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Abstract

Performance is one of the key features of parallel and
distributed computing systems. Therefore, in the past a
significant research effort was invested in the development
of approaches for performance modeling and prediction of
parallel and distributed computing systems. In this pa-
per we identify the trends, contributions, and drawbacks
of the state of the art approaches. We describe a wide
range of the performance modeling approaches that spans
from the high-level mathematical modeling to the detailed
instruction-level simulation. For each approach we de-
scribe how the program and machine are modeled and esti-
mate the model development and evaluation effort, the effi-
ciency, and the accuracy. Furthermore, we present an over-
all evaluation of the presented approaches.

1 Introduction

The solution of resource-demanding scientific and engi-
neering computational problems involves the execution of
programs on parallel and distributed computing machines,
in order to solve large problems or to reduce the time to
solution for a single problem [9]. However, the develop-
ment of this kind of computing systems is an expensive and
time-consuming endeavor. For instance, the development
cost of the Earth Simulator Center (ESC) [7] was about
US$350 million [21], and its development took about five
years. While the life of parallel and distributed computing
machines is commonly up to five years long, the life of par-
allel and distributed programs is up to 30 years [6]. There-
fore, it is important to have means for the performance eval-
uation of programs not only on existing machines, but also
on machines that are under development or being planned.

∗The work described in this paper was partially supported by the Aus-
trian Science Fund (FWF) under the project AURORA.

Because the performance is a key indicator of computing
systems, the performance evaluation was a preoccupation of
many computer scientists in the past [1, 17, 10, 13, 15]. The
commonly used techniques for the performance evaluation
of computing systems include: measurement, mathematical
modeling, and simulation. Each of these techniques has its
limitations. Measurement techniques require that the sys-
tem under study is available for experimentation, and their
applicability is limited to only existing systems. Mathemat-
ical performance models usually lack the system’s struc-
tural information, and therefore, are not suitable for the
model-based performance analysis. The model-based per-
formance analysis involves the modification of structure of
the model to reflect system structural changes, in order to
predict what would be the performance of the system un-
der study if its structure is changed. Detailed simulation
models demand large computational and storage resources,
and their evaluation may be so slow that the performance
assessment of real-world programs is impractical.

In this paper we systematically present a collection of the
state of the art approaches for performance modeling and
prediction of parallel and distributed computing systems.
The range of the approaches for performance modeling and
prediction that we cover spans from the high-level math-
ematical modeling to the detailed instruction-level simula-
tion. For each approach we describe how the program and
machine are modeled and estimate the model development
and evaluation effort, the efficiency and the accuracy. In
addition, we evaluate the suitability of the presented ap-
proaches for the model-based performance analysis of par-
allel and distributed computing systems.

The rest of this paper is organized as follows. Prelimi-
naries are described in Section 2. Section 3 describes a col-
lection of approaches for performance modeling and predic-
tion of computing systems. An evaluation of the described
approaches is presented in Section 4. Finally, Section 5
presents some concluding remarks.
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2 Preliminaries

The terms workload, machine, and system are used fre-
quently in the literature, but not always with the same mean-
ing. In the context of this paper the term workload indicates
a distributed and parallel program, whereas the term ma-
chine indicates a distributed and parallel computing archi-
tecture. The term system indicates a computing system. In
our approach, the workload model and the machine model
are considered as integral parts of the computing system
model (see Figure 1).

Workload

System

Machine

Figure 1. Computing system model.

In this paper, for each performance modeling and predic-
tion approach, we describe how the workload and machine
are modeled. In addition, the following properties of ap-
proaches are discussed:

Model development effort indicates the endeavor of the
user of a specific approach for building the model.

Model evaluation effort indicates the time and the com-
puting resources that are needed to evaluate the model.

Efficiency of the approach considers the effort needed to
develop and evaluate the model. For instance, the effi-
ciency of an approach is high if the model development
and evaluation effort is low.

Accuracy indicates the exactness of an approach. For esti-
mation of the accuracy is commonly performed a com-
parison of prediction results with measurement results.

3 Performance Modeling and Prediction Ap-
proaches

In this section we present some of the most relevant ap-
proaches for performance modeling and prediction of par-
allel and distributed computing systems.

3.1 A1: PAL

This approach for the performance modeling and predic-
tion of distributed computing systems is commonly used by
the Performance and Architecture Laboratory (PAL) at Los
Alamos National Laboratory [14, 15].

The PAL approach expresses the execution time of a pro-
gram on a machine as a parameterized mathematical model.

