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Abstract

We investigate the implications of a unified spatio-chromatic basis for image compression
and reconstruction. Different adaptive and general methods (PCA, ICA, and DCT) are ap-
plied to generate bases. While typically such bases with spatial extent are investigated in
terms of their correspondence to human visual perception, we are interested in their appli-
cability to multimedia encoding. The performance of the extracted spatio-chromatic spatial
patch bases is evaluated in terms of quality of reconstruction with respect to their potential
for data compression. Since independent component analysis is not as widely used as it
should be, compared to the other decorrelation methods applied here in a new domain, we
also provide a review of ICA. The results discussed here are intended to provide another
path towards perceptually-based encoding of visual data. This leads to a deeper understand-
ing of the role played by chromatic features in data reduction.
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1 Introduction

Decorrelation for redundancy reduction has a long history in image processing. In particular, vari-
ants of the Principal Component Analysis (PCA) [1] for orthogonal decorrelation have been part
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of the arsenal of data reduction for many years. The main idea here is to account for most of the
variance in the data using the first several principal axes, and then reduce the influence of further
terms either by directly omitting these or by adopting a bit allocation scheme to deprecate their
influence.

PCA can tell us how Nature processes vision, if we consider natural images. In particular, we
expect to see color-opponent channels arise in a natural fashion, simply by automatic inspection of
the data. But as well, we hope to glean evidence of how spatial processing operates. And in fact,
in terms of human visual system quantum catches Ruderman et al. [2] found not only such color-
opponent structures but also spatial derivative-like filters, operating similarly and independently in
each opponent-color and luminance channel.

Ruderman analyzed hyperspectral image sequences of natural scenes, looking for a decorrelated
color-space basis. In part, Ruderman et al. built on the work of Webster et al. [3] in arguing for a
representation involving a log LMS (long-medium-short) space.

Their work was based on a very simple scheme: first, using natural images derived from measured
hyperspectral data and transformed to log space, Ruderman et al. formed small tiles, 3 pixels by 3
pixels, from an assembly of such images. Treating these 9 pixels as a vector, with each pixel con-
taining 3-vector color information, leads to 27-vector data for PCA analysis. Re-assembling the
color information, these color patches could also be reconstituted as 3× 3 color squares, for view-
ing. The Principal Component Analysis then produced 27 such 3× 3 color checkerboards, ranked
in order of singular values from most influential to least important. The answer that arose was that,
for the foliage data that was used, these color squares naturally grouped into gray luminance, a
blue-yellow axis, and a red-green axis, in that order.

In terms of spatial components, for each of the color channels the spatial structure of the bases
resembled the derivative-like and frequency-analysis-like structures arising in a Fourier analysis of
grayscale images.

The latter result was not surprising (although the decorrelation from color was): Olshausen and
Field’s seminal work on receptive field properties [4] implied that the receptive fields in mam-
malian primary visual cortex simple cells are spatially localized, oriented, and spatially bandpass
in the sense of being selective to structure at different spatial scales, for non-color luminance in-
puts. Visually, these fields resemble a 2-dimensional Discrete Cosine Transform (DCT) basis in an
N ×N checkerboard structure (see, e.g., [5], and below), but with diagonal as well as axis-aligned
basis images.

PCA has also been applied to non-interpolated, raw Color Filter Array (CFA) data [6], with the
result that the recovered basis finds only color information, not luminance information, so is not
appropriate for modeling spatial information.

Here we are interested in considering in detail how the use of Independent Component Analysis
(ICA) as opposed to PCA affects color still image compression based on such color checkerboard
basis image blocks. In the next section, we explicate the ICA approach.
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2 Related Work

2.1 ICA for Signal Separation

As opposed to an orthogonal PCA basis, some workers have also considered an Independent Com-
ponent Analysis (ICA) of natural images [7]. ICA proceeds by producing a minimally redundant
set of basis functions. To do so, a set of maximally statistically independent basis vectors is found.

