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Abstract

Insect heritable symbionts have proven to be ubiquitous, based on
molecular screening of various insect lineages. Recently, molecular and
experimental approaches have yielded an immensely richer understand-
ing of their diverse biological roles, resulting in a burgeoning research
literature. Increasingly, commonalities and intermediates are being dis-
covered between categories of symbionts once considered distinct: ob-
ligate mutualists that provision nutrients, facultative mutualists that
provide protection against enemies or stress, and symbionts such as
Wholbachia that manipulate reproductive systems. Among the most far-
reaching impacts of widespread heritable symbiosis is that it may pro-
mote speciation by increasing reproductive and ecological isolation of
host populations, and it effectively provides a means for transfer of ge-
netic information among host lineages. In addition, insect symbionts
provide some of the extremes of cellular genomes, including the small-
est and the fastest evolving, raising new questions about the limits of
evolution of life.
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Bacteriome/

bacteriocyte: a host
organ/cell specialized
for housing bacterial

symbionts, which

usually are restricted

to the cytoplasm
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INTRODUCTION

Whereas researchers tend to pay more atten-
tion to pathogenic bacteria, chronic bacterial
infections that inflict no evident harm on
their hosts are everywhere in eukaryotes. In
invertebrate animals, such “symbiotic” bacteria
are often inherited, usually maternally. While
the prevalence of symbiosis has long been
recognized on the basis of observations from
microscopy (e.g., 16), most aspects of sym-
biont origins and functions were mysterious
before the age of molecular techniques, as
the uncultivability of symbionts hindered
conventional microbial experiments. During
the past 20 years, molecular studies on sym-
biont origins, evolution, and functions have
dramatically increased our knowledge and
appreciation of the importance of symbionts
in the evolution of their host animals, plants,
and other microorganisms. They have diverse
ecological and evolutionary effects on hosts,
influencing aspects of ecological interactions
from nutrition to defense and affecting re-
productive systems, with consequences for
population structure, reproductive isolation,
and speciation. Symbioses of insects and other
arthropods have received the most study and
are the focus of this review. However, inherited
bacterial symbionts, with features paralleling
those of insect symbionts, are known from
many other animal phyla, including nematodes
(140), sponges (130), annelids (59), bryozoans
(133), and molluscs (79, 98).

Genome-based studies of insect symbioses
have produced a large and rapidly expanding
literature. In addition to providing new in-
sights into the origins and evolution of sym-
bionts and their many biological roles in hosts,
this work has yielded remarkable and unex-
pected discoveries that challenge concepts of
the limits of genome and cell evolution. Insect
symbionts comprise some of the extremes of
known biological diversity: Their genomes in-
clude the smallest known for any cellular or-
ganisms, completely lacking in mobile elements
or bacteriophage; the most biased in base com-
position; the most stable in genome architec-
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ture; and the fastest in rate of gene sequence
evolution (100, 134, 139). Others are rife with
insertion sequences and genomic islands rep-
resenting lysogenic or inactivated phage (e.g.,
115, 143, 162).

This literature on molecular studies of her-
itable symbionts in insects is fragmented, re-
flecting the fact that, initially, symbiont types
(i.e., parasites, commensalists, mutualists, etc.)
were discovered through different routes and
appeared dissimilar. However, recent results
show that no firm boundaries separate cate-
gories of symbionts. In this review, we summa-
rize findings on the broad spectrum of heritable
insect symbionts, covering both their roles in
hosts and their patterns of evolution.

Categories of Heritable Symbionts

Known heritable symbionts of insects are ob-
ligately symbiotic: So far as is known, they
lack a replicative phase or dormant phase out-
side hosts. But they vary as to whether they
are obligate from the host perspective, that is,
whether they are required for successful host
development and reproduction. Although in-
termediates and transitions are frequent, it is
useful to recognize three categories of herita-
ble symbiosis (Figure 1) (See sidebar: Symbiont
Nomenclature).

The first category consists of obligate mu-
tualists required to support normal host de-
velopment. These symbionts, also called pri-
mary symbionts or P-symbionts, are typically
restricted to a specialized organ, called a bac-
teriome, which consists of a set of distinctive
host cells, called bacteriocytes. Depending on
the host group, the bacteriome may consist of
fat body cells, gut wall cells, or highly special-
ized cells that are developmentally determined
in embryos (e.g., 13, 16). Bacteriome-associated
symbionts, exemplified by Buchnera aphidicola
in aphids, can be thought of as domesticated
by hosts: They cannot invade naive hosts and
have evolved to be dependent on host-based
mechanisms for transmission. Some obligate
mutualists rival cell organelles in their extent
of intimate association on hosts, as in the case
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of the extreme small genome symbiont, Car-
sonella ruddii, living in psyllids (100). Because
bacteriome-associated symbionts often occupy
conspicuous host organs, they were the focus of
most studies of animal symbionts prior to the
availability of molecular methods (e.g., 16, 43).

In contrast to obligate, bacteriome-
associated symbionts, so-called facultative (or
secondary or S-) symbionts are erratically
distributed and are not required for host repro-
duction (62, 96, 145). Facultative symbionts
resemble invasive pathogens in that they may
invade various cell types, including reproduc-
tive organs, and may reside extracellularly in
the body cavity (hemolymph) (38, 51). In many
cases, facultative symbionts experimentally
introduced to previously uninfected hosts
establish stable, maternally inherited infection
(18, 116), indicating that the persistence of the
symbiosis is largely achieved through symbiont
capabilities rather than host adaptations for
maintaining symbiosis. In insects with bac-
teriomes, facultative symbionts may invade
bacteriocytes where they coreside with, or even
exclude, obligate symbionts (16, 51, 58, 96).

Besides retaining mechanisms for invading
new hosts, entering cells, and countering host
immune responses, successful facultative sym-
bionts also must affect host phenotypes to en-
hance the spread and persistence of infected
host lines. The nature of these effects is the ba-
sis for dividing facultative symbionts into two
nonexclusive categories.

Facultative mutualists confer fitness bene-
fits upon hosts, allowing their carriers to live
longer and reproduce more, thereby increasing
frequencies of infected hosts. These benefits in-
clude protection against natural enemies, heat,
or other mortality factors (see below). Bacteria
possess a myriad of metabolic and biosynthetic
capabilities lacking in insects (and animals gen-
erally), so a wide variety of benefits to hosts are
possible.