The model parameters characterize the problem size S, and
computational and communicational capabilities of the ma-
chine M . The program execution time TProgExec is esti-
mated as follows,

TProgExec(S, M) = TComp(S, M) + TComm(S, M) +
+ TMemCont(S, M) (1)

where TComp is the computation time, TComm is the com-
munication time, and TMemCont is the time spent for mem-
ory contention within a multiprocessor node. By expressing
the performance of the whole program with a mathematical
expression the structural information (for instance the con-
trol flow) of the program is not preserved. For this reason,
this approach may not be suitable for the model-based per-
formance evaluation of various program designs.

Workload model. The development of the workload
model is based on a detailed analysis of the source code
of the program (such as counting computation and commu-
nication operations). The modeling procedure results with
a parameterized mathematical model (see Equation 1).

Machine model. Machine is not modeled separately.
Machine is characterized by a set of parameters such as
number of processors per node, number of nodes, number
of communication links per node, communication latency
and bandwidth, and sequential processing capacity. These
parameters serve as input for the model that predicts the
program execution time.

Model development effort. PAL modeling approach
requires a careful analysis of the program control flow
and data structures. Furthermore, computer measurement
techniques are used for determining the values of various
machine parameters such as communication latencies and
bandwidths, sequential processing capacity, and memory
contention. Therefore, the modeling effort for this approach
is considered to be high.

Model evaluation effort. The modeling procedure re-
sults with a mathematical expression, which is suitable for
fast evaluation. Therefore, the model evaluation effort for
this approach is low.

Efficiency. We consider that the efficiency of this ap-
proach is medium, since the model development effort is
high but the model evaluation effort is low.

Accuracy. In [15] authors of PAL approach report per-
formance prediction results for various systems with aver-
age accuracy between 5% and 11%. We should emphasize
that the performance effects of the overlapping of computa-
tion and communication phases are not considered. There-
fore, models that are built based on PAL approach may
provide accurate results only for that class of programs for
which the overlapping of computation and communication
does not affects significantly the overall program perfor-
mance.
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3.2 A2: Performance Prophet

Performance Prophet [18] is a tool for performance
modeling and prediction of parallel and distributed com-
puting systems. This tool provides a graphical user in-
terface, which alleviates the problem of specification and
modification of the performance model. The user speci-
fies graphically the performance model using the Unified
Modeling Language (UML) [17, 16]. Afterwards, Perfor-
mance Prophet automatically transforms the performance
model from UML to C++ and evaluates it by simulation.

Performance Prophet is suitable for exploring a large set
of possible program’s versions, because of its efficiency
of model building and evaluation. The rapid performance
model evaluation capability of Performance Prophet is due
to a methodology that involves model simplification, and
the combination of mathematical modeling with discrete
event simulation. The aim is to combine the model eval-
uation efficiency of mathematical performance models with
the structure awareness of simulation models. The behavior
of the whole computing system is split-up into action states
and waiting states. Mathematical modeling is used for mod-
eling the performance behavior of action states, whereas the
performance behavior of waiting states is simulated.

Workload model. The workload model is specified
graphically based on UML.

Machine model. The machine model for clusters
of SMP’s is composed automatically based on the user-
specified parameters such as the number of nodes and the
number of processors per node.

Model development effort. Commonly, the model is
composed rapidly from the existing building blocks. In this
case the model development effort is low. However, if the
user needs to develop new building blocks, then the model
development effort is increased significantly. Therefore, in
the general case the model development effort is medium.

Model evaluation effort. The time needed for model
evaluation is reduced, by (1) simplifying the model, and by
(2) combining mathematical modeling and discrete event
simulation. Therefore, the model evaluation effort is low.
In a case study presented in [18], the model evaluation with
Performance Prophet on a single processor workstation was
several thousand times faster than the execution time of the
real program on a real cluster.

Efficiency. We consider that the efficiency of this
approach is high, since the model development effort is
medium but the model evaluation effort is low.

Accuracy. The authors have assessed the accuracy
of Performance Prophet by modeling and simulating a
real-world material science program that comprises about
15,000 lines of code [18]. The average prediction accuracy
was about 7%.

3.3 A3: POEMS

The aim of Performance Oriented End-to-end Modeling
System (POEMS) [1] project (period of performance 1997-
2000) was to develop an environment for performance mod-
eling of parallel computing systems.

POEMS proposed a methodology for the evaluation of
system model using multiple evaluation tools. The model
of system is composed of component models. POEMS au-
thors state that each component of the system model may be
evaluated by the corresponding evaluation tool; the output
of a tool serves as input for the subsequent tool [1]. We con-
sider that in the general case the component models may be
of different kinds and at different levels of abstraction, and
therefore the output of an evaluation tool may not be inter-
pretable for the subsequent evaluation tool.

Workload model. POEMS devised a graphical rep-
resentation for parallel programs, which is based on task
graphs. Each node of the task graph may represent a set
of parallel tasks. Edges of the task graph may represent
data flow or task precedence. However, POEMS does not
provide the corresponding tool-support for graphical model
composition.

