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Abstract— In this paper, we consider the traffic grooming,
routing, and wavelength assignment (GRWA) problem for op-
tical mesh networks. In most previous studies on optical mesh
networks, traffic demands are usually assumed to be wavelength
demands, in which case no traffic grooming is needed. In practice,
optical networks are typically required to carry a large number of
lower rate (sub-wavelength) traffic demands. Hence, the issue of
traffic grooming becomes very important since it can significantly
impact the overall network cost. In our study, we consider traffic
grooming in combination with traffic routing and wavelength
assignment. Our objective is to minimize the total number
of transponders required in the network. We first formulate
the GRWA problem as an integer linear programming (ILP)
problem. Unfortunately, for large networks it is computationally
infeasible to solve the ILP problem. Therefore, we propose a
decomposition method that divides the GRWA problem into two
smaller problems: the traffic grooming and routing problem and
the wavelength assignment problem, which can then be solved
much more efficiently. In general, the decomposition method
only produces an approximate solution for the GRWA problem.
However, we also provide some sufficient condition under which
the decomposition method gives an optimal solution. Finally, some
numerical results are provided to demonstrate the efficiency of
our method.

Keywords: System design, Mathematical programming/
optimization.

I. INTRODUCTION

Wavelength division multiplexing (WDM) is now being
widely used for expanding capacity in optical networks. In
a WDM network, each fiber link can carry high-rate traffic
at many different wavelengths, thus multiple channels can be
created within a single fiber. There are two basic architectures
used in WDM networks: ring and mesh. The majority of
optical networks in operation today have been built based
on the ring architecture. However, carriers have increasingly
considered the mesh architecture as an alternative for building
their next generation networks. Various studies have shown
that mesh networks have a compelling cost advantage over ring
networks. Mesh networks are more resilient to various network
failures and also more flexible in accommodating changes
in traffic demands (e.g., see [7], [12], [25] and references
therein). In order to capitalize on these advantages, effective
design methodologies are required.

In the design of an optical mesh network, traffic grooming,
routing, and wavelength assignment are some of the most

important issues that need to be considered. The problem
of traffic grooming and routing for mesh networks is to
determine how to efficiently route traffic demands and at
the same time to combine lower-rate (sub-wavelength) traffic
demands onto a single wavelength. On the other hand, the
problem of wavelength assignment is to determine how to
assign specific wavelengths to lightpaths, usually under the
wavelength continuity constraint. In previous studies on the
routing and wavelength assignment (RWA) problem (e.g., see
[17, Chapter 8] and references therein), the issue of grooming
has largely been ignored, i.e., it has been assumed that each
traffic demand takes up an entire wavelength. In practice, this
is hardly the case, and networks are typically required to carry
a large number of lower rate (sub-wavelength) traffic demands.

The traffic grooming problem has been considered by
several researchers for ring networks (e.g. see, [4], [6], [8],
[9], [10], [13], [14], [18], [19], [20], [22], [24]), and is
only considered recently in [23] for mesh networks. The
objective considered in [23] is either to maximize the network
throughput or to minimize the connection-blocking probability,
which are operational network-design problems. Alternatively,
a strategic network-design problem is to minimize the total
network cost.

Typically, the cost of a nation-wide optical network is
dominated by optical transponders and optical amplifiers. If
one assumes that the fiber routes are fixed, then the ampli-
fier cost is constant, in which case one should concentrate
on minimizing the number of transponders in the network.
Grooming costs should also be considered. However, under
realistic assumptions of either a low-cost interconnect between
grooming equipment and transport equipment, or integrated
(long-reach) transponders on the grooming equipment, then
the relative cost of the grooming switch fabric is negligible,
and minimizing the number of transponders is still the correct
objective. In addition, the advent of Ultra Long-Haul trans-
mission permits optical pass-through at junction nodes, hence,
requiring transponders only at the end of the lightpaths.

