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Abstract—Reducing the impact of seasonal influenza epidemics
and other pandemics such as the H1N1 is of paramount im-
portance for public health authorities. Studies have shown that
effective interventions can be taken to contain the epidemics if
early detection can be made. Traditional approach employed by
the Centers for Disease Control and Prevention (CDC) includes
collecting influenza-like illness (ILI) activity data from “sentinel”
medical practices. Typically there is a 1-2 week delay between
the time a patient is diagnosed and the moment that data
point becomes available in aggregate ILI reports. In this paper
we present the Social Network Enabled Flu Trends (SNEFT)
framework, which monitors messages posted on Twitter with a
mention of flu indicators to track and predict the emergence and
spread of an influenza epidemic in a population. Based on the
data collected during 2009 and 2010, we find that the volume
of flu related tweets is highly correlated with the number of
ILI cases reported by CDC. We further devise auto-regression
models to predict the ILI activity level in a population. The
models predict data collected and published by CDC, as the
percentage of visits to “sentinel” physicians attributable to ILI
in successively weeks. We test models with previous CDC data,
with and without measures of Twitter data, showing that Twitter
data can substantially improve the models prediction accuracy.
Therefore, Twitter data provides real-time assessment of ILI
activity.

I. INTRODUCTION

Seasonal influenza epidemics result in about three to five

million cases of severe illness and about 250,000 to 500,000

deaths worldwide each year [1]. Reducing the impact of sea-

sonal epidemics and pandemics such as the H1N1 influenza is

of paramount importance for public health authorities. Studies

have shown that preventive measures can be taken to contain

epidemics, if an early detection is made during the germination

of an epidemic [2], [3]. Therefore, it is important to track and

predict the emergence and spread of flu in the population.

The Center for Disease Control and Prevention (CDC)

monitors influenza-like illness (ILI) cases, by collecting data

from sentinel medical practices, collating the reports and

publishing them on a weekly basis. As diagnoses are made

and reported by doctors, the system is almost entirely manual,

resulting in a 1-2 weeks delay between the time a patient is

diagnosed and the moment that data point becomes available

in aggregate ILI reports. Public health authorities need to be

forewarned at the earliest time to ensure effective preventive

intervention, and this leads to the critical need of more efficient

and timely methods of estimating influenza incidences.

Several innovative surveillance systems have been proposed

to capture the health seeking behavior and transform them into

influenza activity indicators. These include monitoring call

volumes to telephone triage advice lines [4], over the counter

drug sales [5], and patients visit logs to Physicians for flu

shots. Understanding that human interaction on the web is a

valuable source of sensing health trends, Google Flu Trends

utilizes aggregated web search queries pertaining to influenza

to build a comprehensive model that can estimate nationwide

as well as state-level ILI activity [6].

In this paper we investigate the use of a novel data source,

namely, messages posted on Twitter, to track and predict the

level of ILI activity in a population. Twitter has become

popular platforms for people to share news and events in

their daily lives, including their mood, health status, travel,

entertainment, etc. Data collected from twitter represents a

previously untapped data source for detecting the onset of a

flu epidemic and predicting its spread. Our approach assumes

twitter users as “sensors” and the collective message ex-

changes with a mention of flu such as “I got Flu” and “down

with swine flu” as early indicators and robust predictors of

influenza. Although many of these data are noisy individually,

in aggregate they reveal the underlying epidemic pattern in

time and space.

ILI activity is known to follow a seasonal pattern, and

successive weekly counts tend to be highly correlated. Using

both the information in previous weeks of CDC data and

Twitter activity measures, we may be able to take advantage of

the additional real time information about ILI activity present

in Twitter data to help predict the underlying ILI activity.

We collected tweets and the location information of Twitter

users who mentioned about flu descriptors in their tweets

starting from October 18, 2009 until present. Until October 23,

2010 we have collected 4.7 million tweets from 1.5 million

unique users from Twitter. Since CDC does not provide weekly

ILI activity data for the period from May 23, 2010 to October

9, 2010, we have 31 weeks of CDC data for the Twitter dataset.