The final category, reproductive manipu-
lators, are parasites that spread by increasing
host reproduction through daughters at the
expense of reproduction through sons. Their
strategies, which reflect the fact that herita-

SYMBIONT NOMENCLATURE

Because most symbiotic bacteria are not amenable to laboratory
cultivation, they cannot be characterized as required for confer-
ring formal genus and species names under the current rules gov-
erning bacterial nomenclature. As a result, most insect symbionts
have been named under the Candidatus provision for informal
naming of genera and species. Exceptions are the few symbionts
that have been cultured and a few others named under previous
nomenclatural rules (e.g., 8, 19, 25, 55). Another complication
affecting symbiont naming concerns the naming of related sym-
bionts isolated due to residence in different host species. In some
cases, these have been given a single species designation; thus,
Buchnera aphidicola is the name for the symbiont in all aphids, al-
though lineages are substantially diverged. In other cases, lineages
in different host species are given separate species designations
(e.g., 128). Some symbiont lineages have no informal or formal
names (e.g., 17, 85). In this review, we use the informal or formal
genus name when available; full names can be found in citations.

ble symbionts are usually transmitted mater-
nally, have been reviewed extensively (e.g., 137).
One of the most common is reproductive in-
compatibility between infected and uninfected
strains, in which infected males sterilize un-
infected females, thereby increasing popula-
tion frequency of infected matrilines. Other
modes of reproductive manipulation are son-
killing (which potentially increases investment
in daughters), feminization of genetic males,
and parthenogenesis. The best-studied repro-
ductive manipulator is Wolbachia pipientis, which
is widely distributed in arthropods and some
other invertebrates and which shows all of these
phenotypes (137). Reproductive manipulation
has evolved repeatedly in phylogenetically di-
verse insect heritable symbionts, including Car-
dinium bertigii and other Bacteroidetes (68, 111,
150, 164, 165), Arsenophonus nasoniae (Enter-
obacteriaceae), Spiroplasma (74), and Rickettsia
species (110) (Figure 1).

Heritable pathogens that lower female fe-
cundity, at least in lab assays, do occur (18,
125) butare exceptions, as expected since selec-
tion will remove such infected matrilines from
populations. In several studies, transferring
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Bacteriome-associates Mutualists Reproductive manipulators
Sulcia muelleri - sharpshooters and other Hamiltonella defensa — aphids, whiteflies (96) Male killers - ladybird beetles (85)
Auchenorrhyncha (87) Regiella insecticola — aphids (96) Cardinium hertigii - many arthropods (165)
Uzinura diaspidicola - diaspidid scales (60) Arsenophonus species — psyllids (61) Spiroplasma species - butterflies, Drosophila
Blattabacterium species — cockroaches (6) Sodalis glossinidius - tsetse flies (143) (74,159)
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Rickettsia species — booklice (112) Serratia symbiotica - aphids (96) Rickettsia species — ladybird beetles,
Tremblaya princeps — mealy bugs (8) wasps, booklice (110)
Carsonella ruddii - psyllids (100) Wolbachia species — many arthropods (137)
Portiera aleyrodidarum — whiteflies (141) Arsenophonus nasoniae — Nasonia wasps (55)
Buchnera aphidicola - aphids (8)
Ishikawaella capsulata - stinkbugs (64) Unknown effect
Wigglesworthia species - tsetse flies (2) Fritschea species — whiteflies, scale insects (46)
lochmannia species — carpenter ants piroplasma species — numerous arthropods including aphids, beetles, Drosophila
Bloch t ts (56) N I rth d luding aphids, beetles, D hila (86)
ardonella species — weevils ickettsia species — numerous arthropods including aphids, whiteflies, beetles, ticks
Nardonell Is (82) Rickett: th d lud hids, whiteflies, beetles, ticks (110)
Baumannia cicadellinicola - sharpshooters (161) Arsenophonus species — numerous arthropods including aphids (142)
Riesia species — primate lice (3) Sodalis species — hippoboscid flies (102)

“SOPE", “SZPE" - grain weevils (17)

Major properties Major properties
Housed within special host organ (bacteriome) Invades various cells and tissues of hosts

Long evolutionary history of

diversification with host lineages Short evolutionary history in current host lineage

No horizontal transfer Horizontal transfer within and between host species

Supblies nutrients to hosts Provides protection against Manipulates reproduction to
PP stress or natural enemies favor its own host matriline

Extreme genome reduction, <<1 MB Moderate genome reduction and gene inactivation, >1MB

Lack of gene uptake, phage,

A Dynamic genomes with bacteriophage, mobile elements, rearrangements
mobile elements or genome rearrangements

Figure 1

Evolutionary relationships of heritable endosymbionts of insects and list of major examples and characteristics for each category. The
phylogeny is based on widely supported findings from studies listed in the citations. Note that different categories of symbionts,
designated by color, cluster within phylogenetic groups.
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facultative mutualists or reproductive manipu-
lators to novel hosts results in detrimental ef-
fects not observed in the original host (18, 77,
123), indicating that effects on host survivor-
ship and fecundity limit symbiont distributions.
Certain benefits of heritable symbionts may be
environment dependent; for example, defense
against natural enemies will not be observed in
lab assays in which those enemies are absent
(107). Similar considerations may apply to some
other symbionts observed to have detrimental
effects in controlled laboratory environments
(e.g., 125).

Though most studied symbionts can be
placed in one of the three categories of
Figure 1, frequent apparent shifts and inter-
mediate cases, discussed below, point to com-
monalities across symbiont lifestyles.

ORIGINS, TRANSMISSION,
AND DIVERSIFICATION

Symbiont Origins and Relationships
to Free-Living Bacteria

Figure 1 summarizes the phylogenetic distri-
butions of insect heritable symbionts within
Bacteria, from combined results of molecular
phylogenetic studies that are based on riboso-
mal RNA sequences (e.g., 8, 60, 64, 82, 96,
97, 108), protein sequences of multiple genes
from genome sequencing projects (e.g., 56,
87, 147, 161, 162), or gene content of com-
pletely sequenced bacterial genomes (23). Well-
supported general results regarding origins of
insect symbionts include (#) many independent
origins from different bacterial phyla and from
several lineages within particular phyla; (6) con-
centration of these origins in certain groups,
including the Gammaproteobacteria, espe-
cially the Enterobacteriaceae, and in the Bac-
teroidetes; (¢) evolutionarily derived position of
symbionts relative to free-living bacteria.
Although congruent in broad outline, cer-
tain phylogenetic results are uncertain and have
varied among studies depending on the inclu-
sion of different taxa, methods, and genes. Sym-
bionts show distinctive patterns of gene and

genome evolution that complicate the prob-
lem of phylogenetic reconstruction, enhanc-
ing issues of “long branch attraction” arising
from rapid sequence evolution and of conver-
gence, due to shifts in nucleotide base com-
position. Resolution is not always sufficient
to enumerate independent origins of symbi-
otic lines. The most conspicuous illustration
of this issue involves the set of bacteriome-
associates of an eclectic group of insect hosts,
including Buchnera of aphids as well as sym-
bionts of ants, weevils, leathoppers, and tsetse
flies. These sometimes form a clade within the
Gammaproteobacteria depending on the phy-
logenetic analysis (e.g., 23, 82, 161), as depicted
in Figure 1, raising the question of whether
these lineages derive from an ancestor that
was already an arthropod symbiont. Weighing
against this interpretation are (#) possible phy-
logenetic artifacts resulting from rapid evolu-
tion and biased composition of symbiont DNA
sequences; (b) the disparate composition of the
host set, which would imply early horizontal
transfers of symbionts, in stark contrast to pat-
terns within particular host groups (see below);
and (¢) the lack of distinctive similarities in
genome-level features such as gene set or gene
order in comparisons of sequenced genomes.
Another cluster of bacteriome-associates, par-
alleling that mentioned for the Buchnera-cluster
above, occurs in the Bacteroidetes, including
Blattabacterium (in cockroaches), Uzinura dias-
pidicola (in scale insects), and Sulcia [in Auchen-
orrhyncha (a sap-feeding insect group includ-
ing planthoppers, cicadas, spittlebugs, leathop-
pers) (60, 87, 138)].