Though the number of transponders has been used as an
objective function in many studies on ring networks, it has
not been considered at all for mesh networks. The objective
functions that have been considered for mesh networks so
far include: the blocking probability, the total number of
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wavelengths required, and the total route distance.
In this paper, we consider the problem of traffic grooming,

routing, and wavelength assignment (GRWA) with the objec-
tive of minimizing the number of transponders in the network.
We first formulate the GRWA problem as an integer linear
programming (ILP) problem. Unfortunately, the resulting ILP
problem is usually very hard to solve computationally, in
particular for large networks. To overcome this difficulty, we
then propose a decomposition method that divides the GRWA
problem into two smaller problems: the traffic grooming and
routing (GR) problem and the wavelength assignment (WA)
problem. In the GR problem, we only consider how to groom
and route traffic demands onto lightpaths (with the same
objective of minimizing the number of transponders) and
ignore the issue of how to assign specific wavelengths to
lightpaths. Similar to the GRWA problem, we can formulate
the GR problem as an ILP problem. The size of the GR
ILP problem is much smaller than its corresponding GRWA
ILP problem. Furthermore, we can significantly improve the
computational efficiency for the GR ILP problem by relaxing
some of its integer constraints, which usually leads to quite
good approximate solutions for the GR problem. Once we
solve the GR problem, we can then consider the WA problem,
in which our goal is to derive a feasible wavelength assignment
solution.

We note that the WA problem has been studied by several
researchers before (e.g., see [5], [1], [15], [16], [17], [21], [2]
and references therein). However, the objective in all these
studies has been to minimize the number of wavelengths
required in a network, in some cases by using wavelength
converters. In general, the use of additional wavelengths in a
network only marginally increases the overall network cost as
long as the total number of wavelengths used in the network
does not exceed a given threshold (the wavelength capacity of
a WDM system). This is mainly because the amplification cost
is independent of the number of wavelengths. In recent years,
the wavelength capacity for optical networks has increased
dramatically. For example, with most advanced techniques, a
single WDM system on a pair of fibers can carry up to 160
10G-wavelengths or 80 40G-wavelengths. Of course, once the
wavelength capacity is exceeded, then a second parallel system
(with another set of optical amplifiers) needs to be built,
which would then substantially increase the network cost.
Therefore, assuming a single WDM system on all fiber routes
fixes the amplifier cost, then one should focus on minimizing
the number of transponders in the network, which is already
taken into consideration in the GR problem. In this setting, the
objective in our WA problem is to find a feasible wavelength
assignment solution under the wavelength capacity constraint.

It is clear that in general the decomposition method would
not yield the optimal solution for the GRWA problem. How-
ever, we will provide a sufficient condition under which
we show that the decomposition method does produce an
optimal solution for the GRWA problem. This is achieved
by developing a simple algorithm that, under this sufficient
condition, finds an optimal wavelength assignment.

The rest of this paper is organized as follows. In Section
2, we present the GRWA problem and demonstrate how it
can be formulated as an ILP problem. In section 3, we first
present our decomposition method. We then provide an ILP
formulation for the GR problem and develop an algorithm for
solving the WA problem. We also discuss under what condition
the decomposition method produces an optimal solution for
the GRWA problem. Some numerical results are provided in
Section 4. Finally, a conclusion is given in Section 5.

II. THE GRWA PROBLEM

An optical network architecturally has two layers: a physical
layer and an optical layer. The physical layer consists of fiber
spans and nodes and the optical layer consists of lightpaths
(optical links) and a subset of nodes contained in the physical
layer. A lightpath in the optical layer is a path connecting a
pair of nodes via a set of fiber spans in the physical layer.
Throughout this paper, we assume that lightpaths and their
routes in the physical layer are given. In practice, the selection
of lightpaths is another important design issue that needs to
be addressed, which is beyond the scope of this paper.

We use graph Gf = (Vf , E) to represent the physical layer,
where E is the set of edges representing fiber spans and Vf is
the set of nodes representing locations which are connected via
fiber spans. We use graph Go = (Vo, L) to represent the optical
layer, where L is the set of edges representing lightpaths
and Vo ⊂ Vf is a subset of locations that are connected via
lightpaths. Each edge in L corresponds to a path in Gf . In this
paper, we treat each lightpath as a logical connection between
a pair of nodes (not just a single wavelength), therefore,
one lightpath can contain multiple wavelengths. For ease of
exposition, we first assume that Go is a directed graph (i.e., the
lightpaths are unidirectional). The extension to the undirected
graph case is quite straightforward and will be discussed
later in this section (basically, we can simply replace every
undirected edge with two directed edges).

