav-
ior. Although we leave the calibration of the simula-
tion results with experimental data of the SPD game
for future work, we provide promising results. Finally,
we not only hypothesize the reasons for the observed
degree of cooperation, but also shed light on factors
that affect cooperative behavior in the iterated SPD
game, such as bargaining power and uncertainty about
the opponent’s choice of action.

The article is organized as follows: The next section
discusses the related literature, while Section 3 briefly
introduces our methodology. We state our hypotheses
in Section 4 and the results are presented in Section 5.
Finally, our conclusions and future work are summa-
rized in Section 6.

2 Literature Review

Work that is related to our article can be separated into
two fields: Information and experimental economics,
and computational agent-modeling, and we will exam-
ine the pertinent work in these areas separately.

2.1 Information and Experimental Economics

Markets, especially e-commerce markets, are fraught
with information asymmetries. In e-commerce mar-
kets parties situated in various parts of the globe come
together to transact with hardly any knowledge of the
other party. As a result of information asymmetry,
problems such as adverse selection and moral hazard
become widespread. Moral hazard or incentive prob-
lems may arise when individuals engage in risk sharing;
moreover, their actions affect the probability distribu-
tion of an outcome but cannot be contracted upon
because the actions taken are private (Holmstrom,
1979). Examples of moral hazard are widespread in
practice; how, for instance, does a manager measure a
white-collar employee’s effort in the workplace? How
does a client firm (principal) measure the quality of

Figure 1 Sequential prisoner’s dilemma.
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service and expertise that a consulting firm (agent) is
providing while implementing an ERP (Enterprise
Resource Planning) system?

In typical principal–agent scenarios, a principal
depends on an agent for production of a good, services
rendered, or for the completion of some other task. The
problem arises because both players act in their own
best interests and the principal is unable to monitor the
agent’s actions (Holmstrom, 1979). Principal contribu-
tions in this area include those of Ross (1973), Gross-
man & Hart (1983) and Radner (1981, 1985, 1986),
among others.

In Grossman & Hart (1983), a one-period princi-
pal agent model is discussed where both the principal
and the agent are self-interested players and the author
demonstrates that the Nash Equilibrium is almost never
the Pareto-efficient outcome. On the other hand, Rad-
ner (1981) proposed a repeated principal–agent game.
In the multi-period model, there is a certain known
probability with which the relationship will continue
to the next round/period. He presented a specific strat-
egy for the repeated principal–agent game by which the
principal and the agent are able to sustain an efficient
equilibrium, where payoffs are higher than from the
inefficient Nash equilibrium in the one-shot game.

In the simplified principal–agent problem, the iter-
ated SPD game, which we focus on in this article, clas-
sical game theory (Neumann & Morgenstern, 1944)
predicts that the dominant strategy in the sequential
game for both the first and second movers is defection,
in both the one-shot and the finitely repeated game.
The argument is made by backward induction where the
game in the last period of a sequence is equivalent to a
one-shot game. Laboratory experiments, however, show
that real behavior does not conform to classical game
theory; whether this is or is not rational is another mat-
ter. Cooperation has not only been observed in the
simultaneous version but also in the sequential version
of the PD game (Selten & Stoecker, 1986).

The two-player SPD game was studied by Clark
and Sefton (2001) with human subjects. Their goal was
to understand the primary reason for cooperation—is
it conditional on first-mover cooperation, repetition,
economic incentives or gender? Their examination
reveals that the factor most influencing cooperation
is first-mover cooperation; therefore, reciprocation is
deemed an important element in games of this nature,
as opposed to pure altruism. Furthermore, they experi-
mentally observed the effects of doubling the payoffs

and increasing the temptation payoff; and found that
the former had no effect on the rate of cooperation,
while there was a decrease in cooperation when the
temptation payoff alone was doubled. Bolle and Ock-
enfels (1990) also studied the SPD game, both analyt-
ically and experimentally. In their experiments, however,
the players played only one-shot games with the second-
movers choosing actions conditional on a hypothe-
sized choice by the first-mover. Their findings reveal
that the re-valuation of the cooperative result is the
cause of the degree of cooperation observed in human
experiments. In other words, the utility associated with
the cooperative result is more than the stated reward in
the payoff structure. They discuss analytically the logic
of observing greater cooperation in the sequential game
than the simultaneous game, although they are unable
to find a difference in the actual rates of cooperation in
their experiments. However, greater cooperation was
observed in the SPD game than in the simultaneous
game in the laboratory experiments conducted by
Oskamp (1971). In Oskamp’s experiments, the first
move is made by a human who plays a repeated game
with a computer program that uses a fixed strategy. The
fixed strategy is one of the following: Cooperate with
10% probability, cooperate with 90% probability, or tit-
for-tat.