Obligate Mutualist-Host
Codiversification and Age
of Associations

Codiversification of obligate mutualists and
their hosts has now been demonstrated repeat-
edly for a large variety of insect groups. These
results demonstrate that symbiont acquisition
is ancient in each case, and followed by vertical
transmission that tracks host speciation. The
minimum age of infection can be inferred to
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be that of the shared ancestor of the infected
host group. For many insect lineages, fossils
provide indicators of divergence times. Indeed,
evidence for symbiont-insect codiversification
has provided some of the best cases for estimat-
ing dates of bacterial ancestors (e.g., 8, 83, 97).

Buchnera and aphids, the first case for which
codiversification was shown (8, 94), provide
a typical case history for obligate bacteriome
symbiosis. The pattern of codiversification ap-
plies at levels from aphids as a whole to ma-
trilines within species (52). The aphid fossil
record implies an approximate minimal date of
100-200 million years for the original infection
(94). Similar results, supporting ancient infec-
tion and codiversification, have since been re-
ported for many other bacteriome-associated
symbionts, including those of cockroaches (6,
83), whiteflies, psyllids and mealybugs [re-
viewed in (8)], diaspidid scale insects (60),
the Auchenorrhyncha (97), primate lice (3),
tsetse flies (19), weevils (82), and carpenter ants
(35, 128).

In each of these cases, symbionts are trans-
mitted maternally, but details of the mecha-
nisms vary as the structures and location of
bacteriomes vary (16). The stinkbug example
shows that codiversification can be longstand-
ing even for gut symbionts that are not in-
tracellular and that are transmitted externally

through maternal deposition on eggs and in-
gestion by progeny (64).

Evidence for codiversification combined
with fossil dating show that bacteriome-
associated symbioses are generally extremely
old, dating to the origins of numerous major
lineages of insect (Table 1). The oldest record
is 260 million years for the case of Sulcia, which
infected a shared ancestor of leathoppers, tree-
hoppers, spittlebugs, cicadas, and planthoppers
before the mid-Permian (97). Though fossils
are sometimes not sufficient to provide firm
dates for ancestral hosts, the overall picture
provided by molecular phylogenetic studies of
bacteriome-associated symbionts is clear. Sym-
biosis extends deep into the evolutionary past
of a large number of insect groups, and these
obligate mutualists can be considered to be sta-
ble components of the symbiotic genome in the
broad sense.

Loss of Ancestral Symbionts
by Host Lineages

Bacteriome-associates are typically required for
successful host development and reproduction,
raising the question of whether dependence
on symbioses represents an evolutionary dead
end for host lineages. Several instances of sym-
biont loss from a host lineage are apparent from

Table 1 Bacteriome-associated symbionts shown to undergo long-term

codiversification with hosts and estimated ages of associations

Symbiont group Hosts Approximate minimum age® Reference
Buchnera Aphids 180 My 94)
Portiera Whiteflies 180 My (8)
Carsonella Psyllids 120 My (8)
Wigglesworthia Tsetseflies >40 My 19)
Blochmannia Carpenter ants 50 My (128)
Baumannia Sharpshooters 100 My (138)
Ishikawaella Stinkbugs o ()
Nardonella Weevils o (82)
Tremblaya Mealybugs 40 My (8)
Blattabacterium Cockroaches 150 My (83)
Uzinura Armored scales 100 My (60)
Sulcia Auchenorrhyncha >270 My 97)

“My = Millions of years before present. ** = No fossil-based dates estimated in literature.
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molecular phylogenetic studies. Examples in-
clude loss of Buchnera from a few aphid lineages
(49), loss of Sulcia from several lineages of sap-
feeding insects (16, 97), and loss of the ancestral
symbiont Nardonella from a family of monocot-
feeding weevils (82). In each case, symbiont loss
is associated with an apparent replacement by
another heritable microorganism. One possi-
ble scenario for these replacements is that the
ancestral symbiont (obligate mutualist) coexists
initially with a more recently acquired organ-
ism (facultative mutualist), and that the latter
ultimately replaces the more ancient associa-
tion. A potential example of this has been hy-
pothesized for Cinara aphids in which Buchnera
coexists with more recently acquired symbionts
related to Serratia that may have replaced some
Buchnera functions (109). In other cases, coex-
istence of multiple symbionts is stable over mil-
lions of years of host evolution (138).

Replication of bacteriome-associated sym-
bionts is intimately integrated with the early
developmental stages of hosts (13, 158, 160).
This integration can result in developmental
dependence; for example, antibiotic treatment
of female aphids generally prevents success-
ful development of embryos (e.g., 16, 157).
In the case of Buchnera, host dependence may
be overcome in certain cases. Presence of Ser-
ratia symbiotica sometimes enables pea aphids
(Acyrthosiphon pisum) to reproduce following ex-
perimental elimination of Buchnera although
this replacement does not occur in all pea aphid
genotypes in the lab (77) and has not been
observed outside the lab. Also, in some aphid
species, males and specialized sterile soldiers
do not contain Buchnera, whereas reproductive
females do, demonstrating that developmental
dependence on symbionts is not always insur-
mountable even in a long established obligate
symbiosis (16, 49).

Distribution and Origins
of Facultative Symbionts

Facultative symbionts often occur at low titers
in hosts and show irregular distributions among
host tissues and species. As a result, assessing

their prevalence depends on molecular meth-
ods, and their abundance has been even less ap-
preciated than that of obligate symbionts. In
fact, they are almost certainly more common.
Diagnostic PCR screens reveal Wolbachia in-
fection in at least 20% of insect species (73,
155) and Cardinium in about 6% (165). Though
these estimates are rough (as they depend on
sampling and the particular PCR primers used),
these two symbionts are clearly widespread in
arthropods.

Facultative symbionts, especially those
from Enterobacteriaceae, appear to be par-
ticularly common in hosts that possess
bacteriome-associated obligate symbionts, in-
cluding aphids, whiteflies, tsetse, and mealy-
bugs. Whether this reflects more intensive
study or greater frequency of occurrence is not
clear. Immune responses are major obstacles to
colonizing and persisting in hosts [reviewed in
(146)], and bacteriocytes may provide a haven
from immune responses (58). Differences in im-
mune function among insect taxa may explain
why some are more often colonized by cer-
tain symbiont groups. For example, a screen of
35 Drosophila species for heritable symbionts,
based on universal PCR for bacterial rRNA
genes using DNA from dissected ovaries of
female flies, revealed only Wolbachia and Spiro-
plasma (86), in contrast to the much higher fre-
quency of heritable symbionts from Enterobac-
teriaceae found in sap-feeding insect groups.