To understand what this means let us consider two stochastic variables x1 and x2, and also the
coefficients s1, s2 of our data projected on two different axes. Their joint probability density is
p(x1, x2). The separate probability densities for x1 or x2, their marginal probability, can be com-
puted e.g. by p1(x1) =

∫
p(x1, x2)dx2. Then x1 and x2 are independent if and only if in the new

coordinate system, where the new variables are s1, s2,we have

p(s1, s2) = p1(s1)p2(s2) (1)

This leads to the condition

E{h1(s1)h2(s2)} = E{h1(s1)}E{h2(s2)}, (2)

where E means expectation and h1, h2 can be essentially any two integrable scalar functions of the
s; the above is therefore a very strong condition on the distributions of s1 and s2. It says that any
nonlinear transforms of the independent components are uncorrelated — the covariance between
different independent components is zero. In comparison, PCA decorrelates but does not guarantee
independence. That is, projecting the data to the decorrelated axes, the distribution of two resulting
coefficients s1 and s2 fulfill

cov(s1, s2) = E{(s1 − s̄1) · (s2 − s̄2)}

= E{s1 · s2} − E{s1}E{s2}

= 0

(3)

This corresponds to eq.(2) with h1, h2 being linear and therefore constitutes a much weaker state-
ment than does eq. (2). However, PCA (“whitening”) is still useful as a pre-processing step for
ICA, and we use it that way here. The vocabulary used for ICA is somewhat different than that
used for PCA. ICA is one way of solving the Blind Source Separation problem. Just as for PCA,
if we have a k-dimensional feature-vector x , then if there are k basis vectors we can approximate
x as

x ' A s (4)

where the k columns of A hold our ICA basis vectors, and s is the set of weights. In ICA, the
matrix A is called the mixing matrix and s is a multidimensional stochastic variable of independent
sources. E.g., in PCA, vector x could be a grayscale image, and A would consist of orthogonal
eigenimages (cf. [8]). However, for ICA the columns of A are not orthogonal. Therefore to find the
weights s we must use the Moore-Penrose pseudoinverse A + of A , applied to the target image.
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(a) (b)

(c) (d)

Fig. 1. (a): Mixed signals as measured. (b): Source signals as recovered. (c): Actual source signals. (d): PCA
basis.

The pseudoinverse is referred to as the set of ICA filters. Matrix A is called the mixing matrix
since it produces signals mixed from the sources; whereas W = A + is called the separating
matrix:

s = W x = A + x (5)

ICA has been used for multimedia data fusion as well [9,10] — in this case, ICA recovers common
latent subspaces for combined media. Typically, however, PCA is used [11,12], applied to much
smaller feature spaces than whole images.

The process of finding these independent ICA vectors is based on the Central Limit Theorem,
which states that a sum of non-Gaussian random variables is more like a Gaussian than are its
individual components. But the independent sources sought can be written as sums of the observed
data. Thus, we can move toward independent sources by trying to find a sum of the observed data
over vectors which have maximum non-Gaussianity. This property can be measured in terms of
higher order statistics, e.g. kurtosis or negentropy (see below).

ICA can be viewed as a linear generative model with non-Gaussian priors for the hidden variables.

To see the power of ICA, consider for the moment 1D signals (these could be audio signals, for
example, after [13]). Suppose two audio sources generate signals which are then measured by two
microphones placed at random locations near the sources: in a linear model, each microphone
generates a signal given by a linear combination of the two original source signals. Since the
sources do not in principle affect each other in any way, they are independent. Recovery of the
original sources is a classical problem in blind source separation; it is termed the “cocktail party
problem”.

Suppose the two signals x 1 and x 2 as measured are as shown in Fig. 1(a). Comparing the actual
(independent) sources, in Fig. 1(c), with the ICA recovered versions, in Fig. 1(b), we note that ICA
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does not necessarily produce the correct order or sign for the recovered sources — but this will
turn out not to matter.

