
Abstract Computer models are increasingly

being used by forest ecologists and managers to

simulate long-term forest landscape change. We

review models of forest landscape change from an

ecological rather than methodological perspec-

tive. We developed a classification based on the

representation of three ecological criteria: spatial

interactions, tree species community dynamics,

and ecosystem processes. Spatial interactions are

processes that spread across a landscape and

depend upon spatial context and landscape con-

figuration. Communities of tree species may

change over time or can be defined a priori.

Ecosystem process representation may range

from no representation to a highly mechanistic,

detailed representation. Our classification high-

lights the implicit assumptions of each model

group and helps define the problem set for which

each model group is most appropriate. We also

provide a brief history of forest landscape simu-

lation models, summarize the current trends in

methods, and consider how forest landscape

models may evolve and continue to contribute

to forest ecology and management. Our classifi-

cation and review can provide novice modelers

with the ecological context for understanding or

choosing an appropriate model for their specific

hypotheses. In addition, our review clarifies the

challenges and opportunities that confront prac-

ticing model users and model developers.

Keywords Landscape ecology Æ Forest models Æ
Simulation models Æ Gap models Æ Ecosystem

process models

Introduction

Broadly defined, forest landscape simulation

models (FLSMs) are computer programs for

projecting landscape change over time. FLSMs

can also be used to test hypotheses about the

interactions among processes and patterns across

forested landscapes. Processes are the endoge-

nous and exogenous forces that drive forest

change. Patterns are the spatial configuration,

composition, and heterogeneity of landscape

elements, such as community types, tree species

age classes, ecosystem process rates, or above-

ground biomass.

In this review, we will provide an introduction

to FLSMs and outline the ‘hypothesis space’ for

which they are suitable, as well as provide an

update and synthesis for practicing modelers. We

first explain the theory, concepts, and technology

that have preceded and produced the current
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‘‘landscape’’ of FLSMs. We place FLSMs into the

broader context of ecological modeling and

examine what is unique about FLSMs. Next, we

review FLSMs using a classification that ties

together distinct groups of FLSMs and provides

an ecological perspective on landscape models.

We discuss strategies for deploying FLSMs, par-

ticularly for users who are not model developers.

Last, we speculate about the future challenges

and opportunities for FLSMs.

History and development of forest models

The history of FLSMs mirrors the history of both

forest and landscape ecologies. Within forest

ecology, there has been a long history of model

development and application, driven by manage-

ment imperatives and evolving ecological para-

digms (Shugart 1998; Mladenoff and Baker

1999a). Forest ecology in the United States

initially focused on the forest stand (typically

<102 ha with relatively homogeneous site condi-

tions, composition, and disturbance history) or

small watersheds (Likens et al. 1970; Botkin et al.

1973; Whittaker et al. 1974). Concurrently, forest

models were developed to estimate forest change

at this scale (Botkin et al. 1973; Ek and Monserud

1979). Empirical data collected at the stand scale

continue to serve as inputs to broader-scale

models. In addition, stand-scale models are often

used as components within broader-scale models

(Urban et al. 1991).

During the late 1980s, landscape ecology

emerged as a new perspective for understanding

ecological dynamics and addressing broad-scale

management concerns (Levin 1992). A focus on

large landscapes (>103 ha) developed as forest

managers and ecologists confronted natural dis-

turbances (e.g., fire, hurricanes) and human

induced stresses (e.g., land use change, climate

change) that required the context of the larger

landscape to be sufficiently understood. The

effects of management practices, logging in par-

ticular, also motivated the shift in perspective

towards broader spatial and temporal scales

(Franklin and Forman 1987). Over time, this

emphasis on broader scales evolved into forest

ecosystem management (Levin 1999), manage-

ment of disturbance regimes (Engstrom et al.

1999), and forest landscape planning (Barrett

2001).

In the past two decades, forest models have

benefited from ongoing improvements in tech-

nology and data availability (Mladenoff 2004).

Computer speed and memory have increased

dramatically, following Moore’s prediction of a

doubling of transistors per integrated circuit every

18 months (Moore 1965). Simultaneously, soft-

ware has eased model development and the

manipulation of input and output data. Hardware

and software improvements have increased our

ability to simulate many processes at multiple

scales. The availability of data to parameterize,

initialize, and validate forest models has also

increased significantly. Spatially extensive data

are now readily available from either satellite

classifications (Wolter et al. 1995; Defries et al.