As for bacteriome-associated symbionts,
facultative symbionts originate from a variety
of ancestral bacterial groups, including some
of the same groups producing bacteriome-
associates (Figure 1). Rickettsiales, Mollicutes,
and Chlamydiae, all host-restricted groups
originally known as vertebrate pathogens, are
being found to contain many symbionts of
arthropods and other invertebrate hosts (e.g.,
24,45, 46, 58, 110, 151), raising the possibility
that most basal diversity in these groups consists
of symbiotic organisms, with pathogens being
atypical and derived. The Enterobacteriaceae
has generated numerous facultative symbionts,
based on studies in various insects (8, 20, 29, 55,
96, 102, 122, 126, 152).
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Horizontal Transfer of Facultative
Symbionts Within and Between
Host Species

A variety of observations show that facultative
symbionts undergo horizontal transfer among
matrilines within and between species (e.g.,
108, 126). While the bacteriome-associates of
a particular host group consistently form a
strongly supported clade (such as Buchnera in
aphids), facultative symbionts typically vary in
presence among members of the same or re-
lated host species. Many studies show erratic
distribution of Wolbachia and Cardinium (108,
137, 155, 165). Numerous insect groups con-
tain a single bacteriome-associate descending
from an ancient infection, but several differ-
ent secondary symbionts with erratic distri-
butions suggest multiple transfers and losses
[for examples, see 8)]. Furthermore, faculta-
tive symbionts are often shared between di-
vergent host groups; for example, Hamiltonella
and Arsenophonus species are found in scattered
species of aphids, psyllids, whiteflies, planthop-
pers, and other groups (8, 25, 55, 122, 126,
131). In tsetse, another member of the Enter-
obacteriaceae, Sodalis, is universally present, as
is the obligate mutualist, Wigglesworthia, but
Sodalis undergoes transfer within and between
host species (152).

Although molecular phylogenetic studies
imply past horizontal transfer among matri-
lines, this transfer is not often observed in
lab experiments. As a result, the routes by
which new matrilines are colonized are largely
elusive. An exception is the case of the aphid
facultative mutualists, Hamiltonella and the
related Regiella insecticola, in which intraspecific
transfer between matrilines can occur during
mating, via paternal transfer to females and
to their progeny, resulting in stable infections
that are subsequently transferred maternally
(92). Paternal transfer has not been found
for other heritable symbionts and appears
to be absent in reproductive manipulators
(as expected for symbionts with phenotypes
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favoring female transmission), based on both
lab and population studies.

Transmission via natural enemies or other
ecological interactions has been proposed but
has only rarely been observed in experiments.
Two exceptions are the finding that parasitic
mites can move Spiroplasma between Drosophila
species (71) and that Wolbachia can be trans-
ferred between species of parasitic wasps de-
veloping in the same host individual (67). For
aphids, the most readily plausible routes of in-
terspecific transfer, through food plants or par-
asitoid wasps, are either absent or rare enough
that they are not observed in lab experiments
(32; K.-M. Oliver, unpublished data). Nonethe-
less, intra- and interspecific transmission via an
assortment of ecological contacts seems widely
possible since experimental infections are read-
ily achieved in the lab, through either microin-
jection (18, 105, 116, 124) or ingestion of diets
containing symbiont cells (32, 116). The like-
lihood of successful transfer is enhanced if in-
fection capability persists in symbionts outside
their hosts, as observed for Wolbachia, which can
infect even after a week of isolation from host
cells (117).

Although horizontal transfer within and be-
tween species appears to be frequent for these
symbionts, their distributions are far from ran-
dom. Many instances are known in which a
particular insect group shows a high frequency
of a particular facultative symbiont, due to
multiple acquisitions and transfers. For exam-
ple, Arsenophonus has repeatedly invaded white-
flies (142) but is rare in aphids (122), which
frequently harbor other facultative symbionts
from Enterobacteriaceae (96, 126). Wolbachia
appears rare in aphids (122, cf. 57) but is com-
mon in many other groups (20, 72, 73, 84, 155).

Horizontal transfer among hosts can pro-
duce coinfections within hosts and opportu-
nity for recombination and gene transfer. Thus,
even if infrequent, it has potentially massive
consequences for symbiont population struc-
ture and genome dynamics, as discussed further
below.
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Evolutionary Transitions: Deleterious
to Beneficial and Facultative
to Obligate

Several bacterial clades consist of a mix of
obligate and facultative symbionts (Figure 1),
indicating that transitions between facultative
and obligate symbionts have occurred. This
pattern suggests that obligate bacteriome
associates evolve from heritable facultative
symbionts that lose horizontal transmission ca-
pabilities. For example, Arsenophonus comprises
facultative symbionts that are sometimes repro-
ductive manipulators and harmful to hosts (55)
and sometimes likely beneficial but facultative
in hosts (8, 61, 122); in contrast, Riesia, the sis-
ter clade to Arsenophonus, contains the obligate,
bacteriome-associated symbionts of sucking
lice (3). Another closely related cluster includes
Sodalis, facultative symbionts of tsetse and other
bloodsucking flies (102), plus the bacteriome-
associated symbionts of both grain weevils and
of chewing lice, two unrelated insect groups
(50, 63). Similarly, the Rickettsiales, the host-
restricted clade containing Wolbachia, Rickettsia,
and Ebrlichia, shows a spectrum of interactions
with hosts, ranging from pathogenic to obliga-
tory for host survival and development 31, 110,
112). Although it is usually a reproductive ma-
nipulator or facultative symbiont of unknown
effect in arthropod hosts, Wolbachia can be
beneficial to insect hosts (34) and is an obligate
symbiont of filarial nematodes (140). Rickettsia
itself includes obligate symbionts associated
with bacteriomes of booklice (112) as well
as widespread facultative symbionts of which
some are reproductive manipulators (110).
Rickettsia, Wolbachia, or both, are required
for normal oogenesis in some bark beetles
(163).

Shifts from reproductive manipulator to
beneficial symbiont can be rapid. For exam-
ple, in populations of Drosophila simulans in
California, an invading Wolbachia was trans-
formed in less than 25 years from a reproductive
manipulator that reduced fecundity of female
carriers to a mutualist that enhanced fecundity
(149). Such transitions reflect the strong selec-

tion on heritable symbionts for traits that in-
crease productivity of the host matriline.

GENOME EVOLUTION IN
SYMBIOTIC BACTERIA

Genomic Features of
Obligate Mutualists

Striking shared features are evident in the nu-
merous complete genome sequences now avail-
able for bacteriome-associated symbionts of
insects (Table 2). The most prominent is ex-
treme genome reduction, reflected in small
chromosomes with few genes. Other charac-
teristics in common are biased nucleotide base
composition, favoring adenine and thymine
(A+T), and rapid sequence evolution, result-
ing in accelerated rates of amino acid substitu-
tion in all genes. In these features, bacteriome-
associates of insects are representative of a more
widespread syndrome found in host-restricted
symbionts and pathogens such as the Molli-
cutes, the Rickettsiales, the Chlamydiales, and
others. The rapid evolution, A+T bias, and ef-
fects on protein evolution were detectable be-
fore full genomes were available (90). Genome
reduction became evident with the first sym-
biont genome sequenced, for Buchnera of pea
aphids (134), and was subsequently found to
be the norm for bacteriome-associates (153).
Known genomes of obligate insect bacteriome-
associates range from 160-800 kb and 16.5%—
33% G+C (Table 2). In contrast, related free-
living bacteria often have genomes more than
five times larger (usually 2-8 Mb) and with base
compositions nearer to 50% G+C.