The GRWA problem concerned in our study can be de-
scribed as follows. Assuming that a set of traffic demands are
given (some of them are of low rate, i.e., sub-wavelength),
our goal is to find an optimal way to route and groom these
demands in the optical layer, Go, and also to assign a set of
specific wavelengths to each lightpath so that the total number
of transponders required is minimized. There are two key
constraints we need to take into consideration in this problem:
1) the wavelength capacity constraint for each fiber span, and
2) the wavelength continuity constraint for every lightpath, i.e.,
the same wavelength(s) needs to be assigned to a lightpath over
the fiber spans it traverses. In this problem setting, the number
of transponders required for each lightpath is equal to twice
the number of wavelengths assigned to it (one transponder for
each end of each wavelength on a lightpath). Therefore, by
grooming several low rate demands onto a single wavelength,
we can potentially reduce the total number of wavelengths
required by the lightpaths, thus the number of transponders.

The GRWA problem can be formulated as an integer linear
programming (ILP) problem. First, we need to introduce some
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necessary notation:
W : the set of wavelengths available at each fiber;
D: the set of traffic demands;
sd: the size of demand d ∈ D;
g: the capacity of a single wavelength;
A: = [av,l]|Vo|×|L|, the node-edge incidence matrix of graph

Go, where av,l = 1 if lightpath l originates from node v,
-1 if lightpath l terminates at node v, and 0 otherwise;

B: = [be,l]|E|×|L|, the fiber-lightpath incidence matrix, where
be,l = 1 if fiber span e is on lightpath l, and 0 otherwise;

ud: = [uv,d]v∈Vo
, the source-destination column vector for

d ∈ D, where uv,d = 1 if v is the starting node of d, -1
if v is the end node of d, and 0 otherwise;

xd: = [xl,d]l∈L, the column vector containing lightpath rout-
ing variables for d ∈ D, where xl,d = 1 if demand d
traverses lightpath l, and 0 otherwise;

yw: = [yl,w]l∈L, the column vector containing wavelength
assignment variables for w ∈ W , where yl,w = 1 if
wavelength w is assigned to lightpath l, and 0 otherwise
(note that in our setting each lightpath l is treated as a
logical connection between a pair of nodes, hence it can
be assigned with multiple wavelengths, i.e., it is possible
that

∑
w∈W yl,w ≥ 1);

1: = [1, 1, . . . , 1], the unit column vector.
Then the GRWA problem can be formulated as the following

ILP problem (which we shall refer to as the GRWA ILP
problem):

min
∑

w∈W,l∈L

yl,w

s.t. Axd = ud d ∈ D (1)

Byw ≤ 1 w ∈ W (2)∑

d∈D

sdxl,d ≤ g
∑

w∈W

yl,w l ∈ L (3)

x and y are binary variables.

where the objective function
∑

w∈W,l∈L yl,w is the total
number of wavelengths assigned to all lightpaths, which is
equivalent to minimizing the total number of transponders
needed. The three constraints are

• (1) is the flow balance equation, which guarantees that the
lightpaths selected based on xd constitute a path from the
starting node of d to the end node of d.

• (2) implies a single wavelength along each fiber span can
be assigned to no more than one lightpath.

• (3) is the capacity constraint for lightpath l, since∑
d∈D sdxl,d is the total amount of demands carried by

lightpath l, and g
∑

w∈W yl,w is the total capacity of
lightpath l.

We refer the type of the network considered above as the
basic model. There are several variations of the basic model,
which include

1) Networks with both protected and unprotected demands;
2) Networks in which lightpaths are undirected;
3) Networks with non-homogeneous fibers where different

types of fiber may have different wavelength capacities;

4) Networks in which demand exceeds a single WDM
system per fiber pair.

III. A DECOMPOSITION METHOD

In the previous section, we formulated the GRWA problem
as an ILP problem, however, it may not be computationally
feasible to solve the ILP problem, particularly for large net-
works (e.g., see numerical results in Section 4). Therefore, it
is necessary to find more efficient ways to solve the GRWA
problem. In this section, we propose a decomposition method
that divides the GRWA problem into two smaller problems: the
traffic grooming and routing (GR) problem and the wavelength
assignment (WA) problem. In the GR problem, we only
consider how to groom and route demands over lightpaths
and ignore the issue of how to assign specific wavelengths to
lightpaths. Based on the grooming and routing, we can then
derive wavelength capacity requirements for all lightpaths.
Similar to the GRWA problem, we formulate the GR problem
as an ILP problem. The size of the GR ILP problem is
much smaller than its corresponding GRWA ILP problem.
Furthermore, we can significantly improve the computational
efficiency for the GR ILP problem by relaxing some of
its integer constraints, which usually leads to approximate
solutions for the GR problem. Once we solve the GR problem,
we can then consider the WA problem, in which our goal is to
derive a feasible wavelength assignment solution that assigns
specific wavelengths to lightpaths based on their capacity
requirements derived in the GR problem.