Researchers in experimental economics are con-
cerned with finding models to explain individual human
behavior by studying relatively simple games. On the
other hand, the field of computational agent technology
is interested in the strategic decisions taken by artifi-
cial agents when they are modeled with learning algo-
rithms in different complex economic environments,
especially electronic markets.

2.2 Computational Agent Technology

In spite of the tremendous achievements of game theory,
it remains unknown how to compute equilibrium strat-
egies for some decision-making scenarios. For instance,
game theory is unable to predict which Nash equilib-
rium will be observed in the case of multiple equilibria
for a specific game. Furthermore, it is widely reported
in laboratory experiments (as discussed previously)
that actual individual human behavior does not match
what has been “predicted” by classical game theory.
Agent-based computational economics has several sub-
streams (Tesfatsion, 2002), one of which seeks to explore
new computational models that map human behavior.
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Another sub-stream aims to capture the behavior of
artificial agents modeled with adaptive capabilities from
the former sub-stream in order to predict the dynamics
of human decision-making and the off-equilibrium
paths taken in complex economic environments. See,
for example, the seminal work by Axelrod and Hamilton
(1981), where they studied the iterated prisoner’s
dilemma game.

Several researchers in the multi-agent learning lit-
erature have studied the adaptive behavior of artificial
agents when interacting with other agents in unfamil-
iar and complex environments. Some researchers have
modeled agents with RL algorithms, while others have
used models such as belief-based algorithms (Camerer
& Ho, 1999) fictitious play, and cumulative best response
(Shoham & Tennenholtz, 1993), among others. Sugu-
wara and Lesser (1993) developed their own heuristic
learning algorithm to assist agents in learning to coor-
dinate their strategies, whereas Littman (2001) presented
an algorithm based on Q-learning called Friend-or-Foe
Q-learning, which has strong convergence properties and
enables agents to learn the optimal strategies in many
scenarios. In Littman (1994), agents play a zero-sum
game and try to find optimal mixed strategies to play
against their opponents. Sandholm and Crites (1996)
model agents with Q-learning, a form of RL, to study
cooperative behavior in an iterated prisoner’s dilemma
game, while Ashlock et al. (1996) use a model related
to RL for partner selection in the iterated prisoner’s
dilemma game. Tesauro (1992) demonstrates the abil-
ity of agents using temporal difference learning to
successfully adapt and find strategies even in more
complicated games such as backgammon with zero
built-in knowledge. Sutton and Barto (1998), and Kael-
bling, Littman, and Moore (1996) provide a detailed
survey of the literature on artificial agents modeled
with different RL algorithms in various games.

More recently, and very relevant to our work here,
is a series of trust games (stag hunt game—Fang et al.,
2002; ultimatum game—Zhong, Kimbrough, & Wu,
2002; mad mex trust game—Wu et al., 2002) that
aimed to systematically investigate whether, and how,
social trust or cooperation can emerge as a systematic
property where communities of self-interested agents
interact with each other in the internet environment.
These papers focus on the question of whether learn-
ing by agents in games can result in cooperation and
whether learning agents can outperform fixed-strategy
agents. Their focus on the benefits of learning prevents

them from shedding light on the structure of the games
themselves. We not only corroborate experimental find-
ings by demonstrating the ability of artificial agents to
learn to cooperate, but also study different factors of
the game that are conducive to promoting cooperation
among players.

In contrast to the study of 2x2 trust and coordina-
tion games using adaptive agents, Meidinger and Terra-
col (2002) studied a more realistic game situation—a
sequential two-player investment game. In this game,
the first player decides whether or not to invest, and
the second player decides how much return to give the
investor and how much of a cut to take for himself.
The authors model players with a reciprocation strat-
egy using RL and evaluate the predictions of the model
against collected data. Findings indicate that the RL
strategy is able to capture the trend of the observed fre-
quency of returns by the second mover, although it
tends to initially underestimate the observed frequency
of investment by the first mover.

An important theoretical commonality in these
papers is agent learning, where history, experience and
memory matter. Among various classes of learning
algorithms used previously, of particular interest is the
class of learning algorithms called reinforcement learn-
ing, which itself is an active research frontier in artifi-
cial intelligence. The key aspect of RL algorithms is
that they reinforce good actions and weaken bad actions.
The next section provides a brief overview of the par-
ticular RL algorithm we use.