Machine model. The processor and the memory sub-
system are simulated with SimpleScalar [4], the network
is simulated based on Parsec simulation language, and I/O
subsystem is simulated with PIOSIM [3].

Model development effort. A relevant outcome of the
POEMS project is an automatic task graph generator for
High Performance Fortran (HPF) programs [2]. The tool-
support is provided by an extended version of dHPF [5]
compiler. This approach supports the automatic model de-
velopment for HPF programs. However, the automatic
development of the machine model is not adequately ad-
dressed. The claim that the machine model may be au-
tomatically composed from existing components is not of
particular practical relevance, if these components are not
already developed.

Model evaluation effort. It is difficult to estimate, be-
cause of the large spectrum of addressed abstraction levels
and proposed model evaluation tools. For equation solvers
the model evaluation effort is low. But, for detailed simu-
lators the model evaluation effort may be very high both in
terms of the time and computing resources needed to evalu-
ate the model.

Efficiency. This approach aims to incorporate a large
spectrum of the performance models from the high-level
mathematical models to the instruction-level simulators.
Therefore, it is hard to estimate the efficiency of this ap-
proach.

Accuracy. It may be anywhere from low to high. It
depends on the model abstraction level, system modeling
process, and the used model evaluation tools.
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3.4 A4: POSE

Parallel Object-oriented Simulation Environment
(POSE) [23] is a parallel discrete event simulator [8].
POSE is used for simulation of the performance behavior
of programs that are executed on large-scale machines such
as IBM BlueGene [24, 11]. The BlueGene/L [11], which
is listed as number one in the list of 500 hundred most
powerful computers in the world (TOP500 [22], November
2006), contains 131,072 processors. A detailed simulation
of such large machines may require processing and mem-
ory resources that are not available on a singe processor
machine. Therefore, such simulations are executed on
multiprocessor machines.

POSE is implemented based on Charm++ [12], which
is a parallel C++ library. The simulation entities of POSE
are represented as Charm++ objects. Each object has a data
member for tracking the simulation time and a set of meth-
ods for event handling. Based on POSE and the Charm++
runtime environment a specific simulator that simulates the
BlueGene/L machine was developed [24]. The rest of this
section provides a discussion of properties of the Blue-
Gene/L simulator.

Workload model. The BlueGene/L simulator is an
execution-driven simulator. It supports the simulation of
programs that are written based on Charm++ or MPI.

Machine model. Machine is modeled as a set of inter-
connected nodes. Each node may have a set of processors.

Model development effort. Charm++ or MPI programs
may be used as input for the simulator. In this case the
workload modeling effort is low. However, in order to
evaluate different program versions the user has to restruc-
ture the source of the program. This process may be time
consuming for the real-world programs. The effort for
the development of a detailed machine model that supports
execution-driven simulation is high.

Model evaluation effort. Commonly sequential discrete
event simulators are about 10 times faster than parallel dis-
crete event simulators if a single-processor machine is used
for model evaluation. This is due to the synchronization and
communication overhead of parallel discrete event simula-
tors. If a machine with more than 10 processors is available
for model evaluation, then parallel simulators outperform
sequential simulators (see [23]).

Efficiency. We consider that the efficiency of this ap-
proach is low, since the effort for the model development
and evaluation is high.

Accuracy. We were unable to find a comparison of pre-
diction results of BlueGene/L simulator with measurement
results on the real BlueGene/L machine. The prediction ac-
curacy of this approach may be anywhere from low to high,
depending on the fidelity of the machine model.

3.5 A5: RSIM

Rice Simulator for ILP Multiprocessors (RSIM) is a sim-
ulator of cache-coherent non-uniform memory access (CC-
NUMA) shared-memory machines [19, 10]. A distinguish-
ing feature of RSIM is the ability to simulate processors
that use instruction-level parallelism (ILP). ILP processors
are capable of executing multiple instructions in parallel.

RSIM supports SPARC processors [20]. As input for
RSIM simulator may serve programs that are compiled
and linked (that is executables) on SPARC/Solaris systems.
During the program simulation, RSIM interprets the exe-
cutable of the program. The output of RSIM includes the
number of executed cycles, and statistics on the utilization
of components of the machine.

RSIM comprises a detailed (that is a cycle-level) ma-
chine model that allows the analysis of the performance ef-
fects of architectural parameters. Therefore, it is suitable
to evaluate various designs of CC-NUMA shared-memory
machines. However, because the simulation of the program
execution with RSIM is very slow (several thousands times
slower than the program execution on the real machine), it is
not suitable for evaluation of various designs of real-world
programs.

Workload model. The executable of the program serves
as a workload. The RSIM simulator takes as input the pro-
grams that are compiled and linked on SPARC/Solaris sys-
tems.