For the analysis, retweets of previous posts and tweets from

the same users within a certain period are removed from the

datasets as these tweets do not present new ILI cases. We

found the number of flu related tweets in Twitter is highly

correlated with the CDC data with a Pearson correlation

coefficient of 0.9846. We consider auto-regression models

that predict future health system load such as the number

of ILI cases in a population next week. The models predict

data collected and published by CDC, as the percentage of

visits to “sentinel” physicians attributable to ILI in subsequent
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weeks. We test these models with previous CDC data, with and

without measures of Twitter data, showing that Twitter data

can substantially improve the model fits. Twitter data provides

real-time assessment of flu and can be particular useful when

the CDC data for “true” ILI activity is not available due to

the delay in the CDC data collection process.

The rest of this paper is organized as follows: Section II de-

scribes the related work that harness the collective intelligence

of OSN users, in an effort to explain and in some events predict

real-world outcomes. In Section III, we present our data

collection methodology for extracting relevant information

from Twitter in the SNEFT architecture. Detailed data analysis

are performed in Section IV to establish correlation with CDC

data. In Section V we present statistical models to predict ILI

activity and evaluate the performance. Finally we conclude in

Section VI and provide acknowledgements in Section VII.

II. RELATED WORK

A number of studies have been conducted on different forms

of social networks like Del.icio.us, Facebook, Flickr, Linkedln,

Wikipedia and Youtube etc. Sitaram et al. demonstrated how

social media content like chatter from Twitter can be used to

predict real-world outcomes of forecasting box-office revenues

for movies [7]. Sakaki et al. used a probabilistic spatio-

temporal model to build an autonomous earthquake reporting

system in Japan using twitter users as sensors and applying

Kalman filtering and particle filtering for location estimation

[8]. Meme Tracking in news cycles as explained by Leskovec

et al. was an attempt to model information diffusion in social

media like blogs and tracking handoff from professional news

media to social networks [9].

Twitter has been used for real-time notifications such as

large-scale fire emergencies, downtime on services provided

by content providers [10] and live traffic updates. There have

been efforts in utilizing twitter data for predicting national

mood [11], currency tracing and performing market and risk

analysis. Tweetminster, a media utility tool design to make

UK politics open and social, analyses political tweets, to

establish the correlations between buzz on Twitter and election

results. Ginsberg et al. in his paper discussing his approach for

estimating Flu trends proposed that the relative frequency of

certain search terms are good indicators of the percentage of

physician visits and established a linear correlation to weekly

published ILI percentages between 2003 and 2007 for all nine

regions identified by CDC [6]. In June 2010, we introduced

SNEFT architecture as a continuous data collection engine

which combines the detection and prediction capability on

social networks in discovering real world flu trends [12].

III. DATA COLLECTION

We describe our data collection methodology by introducing

Social Network Enabled Flu Trends (SNEFT) architecture,

providing description of our datasets, exploring strategies for

data cleaning, applying filtering techniques in order to perform

quantitative spatio-temporal analysis on the collected data.

A. SNEFT Architecture

We propose the SNEFT architecture in Figure 1 along with

its crawler, predictor and detector components, as our solution

to track and predict flu activity with certain accuracy. CDC

Fig. 1. The system architecture of SNEFT.

ILI reports and other influenza related data are downloaded

into “ILI Data” database from its website. A list of flu related

keywords (“Flu” , “H1N1” and “Swine Flu”) that are likely to

be of significance are used by OSN Crawler as inputs into

OSN public search interfaces to retrieve publicly available

posts having mention of those keywords. Relevant informa-

tion about the posts are collected along with the relative

keyword frequency and stored in a spatio-temporal “OSN

Data” database for further data analysis. Only aggregated

anonymous information (e.g., keyword frequencies for a given

geographical location) will be obtained. No user identities or

identity connections will be used in the study.

Autoregressive Moving Average (ARMA) model is used

to predict ILI incidence as a linear function of current and

past OSN data and past ILI data thus providing a valuable

“preview” of ILI cases well ahead of CDC reports. Novelty

detection techniques are used to continuously monitor OSN

data, and detect transition in real time from a “normal”

baseline situation to a pandemic using the volume and content

of OSN data. Hence SNEFT is capable of providing a timely

warning to public health authorities for further investigation

and response.