3 Methodology

In our experiments, we model artificial adaptive agents
as reinforcement learners, specifically, Q-learners (Wat-
kins, 1989). This algorithm is one of the most widely
pursued learning algorithms. Its attractiveness lies in
its lack of any need for a model of the environment
and its applicability to online learning. Q-learning
rewards actions that turn out to be positive and pun-
ishes those that yield negative results. The value of
taking a particular action, ai, by a player while in state
s, at time t, is represented by . The value func-
tion representing the value of taking a particular
action in state s is updated by:

Q st ai
t,( )

Q st ai
t,( ) Q st ai

t,( )=

α rt γmaxQ st 1+ ai,( ) Q st ai
t,( )–+[ ]+

ai
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where γ is the discount factor, rt represents the payoff
or reward obtained by taking action  while in state s
and moving to another state at time, t + 1. The learning
rate, α, captures the “recency effect,” which weights
recent rewards more heavily than past ones, and is an
important feature in a dynamic environment. We use
the most popular exploration rate called Softmax.
According to this policy, the probability of choosing a
particular action , pt(ai), at time t is:

 where 

and τ is a positive parameter called temperature. When
the temperature value is high, all actions have equal
probability of being chosen; however, with low values
of τ, the more highly valued actions are favored and,
finally, a zero value corresponds to no exploration but
only exploitation of gathered knowledge.

The agents have a memory of one, which means
that they remember only the most recent state they were
in. In other words, assuming that the first letter repre-
sents the action the agent took in the previous round,
and the second letter represents his opponent’s action,
then an agent with memory one and only two possible
actions {C, D}, will have four possible states {CC,
CD, DC, DD}.

The program for running the simulations, including
the modeling of agents, is written in C++, in object-
oriented code. The learning and discount rates are 0.2
and 0.95, respectively. These parameters are taken from
the pioneering work by Sandholm and Crites (1996)
on multi-agent learning, in which they study the iterated
prisoner’s dilemma game. All results are averaged
over 100 games and each game is played for 300,000
episodes. The exploration rate is decreased exponen-
tially at a rate of 0.999 and starts off with a value of 5,
unless otherwise stated.

4 Experimental Design and Hypotheses

According to classical game theory, defection is the
dominant strategy in the one-shot prisoner’s dilemma
and the finitely repeated PD game (for both the simul-
taneous and sequential games), where the argument
holds through the use of backward induction. Con-
trary to the predictions of classical game theory, but

based on the observations of cooperative behavior in
experimental settings, we hypothesize the following:

Hypothesis 1 Contrary to the predictions of classical
game theory, artificial agents (modeled with an RL
algorithm) playing the iterated SPD game will not
only learn to cooperate but also cooperate more than
in the simultaneous version of the game.1

Bolle and Ockenfels (1990) discuss the logic for
observing more cooperation in the sequential game
than in the simultaneous game, but failed to observe it
in experiments. In their experiments the game is one-
shot, where the second-movers are unaware of the
actual choices made by their opponents and make
choices based on hypothesized choices made by their
first-mover opponents. However, if the game is played
repeatedly, especially against the same opponent, then
the action of the first-mover observed by the second-
mover can be interpreted as a direct consequence of
the second-mover’s action in the previous period. Unsur-
prisingly, therefore, more cooperation was observed
in the sequential game in the experiments conducted
by Oskamp (1971) than in the one-shot game played
by the subjects of Bolle and Ockenfels.

We hypothesize the reason for increased coopera-
tion in the sequential version of the iterated prisoner’s
dilemma game as compared with the simultaneous
game to be as follows:

Hypothesis 2 The informational flow in the iterated
SPD game, where the second-mover has knowledge
of the first-mover’s action before choosing his own,
results in the second-mover learning the optimal state-
action function faster than in the simultaneous game.

Our third hypothesis states that the cooperative
behavior of artificial agents is related to the payoff
structure; specifically, the risks of defection faced by
the second-mover. We define the risk faced by the
second-mover in the iterated SPD game along the
lines used by Yang, Weimann, and Mitropoulos (2001).2

The risk faced by the second-mover in choosing to
defect decreases if the payoff received by the second-
mover when both players defect increases (see Table
2a for the payoffs). Note, however, that the bargaining
power or risk is different from the temptation payoff,
where temptation is defined as the incentive to defect
when the opponent cooperates. The risks faced by the

ai
t

ai
t

pt ai( ) e
Q st ai,( ) τ⁄

e
Q st ai,( ) τ⁄

i 1=

n

∑
-----------------------------= τ 0≥
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second-mover, on the other hand, depend on the pay-
off he receives in the sub-game perfect Nash equilib-
rium solution and the socially optimal (cooperative)
solution. Therefore, as the second-mover’s risk asso-
ciated with defection increases relative to the first-
mover, the first-mover’s bargaining position to induce
cooperation is affected.

Hypothesis 3 When adaptive artificial agents play the
iterated SPD game, cooperative behavior and the first-
mover’s relative bargaining position are affected by
the payoff risks of defection faced by the second-mover.