2000), national surveys (Hansen et al. 1992;

STATSGO 1994), and historical data sources

(Schulte et al. 2002).

Forest landscape simulation models

Within this broader context, FLSMs were de-

signed specifically to address management or

research questions about spatially extensive land-

scapes. All FLSMs are spatially explicit: land-

scape elements have map coordinates and are

placed within their geographic context. Land-

scape elements must be assigned values before

simulating a landscape, i.e., the landscape must

have an initial configuration. A geographic infor-

mation system (GIS) is typically used to input,

store, and display data. FLSMs may also be

spatially interactive, i.e., simulate lateral (hori-

zontal) fluxes or processes that spread across the

landscape (Reiners and Driese 2001; Mladenoff

2004; Peters et al. 2004).

Another distinctive feature of FLSMs is their

emphasis on large-scale forcing, including distur-

bance (Baker 1989; Mladenoff and Baker 1999b).

The types of disturbances that have been modeled

are extensive, although wild fire has been the

largest focus of previous modeling (Keane and

Long 1998; Keane et al. 2004). Human effects on

landscape change have also become a significant

focus, including harvesting (Wallin et al. 1994;

Gustafson and Crow 1998; Gustafson et al. 2000),
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land use change (Dale and Pearson 1999; Soares-

Filho et al. 2002), and climate change (Baker

et al. 1991; Scheller and Mladenoff 2005).

Because of the emphasis on broad-scale change,

FLSMs are typically used to simulate landscape

change for multiple decades (50–500 years).

Therefore, FLSMs are better described as strate-

gic (long-term landscape planning), versus tactical

(intended for immediate application), tools for

assisting management decision-making (Barrett

2001).

FLSMs vary widely in their algorithms, com-

plexity, and input requirements. Computer lan-

guages now allow tremendous flexibility for

joining diverse numerical or computational meth-

ods within a single model or modeling system

(Woodbury et al. 2002). In particular, object

oriented design (OOD) has permeated the field

and simulation models are evolving towards

multi-purpose and multi-scale applications built

from modular components (Scheller et al. in

press; Maxwell and Costanza 1997; Sequeira et al.

1997). As a result, a single model may represent

different processes using a combination of rules,

continuous mathematics, probability theory, and

both deterministic and stochastic algorithms.

Spatial and temporal resolution have also become

flexible model parameters. Finally, models vary

significantly in the breadth of the intended model

user community, often dependent upon the exis-

tence and quality of the user–model interface.

FLSMs are typically used to compare alterna-

tive ecological assumptions or management op-

tions. The suite of conditions simulated are

typically referred to as scenarios. Scenarios define

the assumptions and parameters necessary to

estimate potential future conditions, identify key

processes, or reveal important interactions among

simulated processes. Multiple scenarios form a

suite of hypothetical circumstances, the results of

which are compared against each other. Scenarios

enable an experimental approach to landscape

change by allowing alternative hypotheses that

would otherwise not be possible (Mladenoff and

Baker 1999a; Mladenoff 2004). Operationally, a

scenario may begin either with empirical land-

scape data as input or with an artificially gener-

ated initial state, such as a random or fractal

arrangement of spatial locations (Gardner et al.

1987).

Given the history and ongoing dynamic devel-

opment of FLSMs, a coherent picture of current

modeling paradigms and trends can be difficult to

discern. Therefore, we offer the following classi-

fication to highlight similarities and clarify critical

differences among models. Our classification can

aid the novice modeler in understanding the

models available, their respective qualities and

weaknesses, and their ability to address diverse

hypotheses. For the experienced practitioner, our

classification can help to identify areas of uncer-

tainty and potential improvement and highlight

current and future trends.

Model classification

Our goal was to develop a classification valu-

able to both novice modelers and current

practitioners. Therefore, rather than focus in

detail on model implementation, we approached

FLSMs from an ecological perspective and

developed a classification to capture the breadth

of ecological approaches to forest landscape

simulation modeling. We chose three ecological

criteria for our classification: spatial interactions,

ecosystem processes, and community dynamics

(Fig. 1). Within each criterion there is a broad

gradient of representation, ranging from none to

a detailed, mechanistic representation. After

defining these criteria and explaining how they

are represented within FLSMs, we introduce

eight model groups derived from the three

criteria. We explain how choices within each

of the three criteria defines the questions each

model can address and their inherent limita-

tions.