It is obvious that in general the decomposition method
would not yield the optimal solution for the GRWA problem.
However, we will provide a sufficient condition under which
we show that the decomposition method does produce an
optimal solution for the GRWA problem. We also develop a
simple algorithm that finds a wavelength assignment solution
under this sufficient condition.

A. The GR Problem

Let t = [tl]l∈L, a column vector containing lightpath
capacity decision variables, where tl =

∑
w∈W yl,w is the

number of wavelengths needed for lightpath l ∈ L. Then, the
GR problem can be formulated as:

min
∑

l∈L

tl

s.t. Axd = ud d ∈ D (4)

Bt ≤ |W |1 (5)∑

d∈D

sdxl,d ≤ gtl l ∈ L (6)

x binary variable and t integer variable.

We refer the above ILP problem as the GR ILP problem.
We now present the following result:

Proposition 1: If x and y are feasible solutions for the
GRWA ILP problem, then x and t are feasible solutions for
the GR ILP problem, where t =

∑
w∈W yw.
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Proof: We first note that by summing over w ∈ W in
(2) it leads to (5). Secondly, (3) is the same as (6). Hence, the
result follows.

Based on Proposition 1, we have
Proposition 2: If x∗ and t∗ are the optimal solutions of

the GR ILP problem, and there exists a binary y∗ such that∑
w∈W y∗

w = t and By∗
w ≤ 1 for w ∈ W , then x∗ and y∗ are

the optimal solutions of the GRWA ILP problem.
Proof: Suppose x and y are feasible solutions for the

GRWA ILP problem, then based on Proposition 1, x and
t =

∑
w∈W yw are feasible solutions for the GR ILP problem.

Since x∗ and t∗ are the optimal solutions of the GR ILP
problem, we have

∑
w∈W,l∈L y∗

l,w =
∑

l∈L t∗l ≤ ∑
l∈L tl =∑

w∈W,l∈L yl,w. Therefore, the conclusion follows.
Obviously, the GR ILP problem is much easier to solve than

the GRWA ILP problem since it has fewer integer variables
and fewer constraints (e.g., see numerical examples in Section
4). More importantly, we can now relax the integer constraint
on t in the GR ILP problem and solve a relaxed mixed ILP
problem and then round up the values of t to obtain a solution
for the GR problem. This would dramatically improve the
computational efficiency. On the other hand, the relaxation
approach is much less effective for the GRWA ILP problem
since all its decision variables are binary. In general, if most
lightpaths have relatively high wavelength counts (i.e., the
values of their corresponding components in t are large),
then the relaxed GR ILP problem often produces very good
solutions for the GR problem, as illustrated by our numerical
examples in Section 4. This is simply because that if the
optimal value of tl is large, then the error of rounding up
is relatively small.

B. The WA Problem

The WA problem of our interest is to find a binary solution
y such that

∑

w∈W

yw = t and Byw ≤ 1 for w ∈ W ,

where t is a feasible (or optimal) solution of the GR problem.
This problem can be viewed as an ILP problem (without an
objective function), which is much easier to solve than the
GRWA ILP and the (relaxed) GR ILP problems. For example,
it can be solved for networks with a few hundred nodes
and lightpaths in seconds or minutes by using commercially
available LP software, e.g., CPLEX. Based on Proposition 2,
we know that if x and t are optimal solutions of the GR
problem and the WA problem has a feasible solution y, then
x and y are optimal solutions of the GRWA problem. In case
when we cannot find a feasible solution for the WA problem,
we can either increase the number of wavelengths in W in
the WA problem (note that we can always find a feasible
solution for the WA problem if W has enough wavelengths),
or we can use W ∗ ⊂ W in the GR problem (specifically,
replace |W | with |W ∗| in (5)) but still use W in the WA
problem. Obviously, the latter approach is preferred in which
case the decomposition method provides a feasible solution

for the GRWA problem. An alternative approach is to use
wavelength conversion via lightpath regeneration, which is
equivalent to modifying L by breaking some lightpaths into
two or more lightpaths. In addition, there are other possible
remedies available to alleviate the infeasibility of the WA
problem.