B. Twitter Crawler

In this subsection we briefly describe the methodology for

collecting our datasets. Based on the Streaming Real time

Search Application Programming Interface (API) provided

by the Twitter sites, we develop a crawler to fetch data at

regular time intervals. Figure 2 depicts the Twitter crawler

component within the SNEFT architecture. The search API

Fig. 2. The Twitter Crawler component of SNEFT Architecture.
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embeds Flu indicators like “Flu”, “Swine Flu” and “H1N1”

as input parameters into an HTTP URL request and fetches

a real time response stream with entries spread across the

global search space having the keywords in reverse-time order.

Online Social Networks reflects real world user interactions

and Twitter has received much attention recently from a

research perspective because of its growing popularity, real-

time nature and increased data volumes.

A tweet has the User Name, the Post with status id and

the Time stamp attached with each post. From the twitter’s

username we can get profile details attached to every user

which include number of followers, number of friends, his/her

profile creation date, location and status update count.

In addition, 3G enabled mobile devices can make use of

mobile clients to access and update social content. A user has

an option to make his location public through a mobile device

if he wishes to, or provide location details in his profile page.

The location field is relevant to our research since it helps us

in tracking the current/default location of a user. Geo location

codes are attached to the message in a location enabled mobile

post. Such geo-tagged content will improve the availability

and accuracy of the geographic information tied to influenza

related OSN posts. For all other purposes, we assume the

location attribute within the profile page to be his/her current

location and pass it as an input to Google’s location based web

services to get geo-location codes (i.e., latitude and longitude)

along with the country, state, city with a certain accuracy scale.

All the data extracted from posts and profile page are stored

in a spatio-temporal “OSN data” Database.

As our study is restricted to users who are posting from

within USA, we apply country filters to get quantitative data

on users of our interest. We also exclude organizations that

posts multiple times in a day on flu related activities and users

who have subscribed to RSS feeds.

IV. DATA SETS

We searched and collected tweets and profile details of

Twitter users who mentioned about flu descriptors in their

tweets starting from Oct 18th, 2009 and lasting until Oct 31st,

2010. So far we have 4.7 million tweets from 1.5 million

unique users along with their social relationship from twitter.

Due to a power outage on our data collection site there was

no data collected from January 18, 2010 till January 20, 2010.

Location details can be set to public or private from the

profile page or mobile client. In our Twitter dataset 30.6%

users are from USA, 41.3% users are outside USA and 28.1%

users have not published their location details. Within USA,

we have seen users who tweeted about flu in all 50 states

and District of Columbia. Figure 3 shows the state-wise

distribution of users.

Figure 4 shows percentage of unique Twitter users who

mentioned about flu in tweets at different hours of the day. All

status posting times (tweet timestamp in GMT) are converted

to the local timezone of the individual profile. Day light

saving are also applied within required time frame. The hourly

activity patterns observed at different hours of the day are
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Fig. 3. State-wise Distribution of USA users on Twitter for flu postings

much to our expectations, with high traffic volumes being

witnessed from late morning to early afternoon and less tweet

posted from midnight to early morning, reflecting people’s

work and rest hours within a day. Average daily usage pattern

within a week shown in Figure 5 suggests a trend on OSN

sites with more people discussing about flu on weekdays than

on weekends. Note that our observed usage patterns in Twitter

are consistent with previous observations for other OSNs [13].
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Fig. 4. Hourly Twitter usage pattern in USA
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Fig. 5. Average daily Twitter usage within a week

For later analysis, Twitter dataset needs to be processed

to discount retweets and successive posts from same users

within a certain syndrome elapsed time. These two issues are

explained as follows:

• Retweets: A retweet is a post originally made by one

user that is forwarded by another user. For flu tracking, a

retweet does not indicate a new ILI case, and thus should

not be counted in the analysis. Out of 4.7 million tweets

we collected, there are 450,000 retweets, accounting for

9.5% of the total number of tweets.