Clearly, if we can indeed identify correct sources in a set of measured signals, then we can do
a better job in compression by allocating more bits to the actual sources, and fewer to vectors
deemed not truly independent. If we have k-dimensional data, and can obtain an expressive, sparse
set of underlying mechanisms for image generation, then coefficients in terms of this underlying
set will effectively be of reduced rank. Therefore we can describe the image data well with a small
basis, and can as well assign bits from a bit-budget as needed to the surviving coefficients. After
entropy-based coding, since the entropy is greatly reduced by focusing on the correct, underlying
features of the data, we arrive at a substantial compression.

PCA does do a good job of identifying the most-variance to least-variance set of orthogonal di-
rections from a measured dataset, but the underlying data may not indeed actually be orthogonal.
Using PCA, however, we are constrained to the orthogonality assumption, yielding results as in
Fig. 1(d) that may not be as useful as they could be if the correct, non-orthogonal sources were
determined using ICA.

Since the independent sources are modeled as a linear combination of the measured data, we look
for an ICA basis such that the nongaussianity of the combination of measured data is maximized.
Thus we seek local maxima of nongaussianity of a linear combination

si =
k∑
j=1

wjx ji , i = 1..N (6)

where xji is the observed data, j = 1..k, i = 1..N consisting ofN observations of k-vectors, under
the constraint that the variance is constant. Each local maximum gives one independent component.

The idea in “sparse” coding is to represent data with components such that only a small number
of them are “active” at the same time. It turns out that this is equivalent, in most situations, to
finding components that are maximally nongaussian. The latter property can be characterized by
the kurtosis (the fourth-order cumulant), which is zero for a Gaussian. However, a more robust
measure is formed by the negentropy, the difference between the entropy for a Gaussian and that
for the current basis, using the observation that for a given standard deviation σ, a Gaussian Gσ

has maximum entropy compared to other probability distributions.

Thus one arrives at a gradient descent method for determining the ICA basis, and since this can be
phrased as a fixed-point problem, mechanisms similar to the Contraction Mapping Theorem can
be brought to bear for existence, uniqueness, and convergence rate. The method we use here is the
FastICA algorithm [14].

However, a simple explanation using the kurtosis is indeed illuminating: for a zero-mean variable
y, the kurtosis is defined as

κ(s) = E{s4} − 3
(
E{s2}

)2
(7)
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and if we re-scale the variance to unity, this reduces to just

κ(s) = E{s4} − 3 (8)

so that clearly we may use just the expectation of the fourth moment of the signal. However,
including the −3 means that κ may be negative, so we maximize |κ(s)|.

An algorithm for finding an independent source combination then proceeds by first “whitening”
the data using PCA; i.e., we diagonalize the signal’s product-matrix into an orthogonal matrix U
and a diagonal one D : for a k ×N matrix of signals x ,

x x T = U D U T , U and D are k × k (9)

Then in the new coordinate system, x̃ = x whitened,

x whitened = x̃ ≡
√

(x x T )−1 x = (U D −1/2 U T ) x ≡ M x (10)

so now x̃ x̃ T = I . Hence we only need to search for a new, orthogonal matrix Ã such that

x̃ = Ã s (11)

with Ã Ã
T

= I . Once Ã is determined, we can go back to a mixing matrix in terms of the
original, unwhitened x via W = Ã

+
M .

Thus we first whiten x , and then seek a column w̃ of an orthogonal matrix W̃ , with ‖w̃ ‖ = 1,
that maximizes the departure of the kurtosis from zero:

I =
max
w̃

∣∣∣∣∣ 1

N

N∑
i=1

(
w̃ T x̃ [i]

)4
− 3

∣∣∣∣∣ where x̃ [i] is the ith column of x̃ (12)

This leads to an Euler equation as follows:

∂I
∂w

=
4

N

N∑
i=1

[(
w̃ Tx [i]

)3
x̃ [i]

]
= 0 (13)

Sample code for such an algorithm is given in Appendix A. For a more detailed discussion of ICA
the interested reader is referred to [15].