In the extant literature, there are several papers
that discuss the first-mover advantage or bargaining
power in sequential games. Yang et al. (2001) studied
four classical games, namely rent-seeking, best-shot,
trust, and the ultimatum game, by transforming the
games from the continuous space to simplified two-
action sequential games. The goal of the authors was
to study bargaining games where there is a conflict of
interest between the first and the second-movers. The
subgame perfect Nash equilibrium in all these games
remains the same. While the first-movers prefer the
subgame perfect Nash equilibrium, the second-movers
in these sequential games prefer them not to select
these actions. The preferred action of the first-movers
results in a dramatically decreased payoff for the second-
mover as compared with the non-preferred action of
the first-mover. The first-movers upon choosing the
preferred action can in some of the games face punish-
ment by the second-movers; on the other hand, upon
choosing the non-preferred action, the first-movers
face the risk of being exploited by the second-movers.
In the event that the first-movers choose the non-
preferred action, the second-movers have the choice
of rewarding the first-movers and sharing the payoffs
equally with them. The experimental findings illustrate
that first-movers differ in terms of their choice away
from the subgame perfect equilibrium action depending
on the bargaining power of the second-mover in the
various games.

We further qualify the statement of the first-mover
advantage by noting that in the iterated SPD game
with adaptive learning agents, the payoffs received by
the first-mover depend on the payoff risks of defection
faced by the second-mover. In other words, as the
second-mover’s payoff risk associated with defection
decreases, he has less incentive to cooperate. As a

result, not only is there a decrease in the convergence
to the cooperative outcome in the iterated SPD game,
but the first-mover’s relative bargaining position is
weaker, which results in a decrease in the payoffs
received by the first-mover.

Related to the bargaining power is the relation-
ship of the temptation payoff to the observed rate of
cooperation in the iterated SPD game. We therefore
hypothesize the following:

Hypothesis 4 There is a non-linear relationship
between the risk faced by the second-mover (cooper-
ating incentive) and the observed cooperation rate when
adaptive agents play the iterated SPD game.

Clark and Sefton (2001) demonstrate that if the
temptation payoff is doubled while keeping every-
thing else constant, the observed rate of cooperation
will decrease. We take this analysis one step further
and hypothesize that there is a non-linear reduction in
the rate of cooperation when the temptation payoff is
increased.

Not all information in the real world is perfect
and, therefore, we also wish to analyze the impact that
imperfect information regarding an opponent’s action
has on the rate of cooperation in the iterated SPD
game.

Hypothesis 5 Uncertainty in the second-mover’s
action choice decreases cooperation more than the
uncertainty in the first-mover’s action choice when
adaptive agents play the iterated SPD game.

Uncertainty, or noise, is defined as the chance of
an error in the information regarding an opponent’s
action choice. In other words, noise of 5% means that
the opponent’s action choice is perceived incorrectly
5% of the time; hence, the cooperative action of an
agent is perceived by its opponent as defection 5% of
the time and defection is viewed by the opponent as a
cooperative move 5% of the time. Huck and Miller
(2000) find that experimental subjects playing sequen-
tial games can tolerate noise up to 10%. Second-
movers observing the first-movers’ actions with some
noise converge to the subgame perfect Nash equilib-
rium when the noise level is below 10%, and converge
to the simultaneous Nash equilibrium when noise lev-
els increase. Similarly, we are also interested in ana-
lyzing the effects of noise on the level of cooperation
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in the iterated SPD game. We compare the results of
the second-mover observing noisy signals of the first-
mover’s action to the results of noisy signals being
observed by the first-mover of the second-mover’s
action. We hypothesize that the noisy signals of the
second-mover’s action cause a greater reduction in the
rates of cooperation. The reason for lower cooperation
is that the noisy signal of the second-mover’s action
increases the uncertainty faced by the first-mover which,
in turn, amplifies the risks of exploitation faced by the
first-mover.

5 Simulation Results

Bolle and Ockenfels (1990) broadly classified players
in the prisoner’s dilemma games as “moral players”
and “egoistic players” based on prior research on the
motivations and preferences of experimental subjects
playing different versions of the prisoner’s dilemma
game. Both types of players are averse to cooperating
in the simultaneous game due to the incomplete infor-
mation about their opponent’s type. However, second-
movers in the sequential game possess greater knowl-
edge about their opponent. Therefore, the authors
argue that first-movers who are moral players have a
greater incentive to cooperate in the sequential game
because of the greater probability of their opponent
reciprocating a cooperative move if he is also a moral
player. Our simulation findings corroborate Bolle and
Ockenfels’ (1990) logic of increased cooperation in
the sequential game. Table 1 shows the payoff matrix
used for the prisoner’s dilemma game in our simula-
tions.