Criteria for landscape models

Spatial interactions

Spatially interactive (also ‘landscape’ or ‘conta-

gious’) processes transfer energy, matter, or

information across the landscape (Reiners and

Driese 2001). Spatial interactions across land-

scapes produce emergent behavior and spatial
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patterning at multiple scales and therefore

contribute to the evolution of landscape pattern

and changes in spatial heterogeneity. Exam-

ples of spatial interactions include the dispersal

of seeds, a fire spreading, the movement of

herbivores, and neighboring trees competing for

light.

Essential to the simulation of spatial interac-

tions is the representation of spatial information

and the neighborhood structure. Vector polygons

are contiguous areas that can have any size or

shape within the maximum extent of the land-

scape (Fig. 2A). Vector polygons assume within-

polygon homogeneity. Spatial interactions among

vector polygons are often limited to first-order

neighbors, defined by a shared edge between

polygons (Fig. 2A). A landscape can also be

broken into a grid of equal sized, typically square

or hexagonal, cells. Spatial interactions among

cells can be defined by either neighborhoods (e.g.,

the 4, 8, or 12 nearest neighbors; Fig. 2B) and/or

can be a function of the distance between cell

center points (Fig. 2C), thereby allowing more

flexibility in spatial interactions than vector poly-

gons (Mladenoff and He 1999; Mladenoff and

Baker 1999b).

Every representation of spatial interactions

incurs a computational penalty. Finer resolution

spatial interactions (e.g., neighborhood shading)

will incur a larger computational penalty than

coarse-scale interactions (e.g., the dispersion of

large clear-cut patches). The computational cost

of a spatial interaction is sensitive to landscape

resolution and increases non-linearly with

decreasing cell size.

Finally, the simulation of a particular spatial

interaction may not be appropriate for a given

hypothesis or scale (Peters et al. 2004). For

example, at continental scales, most landscape

variation will be explained by patterns of tem-

perature and precipitation. Conversely, short-

term projections may not require estimates of

continental tree species migrations. If spatial

interactions provide only a marginal increase in

predictive power, the additional complexity,

computational overhead, and parameterization

required may not warrant their inclusion (Peters

et al. 2004).

excluding spatial 
interactions

including spatial 
interactions

static
communities

dynamic
communities

static
communities

dynamic
communities

excluding
ecosystem
processes

including
ecosystem
processes

excluding 
ecosystem
processes

including
ecosystem
processes

excluding
ecosystem
processes

including
ecosystem
processes

excluding
ecosystem
processes

including
ecosystem
processes

Group 1

MAPSS1,2

BIOME22

DOLY2

Group 2

IBIS3

MC14

TEM-LPJ5

Group 3

None

Group 4

LINKAGES6

ForClim7

Group 5

VDDT/
TELSA8

HARVEST9

EMBYR10

Group 6

SEM-LAND11

MC14

Group 7

LANDSIM12

LANDIS13

MetaFor14

Group 8

FACET15

FIRE-BGC16

LANDIS-II17

Forest Landscape Simulation Models

Fig. 1 An example decision tree based on three ecological
criteria: inclusion of spatial interactions, static or dynamic
communities, and inclusion of ecosystem processes. The
order of the decision tree can be reconfigured, dependent
upon the individual’s ranking of the three criteria. Group
numbers correspond to the group labels in the text. Two or
three exemplar models are provided for each group.
Subscripts. 1Neilson (1995); 2VEMAP Members (1995);

3Foley et al. (1996); 4Bachelet et al. (2001a, b); 5Pan et al.
(2002); 6Pastor and Post (1986a); 7Bugmann (1996);
8Klenner et al. (2000); 9Gustafson and Crow (1998);
10Hargrove et al. (2000); 11Li (2000); 12Roberts (1996b);
13Mladenoff et al. (1996); 14Urban et al. (1999); 15Urban
and Shugart (1992); 16Keane et al. (1996); 17Scheller et al.
(in review)
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Static or dynamic communities

All FLSMs include spatial and temporal change

of tree species composition—forests change over

time. How a community of tree species is repre-

sented varies widely and will be explored below.

The principle difference among FLSMs is

whether the community itself is static or dynamic.