Machine model. The main components of the machine
model include processors, the memory hierarchy (that is L1
cache, L2 cache, local and remote memory), and the inter-
connection network.

Model development effort. The development of the
workload model is straitforward. Basically, it involves pro-
gram compiling and linking. But, the effort for development
of the cycle-level machine model is high.

Model evaluation effort. Authors of RSIM report that
several thousands times more time was needed to simulate
a program with RSIM, than to execute the program on a
real machine. For instance, for a program that performs
LU matrix decomposition the RSIM simulation was 7100
times slower than the program execution on the real ma-
chine. Therefore, the model evaluation effort for this ap-
proach is high.

Efficiency. We consider that the efficiency of this ap-
proach is low, since the effort for the model development
and evaluation is high.

Accuracy. The model of the computer architecture that
is used by RSIM does not match exactly the architecture
of any existing machine. This makes difficult the task of
estimation of the prediction accuracy of RSIM, since it is
not possible to compare simulation results with results that
are obtained from the real computing system.
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Table 1. A summary of the properties of ap-
proaches for the performance modeling and
prediction of parallel and distributed comput-
ing systems.

ID Mod.Dev. Mod.Eval. Efficiency Accuracy
A1 High Low Medium Medium
A2 Medium Low High Medium
A3 Medium Medium Medium Medium
A4 High High Low Medium
A5 High High Low High

4 Evaluation

In this section we evaluate the suitability of the ap-
proaches, which we described in Section 3, for the model-
based performance analysis of parallel and distributed com-
puting systems. The time spent for the model develop-
ment and evaluation should be short, in order to explore
a large set of design alternatives within a reasonable time.
The approaches should provide performance prediction re-
sults with an accuracy that makes possible the comparison
of various design alternatives. We evaluate the approaches
based on the following properties: (1) model development
effort, (2) model evaluation effort, (3) efficiency, and (4) ac-
curacy. The efficiency of an approach is deduced based on
the model development and evaluation effort.

Table 1 shows an estimation of values of the properties of
approaches. The values of properties are obtained from our
reasoning about each approach in Section 3. Approaches
are arranged in the table in the order of their appearance in
Section 3.

Figure 2 depicts the assessment results of approaches
based on the values of their properties (see Table 1).

Figure 2(a) provides an assessment of approaches by
considering the model development and evaluation effort.
Approaches A4 and A5 received the grade poor; A1 and
A3 received the grade good; and A2 received the grade very
good.

Figure 2(b) provides an assessment of approaches by
considering the accuracy and efficiency. A4 received the
grade sufficient; A1, A3 and A5 received the grade good;
and A2 received the grade very good.

5 Conclusions

Performance is a key indicator of parallel and distributed
computing systems. Therefore, the performance evaluation
of computing systems was a preoccupation of many com-
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Figure 2. The assessment of approaches
based on (a) model development effort and
model evaluation effort, (b) accuracy and ef-
ficiency.

puter scientists in the past. In this paper we have system-
atically presented the state of the art approaches for perfor-
mance modeling and prediction of parallel and distributed
computing systems. We have discussed the contributions
and drawbacks of each approach. In what follows we sum-
marize some of the issues that we have identified.

Most of approaches for the performance modeling of
parallel and distributed programs are of limited use to sup-
port performance-oriented software engineering because of
the following reasons: (1) the use of a notation that is
not based on widely accepted standards, and (2) the re-
quirement that the software engineer has a thorough un-
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derstanding of the underlying performance modeling tech-
nique. Some approaches aim to bridge this gap between
the performance modeling and the software engineering by
incorporating UML.

Most of approaches are able to cope only with small
programs such as matrix-vector multiplication. There are
several reasons for the lack of scalability: (1) a very com-
plex code analysis is used during the workload modeling
that does not scale up to the size and complexity of the real-
world programs, (2) a detailed machine model is used that is
so slow that makes impractical the simulation of real-world
programs, or (3) for the model evaluation are required very
large resources (processors and memory) that may not be
available. Some approaches have addressed this issue by us-
ing model simplification techniques, combination of math-
ematical modeling with discrete event simulation, and by
using a simple machine simulation model.

Performance models that represent the whole program
and machine as a symbolic expression lack the structural in-
formation. Consequently, it is difficult to identify the part of
system that is responsible for the suboptimal performance.
Some approaches support the development of performance
models at various levels of abstraction. For instance, for
workload modeling are used UML activity diagrams. An
activity may represent a single instruction, or larger blocks
of the program (for instance a loop), or the whole program.
Furthermore, some approaches use discrete-event simula-
tion to describe the structure of system and the interaction
among its components.

In future we plan to supplement our survey by including
other approaches for performance modeling and prediction
of parallel and distributed computing systems.
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