• Syndrome elapsed time: An individual patient may have

multiple encounters associated with a single episode of
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illness (e.g., initial consultation, consultation 1-2 days

later for laboratory results, and follow-up consultation a

few weeks later). To avoid duplication from this common

pattern of ambulatory care, the first encounter for each

patient within any single syndrome group is reported to

CDC, but subsequent encounters with the same syndrome

are not reported as new episodes until more than six

weeks has elapsed since the most recent encounter in

the same syndrome [14]. We call it syndrome elapsed

time. In our dataset, we remove tweets from the same

user within a certain syndrome elapsed time, since they

do not indicate new ILI cases.

We created different datasets consisting of the original Twit-

ter dataset, Twitter dataset without retweets, Twitter dataset

without retweets and having no tweets from the same user

within a syndrome elapsed time of 1 week, 2 weeks, and

6 weeks, respectively. We compute the correlation between

these datasets and the CDC data (percentage of weighted ILI

visits). Table I shows the correlation coefficients and the root

mean-squared errors (RMSE) of a linear regression between

the datasets and the CDC data. Correlation coefficient is a

statistical measure of the association between two variables

and ranges between [-1, 1]. The sign denotes whether two

variables are positively or negatively related and the absolute

value corresponds to their correlation strength. The RMSE of a

fit is the square root of the average squared distance of a data

point from the fitted line. Lower values of RMSE indicate

better fit. RMSE is a measure of how accurately the model

predicts the response.

Twitter Dataset

Retweets Syndrome Elapse Correlation RMSE
Time coefficient errors

Yes NIL 0.9807 0.355

No NIL 0.9829 0.3348

No 1 week 0.9846 0.318

No 2 week 0.9838 0.3256

No 6 week 0.9755 0.3998

TABLE I

CORRELATION BETWEEN TWITTER DATASETS AND CDC.

Comparing these different dataset with CDC data we found

that the dataset without retweets and having no tweets from the

same user within syndrome elapsed time of one week (high-

lighted in Table I) yields the highest correlation coefficient

(0.9846) with the CDC data. This dataset will be used for all

successive experiments. The relationship between the dataset

and the CDC data is illustrated in Figure 6, which shows

a very close to linear relationship between the two datasets.

Increase in number of users tweeting about flu related activity

is accompanied by increase in the percentage of weighted ILI

visits reported by CDC in the same week.

Finally we provide a single plot in Figure 7 that sketches

CDC’s percentage of ILI visits to physician with the original

Twitter data and Filtered Twitter data both normalized to the

scale of CDC data for a time-span of thirty one week when our

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0  1  2  3  4  5  6  7  8

N
u

m
b

e
r 

o
f 

T
w

it
te

r 
u

s
e

rs
 p

o
s
ti
n

g
 p

e
r 

w
e

e
k

% ILI visit

% ILI visit v/s Twitter users
Fitted line

Fig. 6. Number of Twitter users per week versus percentage of weighted
ILI visit by CDC

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

w
42

w
43

w
44

w
45

w
46

w
47

w
48

w
49

w
50

w
51

w
52

w
1

w
2

w
3

w
4

w
5

w
6

w
7

w
8

w
9

w
10

w
11

w
12

w
13

w
14

w
15

w
16

w
17

w
18

w
19

w
20

p
e

rc
e

n
ta

g
e

 o
f 

IL
I 

v
is

it
s

% physician visits (CDC)
Original Twitter Data
Filtered Twitter Data
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time of one week displayed on weekly basis

data collection mechanism was active and CDC was publishing

their reports online.

V. TWITTER IMPROVES PREDICTION OF INFLUENZA DATA

We consider statistical models predicting future health sys-

tem load such as the number of Influenza Like Illness (ILI)

cases expected next week. The models predict data collected

and published by the CDC, as the percentage of visits to

“sentinel” physicians attributable to ILI in successive weeks.

We test our models with previous period CDC data, with and

without measures of Twitter activity, showing that Twitter data

improves model fit substantially.

A. Model Structure

The general form of the models used in experiment is

written in the auto-regression with exogenous inputs (ARX)

form [15], [16]:

ARX Model

y(t) =

m∑

i=1

aiy(t− i) +

n−1∑

j=0

bju(t− j) + c + e(t) (1)

where t indexes weeks, y(t) denotes the percentage of physi-

cian visits due to ILI in week t, u(t) represents the number of
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unique Twitter users with flu related tweets in week t, and e(t)
is a sequence of independent random variables. c is a constant

term to account for offset.