For a static community, tree species composition

and associated characters are defined a priori and

do not evolve during a simulation, although the

spatial distribution of the community will change

over time. This property has been termed the

‘invariance hypothesis’ (Logofet and Lesnaya

2000). A dynamic community is not fixed and

the composition and character of simulated com-

munities will evolve over time.

Forest communities can be represented as

successional stages or ‘seral community types’

(Cattelino et al. 1979; Keane and Long 1998). The

terms ‘community state’, ‘vegetation classifica-

tion’, and ‘land cover type’ also apply (Yemsha-

nov and Perera 2002). A successional stage is

associated with species, age, and/or biogeochem-

ical information. Successional pathways are typ-

ical, likely, or potential transitions among

successional stages. Without disturbance, these

pathways will converge on a single ‘‘climax’’

community or potential vegetation type (Keane

and Long 1998; Logofet and Lesnaya 2000).

Transitions occur after a certain time passes or

disturbance occurs (Klenner et al. 2000; Keane

et al. 2002). Alternatively, time dependent tran-

sitions probabilities (Markov chain) can be used

(Balzter et al. 1998; Logofet and Lesnaya 2000;

Yemshanov and Perera 2002). Successional

stages, pathways, and transition probabilities

are often estimated from stand-scale models

A B

F

F

focal polygon (F)

1st order neighbor

2nd order neighbor
focal cell (F)

4 nearest neighbors

8 nearest neighbors

12 nearest neighbors

C

F

Fig. 2 Sample
neighborhood structures:
(A) polygons with first
and second order
neighborhoods; (B) a grid
with 4, 8, and 12 cell
neighborhoods. Larger
neighborhoods include all
cells from smaller
neighborhoods; (C) an
unstructured
neighborhood where
spatial interaction is a
function of distance from
the focal cell. Resolution
and extent are arbitrary
and are not indicative of
neighborhood structure or
interactions
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(Acevedo et al. 2001), multi-temporal data (Turn-

er et al. 1996), field measurements (Logofet and

Lesnaya 2000; Yemshanov and Perera 2002), or

subjectively defined by managers and forest

ecologists.

Since successional stage models have static

communities, their application is limited to stable

ecosystems or short time horizons. For example,

climate change or species invasion will likely alter

successional processes and cannot be modeled

with static communities. Another critical assump-

tion is that all successional pathways are known

and that novel combinations of species will not

occur. Finally, the use of static communities

typically assumes that all species propagules are

universally available.

Alternatively, other FLSMs explicitly include

discrete tree species and their life history traits

(Mladenoff et al. 1996; Roberts 1996a). Species

can be recorded as present or absent, stratified

into classes (diameter and age classes being the

most common), or recorded as individual trees.

The inclusion of discrete species implicitly

assumes that forest change can only be ade-

quately predicted by considering individual spe-

cies life history attributes, physiology, behavior,

and/or biochemistry. Communities represented

by multiple species, each individually responding

to changing environmental drivers, are dynamic

and will evolve over time. Although apparently

more flexible, dynamic communities require that

a greater number of demographic processes be

parameterized and simulated, including at least

birth, ageing, and death. The duration of the

model simulation and the estimated stability of

community types will determine whether simu-

lating a dynamic community is justified, given the

additional parameterization required.

Ecosystem processes

Ecosystem processes encompass a broad range of

biophysical and biological processes that mediate

the exchange of energy and matter between biotic

pools and the abiotic environment. Within forests,

ecosystem ecology has traditionally focused on

nutrient cycling, productivity, and decomposition

(Whittaker et al. 1974; Pastor and Post 1986b;

Rastetter et al. 1991; Saxe et al. 2001). FLSMs

that explicitly include ecosystem processes typi-

cally simulate the net growth of trees (photosyn-

thetic carbon fixation minus autotrophic

respiration) at a minimum. Complexity and detail

increase as biotic pools are added or further

divided, more processes are included (e.g., het-

erotrophic respiration), and time scales are short-

ened.

Inclusion of ecosystem processes may be par-

ticularly relevant when abiotic constraints are not

expected to remain constant, as may be the case

with climate change, changes in atmospheric

chemistry, or nutrient deposition (Pitelka et al.