Though the WA problem can be solved as an ILP problem,
it is also possible to solve it directly based on some heuristic
algorithms (e.g., see [5]). In what follows, we consider a
special type of the GRWA problem, in which the lightpaths
satisfy a certain condition. Under such a condition, we show
that a feasible solution for the corresponding WA problem can
always be found, and we also develop an algorithm for finding
a feasible solution. Without loss of generality, we assume that
the capacity of every lightpath is one wavelength (i.e., tl = 1
for every l ∈ L). For a lightpath whose capacity is more than
one wavelength, we can treat it as several identical parallel
lightpaths, each of which has capacity of one wavelength. Let
pe (e ∈ E) be the number of lightpaths that traverse fiber
span e, and p = maxe∈E pe, which is the minimum number
of wavelengths required for the network.

Define:
El: = {e ∈ E| e is on lightpath l}, l ∈ L;
Le: = {l ∈ L| l traverses fiber span e}, e ∈ E;

We now present the following algorithm for the WA prob-
lem.

Algorithm 1 (for the WA problem)
1) Select an initial lightpath l0 ∈ L (arbitrarily), and assign

a wavelength to l0.
2) Suppose El0 = {e1, e2, . . . , ek}. Set L0 = {l0}. For

i = 1 to k, do
a) Assign a wavelength to every lightpath l ∈

Lei
\∪0≤j<i Lj such that no two lightpaths in Lei

share the same wavelength (note that Lei
\ ∪0≤j<i

Lj is a subset of lightpaths in Lei
to which

wavelengths have not been assigned yet).
b) Let

Li = Lei
\ ∪0≤j<i Lj ,

Ei = ∪l∈Li
El\{ei}.

We note that Li is the set of lightpaths to which
wavelengths are assigned in Step 2(a) and Ei is the
set of fiber spans that are on at least one lightpath
in Li (excluding fiber span ei).

3) For i = 1, 2, . . . , k, apply the procedure in Step 2 to Ei

(with El0 being replaced with Ei), and continue until
all the lightpaths in L are assigned (note that since all
the fiber spans in El0 have been considered already in
Step 2, we can simply replace Ei by Ei\El0 ).

To study some useful properties associated with Algorithm
1, we first introduce the following terminologies:

Definition 1) We say a lightpath l and a fiber span e
are connected (via fiber spans {e1, . . . , em} and light-
paths {l1, . . . , lm}) if there exist a set of fiber spans
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{e1, . . . , em} and a set of lightpaths {l1, . . . , lm} such
that ei ∈ Eli−1 for i = 1, . . . ,m + 1 (where l0 ≡ l and
em+1 ≡ e) and li ∈ Lei

for i = 1, . . . ,m.
2) We say two lightpaths l0 and lm are connected (via

fiber spans {e1, . . . , em} and lightpaths {l1, . . . , lm−1})
if there exist a set of fiber spans {e1, . . . , em} and a
sequence of lightpaths {l1, . . . , lm−1} such that ei ∈
Eli−1 and li ∈ Lei

for i = 1, . . . ,m.
3) We say a set of lightpaths {l1, . . . , lm} is a lightpath

cycle if Eli ∩ Eli+1 �= ∅ (i.e., lightpaths li and li+1

share at least one common fiber span) for i = 1, . . . ,m
(lm+1 ≡ l1).

4) We say a lightpath cycle {l1, . . . , lm} is a complete
lightpath cycle if El1 = · · · = Elm , otherwise it is a
non-complete lightpath cycle.

To help understand what is a lightpath cycle, consider the
network depicted in Figure 1. The network has four nodes
(A, B, C, D), three fiber spans (A–B, B–C, C–D), and three
lightpaths (A-B-C, C-B-D, D-B-A). It is clear that the three
lightpaths (A-B-C, C-B-D, D-B-A) constitute a lightpath cycle,
however it is a non-complete cycle.

A

B

C D

Fig. 1. A 4-Node Network

We now present the following properties associated with
Algorithm 1.