In our tests, the number of unique Twitter users u(t) is

defined as Twitter users without retweets and having no tweets

from the same user within syndrome elapsed time of 1 week.

This definition avoids statistical bias from counting a single

infected individual case more than once per ILI episode.

The rationale for the model structure in Eq. (1) is that

Twitter data provides some independent real-time assessment

of influenza as events in Twitter text. Unfortunately, the signal

is carried by a chaotic, noisy data stream and may be disturbed

from time to time by events only indirectly related to cases

of ILI. The CDC aims to provide a valid physician confirmed

ILI diagnosis, as a measure of “true” population ILI activity

but is prone to delays.

ILI activity is known to follow a seasonal pattern, and

successive weekly counts tend to be highly correlated. Using

both the information in previous weeks of CDC data and

Twitter activity measures, we may be able to take advantage of

the additional real time information about ILI activity present

in Twitter data to help locate the signal of underlying ILI

activity.

In the experiment, we vary m from 0 to 2 and n from

0 to 3 in Eq. (1). Within those ranges, m = 0 or n = 0
represent models where there are no CDC data y or Twitter

data u terms present respectively. Also, if m = 0 and n = 1,
we have a linear regression between Twitter data and CDC

data. If n = 0, we have standard auto-regressive (AR) models.

Since the AR models utilize past CDC data, they serve as

baselines to validate whether Twitter data provides predictive

power beyond historical CDC data.

The objective of the model is to provide timely updates of

the percentage of physician visits. To predict such percentage

in week t, we assume that only the CDC data with at least 2

weeks of lag is available for the prediction if past CDC data is

present in a model. The 2-week lag is to simulate the typical

delay in CDC data reporting and aggregation. For the Twitter

data, we assume that the most recent data is always available

if a model includes the Twitter data terms. In other words, the

most current CDC or Twitter data that can be used to predict

the percentage of physician visits in week t is week t− 2 for

the CDC data and week t for the Twitter data.

To predict the flu cases in week t using the ARX model

in Eq. (1) based on the CDC data with 2 weeks of delay

and/or the up-to-date Twitter data, we apply the following

relationship.

Prediction with ARX Model

ŷ(t) = aiŷ(t− 1) +

m∑

i=2

aiy(t− i) +

n−1∑

j=0

bju(t− j) (2)

ŷ(t− 1) =

m∑

i=1

aiy(t− i− 1) +

n−1∑

j=0

bju(t− j − 1) (3)

where ŷ(t) represents the predicted CDC data in week t. It

can be verified from the above equations that to predict the

CDC data in week t, the most recent CDC data is from week

t−2. If the CDC data lag is more or less than two weeks, the

above equations can be easily adjusted accordingly.

B. Cross Validation Test Description

Based on the ARX model structure in Eq. (1), we conducted

tests for different combinations of values for m and n.

We currently have only 31 weeks with both Twitter activity

and CDC data available (10/18/2009–05/16/2010). It is noted

in our tests that, due to power outage the Twitter data for the

week of 1/17/2010 was artificially created from the average of

those from the two neighboring weeks. Due to the limited data

samples, we adopted the K-fold cross validation approach to

test the prediction performance of the models listed above.

In a typical K-fold cross validation scheme, the dataset

is divided into K (approximately) equally sized sub-sets. At

each step in the scheme, one such subset is used as the test

set while all other subsets are used as training samples in

order to estimate the model coefficients. Therefore, in a simple

case of a 30-sample dataset, 10-fold cross-validation would

involve testing 3-samples in each step, while using the other

27 samples to estimate the model parameters.

In our case, the cross-validation scheme is somewhat com-

plicated by the dependency of the sample y(t) on the previous

samples, y(t − 1), . . . , y(t −m) and u(t), . . . , u(t − n + 1)
(see Eq. (1)). Therefore, the first sample that can be predicted

is y(max(m+1, n)) not y(1). In fact, since we are predicting

“two weeks ahead” of the available CDC data, the first sample

that can be estimated is actually y(max(m + 2, n + 1)).
Since, prediction equations cannot be formed for y(1), . . . ,
y(max(m+2, n+1)−1), those samples were not considered

in any of the K subsets during our experiment to be evaluated

for prediction performance. However, they were still used in

the training set to estimate the values of the coefficients ai

and bj in Eq. (1).