2001; Saxe et al. 2001). Ecosystem processes are

also important when there are feedbacks between

biological processes (e.g., succession) and ecosys-

tem function (e.g., water retention, nitrogen

cycling) (Pastor and Post 1986b; Hooper and

Vitousek 1997).

Functional classification of forest landscape

simulation models

For each of the three ecological criteria, we

classified FLSMs on the basis of the inclusion or

exclusion of these processes (spatial interactions

excluded or included; static or dynamic commu-

nities; ecosystem processes excluded or included),

providing a total of eight model groups. These

three ecological criteria were used to form a

binary decision tree (Fig. 1). Since our classifica-

tion was intended to highlight assumptions and

perspectives, we provide only examples and many

excellent models have not been listed here. There

are many other reviews that together can provide

a more comprehensive list of available models

(Baker 1989; Mladenoff and Baker 1999a; Grat-

zer et al. 2004; Keane et al. 2004; Perry and

Enright 2006).

Group 1. Excluding spatial interactions; static

communities; excluding ecosystem processes

Many of the models in this group and the next

were designed to project broad-scale (continental

to global) change. Species are amalgamated

into plant functional types (PFTs, e.g., ‘temperate

conifer’) with homogeneous physiological attri-

butes (growth rates, structure, disturbance
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tolerance, etc.). PFTs are not limited to forest

types but also include tundra, grasslands, savan-

nas, shrub lands, and arid lands (Neilson 1995;

Neilson and Drapek 1998; Bachelet et al. 2001a,

b, 2003). Transitions between PFTs are depen-

dent upon climate change, soils, disturbance, and

the physiological constraints for each PFT.

Specific to Group 1 are Dynamic Global

Vegetation Models (DGVMs). DGVMs project

shifts in the location of vegetation types as a

function of climate. Disturbances are generally

not simulated. For example, the Mapped Atmo-

sphere-Plant-Soil System (MAPSS) projects

where different forest types are likely to persist

using current or projected climate and broad

estimates of fundamental niches (VEMAP Mem-

bers 1995; Neilson 1995; Neilson and Drapek

1998).

DGVMs have been criticized because of their

assumption that PFTs can migrate rapidly and

remain in equilibrium with climate (Pearson and

Dawson 2003). The validity of this assumption

will depend on the functional diversity of the

PFTs. Since these and similar models do not

incorporate dispersal, disturbance, or human

fragmentation of the landscape, the results should

not be regarded as either predictions or projec-

tions. Instead, the results define a baseline esti-

mate of where various forests types could exist,

given the projected climate change. These models

provide valuable broad scale data and serve as an

important contrast to more regional, strictly

forest models.

Group 2. Excluding spatial interactions; static

communities; including ecosystem processes

This group of models simulate changes in vege-

tation and various carbon pools at continental to

global scales (Foley et al. 1996; Lenihan et al.

1998; Mcguire et al. 2001; Cramer et al. 2001;

Aber et al. 2001; Bachelet et al. 2003). Similar to

the first group, communities are not limited to

forest tree species and seed dispersal is not

limiting. Disturbances are simulated to occur at

or below the resolution of the grid cell (Thonicke

et al. 2001) and therefore there are no explicit

spatial interactions. Within a PFT, there is no

variation in disturbance effects. For example, all

species within the conifer plant functional type

(Bachelet et al. 2001a, b) will react identically,

with no variation due to serotiny, bark thickness,

epicormic branching, etc. Finally, these models do

not yet incorporate human influences, particularly

logging or fragmentation.

Nevertheless, because of the very large spatial

extents that can be simulated, such models are

valuable for evaluating broad-scale changes in

carbon stocks or nutrient cycling due to interac-

tions between the terrestrial biome and the

atmosphere. Similar to the first group, these

models can also define potential vegetation at

broad (continental) scales.

Group 3. Excluding spatial interactions; dynamic

communities; excluding ecosystem processes

When simulating dynamic communities, model

developers have usually made an implicit choice

between including ecosystem processes or includ-

ing spatial interactions, both of which are com-

putationally expensive. Consequently, currently

there are no FLSMs with dynamic communities

and neither spatial interactions nor ecosystem

processes.

Group 4. Excluding spatial interactions; dynamic

communities; including ecosystem processes

Many of the first models that included dynamic

species composition and ecosystem processes

were gap models (Urban and Shugart 1992).