2.2 ICA for Imagery

Data reduction for images using ICA has indeed been found useful for sparse coding, i.e., finding
underlying sources such that any given image is naturally represented in terms of just a small
number of these: ICA [7] in fact reproduces results for optimizing sparseness [4]. Typically, the
technique is used for the extraction of hidden sources generating observed data. For example,
consider the image in Fig. 2. The RGB values in this image form clusters, as in shown in the left of
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Fig. 2. Basis vectors for a given color distribution from right image as found by PCA (red) and ICA (green).

Fig. 3. Spatio-chromatic basis obtained from PCA on 4× 4×RGB image patches of the example in Fig. 2.

Fig. 2, with orthogonal PCA axes shown in red. In contrast, the ICA axes (in green) show that the
image is actually comprised of just a few independent sources. It should be noted that ICA is data
adaptive: we would like to develop a set of basis vectors that is specific for a certain type of image
contents. We could also target at developing a universal basis from a training set, but an adaptive
model is bound to be more expressive since, as we see from Fig. 2, the hidden characteristics of
content are extracted.

For grayscale imagery [4,7], PCA indicates that a mutually orthogonal spatial basis for imagery
consists of bandpass filters similar to 2-dimensional DCT basis images, but with some non-rectangular
orientation present (cf. Fig. 3). For grayscale, how one creates such an image is by randomly se-
lecting N -pixel by N -pixel square patches from an image set, vectorizing these N2 values, and
identifying the basis as the eigenvectors of the mean-subtracted covariance matrix. In contrast,
ICA of grayscale imagery produces basis functions that are again bandpass, but are more obvi-
ously oriented and are similar to Gabor functions — Gaussian-windowed sine waves [4,7].

2.3 ICA basis functions for natural images

A survey of applications of ICA to the processing of different media (image/video, multimodal
brain data, audio, text, and combined data) is provided by [16]. However, while ICA has been
widely used for classification, implications of ICA for multimedia compression have not been
greatly studied, and usually have been discussed in simple terms of dimensional reduction. Studies
including a bit allocation scheme have so far considered only audio [17], and grayscale imagery
[18–21], with inclusion of color in still imagery only in our previous preliminary papers [22,23].
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Fig. 4. Basis patches for DCT decomposition of spatio-chromatic 4× 4×RGB patches. Sorted in order of
decreasing variance-accounted-for from left to right and top to bottom.

When color is included, our patch vectors become N × N × 3 structures, for RGB images. PCA
proceeds as stated above, but for these longer vectors, and the resulting structure can be visualized
as in Fig. 3 (shown for patch size N = 4). Note that the PCA basis is adaptive to the image (but in
fact does not change much, for natural imagery we have tried).

In [2], Ruderman et al. first extended color PCA, as in the red vectors in Fig. 2, to a spatial patch
domain by using 3 × 3 patches of 3-vector color data. In comparison, in a sense Fig. 2 shows
results for 1 × 1 spatial patches. Ruderman et al. conclude that for foliage images, PCA of log
long-medium-short visual color channel data tends to decorrelate spatial processes from chromatic
ones, leading to 9 spatial features times 3 color ones. The latter are, in order, luminance, blue-
yellow, and red-green. This result was extended by Wachtler et al. [24,25] by replacing PCA with
ICA, again for LMS data but now using 7× 7 patches.

Color images and stereo vision have also been investigated in [26], which states that the derived
independent components again yield a separation of basis vectors into luminance and opponent
colors. However, we find this separation is of lesser extent than for PCA (see Fig. 5).

Besides allowing for conclusions regarding human visual perception, these chromatic bases with
spatial extent are very interesting from an image compression point of view. In the following we
take a closer look at the implications of encoding visual data with respect to these bases.