C. Cross Validation Results

The results of 5-fold cross validation are given in Table II.

According to both the 5-fold cross validation results, the model

corresponding to m = 0 and n = 3 has the lowest RMSE. The

corresponding model has the following form:

y(t) = b0u(t) + b1u(t− 1) + b2u(t− 2) + c (4)

In general, the addition of Twitter data improves the pre-

diction with past CDC data alone. We plot the Twitter dataset

(number of tweets normalized to the same scale as CDC data)

and predicted values of the percentage of weighted ILI visits

(5-fold cross validation) against CDC data in Figure 8 to

illustrate the effectiveness of the prediction model.

It may be somewhat counterintuitive that the model resulting

in the lowest RMSE is the one that uses only Twitter data

(m = 0 and n = 3). After all, strong autoregression of flu

epidemics without the use of Twitter data have been shown in

the literature of surveillance. There are several explanations

for the test outcome, and the cause of the outcome may very

well be a combination of the following factors:

706



 0

 1

 2

 3

 4

 5

 6

 7

 8

w
42

w
43

w
44

w
45

w
46

w
47

w
48

w
49

w
50

w
51

w
52

w
1

w
2

w
3

w
4

w
5

w
6

w
7

w
8

w
9

w
10

w
11

w
12

w
13

w
14

w
15

w
16

w
17

w
18

w
19

w
20

p
e

rc
e

n
ta

g
e

 o
f 

IL
I 

v
is

it
s

% physician visits (CDC)
Twitter Data

Predicted Flu Trend
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validation)

n = 0 n = 1 n = 2 n = 3

m = 0 0.2996 0.2381 0.2367

m = 1 0.2766 0.2703 0.2488 0.2454

m = 2 0.2716 0.2712 0.3487 0.3488

TABLE II

ROOT MEAN SQUARED ERRORS FROM 5-FOLD CROSS VALIDATION.m AND

n ARE DEFINED IN EQ. (1). THE m AND n VALUES SPECIFY THE MODEL

THAT RESULTS IN THE RMSE IN THE CORRESPONDING ROW AND COLUMN

RESPECTIVELY. THE LOWEST RMSE IN THE TABLE IS HIGHLIGHTED.

1) The Twitter data provides a real-time assessment of the

flu epidemic (i.e. the availability of Twitter data in week

t in the prediction of physician visits also in week t as

shown in Eq. (2)), while we assume that the CDC data

has 2 weeks of lag in data reporting and aggregation

(see Eq. (2)). As it is shown earlier in the paper, there

is strong correlation between the Twitter data and the

CDC data. Hence, the more timely Twitter data can alone

capture the flu trend.

2) The time period in which the experiment is conducted

was not significantly influenced by events that might

perturb the Twitter data. Hence, Twitter data reflects true

scope of the epidemic. Again, with 2 weeks of lead in

reporting compared to the CDC data, the Twitter data

provides better information than the staled CDC data in

prediction.

3) We have limited number of samples (31) for our exper-

iment. For a complex model, say an ARX model with 2

past CDC data terms, 3 Twitter data terms and a constant

term for a total of 6 coefficients to be estimated, the

model can be over-trained (over-fitted) and results in

worse performance during cross-validation.

VI. CONCLUSIONS

In this paper, we investigated the use of a previously

untapped data source, namely, messages posted on Twitter

to track and predict influenza epidemic situation in the real

world. Our results have shown that the number of flu related

tweets are highly correlated with ILI activity in CDC data

with a Pearson correlation coefficient of 0.9846. We build

auto-regression models to predict number of ILI cases in a

population as percentage of visits to physicians in successive

weeks. We tested our regressive models with the historic

CDC data and verified that Twitter data substantially improves

our model’s accuracy in predicting ILI cases. In view of

the lag inherent in CDC’s ILI reports, Twitter data provides

near real time assessment of influenza activity and can be

used to effectively predict current ILI activity levels. Our

approach to flu trends tracking using online social network

provides an opportunity to significantly enhance public health

preparedness among the masses for influenza epidemic and

other large scale pandemic.
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