Proposition 3:
1) Every fiber span in Ei is on at least one lightpath in Li.
2) For 1 ≤ j ≤ i, ej /∈ Ei;
3) Li ∩ Lj = ∅ (i �= j);
4) If l ∈ Li, then it does not traverse fiber spans

{e1, . . . , ei−1};
5) If Ei ∩ Ej �= ∅ (i �= j), then there exists a lightpath

cycle with one lightpath in Li and one lightpath in Lj ;
6) If a lightpath in Li is connected to another lightpath in

Lj in two different ways via lighpaths in L\∪0≤h≤k Lh

and fiber spans in E\El0 , then there exists a lightpath
cycle {l1, . . . , lm} such that Ei ∩ (Eli1

∩ Eli1+1) �= ∅
and Ej ∩ (Eli2

∩ Eli2+1) �= ∅, where 1 ≤ i1 < i2 ≤ m.
Proof: We want to iterate the fact that assign wavelengths

are assigned to lightpaths in Li ⊂ Lei
in Step 2(a).

1) By definition.

2) By definition, ei /∈ Ei. For 1 ≤ j < i and e ∈ Ei, it is
clear we have assigned wavelengths to all the lightpaths
in Lej

before Step 2(a) while at least one lightpath in
Le has not been assigned by a wavelength before Step
2(a). Hence, ej /∈ Ei

3) All the lightpaths in Lj are assigned by wavelengths at
the end of Step 2(a) and they will not be considered
again in later iterations.

4) By the same argument as in (2).
5) Suppose e ∈ Ei∩Ej . Based on (1), e is on one lightpath

in Li, say li, and on another lightpath in Lj , say lj .
Furthermore, li and lj traverse ei and ej , respectively,
which are both on lightpath l0. Therefore, we have a
lightpath cycle {li, l0, lj}.

6) The same argument used in (5) can be applied here as
well.

In general, one needs to be careful about what wavelengths
to use in Step 2(a) of Algorithm 1, otherwise it is possible that
it may not produce a feasible solution for the WA problem.
For example, consider the following example in which El0 =
{e1, e2}, L1 = {l1}, L2 = {l2}, and E1 = E2 = {e}. If we
assign the same wavelength to l1 and l2, then we end up with
assigning one wavelength to l1 and l2 on fiber span e, which
is not permissible. Therefore, we have to assign u1 and u2

with different wavelengths.
It is clear that the number of different wavelengths needed

in the WA problem is at least p. In what follows, we provide
a sufficient condition under which p different wavelengths are
enough to solve the WA problem.

Theorem 1: If a network does not contain any non-complete
lightpath cycle, then Algorithm 1 can produce a feasible
solution for the WA problem which only needs p wavelengths.

Proof: Since the network does not contain any non-
complete lightpath cycle, based on (4), (5), and (6) in Propo-
sition 3 we have (i) Ei ∩ Ej = ∅, and (ii) no lightpath in
Li is connected to lightpath in Lj (i �= j). Hence, when
doing wavelength assignment for lightpaths in Li in Step 2(a)
we can use arbitrary wavelengths, and it guarantees that it
is permissible (i.e., no two lightpaths that traverse the same
fiber span would be assigned by the same wavelength). By
repeating this argument, we can show that in Algorithm 1
we can use arbitrary wavelengths in Step 2(a) and obtain
a feasible solution for the WA problem. Since wavelengths
used in Step 2(a) can be arbitrary, the maximum number of
different wavelengths needed throughout Algorithm 1 should
be no more than p. This completes our proof.

Theorem 1 implies that if a network does not contain any
non-complete lightpath cycle, we can find a solution for the
WA problem which only needs p wavelengths. In [5], the
problem of whether the WA problem can be solved with p
wavelengths was also studied. However, we believe that the
result there (Theorem 2 in [5]) is incorrect, which states that
if a network is acyclic then its WA problem can be solved with
p wavelengths. The network in Figure 1 is a counterexample to
this result. It is a tree (hence acyclic). Clearly we have p = 2,
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but need three wavelengths for its WA problem.
Since t in the WA problem is a feasible solution for the GR

problem, i.e., Bt ≤ |W |1, we have p ≤ |W |. This, together
with Theorem 1, leads to the following result:

Theorem 2: If a network does not contain any non-complete
lightpath cycle, Algorithm 1 produces a feasible solution for
the WA problem, and the decomposition method gives an
optimal solution for the GRWA problem.

To test whether a network contains any non-complete
lightpath cycle, one can obviously use the exhaustive search
method: finding all lightpath cycles and then test if any of
them is non-complete. Cleary the complexity of this exhaustive
search method grows exponentially. Currently, we do not have
an efficient method to verify if a network contains any non-
complete lightpath cycle. In fact, this problem itself could be
NP-complete, just like the wavelength assignment problem.