Reflecting their rapid sequence evolution,
obligate symbionts essentially always appear
on long branches of phylogenetic trees (e.g.,
21), and statistical (relative rates) tests repeat-
edly indicate acceleration of symbiont sequence
evolution both for the commonly sequenced
16S rRNA gene and for protein-coding genes
throughout the genome (60, 82, 90, 136, 139,
147). Substitution rates are particularly ele-
vated at sites affecting amino acid replacements
within coding genes, as reflected in increased
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Table 2 Features of sequenced genomes of heritable insect symbionts

Buchnera Blochmannia
APS Sg Bp Cc floridanus |  pennsylvanicus
Genome size (kb) 641 641 616 416 706 792
GC content (%) 26 25 25 20 27 29
Coding region (%) 86 83 81 85 83 76
rRINA gene set 1 1 1 1 1 1
Protein-coding genes 564 546 504 357 583 610
Replication, recombination, and repair 42 37 37 30 31 31
Transcription 19 18 17 17 21 22
Translation 120 117 117 114 116 114
Cell wall/membrane biogenesis 30 25 26 5 53 58
Amino acid transport and metabolism 61 60 57 42 74 75
Coenzyme transport and metabolism 36 34 24 7 45 51
Reference (134 (139) (147) (109) (56) (36)
Wigglesworthia | Baumannia | Carsonella | Sulcia Sodalis Wolbachia wMel
Genome size (kb) 698 686 160 246 4171 1268
GC content (%) 22 33 17 22 54 35
Coding region (%) 86 85 97 96 50 80
rRNA gene set 2 2 1 1 7 1
Protein coding genes 611 595 182 227 2432 1195
Replication, recombination, and repair 30 41 5 8 150 110
Transcription 22 24 5 6 185 34
Translation 109 119 56 74 156 127
Cell wall/membrane biogenesis 61 34 1 6 155 46
Amino acid transport and metabolism 35 55 33 47 199 45
Coenzyme transport and metabolism 65 64 3 10 98 42
Reference ) (161) (100) 87) (143) (162)
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rates of changes affecting amino acid relative
to changes at silent codon positions (90, 154).
The combination of biased amino acid com-
position and rapid evolution results in proteins
with lower predicted thermal stability (147).
The gene sets of bacteriome-associated sym-
bionts are largely subsets of the gene repertoires
of related free-living bacteria. Though foreign
gene uptake has been rampant in bacterial evo-
lution generally, it appears to have been rare
in the evolution of obligate bacterial symbionts
(36, 87, 109, 139, 161). In particular, the ac-
quisition of special “symbiosis” genes is not ev-
ident. Instead, the establishment of symbiosis
appears to occur through modification of ances-
tral bacterial genes and through coadaptation of
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host genes. A caveat here is that most sequenced
symbiont genomes are highly derived and re-
duced to near-minimal levels (Table 2). They
may have eliminated genes initially required in
the evolution of symbiosis but deleted after the
evolution of host-based mechanisms to main-
tain symbionts.

The reduced genomes lack genes in almost
all functional categories, with relatively high
retention of those involved in essential pro-
cesses such as translation, replication, and tran-
scription. DNA repair genes are depleted in
all of these genomes, but the particular repair
genes retained vary (Table 2, Figure 2). In
most cases, many genes required for produc-
tion of cell envelope components are missing
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(Table 2, Figure 2) (109, 134, 139); these
are especially depleted in Carsonella and Sul-
cia (87, 100). Symbionts enclosed in a host-
derived membrane within bacteriocytes (Buchn-
era, Sulcia, Carsonelln) lose a greater proportion
of genes involved in production of the cellu-
lar envelope than do symbionts that are free in
the cytosol (Wigglesworthia, Blochmannia), sug-
gesting that host functions can replace those
of the original bacterial cell envelope. Genome
reduction suggests the occurrence of intimate
exchange between symbiont and host (99). Un-
usual close associations are also supported by
some other observations, for example, bacte-
rial symbionts living within host mitochondria
or host nuclei (4, 127), or bacterial symbionts
dwelling within another type of bacterial sym-
biont in the host cytoplasm (148).

Genomes of bacteriome-associates show a
consistent shift toward elevated A+T content,
resulting in the most extreme biases in base
composition known (Table 2). This bias, also
found in obligate pathogenic bacteria such as
Rickettsiales and Chlamydiales, reflects muta-
tional bias favoring A+, and is strongest at
sites thatare neutral or near neutral with respect
to selection, such as silent positions in codons or
in intergenic spacers. In Buchnera, for example,
the silent sites and spacer base compositions are
less than 10% G+C, whereas overall genome
composition is between 25% and 30% G+C
for Buchnera genomes. Nonetheless, the bias
also has a major effect on amino acid composi-
tion of proteins (36, 90, 100, 147). Mutational
bias is likely to reflect the loss of DNA repair
pathways. Supporting this possibility, Bauman-
nia shows the least bias (33 % G+C) and retains
more repair genes, whereas Carsonella and Sul-
cia show the most bias (16.5% and 22%) and
retain almost no repair genes.

Another prominent feature of bacteriome-
associates, likely linked to the lowered thermal
stability of proteins, is the constitutively ele-
vated expression of heat shock proteins. High
expression was noted for chaperonin (GroEL
protein) in Buchnera and other obligate sym-
bionts (48). Once genome sequences were
available, microarray and quantitative RT-PCR

studies showed that other heat shock proteins
also show unusually high expression in the ab-
sence of stress (93, 156). This overexpression is
likely a compensatory adaptation that moder-
ates effects of lower protein stability resulting
from mutations genome-wide (47, 90, 147).

Extreme Genomes

Two obligate insect symbionts represent the ex-
tremes among known cases of genome reduc-
tion. The first is the obligate symbiont of psyl-
lids, Carsonella (Gammaproteobacteria), which
has a genome that is both the smallest and
the most biased in base composition reported
to date for cellular organisms (Table 2) (100).
The other is the obligate symbiont of leathop-
pers and relatives, Sulcia (Bacteroidetes) with
the second smallest known genome (Table 2)
(87). Both have lost many genes considered to
be essential (Figure 2), raising the as-yet unre-
solved question of how these cells continue to
replicate and function (87, 100).