Observation 1 Contrary to the predictions of classical
game theory, artificial agents playing the iterated SPD
game not only learn to cooperate but also cooperate
more than in the simultaneous version of the game.

In spite of defection being the initially dominant
strategy for the agents we find that the agents learn to
cooperate over time in the sequential game, as shown
in Table1a. The cells in Table 1a show the percentage
of game rounds in which the players find themselves
in each of the four possible states, and demonstrates
the ability of artificial agents equipped with Q-learning
to adapt and learn to cooperate with a high probability
in a sequential setting. This corroborates the findings
of Clark and Sefton (2001), and also contradicts the
predictions of classical game theory which assumes
perfect rationality and predicts defection to be the
subgame perfect Nash Equilibrium strategy for both
players.

In order to investigate the reasons for the high rate
of cooperation in the iterated SPD game, we analyzed
the percentages of states visited as play progresses in
the game. Our findings indicate that over time, as the

Table 1 Payoff for the prisoner’s dilemma game with
two actions C and D, where C represents cooperation
and D represents defection

C D

C 0.3, 0.3 0.0, 0.5

D 0.5, 0.0 0.1, 0.1

Table 1a The proportion of time the two players con-
verge to each of the four possible states when they play
the sequential prisoner’s dilemma game. The table illus-
trates that the game converges a greater proportion of
time to the cooperative state (CC) in the sequential ver-
sion of the prisoner’s dilemma game than in the simulta-
neous game (Table 1b)

State
Player 1 – 

First-mover
Player 2 – 

Second-mover

CC 80.0000 83.0000

CD 3.0000 0.0000

DC 3.0000 0.0000

DD 14.0000 17.0000

Table 1b The proportion of time the two players con-
verge to each of the four possible states when they
play the simultaneous prisoner’s dilemma game with
two actions

State Player 1 Player 2

CC 31.5000 31.5000

CD 2.0000 2.5000

DC 2.5000 2.0000

DD 64.0000 64.0000
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agents adapt to one another’s moves and learn the
payoff function, there is a decrease in the occurrences
of the state CD for the first-mover in the sequential
game. This indicates that either the first-mover coop-
erates less often upon adapting, or that the second-
mover adapts to defect less on seeing a cooperative
move by the first-mover. The former argument can be
discarded, because of the increase in occurrences of
the state CC for the second-mover, implying that either
one or both of the agents have increased their rate of
cooperation. Consequently, we argue that the second-
mover learns the high payoffs associated with cooper-
ation and therefore learns to defect less often on see-
ing a cooperative move by the first-mover.

A comparison of Tables 1a and 1b shows that
there is more cooperation in the sequential version
than in the simultaneous version of the iterated pris-
oner’s dilemma game; specifically, the proportion of
time Player 1 finds himself in the cooperative (CC)
state is close to 80% in the sequential version but only
about 31.5% in the simultaneous version. As a result,
the mean payoffs (see Table 1c) received by the two
players in the sequential version are (0.268, 0.268),
which are much larger than in the simultaneous ver-
sion, (0.171, 0.169). This leads us to our next obser-
vation.

Observation 2 The informational flow in the iterated
SPD game, where the second-mover has knowledge
of the first-mover’s action before choosing his own,
results in the second-mover learning the optimal state-
action function faster than in the simultaneous game.

Theories of observed cooperation in sequential
games attribute cooperation to reciprocal behavior,

whether positive or negative. Reciprocal behavior is
defined as “…an action that would not otherwise be
taken [in a given situation] and if it is undertaken in
response to the action of another” (Cox & Deck, 2005).
Sufficient evidence suggests that cooperation on the
part of players is not motivated by pure altruism but
by positive reciprocity. For instance, McCabe and
Smith (2000) observe reciprocity in a trust game while
Guth (1995) observes reciprocal fairness in the ulti-
matum game.

Since the players in our experiments are artificial
agents and we do not explicitly model reciprocal behav-
ior, we cannot attribute increased cooperation to recip-
rocal behavior. Instead, we hypothesize that the reason
for increased cooperation in the iterated SPD game is
the second-mover’s knowledge of the first-mover’s
action, which eliminates the uncertainty and associ-
ated risk of a cooperative move. In the simultaneous
game, Player 2 (who is the second-mover in the
sequential game) determines the action to take in any
given time period based on the simultaneous actions
taken by himself and his opponent in the previous
period. In the sequential game, however, Player 2
(second-mover) determines his action based on his
previous action and Player 1’s (first-mover) action in
the current period, where the first-mover’s action can
be interpreted as a direct effect of the second-mover’s
action in the previous period. Consequently, if indeed
Player 1’s actions are based on the past behavior of
Player 2, it is more difficult for Player 2 to decipher
this relationship between his actions and those of
Player 1 in a simultaneous game. However, in the
sequential game, by having knowledge of the action
taken by Player 1 (first-mover) in the current period,
Player 2 (second-mover) is more easily able to discern