3 Data specific basis functions

The goal of our analysis is to compare the suitability of different data-adaptive basis functions for
compressing color visual data. Therefore, a standard set of color images is chosen that spans a
variety of outdoor scenes containing plants, animals, humans and artificial objects. The perspec-
tives of the images range from detail shots to panoramas 2 . In the following we will consider three
different sets of bases — two data-adaptive methods, viz. PCA and ICA, and one general basis, the
discrete cosine transform DCT, moved here into a color domain such that it resembles the PCA.

The DCT basis is a descendant of the Fourier transform. To apply it to the spatio-chromatic setting
we simply treat the two spatial patch extents and the index of RGB color components as a three
dimensional rectangular prism, e.g., a 3×3×3 cube. Fig. 4 shows the resulting basis re-assembled
as a color picture. Note the similarity of this artificially generated basis to that obtained by PCA

2 We use the 23 publicly available stills from http://www.cipr.rpi.edu/
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Fig. 5. Basis patches for ICA of spatio-chromatic 4 × 4 × RGB patches. Sorted in order of decreasing
variance.

in Fig. 3. The most prominent difference is a slightly changed orientation of the directional fre-
quencies that in Fig. 4 are axis-aligned . A similar explanation applies to the fact that the main
color axes are chosen differently. Also note that the ordering by the variance-accounted-for is quite
different because of the different alignment of the basis. In the DCT case the pure color dimensions
appear later in the sequence after several luminance frequencies. In the PCA case all three of them
appear as the most significant vector. We note that indeed color seems to be fairly separated from
luminance, and also that the order is luminance, blue-yellow, and red-green.

Fig. 5 shows the result of ICA performed on the standard image set, for a particular patch size.
While the results of DCT and PCA can be interpreted as a frequency decomposition of the data,
the functions obtained by ICA exhibit a combined localization in space and frequency [26,22].
This basis seems to somewhat separate opponent color from luminance — but much less so than
already illustrated in Fig. 3 for the PCA case: ICA entangles color and luminance. The patterns are
not rectangular, but instead resemble Gabor functions.

Besides deciding on a method of basis generation, we have to make a choice about the size of
the patches we will operate on. To create a basis, the analysis is performed on square pixel neigh-
borhoods. We randomly sampled a total of 50000 patches over the images of the given set. The
resulting basis functions then reflect the statistical properties of the presented data.

As patch size increases, the sparse nature of the ICA basis patches becomes more evident. Fig. 6
shows the ICA basis sets for 5×5, 8×8, and 16×16 patches. We see that features captured by the
ICA basis are indeed localized in space.

To use the basis for reconstruction, the images are regularly tiled into an arrangement of non-
overlapping patches. As mentioned above in the discussion of eq. (4), the coefficients for each patch
of the image can be obtained by a linear transform using the filter patches. These are essentially
the inverse of the basis patches. Respectively, going back from the coefficients to the actual image
data is done by transforming the coefficients in a linear combination of the basis patches.

3.1 Quantization and entropy encoding of coefficients

After having projected the image data to the new basis the resulting coefficients have to be reduced
in some way. If no reduction takes place no compression will apply. The method we have im-
plemented performs a variance-based quantization. The discretized output can then be efficiently
compressed using entropy-based compression.
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(a)

(b)

(c)

Fig. 6. ICA generated spatio-chromatic basis functions for (a): 5×5; (b): 8×8; and (c): 16×16 patches. As
the patch size increases, there are N ×N × 3 patches in each sub-figure, meaning 75 patches, 192 patches,
and 768 patches respectively (To save space, just the top-importance basis patches are shown).

The coefficients are given as continuous (floating point) numbers. To apply entropy coding, we
have to quantize them first. In our tests we use the method of assigning each basis vector a number
of bits proportional to its standard deviation [27]. The proportionality factor is chosen to fulfill a
given overall contingent of bits. Given the number of bits, each channel of coefficients is uniformly
quantized from its minimum to its maximum occurring value.