In case that a network contains non-complete lightpath
cycles, let c∗ be the minimum number of lightpaths that need
to be removed from the network so that the remaining portion
of the network does not contain any non-complete lightpath
cycles. Then we have

Theorem 3: There exists a feasible solution for the WA
problem which requires at most c∗+p wavelengths. Therefore,
if c∗+p ≤ |W |, then we can find a feasible solution for the WA
problem and the decomposition method still gives an optimal
solution for the GRWA problem.

Before closing this section, we should point out that if the
result in Theorem 3 can be further refined, then it can lead to
better upper bounds on the number of wavelengths required
for the WA problem.

IV. NUMERICAL RESULTS

In this section, we present four sets of numerical examples.
All ILPs and mixed ILPs were solved by using CPLEX 7.0
on a Dell Precision 420 PC with two 1GHz processors. We
compare the numerical results obtained based on the three
methods proposed in the previous two sections: the GRWA
ILP formulation, the decomposition method combined with the
GR ILP formulation, and the decomposition method combined
with the relaxed GR ILP formulation. The run time for the
decomposition method includes the run times for both the
(relaxed) GR ILP problem and the WA problem. The run time
for the WA problem in all four examples is very fast (it is less
than a second in the first three cases and less than 3 seconds
in the last case). Our numerical results clearly indicate that
the decomposition method combined with the relaxed GR ILP
formulation produces quite good results with reasonably small
run times.

Example 1. This is relatively small network with 12 nodes,
17 fiber spans, 24 lightpaths, and 104 traffic demands (with
different sizes). For this example, we were able to obtain the
optimal solution based on the GRWA ILP formulation. The
results are presented in Table 1.

Run Time Solution

GRWA ILP 400 seconds 128
GR ILP 80 seconds 128
Relaxed GR ILP 2 seconds 136

Table 1: Numerical results for Example 1.

Example 2. The network we consider in this example has 30
nodes, 38 fiber spans, 47 lightpaths, and 242 demands (with
different sizes). The results are presented in Table 2. For the
GRWA ILP problem, we stopped the CPLEX program after
75 hours and obtained a feasible solution with objective value
249.

Run Time Solution

GRWA ILP >75 hours 249
GR ILP 37 hours 189
Relaxed GR ILP 12 seconds 202

Table 2: Numerical results for Example 2.

Example 3. The network in this example has 49 nodes, 75
fiber spans, 155 lightpaths, and 238 demands (with different
sizes). It is a medium size network. For this example, the
decomposition method based on the relaxed GR ILP problem
produced a solution with value 345 in about 13 minutes, while
the CPLEX program did not even return a feasible solution for
the GRWA ILP and GR ILP problems after 40 hours (at which
point we stopped the program). From the CPLEX program, we
were also able to obtain a lower bound (based on the GR ILP
problem) 328 for the objective function. Hence, the solution
provided by the relaxed GR ILP based decomposition method
is within 5% of the lower bound. We note that the WA problem
was solved in 0.37 seconds for this example.

Run Time Solution

GRWA ILP >40 hours No Solution
GR ILP >40 hours No Solution
Relaxed GR ILP 13 minutes 345

Table 3: Numerical results for Example 3.

Example 4. The network in this example has 144 nodes, 162
fiber spans, 299 lightpaths, and 600 demands (with different
sizes). It is a relatively large network (a typical size for a
nation-wide network). For this example, the method based on
the relaxed GR ILP problem produced a solution in about
38 minutes, and the CPLEX program did not even return a
feasible solution for the GRWA ILP and GR ILP problems
after 100 hours (at which point we stopped the program). The
WA problem in this case was solved in 2.67 seconds for this
example.

Run Time Solution

GRWA ILP >100 hours No Solution
GR ILP >100 hours No Solution
Relaxed GR ILP 38 minutes 431

Table 4: Numerical results for Example 4.
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V. CONCLUSION

We studied the GRWA problem for optical mesh networks
and proposed a decomposition method based on both ILP for-
mulation and its relaxed version. In the decomposition method,
we divided the GRWA problem into two smaller problems: the
GR problem and the WA problem, both of which are much
easier to solve compared to the original GRWA problem. We
also provided a sufficient condition under which we proved
that the decomposition method in fact produces an optimal
solution for the GRWA problem. In general, our numerical
results showed that the decomposition method produces quite
good approximate solutions with relatively short run times and
it can be used to solve the GRWA problem for large optical
mesh networks (with a few hundred nodes and fiber spans).
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