Table 1c The mean payoffs for the entire game and over the last 100 episodes received by the two players in the
simultaneous and sequential versions of the Prisoner’s Dilemma Game, with standard deviations shown in parentheses.
The table illustrates that both players receive higher mean payoffs both overall and in the last 100 episodes of the game
in the sequential prisoner’s dilemma game than in the simultaneous game

Overall mean 
Player 1

Last 100 episodes
Overall mean 

Player 2
Last 100 episodes

Sequential 0.267681
(0.068274)

0.269
(0.069551)

0.267638
(0.068329)

0.269
(0.069551)

Simultaneous 0.17136
(0.094898)

0.171
(0.096708)

0.168904
(0.092163)

0.1685
(0.09392)
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Figure 2 Comparison of the probability of Player 1 (first-mover in the sequential game) being in state DC in the iterat-
ed SPD game and the iterated simultaneous game. The figure shows that Player 2 learns to defect faster upon seeing
defection by Player 1 in the sequential game than in the simultaneous game.

Figure 3 Comparison of the probability of Player 1 (first-mover in the sequential game) being in state CC in the iterat-
ed SPD game and the iterated simultaneous game. The figure shows that Player 2 learns the benefits of cooperation
and learns to cooperate faster upon seeing a cooperative move by Player 1 in the sequential game than in the simulta-
neous game.
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the consequences of his actions. In other words, the
players (artificial agents) are able to discern the bene-
fits of cooperation in the sequential game even though
neither agent has knowledge of the payoff structure.

In order to determine the increase in the rate of
cooperation in the iterated SPD game, we compared
the percentages of visits to each state as play progresses
in the sequential and simultaneous games. Our findings
indicate Player 2 (second-mover) learns to defect when
Player 1 (first-mover) defects sooner in the sequential
game than in the simultaneous game. In the simultane-
ous game, Player 2 faces an uncertainty in the action
that Player 1 is going to take and so might end up coop-
erating when Player 1 defects. However, in the sequen-
tial game uncertainty regarding Player 1’s action is
eliminated by the information received by Player 2,
who is thus able to more quickly learn the low payoff
associated with cooperating when Player 1 defects.
Additionally, since Player 2 learns the disadvantages
of cooperating upon seeing Player 1 defect, Player 1
learns that he will not be able to exploit Player 2. Fig-
ure 2 compares the probability of Player 1 finding him-
self in State DC (the condition where Player 1 defects
and Player 2 cooperates) in the sequential game and in
the simultaneous game.3 As the figure shows, with time
the artificial agents adapt and in the sequential game
Player 2 learns that cooperating upon seeing defection
by Player 1 results in low payoffs for Player 2. Although
the probability of Player 1 finding himself in State DC
in both games decreases, the trend is for Player 2 to
learn faster in the sequential game. Furthermore, the
faster learning in the sequential game also applies to
Player 2 learning the benefits of cooperating when
Player 1 cooperates. In Figure 3 we compare the prob-
ability of Player 2 finding himself in State CC, the
socially efficient state, in the sequential and simulta-
neous games. Due to the elimination of the uncertainty
about Player 1’s action in the sequential game, Player 2
is able to more quickly discern the benefits of coop-
erating upon seeing a cooperative move by Player 1.

We have thus illustrated how the informational
flow of Player 1’s action to Player 2 in the sequential
game decreases the risk faced by Player 2 in cooperat-
ing. The reduction in risk, in turn, allows Player 2 in
the sequential game to adapt and learn the higher pay-
offs associated with cooperating. Thus, we observe a
higher rate of cooperation in the iterated sequential
prisoner’s dilemma game than in the simultaneous
version of the game.

We will now study the impact of different factors
on the observed rates of cooperation when adaptive
artificial agents play the iterated SPD game. The first
factor that we examine is the risk of defection faced
by the second-mover.

Observation 3 When adaptive artificial agents play the
iterated SPD game, cooperative behavior and the first-
mover’s relative bargaining position are affected by the
payoff risks of defection faced by the second-mover.