Now, having expressed the coefficients as discrete numbers, we can apply an entropy-based encod-
ing, e.g. Huffman coding, or other variable length coding (VLC). The VLC compression indicated
in the graphs below is a theoretical limit that can be computed from the sum of entropies for all
channels by exponentiation to the base 2. The rate of compression, then, is the factor by which
the estimated encoded data is smaller than the original data, which has been stored with 8 bits per
channel.

3.2 Quality of reconstruction

Besides considering the size of the data after compression, we most importantly have to look at
the quality of the reconstruction obtained from the reduced representations. Here we assess this
quality using the peak signal to noise ratio (PSNR), in decibels (dB)
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PSNR = 10 log10

(
G2

MSE

)
(14)

MSE =

∑N
i

∑M
j

∑
k∈RGB(pk(i, j)− ok(i, j))2

3MN
(15)

where G is the maximum representable value (e.g. 255) and MSE is the mean squared error of
the reconstructed picture, pk(i, j), with respect to the original, ok(i, j). A drawback of the PSNR
is that it does not actually reflect the distortion as perceived by a human observer Nevertheless,
perception-based image quality metrics have been found to offer little advantage over PSNR as a
measure to evaluate the quality of reconstruction [28], and PSNR is used below for our subsequent
evaluation.

4 Evaluation of different bases

The efficiency of a basis is understood as the relation between image quality retained for an achiev-
able rate of compression (or vice versa). Thus, we have conducted a number of tests for different
sets of color image bases (ICA, PCA, and DCT). Each basis is generated and applied separately
over a range of squared patch sizes from 1 × 1 to 16 × 16, with each dimension × RGB. The
first case is similar to just interpreting the pixel colors, as in Fig. 2. As patch size increases, the
influence of neighbors is included more and more. Another variable in the comparison is the com-
pression parameter. This is the ratio to the overall maximum number of bits for the stream. Note
that the achievable compression entirely depends on the entropy of the data.

4.1 Compression vs. quality using spatio-chromatic bases

The importance of each basis function for representing the data can be determined by looking at the
variance of its coefficients. Mostly, these coefficients are centered around zero. The basis vectors
found by PCA and ICA each cover most of the variance in the first few basis patches, with a steep
falloff.

Fig. 7(a,b) provides a comparison of the entropy-based variable length coding of the spatio-chromatic
coefficients of ICA vs. PCA. Here the property of ICA to result in sparsely coded coefficients be-
comes apparent. The lower entropy of the quantized data results in significantly higher compression
rates. Nevertheless, as the error surface for ICA is more bent to the back we note that the PSNR for
the mid-range compression rates is lower than for PCA. Both plots show a significant improvement
of the compression/error tradeoff as the patch size increases.

DCT results are very similar to those for PCA. The DCT uses the N × N × 3 generalization of
that in the JPEG standard, which applies its algorithm to 3 color planes treated separately and must
therefore of necessity give poorer compression than the DCT here since it ignores color correlation.
Moreover, we consider a range of patch sizes, not just 8× 8.
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(a) (b) (c)

Fig. 7. Entropy-based compression of a set of color images using (a): ICA and (b): PCA generated spa-
tio-chromatic basis functions: color indicates PSNR as per (c). Note that for about equal pseudocolors (equal
PSNR), ICA generally has a much better (higher) compression ratio.

(a) (b)

Fig. 8. Entropy-based compression of Fig. 9 a) specific ICA, b) specific PCA. Again, note that for about
equal PSNR, ICA has a better compression ratio.

The main result from Fig. 7 is that ICA is considerably better than PCA, particularly at high
compression rates, in that it exhibits higher compression for the same PSNR. And for equal com-
pression, quality is increased for increased patch sizes.