Gap models operate at the scale of individual

trees or small forest gaps, typically an area less

than 0.1 ha (Urban and Shugart 1992; Shugart

1998). Gap models simulate individual tree

growth and mortality and may include decompo-

sition. Therefore gap models represent at least

one ecosystem process and simulate dynamic

species composition. Although individual trees

are modeled, they are not given explicit spatial

coordinates. Nor is the larger landscape context

represented. Seeds are assumed to be universally

distributed and disturbances are not modeled as

spatially dynamic processes.

Although gap models have been linked

together to model larger landscapes (Urban et al.

1991; Busing 1991; Easterling et al. 2001), the
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application of linked gap models at scales >102 ha

has been limited due to high computational

demands and the intensive input data required

(Mladenoff 2004). The calculation of disturbance

effects on individual trees is inherently complex

(Hely et al. 2003) and spatial interactions within

linked-gap models are typically limited to fine-

scale processes, including fire, seed dispersal, and

competition (Miller and Urban 1999; Easterling

et al. 2001).

Nevertheless, gap models have played a critical

role forming the links between ecosystem process

rates and dynamic communities. In addition, gap

models have become an important source of input

data for broader-scale FLSMs (He et al. 1998;

Urban et al. 1999; Acevedo et al. 2001; Scheller

et al. 2005).

Group 5. Including spatial interactions; static

communities; excluding ecosystem processes

Within this model group, community types are

sometimes extraordinarily broad with the land-

scape divided only into forested (with forest age)

and non-forested types. Such models commonly

serve as ‘null’ models for exploring interactions

among landscape processes and a small number of

state variables. Such null models have been used

extensively to simulate fires, including the effects

of landscape connectivity on fire spread (Turner

et al. 1989), fires and fuel moisture (Turner et al.

1995; Finney 1998), or time since last fire (Baker

et al. 1991; Baker 1992, 1993; Peterson 2002).

Null models have also been used to simulate

species dispersal and rate of spread (Hart and

Gardner 1997) and the effects of harvesting on

landscape pattern (Wallin et al. 1994; Gustafson

and Crow 1998).

Other models within this group focus on the

transitions between community types due to

disturbances (generally fire and logging) (Klenner

et al. 2000). Successional stages (and any associ-

ated ecosystem properties) and transition proba-

bilities among stages are calculated a priori.

Using relatively simple community types and

likely transitions has enabled rapid model deploy-

ment based on surveys of expert knowledge

(Klenner et al. 2000).

Models in Group 5 benefit from the emphasis

on spatial interactions. Limiting the array of

possible interactions (with species, with ecosys-

tem processes) has yielded important insights on

the interactions between disturbances and land-

scape pattern or between disturbances and the

distribution of different community types.

Group 6. Including spatial interactions; static

communities; including ecosystem processes

Several spatially interactive models simulate eco-

system processes and have static communities.

Again, static communities dictate certain assump-

tions. For example, MC1, which operates without

spatial interactions at continental scales, has been

applied to a smaller landscape (1250 ha) through

the inclusion of a fire spread module (Bachelet

et al. 2000). The application of MC1 to a grass-

land-forest ecotone assumed that all propagules

were available throughout the landscape (Bach-

elet et al. 2000). Similarly, SEM-LAND simulates

forest growth and fire spread (Li 2000). Notably,

SEM-LAND assumes that the climate is stable

and forest type never changes, although age and

biomass accumulation are dynamic (Li 2000).

These models can address local or regional

scale questions (<104 ha) that require consider-

ation of the effects of ecosystem process rates and

spatially interactive fire regimes (Li et al. 2000;

Bachelet et al. 2000). In forested landscapes with

relatively low species diversity and over relatively

short time horizons, the assumption of commu-

nity invariance may not limit the value of the

results. Particularly where topography is signifi-

cant, the diversity of species associations may be

limited by steep climatic or edaphic gradients.

Group 7. Including spatial interactions; dynamic

communities; excluding ecosystem processes

This model group includes many closely related

FLSMs, all of which include discrete tree species

binned into age categories that allow for dynamic

communities. One of the first such models,

LANDSIM, uses vector polygons to simulate

seed dispersal and disturbance spread to explore

the relationships between species’ vital attributes,
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disturbance, and landscape patterns (Roberts

1996a). Later models extended species age cate-

gories to grids that allowed spatial interactions

beyond the first-order neighborhood (Mladenoff

et al. 1996; Urban et al. 1999). For example,

LANDIS includes many types of spatially inter-

active processes, each with its own neighborhood

structure (He and Mladenoff 1999; Gustafson

et al. 2000; Sturtevant et al. 2004).