We demonstrate below the significance of the bar-
gaining power possessed by the second-movers in pro-
moting convergence to the cooperative outcome. The
basic structure of the prisoner’s dilemma game is
maintained and we modify only the payoff received by
the second-mover when both players defect (see Table 2).
Note that the increase in the payoff received by the
second-mover for defecting when the first-mover
defects results in a decrease in the payoff risk associ-
ated with defection for the second-mover. In addition,
the difference between the payoff received by the
second-mover when both players cooperate and that
when both players defect decreases as well. Therefore,

Table 2 Payoff table for the modified prisoner’s
dilemma game where Player 2 (the second-mover) faces
a lower payoff risk when he defects than in the original
prisoner’s dilemma game (Table 1)

C D

C 0.3, 0.3 0.0, 0.5

D 0.5, 0.0 0.1, 0.2

Table 2a The proportion of time the two players con-
verge for each of the four possible states when they play
the modified sequential prisoner’s dilemma game with the
payoff structure given in Table 2

State
Player 1 – 

First-mover
Player 2 – 

Second-mover

CC 67.000 68.000

CD 1.000 0.000

DC 1.000 0.000

DD 31.000 32.000
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the relative bargaining position of the first-mover to
induce cooperative behavior decreases and, since the
second-mover has less incentive to cooperate, the
overall rate of cooperation decreases. Table 2a shows
the proportion of time periods for which the two play-
ers are in each of the four different states once adapta-
tion is completed and their behavior has converged for
the game with the payoff structure outlined in Table 2.
The results indicate a dramatic decrease in the observed
rate of cooperation in the modified iterated SPD game
versus the classical iterated SPD game (Table 1).
Cooperation under the original payoff structure (Table 1)
is close to 80%, whereas under the modified payoff
structure the rate of cooperation decreases to 67%. In
addition, as shown in Table 2b the mean payoffs received
by Player 1 in the original payoff structure and the
modified structure are 0.268 and 0.238, respectively.

Keeping with the theme of the bargaining power,
we will now analyze the relationship between the temp-
tation payoff and the rate of cooperation. We experi-
mented with the temptation payoff for the second-mover
and found an inverse non-linear relationship between
rates of cooperation and temptation levels (see Tables 3,
3a, 4 and 4a).

Observation 4 There is a non-linear relationship
between the risk faced by the second-mover (cooper-
ating incentive) and the observed cooperation rate
when adaptive agents play the iterated SPD game.

When we increase the temptation of the second-
mover from the base level of 0.5 to 0.7, we observe a
decrease in the proportion of time periods in which he
finds himself in the cooperative state. The decrease is
about 12% (Table 3a). However, when the temptation
is increased to 0.9, the decrease in the proportion of
cooperative state is approximately 28% (Table 4a).
While the increase in the temptation payoff is only
doubled, the decrease in the percentage of the cooper-
ative state is more than double.

We next tested the significance of perfect infor-
mation in promoting cooperation. We conducted two
sets of simulations with a noise level of 10%; this

Table 2b The mean payoffs for the entire game and the last 100 episodes received by the two players in the modified
prisoner’s dilemma game (Table 2) when the risk of defection faced by Player 2 decreases, with standard deviations in
parentheses

Overall mean Player 1 Last 100 episodes Overall mean Player 2 Last 100 episodes

0.235978
(0.090972)

0.237
(0.092556)

0.267688
(0.045512)

0.268
(0.046341)

Table 3 Payoff table for the modified prisoner’s
dilemma game where Player 2 (the second-mover) has
less incentive to cooperate than in the original prisoner’s
dilemma game (Table 1) because of the greater tempta-
tion payoff associated with defecting when Player 1 (the
first-mover) cooperates

C D

C 0.3, 0.3 0.0, 0.7

D 0.5, 0.0 0.1, 0.1

Table 3a The proportion of time the two players con-
verge for each of the four possible states when they play
the sequential prisoner’s dilemma game with the payoff
structure shown in Table 3

State
Player 1 – 

First-mover
Player 2 – 

Second-mover

CC 68.0000 72.5000

CD 4.5000 0.0000

DC 4.5000 0.0000

DD 23.0000 27.5000

Table 4 Payoff table of the modified prisoner’s dilemma
game where Player 2 (the second-mover) has less incen-
tive to cooperate than in the original prisoner’s dilemma
game (Table 1) because of the greater temptation payoff
associated with defecting when Player 1 (the first-mover)
cooperates

C D

C 0.3, 0.3 0.0, 0.9

D 0.5, 0.0 0.1, 0.1
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level of noise was chosen based on the tolerance level
of subjects observed in the experiments of Huck and
Miller (2000). In the first set of simulations, the action
taken by the first-mover is known to the second-mover
with 10% uncertainty, while in the second set the action
taken by the second-mover is known to the first-
mover at the end of each period with 10% uncertainty.

Observation 5 Uncertainty in the second-mover’s
action choice decreases cooperation more than the
same level of uncertainty in the first-mover’s action
choice when adaptive agents play the iterated SPD game.