4.2 Performance of a specialized basis

The previous examples have shown the quality of reconstruction for general bases that were ob-
tained from the entire set of images using bases obtained from the entire set of images. The follow-
ing analysis considers just one image (e.g., we display the results for that in Fig. 9). This allows us
to tailor a specialized basis for a particular image.
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In the specific encoding test in Fig. 8, ICA performs significantly better than PCA for large patch
sizes. It achieves higher compression for the same quality of reconstruction. Also, a trend can be
noted that ICA tends toward increased quality with larger patch sizes while PCA roughly stays
constant. The DCT statistics for this image are not included here because they are very similar
to the outcome of the PCA for patch sizes larger than 4. These particular plots are for the image
in Fig. 9a. A visual comparison in Fig. 9(b,c) shows a detail of the top image. The lower half is
the same image compressed to the same projected file size (12:1 compression ratio not including
basis data size) using a DCT basis of the same block size (16× 16). DCT exhibits strong blocking
artifacts while these are hardly noticeable in the ICA version. This is borne out by a comparison
of the PSNR (for the same compression ratio in each) of 35.55 for ICA versus 31.97 for PCA. In
comparison, baseline sequential JPEG compression at the same compression ratio (quality factor
35) gives a PSNR of 31.94 (without chroma subsampling, the use of which would generate an
inappropriate comparison).

Another example is given in Fig. 10. Here, the compression ratio is 7:1. Again, ICA clearly out-
performs PCA: for the same compression ratio, ICA yields a PSNR of 39.69, while that for PCA
is only 31.40. Standard JPEG compression at the same compression ratio (quality factor 40 with
no chroma subsampling) yields a PSNR of only 29.32. The PCA-based compression and JPEG
yield blocky ringing around details, and a change in the pattern on the roof. So PSNR does indeed
capture image quality, and the plots capture a large amount of information relating compression to
quality. Other images we studied also had similar graphical results.

5 Summary

The computation of individual bases for restricted sets of images is interesting from both vision
and image processing points of view. While the first point has been subject of previous work
targeting analogies to human perception, we have tried to illuminate the latter. The results indicate
a significant difference comparing the compressibility of coefficients from ICA and PCA. The
sparse coding property of ICA bases has been shown to have a noticeable impact on the efficiency
of subsequent entropy compression.

In previous work, we showed that color produces more efficient compression than simply using
grayscale [22]. As well, we see here that ICA entangles color and luminance. Generally, ICA
bases certainly outperform DCT and PCA for large patch sizes and low rate encoding. We see that
the PSNR is a good indicator for the superior quality of the ICA basis in the chosen compression
configuration.

Since we found that the spatial and spectral dimensions are almost independent in a PCA basis,
we should ask what advantage in general the spatio-chromatic approach (i.e., the use of 3D basis
functions) has over using space and color basis functions that are actually independent. 3 The
combined encoding of the channels can in fact only improve compression of the coefficients. One

3 We are indebted to an anonymous referee who asked for this issue to be explicitly addressed.
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(a)

(b)

(c)

(d)

Fig. 9. (a): Original image. (b): Compression ratio 12:1 using an image specific ICA basis (PSNR 35.55),
and (c): Same compression ratio using DCT compression (PSNR 31.97). Both are for 16× 16 patches. (d):
JPEG compression result (no chroma subsampling) — PSNR 31.94.
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(a)

(b)

(c)

Fig. 10. (a): Original image. (b): Compression ratio 7:1, using ICA basis (PSNR 39.69), and detail of roof.
(c): Using PCA basis (PSNR 31.40), and detail. Both are for 12 × 12 patches. (d) Using JPEG (no chroma
subsampling) gives PSNR 29.32. Details are better preserved using ICA.
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can make a sphere packing argument to justify this: a Cartesian-lattice (corresponding to an inde-
pendent encoding) is increasingly inferior to the densest possible packing of vector quantization
sites as the dimension (number of jointly encoded channels) rises. While this argument is based on
signal processing alone, it is further the high correlation among the color channels that provides the
main reason for our approach. Our comparison with standard JPEG compression, which treats each
color plane separately, indeed shows the advantage of linking color and spatial dimensionality.