Facultative symbionts: dynamic genomes.
Based on partial or full genome sequences
for Sodalis glossinidius from tsetse flies (143),
Wholbachia wMel from Drosophila melanogaster
(162), and Hamiltonella from aphids (91), fac-
ultative symbionts exhibit radically different
genome features from those of long-term bacte-
riome associates. Whereas the latter lack mobile
elements, bacteriophage, and most repetitive
DNA, and generally have few pseudogenes,
genomes of facultative symbionts are larger,
have many repetitive regions and unusually
high numbers of mobile elements, and contain
phage and phage-derived genes. For example,
the 4.2-Mb genome of Sodalis contains many
insertion sequences and bacteriophage-derived
sequences (22, 33) as well as a remarkable num-
ber of ancestral genes undergoing degradation
as pseudogenes, yielding a coding density of
only 50%, among the lowest known for bac-
terial genomes (143). Wolbachia also possesses
phage-derived sequences and repetitive ele-
ments, though it has a more compact genome
(1.3 Mb) with few pseudogenes (54, 162).
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Massive proliferation of mobile elements is
found in the bacteriocyte associates of grain
weevils, which are closely related to Sodalis (115)
and which appear to be relatively recently de-
rived as bacteriome-associates (82). Based on
the few multilocus studies to date, facultative
symbionts show varying extents of interstrain
recombination and gene transfer (5, 9, 37).
Some genome features typical of obligate sym-
bionts are observed at less extreme levels in fac-
ultative symbionts, including elevated sequence
evolution, gene loss, and shift toward higher
A+T content (91, 96, 162).

Causes of distinctive features in symbiont
genomes. Why do heritable symbionts, as
well as other obligately host-restricted bacte-
ria, consistently show reduced genomes, with
rapidly evolving sequences, A+T-bias, unsta-
ble proteins, and elevated expression of heat
shock genes? The striking similarities in inde-
pendently evolved obligate symbiont genomes
indicate that common forces are at work. Sym-
bionts encounter elevated genetic drift result-
ing from relaxed selection on many genes and
from radical change in population structure that
results in lowered efficacy of selection even on
required genes (47,90, 139, 147, 153). Whereas
free-living bacteria can have very large genetic
population sizes, enabling selection to act on
very slight differences in fitness, obligate re-
striction to hosts and bottlenecks at the stage of
inoculation of new hosts (e.g., 88, 158) resultin
a greater role of genetic drift. The consequence
is a greater rate of fixation of mildly deleteri-
ous mutations, including amino acid changes
that lower stability of proteins, and inactiva-
tion and loss of nonessential genes, and mu-

tation to less-preferred codons. Additional ob-
servations supporting the role of genetic driftin
these genomes is the limited evidence for adap-
tive codon bias (154) and low levels of polymor-
phism within species (1, 53).

Among nonessential genes that are elimi-
nated are DNA repair genes (Figure 2), and
these losses will result in elevation of the ef-
fective mutation rate itself. Such elevation is
suggested by the strong mutational bias favor-
ing A+T, discussed above. Estimates of per-site
mutation rates calibrated indirectly also support
elevated mutation in obligate symbionts (103).

Genomes of facultative symbionts and re-
cently derived symbionts such as those in grain
weevils also exhibit features that are consistent
with elevated levels of genetic drift, due to re-
duced genetic population size. This can cause
dispensable genes to be degraded and insertion
sequences to proliferate unchecked by selection
(115). Ultimately, mobile elements will be elim-
inated in clonally evolving symbiont lineages
(95), as will pseudogenes that gradually shrink
through deletions (89).

Theoretical studies on mutation fixation in
heritable mutualistic symbionts have demon-
strated that such genomes can experience el-
evated genetic drift and increased rates of fixa-
tion of mildly deleterious mutations (104, 113,
121, 135). Fixation of mutations deleterious to
fitness is increased when horizontal transmis-
sion among hosts is decreased or eliminated
(104). Depending on whether selection on a
particular locus acts within hosts or between
hosts, both the size of the symbiont inocu-
lum during infection and the size of the host
population can be important determinants of
the rate of mutation fixation. Some models

Genetic drift: the
effect of chance on
allele frequencies
(most important for
small populations or
for genes under weak
selection)

Figure 2

Gene content of reduced genomes from obligate bacterial symbionts. Boxes representing genes in replication, recombination, and
repair are colored violet; cell envelope synthesis and cell shape are orange; amino acid synthesis are blue; and cofactor synthesis are
green. Pseudogenes are indicated by a lighter shade. Pathways for biosynthetic processes are shown in their linear order as best as

possible. The representations of cofactor biosynthesis pathways are severely limited due to space. GenBank accession numbers for the
genomes are NC_000913 (Escherichia coli, abbreviated Ec in the figure), NC_002528 (Buchnera-Ap, Ap), NC_004061 (Buchnera-Sg, Sg),
NC.004545 (Buchnera-Bp, Bp), NC_008513 (Buchnera-Cc, Cc), NC_004344 (Wigglesworthia glossinidia, Wg), NC_005061 (Blochmannia
Sfloridanus, Bf ), NC_007292 (Blochmannia pennsylvanicus, Bp), NC_007984 (Baumannia cicadellinicola, Bc), NC_008512 (Carsonella ruddii,
Cr), and NC_010118 (Sulcia muelleri, Sm).
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show that mutational decay need not result in
complete dysfunction of symbionts, as host-
level selection potentially imposes a limit be-
yond which further deleterious mutations are
effectively eliminated (113). This result pro-
vides a solution to one of the most frequent
questions about long-term mutualistic symbio-
sis: Do symbiont genomes undergo relentless
degradation resulting in mutual extinction or
the requirement that the symbiont be replaced?
The antiquity of many symbioses and the cur-
rent ecological success of many animal hosts
with very old symbioses would suggest that ex-
tinction is not inevitable. In part, this is likely
due to the evolution of compensatory mecha-
nisms, on the part of the host or on the part of

the symbiont.

Adaptation in Symbiont Genomes

Although insect nutritional symbionts rely pri-
marily upon ancestral gene repertoires for mak-
ing products needed by hosts and although
much evidence indicates that mutation and drift
have greater evolutionary impact in symbionts
than in free-living relatives, this does not im-
ply that adaptation is absent. Instances of ap-
parent adaptation to improve provisioning of
hostnutrients are the plasmid-associated ampli-
fication of genes for biosynthesis of tryptophan
(80) and leucine (12) in Buchnera. Additionally,
evolutionary sequence analyses aimed at detect-
ing the action of natural selection on particular
genes have provided evidence for adaptive evo-
lution in surface molecules, transporters and
other genes in Wolbachia (15, 75) and of the
highly expressed GroEL protein in bacteriome-
associates (48).

INFERRING FUNCTIONS
OF SYMBIONT'S FROM
MOLECULAR STUDIES

Some of the major insights from genome
sequencing of symbionts have involved the
functional capabilities of symbionts and of
their contributions to host biology. These in-
sights have been especially fruitful for nutrient-
provisioning obligate mutualists.
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Nutritional Roles of Obligate
Bacteriome-Associated Symbionts

Buchner (16) proposed that the function of
bacteriome-associated symbionts was the pro-
vision of nutrients. This role has been impres-
sively confirmed and elaborated by genomic
studies. Prior to molecular studies, Buchnera
was thought to provide hosts with essential
amino acids rare or absent from the host diet,
phloem sap, based on experimental evidence
from studies using defined diets and aposymbi-
otic aphids (40). Starting with cloning and se-
quencing of genes underlying numerous amino
acid biosynthetic pathways (7) and continuing
with the full genome sequencing of several pri-
mary symbionts including Buchnera from four
aphid species (Figure 1), DNA sequence data
have repeatedly revealed intact or near-intact
pathways for nutrients likely to be needed by the
hosts (Figure 2), despite extreme reductions in
gene repertoires in these small genomes. Some
insects, including carpenter ants, have more
variable diets in nature, with the result that
the role of the symbionts is less readily iden-
tified. But in insects with narrowly defined di-
ets, such as strict sap-feeders and blood-feeders,
symbiont genomes encode pathways for amino
acids and vitamins that fit closely with expected
nutritional needs [reviewed in (166)].