However, the emphasis on individual species

behavior can introduce significant uncertainty.

For example, mean and maximum seed dispersal

distances for many tree species remains unre-

solved (Clark 1998; Higgins et al. 2003). Assem-

bling the necessary species data can be time

consuming and may require significant estima-

tion.

All of these models generate estimates of

species age distributions across a forested land-

scape. Species age distribution data provide an

opportunity to link to many other processes

correlated with age, including reproduction and

mortality, harvesting, and the development of

uneven-aged stand characteristics (Scheller et al.

2005). Significantly, they provide estimates of

landscape-scale demographics that are necessary

for identifying local extinction risk (Syphard et al.

2006; Scheller et al. 2005).

Group 8. Including spatial interactions; dynamic

communities; including ecosystem processes

FLSMs that include spatial interactions, dynamic

communities, and ecosystem processes are a

more recent development. At a relatively small

extent (typically <102 ha), forest models may

simulate individual trees using Cartesian coordi-

nates (Gratzer et al. 2004). The first such model,

FOREST, was restricted to small (0.08 ha) plots

and the only spatially contingent process was an

estimate of competition from neighboring trees

(Ek and Monserud 1979). More recently, simu-

lation of individual trees has been extended to

larger landscapes with more spatial interactions,

including dispersal and disturbance (Pacala et al.

1993; Liu and Ashton 1999; Lett et al. 1999;

Keane and Finney 2003). These models contain

multiple biotic and abiotic pools and offer

opportunities for answering fine-scale questions

that are significantly dependent upon short-

distance spatial interactions. Similar to gap

models, these models have had limited applica-

tion at broader scales due to the computa-

tional overhead and intensive parameterization

required.

FLSMs designed to simulate broader extents

(>104 ha) often represent ecosystem processes

using relatively simple growth, mortality, and

decay functions (Keane et al. 1996; Scheller and

Mladenoff 2004). By necessity, such models

exclude many finer-scale interactions, such as

shading caused by neighboring cells. These mod-

els benefit from direct and indirect links to

relatively simple ecosystem process models, such

as PnET-II (Aber and Federer 1992; Scheller and

Mladenoff 2004) or FOREST-BGC (Running and

Gower 1991; Keane et al. 1996) and simulta-

neously include broad-scale spatial interactions

and dynamic communities.

Discussion

Strategies for deploying FLSMs

Increases in model availability and usability

provide an opportunity to open up the modeling

process to more forest ecologists and managers.

However, a friendly interface cannot overcome

the inherent limitations found in every model.

Modeling requires many choices between extent

and resolution, precision and generality, accuracy

and meaningful prediction, parameterization and

validation (Levins 1966; Baker and Mladenoff

1999; Mladenoff 2004).

Our classification can serve as a guide insofar

as it can help elucidate what kind of model will be

appropriate for a researcher or manager. Each

research question will require that different

weights be applied to our three criteria and the

classification system can be customized into a

unique decision tree based on an individual

ranking of the three criteria. Although each

model group is diverse, there are common

assumptions within each group that will limit

hypothesis testing or the scope of the projections
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generated. Often, the scale or resolution of

potential hypotheses is implicitly limited within

a group. Whether a particular FLSM will be

appropriate is dependent upon the model’s gen-

erality, availability, and the quality of documen-

tation. If the creation of a new FLSM is required,

our classification can serve as a guide to making

assumptions and balancing comprehensiveness

and tractability.

An equally important decision is the choice of

scenarios. Scenarios can produce projections of

landscape change or can be used to test hypoth-

eses (Aber 1998; Dale and Winkle 1998). Depen-

dent upon the confidence in the simulated process

formulation, one approach or the other may be

appropriate, but rarely both. Comparisons among

scenarios can provide meaningful indicators of

trends and likely changes in system behavior.

Management decisions can immediately benefit

from these general indicators of the consequences

of management choices (Carpenter 2000; Clark

et al. 2001). Alternatively, scenarios can be used

to test hypotheses at temporal and spatial extents

for which no other route to hypothesis testing

exists (Pielke 2003). In this sense, FLSMs are

similar to any tool in that deciding how to use the

tool is as important as choosing the proper tool.