A problem inherent in the approach of adaptive bases is that they first have to be generated in a
computationally expensive preprocessing. Furthermore, a basis specific to one data set would have
to be stored along with the coefficients to allow for decoding. This would certainly add overhead to
the compressed data. Nevertheless, in a constrained domain it is possible to prepare basis functions
that can be re-used.

Because of the proximity of the outcome of independent component analysis to receptive fields
of simple cells in the V1 visual cortex, it could be possible to derive a more perceptually-based
error metric for evaluation of the quality of visual representations. Advances of research in the
human perceptual system may lead the way to an error metric that more closely corresponds to the
assessment by a human observer.

Another interesting property of the ICA basis is that it resembles expressive features of the data.
This property also hints at the relationship between ICA filters and wavelet analysis. Taking this
into account, it seems worthwhile to consider the compressed coefficients as a higher-level feature
description of the visual data. In terms of video analysis these features might be useful for object
tracking. The inclusion of motion results in a temporal spatio-chromatic basis [23]. As well as
revealing implications for video compression, this may indeed also bear relation to human percep-
tion.

Appendix A

Using eq. (13), the algorithm for ICA based on maximizing kurtosis may be phrased as follows:

(1) Initialize w randomly, with ‖w ‖ = 1
(2) Gradient ascent:

w ← w +
1

N

N∑
i=1

[(
w Tx [i]

)3
x [i]

]
(3) Re-normalize: w ← w /‖w ‖
(4) Stop when w old ·w new ' 1

A simple matlab program for this procedure is as follows:

[k,N] = size(x); % N data observations of k-vectors.

[xmu, xcentered] = centering(x);
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% subtracts means from each of j=1..k components.
[x_tilde, M] = whitening(xcentered); % eq. (9)

% so now is Whitened: x_tilde*x_tilde’=eye(2);
% and Orthogonal: x_tilde(1,:)*x_tilde(2,:)’==0

% Now use kurtosis:
% For whitened data E(xˆ2)==1, the kurtosis is the fourth central moment - 3.

% initialize a column of W:
maxNumIterations = 50;
w = 1/sqrt(2)*ones(2,1);
st = 1/sqrt(N);
w = w/st;
epsilon = 1e-7;
alpha = 1.0;
itn = 1;
done = 0;
allkk = [];
while (itn <= maxNumIterations) && (˜done)

tempvec = zeros(n,1);
for i=1:N

tempvec = tempvec + (w’*x_tilde(:,i))ˆ3 * x_tilde(:,i);
end
tempvec = 4/N*tempvec;
wnew1 = w + alpha * tempvec;
wnew2 = w - alpha * tempvec;
wnew1 = wnew1/norm(wnew1)*(1/st);
wnew2 = wnew2/norm(wnew2)*(1/st);
kk1 = kurt(wnew1,x_tilde);
kk2 = kurt(wnew2,x_tilde);
if kk1>kk2 % gradient ascent

kk=kk1; wnew=wnew1;
else

kk=kk2; wnew=wnew2;
end
allkk = [allkk kk];
done = (abs((wnew’*w)-N)<=epsilon); % stopping criterion.
w = wnew;
itn = itn+1;

end
plot(allkk); disp(w);
% So first ICA component is s = w’*x_tilde.

% ============================
function kk=kurt(w,x_tilde)
% std(snew)==1 if make norm(w)=sqrt(N), since x_tilde*x_tilde’ == eye(k)
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w = w/norm(w)*sqrt(size(x_tilde,2));
snew = w’*x_tilde; % so that snew*snew’=1.0; also mean(snew)==0.0
kk = abs( mean( snew.ˆ4 )-3 );
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