One advantage of full genome sequences
over partial sequence information is the iden-
tification of enzymes and pathways that are
lacking in an organism; this can potentially
disprove conjectures about possible roles of
symbionts. For example, the proposal that
aphid primary symbionts provision sterols (8)
can be rejected (40): Buchnera resembles other
Gammaproteobacteria in lacking genes for
sterol production.

For cases in which two or more genomes
are available, including Buchnera, Blochmannia,
and the symbionts of Calyptogena clams, com-
parative analyses show that gene loss contin-
ues even in extremely reduced genomes (36,
79, 139). Gene categories that continue to be
eroded fall within several functional categories,
including transcriptional regulators, DNA re-
pair genes, genes for synthesis of cell surface
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components, and biosynthetic pathways linked
to host nutrition. Thus, among the four se-
quenced Buchnera genomes, the smaller two
have lost genes underlying several amino acid
biosynthetic pathways, and in Buchnera of
Schizaphis graminum, genes in the pathway for
fixation of inorganic sulfur are present but inac-
tivated as evidenced by several nonsense codons
and frameshift mutations, indicating an early
evolutionary stage following the loss of this ca-
pability (139) (Figure 2). Likewise, the two se-
quenced Blochmannia species differ in biosyn-
thetic capabilities relevant to host nutrition,
with only one retaining the pathway for syn-
thesis of coenzyme A (36). In the extreme case
of the sequenced strain of Carsonella, numerous
amino acid biosynthetic pathways are missing
enzymes for particular steps (100), in contrast to
the largely intact pathways found in Su/ciz and
other small genome symbionts (87) (Figure 2).
Since the sequenced Carsonella strain appears
to be the sole symbiont in its host, one explana-
tion is that this insect can enhance the supply
of nutrients provisioned by plants, as known for
some other sap-feeders (e.g., 81).

Multiple Symbionts Within a Host

Dependence on multiple obligate heritable
symbionts is found in numerous insects, re-
flecting successive acquisition during evolution
of host lineages. Most cases are little studied.
The most complete picture of a dual symbio-
sis is that for sharpshooters, in which genomes
of both symbionts have been sequenced. One
symbiont, Sulcia, represents the more ancient
association and is present in an extended set of
related plant-sucking insects (97). The other,
Baumannia, is restricted to sharpshooters. Both
symbionts have codiversified with their hosts
over a period representing millions of years (97,
138). Based on genome sequencing for the two
symbionts of the glassy-winged sharpshooter
(Homalodisca vitripennis), these organisms show
striking complementarity in abilities to pro-
vision particular nutrients to hosts, indicat-
ing that both are obligate mutualists (87, 161)

(Figure 2). As noted above, Sulcia is heavily de-
voted to amino acid production and encodes en-
zymes for synthesis of all amino acids required
as animal nutrients with the exception of the
eight steps of the histidine pathway and the fi-
nal four steps of methionine production. Bau-
mannialacks amino acids biosynthetic pathways
with the striking exceptions of all eight steps
of histidine biosynthesis and the four genes for
the conversion of homoserine to methionine. In
contrast to Sulcia, the Baumannia genome en-
codes pathways for production of numerous co-
factors (87). Sharpshooters feed on the partic-
ularly nutrient-deficient diet of xylem sap, and
acquisition of Baumannia may have been a crit-
ical step in the origin of xylem-feeding in this
insect lineage (87, 97).

A possible early stage in the establishment
of a dual symbiosis is found in the aphid Cinara
cedri, in which Buchnera possesses an especially
reduced genome (109) (Table 2). Among genes
present in other Buchnera but lost in Buchnera
of C. cedri are those encoding the pathway for
the synthesis of tryptophan, a required nutri-
ent. C. cedri possesses another heritable sym-
biont, related to Servatia species, which encodes
the pathway for tryptophan biosynthesis. Thus,
dependence on this Serratia may have evolved
to furnish required nutrients no longer pro-
visioned by the more ancient symbiont (109).
More recently acquired symbionts might some-
times entirely replace ancestral symbionts (82).
However, this possibility would be prevented if
each symbiont becomes indispensable through
complementary retention of needed pathways,
as in the case of Bauwmannia and Swulcia in
sharpshooters.

Insights into Function
in Facultative Symbionts

What functions are essential in facultative
symbionts of insects? Whereas bacteriocyte-
associates can be considered passive domes-
ticates of their hosts, which have evolved to
maintain and transmit them (16, 99), facultative
symbionts must rely on their own devices for
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invading hosts and overcoming host immune
responses. Once a facultative symbiont has
infected a host, it must attain a stable titer suf-
ficient to persist and infect progeny but not so
high that hosts die or fail to reproduce. And it
must exert some effect on the host phenotype
that causes the symbiont to spread rather than
to decline in frequency in the host population.

Molecular studies combined with experi-
mental work have begun to reveal possible
mechanisms through which facultative sym-
bionts achieve some of these ends [for overview,
see (27)]. Although facultative symbionts are
more difficult to harvest in large numbers di-
rectly from hosts, some of them offer the advan-
tage that they can be grown in pure culture or
within insect cell lines (25, 30, 39, 55), and most
can be transferred to novel host lines, open-
ing a range of experiments not possible with
bacteriocyte-associates (116). Nonetheless, the
obstacles to linking sequence to function are
substantial (69, 116).

Host cell invasion presents the same obsta-
cles for an intracellular bacterium whether it is
pathogen or symbiont, and homologous mech-
anisms are used (27). As the most striking exam-
ple, Type Three Secretion Systems (T'T'SSs) are
required for establishment of symbiosis by the
facultative symbiont of tsetse, Sodulis, based on
experimental work with mutant strains (26, 28).
Similar situations seem to occur in other sym-
bionts within the Enterobacteriaceae, includ-
ing the facultative symbiont Hamiltonella (91)
and the relatively recently evolved bacteriome-
associates of grain weevils (“SOPE” and
“SZPE”) (28). T'TSSs appear to be involved in
establishing symbiosis in all known facultative
symbionts in Enterobacteriaceae (27).

As noted above, particular combinations of
host species and facultative symbionts appear to
be incompatible, based on transfection experi-
ments (e.g., 123). Such incompatibilities con-
tribute to the nonrandom patterns of associa-
tions, in which certain insect groups repeatedly
acquire symbiont types that are rare in other
groups. So far, the molecular basis for this host
specificity is not clear.

Moran o McCutcheon o Nakabachi

Facultative Symbionts: Strategies

Once established in a host and able to infect
progeny, the next challenge for a heritable sym-
biont is to increase the frequency of infected
matrilines within the host population. To this
end, facultative symbionts show a remarkable
array of strategies, though so far these are only
tentatively linked to particular genes and path-
ways (27, 69). In both facultative mutualists
and reproductive manipulators, it has been pro-
posed that an ability to influence host pheno-
type is linked to phage or mobile elements as-
sociated with host genomes (10, 11, 37, 91).