Table 5 contains the means and standard devia-
tions of the payoffs received by the two players under
the two types of noise. We find that uncertainty in the
knowledge to the first-mover of the action taken by
the second-mover decreases the payoffs for the two
agents much more than uncertainty in the knowledge
about the action choice taken by the first-mover trans-
mitted to the second-mover. Our reasoning is that the
noisy signal of the second-mover further increases the

uncertainty faced by the first-mover, which increases
the risks of exploitation faced by him and also hinders
his adaptive learning process.

We conclude with a summary of our work and pro-
vide directions for future extensions in the next section.

6 Conclusions and Future Work

In this article we modeled artificial agents with rein-
forcement learning algorithms so that they can learn to
strategically interact. Although our focus was on the
broad class of principal–agent games, we conducted
the simulations and analysis while focusing on a spe-
cific game; namely, the iterated sequential prisoner’s
dilemma game. The iterated SPD game closely resem-
bles the simplified version of the principal–agent game.
Play in principal–agent problems is also sequential with
the second-mover (agent) having an advantage, since
he has knowledge of the first-mover’s (principal) action
before he makes his decision. Players act in their best
interests and also face a conflict of interest, thus caus-
ing moral hazard problems that prevent the socially
efficient equilibrium, which is the cooperative solu-
tion, from being reached. Principal–agent relationships
are a common occurrence; and the associated problems
arise whenever a principal depends on an agent for pro-
duction of goods, services rendered, or for the comple-
tion of some other tasks.

To summarize, the research described in this arti-
cle has demonstrated the ability of artificial agents to
learn to cooperate over time in the iterated SPD game,
where classical game theory predicts defection as the
dominant strategy. Our simulation results agree with
experimental findings that observe high rates of coop-
eration in the iterated SPD game among human sub-

Table 4a The proportion of time the two players con-
verge for each of the four possible states when they play
the sequential prisoner’s dilemma game with the payoff
structure given in Table 4

State
Player 1 – 

First-mover
Player 2 – 

Second-mover

CC 38.0000 55.5000

CD 17.5000 0.0000

DC 17.5000 0.0000

DD 27.0000 44.5000

Table 5 The mean payoffs for the entire game and over the last 100 episodes received by the two players under the
two types of noise in the sequential version of the prisoner’s dilemma game (Table 1), with the standard deviations in
parentheses

Overall mean 
Player 1

Last 100 episodes
Overall mean 

Player 2
Last 100 episodes

First-mover action 
affected by noise

0.25249
(0.045035)

0.251
(0.049633)

0.252716
(0.050103)

0.25135
(0.054975)

Second-mover action 
affected by noise

0.198074
(0.054136)

0.19935
(0.056506)

0.19088
(0.094344)

0.192
(0.097646)
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jects. Researchers studying the behavior of human
subjects playing the iterated SPD game in laboratory
experiments have attributed reciprocal behavior to
issues of fairness and equity. We argue that the reason
for observing greater levels of cooperation or recipro-
cal behavior in the sequential versus the simultaneous
iterated prisoner’s dilemma game is due to the additional
knowledge received by the second-mover. This addi-
tional knowledge eliminates the second-mover’s uncer-
tainty about the first-mover’s action, which decreases
the risk of exploitation and is conducive to agents learn-
ing the socially optimal solution.

We also investigated the impact that different fac-
tors of the structure of the game have on the observed
rates of cooperation. For instance, we find that uncer-
tainty in the action taken by the second-mover has a
greater impact on cooperation than the uncertainty in
the flow of information from the first-mover to the
second-mover about the former’s action choice.

In terms of future work, it would be interesting to
compare our results with those achieved using different
models of learning such as other reinforcement learn-
ing algorithms or belief-based systems. It would also
be valuable to study the behavior of artificial agents under
more complicated models of principal–agent problems.
Additionally, we could study the impact of other factors
in the structure of the game on observed rates of coop-
eration. For instance, we could introduce uncertainty
in the payoffs by adding a random error factor every
period to the payoffs and study the effectiveness of
learning in such an environment. We could also intro-
duce costs to the second-mover for observing the action
of the first-mover and thereby study the value of the
first-mover’s action to the second-mover under differ-
ent game scenarios. Finally, we would also like to cor-
roborate our hypotheses with experimental work.

Notes

1 The hypotheses and corresponding simulation results
assume that the artificial agents are modeled using an RL
algorithm, even where this is not explicitly stated.

2 The 2x2 games analyzed by Yang et al. are different from
ours. However, we have defined risk in our article along
the lines of their definition while making the correspond-
ing modifications.

3 Note that the probabilities presented in Figures 2 and 3 are
the average of 100 games with different random seeds. 
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