Although the scope and application of FLSMs

continues to expand, FLSMs are never appropri-

ate for making predictions about the timing and

location of events. The causes that precipitate

sudden landscape change (including disturbance

and land use change) are driven by stochastic or

idiosyncratic events that prevent site and time

specific prediction. Furthermore, the inherent

complexity of FLSMs limits their predictive

power (Oreskes 2003) and no FLSM can repre-

sent all relevant processes. Model results should

therefore always be presented as qualified ‘pro-

jections’ (Dale and Winkle 1998). These projec-

tions are limited by our ability to formulate

meaningful questions and describe plausible

futures through scenarios.

Remaining challenges

Validation remains a challenge at broad spatial

and temporal scales (Rastetter 1996), particularly

under unexpected environmental conditions, as

may be produced by climate change or species

invasions (Rykiel 1996; Rastetter 1996). We

define validation as the ‘quantitative comparison

of model results against observations’ (Prisley and

Mortimer 2004). Although tools for validating

known landscape patterns exist (Gardner and

Urban 2003), validation of many landscape-scale

phenomena remains difficult. For example, U.S.

Forest Inventory and Analysis (FIA) data are

spatially extensive but the resolution of the data is

relatively coarse (Hansen et al. 1992). At best,

FIA data can only provide bounds for model

output. Similarly, analyses of existing empirical

data for corroboration can suffer from uneven

spatial and temporal resolution, differing units,

and varying motivations for data collection. Nev-

ertheless, validation is not insurmountable. As

more FLSMs generate increasingly quantitative

projections and more empirical data become

available, greater validation of individual ecolog-

ical processes (represented as model components)

is possible. After achieving such reductionist

validation, the validation of the interactions

between processes will be the next significant

challenge.

Another large contribution of FLSMs can be to

our understanding of uncertainty. Uncertainty

can be divided into three components: model

uncertainty (internal representation of an ecolog-

ical process), inherent uncertainty (stochastic

variation), and parameter uncertainty (the mea-

sured and natural variation of model inputs)

(Higgins et al. 2003; Peters et al. 2004). FLSMs

with a flexible architecture can help quantify

model uncertainty by allowing different algo-

rithms to be tested within the same modeling

framework, thereby isolating the effects of pro-

cess representation. Model uncertainty can also

be assessed through cross-model comparisons

(e.g., VEMAP Members 1995; Badeck et al.

2001; Burke et al. 2003). Inherent uncertainty

can be assessed within FLSMs by incorporating

stochastic variation when simulating many pro-

cesses. Scenarios can address parameter uncer-

tainty by encompassing significant sources of

uncertainty. For example, if future disturbance

rates are highly uncertain, scenarios could be

designed to represent the highest and lowest

expected disturbance rates. New computational
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methods have also been developed to separate

the relative contribution of sources of uncertainty

and increase inferential and predictive power

(Clark 2005).

Finally, many existing models risk becoming

‘black boxes’ to model users and many implicit

assumptions are often overlooked. Consequently,

the risk of mis-application and misunderstanding

of model results will increase. Therefore greater

transparency in model intentions, assumptions,

and limitations will be required for further

acceptance by managers and policy makers (Aber

et al. 2003). In this regard, advances in model

architecture (Scheller et al. in press) and imple-

mentation of the emerging open-source paradigm

can increase model rigor while simultaneously

enhancing comprehension.

Conclusions

FLSMs reflect the changing focus of ecology and

society (Mladenoff 2004). Placing FLSMs into

this broader context highlights the implicit and

explicit assumptions and the ecological choices

that ultimately dictated their design and behavior.

Model designers and users must acknowledge

these compromises, assumptions, and weaknesses

if their results are to be used by policy or decision

makers.

FLSMs have made tremendous contributions to

understanding forest landscape change and have

been particularly valuable to forest management.

Nevertheless, many management challenges re-

main to be substantially addressed at broad scales.

Examples include the effects of nutrient deposi-

tion, changes in atmospheric chemistry, exotic or

invasive species, and landscape change caused by

rural development and fragmentation. These and

other issues confronting managers and policy

makers can be expected to increase the need for

FLSMs and will likely determine the future scope

and application of FLSMs.
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