Facultative mutualists enhance their own
hosts’ reproduction, thus infecting more
progeny. Based on experimental work, a partic-
ularly frequent benefit appears to be the provi-
sion of protection against natural enemies of the
host species (105, 106, 107, 114, 129). In some
cases, the basis for protection is unknown, but
sequenced-based studies have revealed that it is
sometimes likely based in the production of a
toxin deterrent that is associated with bacterio-
phage (37, 114). Other effects include protec-
tion against heat stress (18, 124) and possibly
nutritional benefits (109).

Reproductive manipulators adopt strategies
resulting in reproductive abnormalities that in-
crease the frequency of infected matrilines. The
most intensive study has focused on Wolbachia
(69). Densities of the symbiont, which affect
expression of the cytoplasmic-incompatibility
phenotype in hosts, have been proposed to be
under the control of the Wolbachia bacterio-
phage, WO (10). Wolbachia-specified features
direct host cell machinery to achieve particular
patterns of localization in oocytes, an essential
step in achieving efficient vertical transmission

(132).

HERITABLE SYMBIONTS
AS DYNAMIC ELEMENTS
IN HOST ECOLOGY

All categories of heritable symbionts—obligate
bacteriome-associates, facultative mutualists,
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and reproductive manipulators—can vary
within species and populations in ways that
impact host development and reproduction
and that affect host evolution, even on short
time scales (118, 119). Although bacteriome-
associates are generally obligate and universally
present in a host species, their genomes are
subject to mutations with repercussions for
host fitness. A recent example of this was docu-
mented for Buchnera in pea aphids; a single base
deletion in the promoter of the small heat shock
gene (ibpA) resulted in temperature-dependent
effects on fitness (41). Aphid lines with sym-
bionts bearing the mutation had higher fitness
at moderate temperatures but severely com-
promised fitness when subjected to heat stress,
relative to lines with symbionts lacking the
mutation. Furthermore, the mutation arises
repeatedly and can reach high frequencies in
Buchnera within aphid populations. Buchnera
genomes from different aphid hosts vary in
presence of particular amino acid pathways
(Figure 2), and such variation may underlie
differences in nutritional requirements that are
known within aphid species.

For facultative mutualists, host fitness can
be heavily dependent on infection by a partic-
ular strain or by presence/absence of a sym-
biont. For example, pea aphids show variation
in ability to resist attack by parasitoids, and
this variation can depend on infection by par-
ticular strains of Hamiltonella with no influ-
ence of aphid genotype (106). In competition
trials, Hamiltonella-infected lines outcompete
uninfected lines when parasitoids are present
but are eliminated when parasitoids are absent
(107). Symbiont-based fitness differentials are
also known for Serratia symbiotica and Regiella,
which affect the ability to withstand heat (124),
to use particular host plants (144), or to re-
sist pathogenic fungi (129). The dependence
of these symbiont-conferred benefits on envi-
ronmental conditions provides an explanation
for variable symbiont frequencies in host popu-
lations. Maternal inheritance often approaches
100% (92, 126); thus, if symbionts were uni-
formly beneficial, one would expect them to be
fixed in populations and species.

Reproductive manipulators, such as Wol-
bachia, potentially enhance rates of speciation
of hosts, by creating barriers to gene flow, a po-
tential noted in the initial reports of microbe-
mediated reproductive incompatibility (e.g.,
14). Several studies on closely related insect
species or populations verify that reproductive
manipulators can promote reproductive isola-
tion and thus potentially contribute to the high
species diversity of insects (11, 70). These pro-
cesses can impact host population structure and
evolution, resulting in the sweep of a single
matriline through an entire species or in the
long-term maintenance of multiple matrilines
through frequency-dependent processes acting
on symbionts (e.g., 42, 44, 76). Reproductive
manipulators can be highly dynamic over short
time scales, resulting in rapid increases in fre-
quency or transformations from reproductive
manipulator to mutualist, as exemplified by
Waolbachia in Drosophila populations and species
(118, 149).

Because facultative symbionts can have pro-
found short-term impacts on host ecology and
can affect host interactions with other organ-
isms in the environment (65), they potentially
can be exploited in efforts to manipulate pest
populations (120).

Perhaps the most radical impact of insect
symbionts on the ongoing evolution of their
hosts is their potential role as portals of gene
acquisition. Recent work shows that facultative
symbionts can be acquired as stable elements,
conferring new capabilities and that, once ac-
quired, facultative symbionts can take up novel
genes borne by bacteriophage (10, 37). Facul-
tative symbionts can therefore extend the ef-
fective genetic repertoire of the host. Further-
more, numerous studies on Wolbachia and insect
genomes have demonstrated that fragments of
symbiont genomes can be incorporated into the
host insect genome (66, 78, 101), although so
far none has demonstrated that these trans-
ferred genes are being expressed or display a
phenotype. Thus, symbiotic associations enable
genes specialized in the context of one host and
environment to be introduced into novel host
species.
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CONCLUSIONS

Insect symbionts are critical players in all as-
pects of host ecology, reproduction and evo-
lution. Genome-level studies on these diverse
bacteria have revealed some of the extremes of
genome evolution, and have illustrated the ra-
pidity with which changes in lifestyle can evolve

Despite the great progress in understand-
ing the roles and dynamics of symbionts in in-
sect populations, new research has produced
at least as many questions as answers. An-
swering these questions will require drawing
on diverse fields, from genomics, cell biol-
ogy, biochemistry to evolutionary biology and
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ecology.

in bacteria.

SUMMARY POINTS

1. Maternally transmitted insect symbionts are widespread, and include obligate nutritional
mutualists, facultative mutualists that protect against natural enemies or stress, and re-
productive manipulators that enhance productivity of infected female lines.

2. Insect symbionts originated independently from a number of major bacterial groups,
especially Gammaproteobacteria and Bacteroidetes.

3. Obligate bacteriome-associated symbionts are typically ancient and have coevolved with
major insect lineages.

4. Phylogenetic clusters include symbionts with different effects on hosts, and transitions
between reproductive manipulators and mutualists appear to be common.

5. Genomes of heritable symbionts display features expected under long-term evolution
with increased levels of genetic drift due to small population size.

6. Genomes of some obligate insect mutualists are extremely tiny, with gene sets smaller
than what was previously considered possible.

7. Obligate mutualists have static genomes, but facultative symbiont genomes are dynamic
and contain mobile elements, bacteriophage, and evidence for recombination.

8. Both obligate and facultative symbionts have ongoing impact on host ecology and evo-
lution, possibly promoting speciation, affecting ecological tolerances, and enabling the
uptake of foreign genes that impact ecological processes.

FUTURE ISSUES

1. Insect symbionts provide the most extreme examples of genome reduction, and their
ability to function with so few genes is still unexplained.

2. Facultative symbionts are now recognized as ubiquitous, but the biological effects of
most are unknown.

3. Findings that facultative symbionts can be mutualistic as defensive agents imply that their
roles will be understandable only in the context of complex natural environments.
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