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ABSTRACT

Overhead of memory accesses limits the performance of packet
processing applications. To overcome this bottleneck, today’s net-
work processors can utilize a wide-range of mechanisms—such as
multi-level memory hierarchy, wide-word accesses, special-parpos
result-caches, asynchronous memory, and hardware multi-thgeadin
However, supporting all of these mechanisms complicates
programmability and hardware design, and wastes system resource
In this paper, we address the following fundamental question: what
minimal set of hardware mechanisms must a network processor
support to achieve the twin goals of simplified programmability and
high packet throughput? We show that no single mechanism suffi-
cies; the minimal set must includiata-cachesndmulti-threading
Data-caches and multi-threading are complementary; whereas data
caches exploit locality to reduce the number of context-switches
and the off-chip memory bandwidth requirement, multi-threading
exploits parallelism to hide long cache-miss latencies.

Categories and Subject DescriptorsC.2.6 [Internetworking]:
Routers C.2.6 [Internetworking]: Routers C.2.m [Computer-
Communication Networks]: Miscellaneous C.5.m Comuter Sys-
tems Implementation Miscellaneous, D.4.4 [Communication man-
agement]: Network communication

General Terms: Measurement, Performance, Design.
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a few memory accesses. Today, packet processing systemstsuppo
a wide-range oheader-processing applicatiorsich as network
address translation (NAT), protocol conversion (e.g., IPv4/v6-inter
operation gateway) and firewall; as well@esyload-processing ap-
plicationssuch as Secure Socket Layer (SSL), intrusion detection,
content-based load balancing, and virus scanning. Many of these
applications perform hundreds of memory accesses per packet.

To overcome this memory walhetwork processors (NP§)12],
the building blocks of today’s packet processing systems, support
two types of mechanisms: (hammers—that exploitlocality to
reduce the overhead of memory accesses (eéuce the height
of the memory wall), and (2pdders—that exploitparallelismto
hide memory access latencies (i@imb overthe memory wall).
Hammers include such mechanisms as wide-word acce$8ges [
31], special-purpose caches (e.g., route-cacHessY[1], and multi-
level memory hierarchyl9]. Ladders, on the other hand, include
asynchronouspon-blocking memory accesses and hardware multi-
threading 19]. Wide-word accesses exploit spatial locality to re-
duce the number of memory accesses performed per packet. I[Specia
purpose caches—such as route-caches—exploit the locality inher-
ent in packet streams by caching and reusing results of repeated
computations (e.g., route lookups); a hit in suesult-cacheglim-
inates the repeated computation and the corresponding memory ac-
cesses. Multi-level memory hierarchies exploit temporal locality of
data accesses to reduce average latency of memory access. Asyn-
chronous memory accesses and multi-threading, respectively, ex-
ploit the intra/inter-packet parallelism to overlap the execution of
independent instructions/packets with memory accesses.

Observe that unlike general-purpose processors that rely primar-

The gap between processor and memory performance—often re-lly on data-cache¢ahamme) to overcome the memory wall, NPs

ferred to as thememory wall[39—has been a major source of

can utilize a much wider-range of mechanisms. This is facilitated

concern for all of computing; this problem is exacerbated in packet by three characteristics of the packet processing domain. First, the
processing systems. Over the past decade, the link bandwidths supdomain offers significant packet-level parallelism. Second, net-
ported by these systems have doubled every year; processarperfo Work traffic, consisting of interleaved streams of related packets,
mance has doubled every 18 months (Moore’s law); and memory exhibits locality [L5, 21, 27, 28]. Finally, for packet processing
latencies have improved only by about 10% a year. To put this ar- Systems, throughput—and not latency—is the primary optimiza-
gument in perspective, consider a system supporting OC-192 (ortion criterion.

10Gbps) links. In this case, minimum size SONET packets can ar-  Although the availability of wider-range of mechanisms offers
rive at the system every 88 which is roughly the latency for only ~ greater hope in overcoming the memory wall, supporting all of
these mechanisms in hardware without clear guidelines for their
usage has two limitations. First, judicious use of these mechanisms
is crucial for achieving high packet throughput; today, this task
is often left to the programmers, which makes NPs very difficult
to program. Second, provisioning, in hardware, mechanisms that
yield only marginal benefits leads to unnecessary hardware com-
plexity and wasted system resources (e.g., chip-area and memory
bandwidth).
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Much of the prior work on overcoming the memory wall in packet Section5 discusses related work, and finally, Sectisummarizes
processing has focused on demonstrating the benefits of specificour contributions.
mechanisms and only for specific applications (e.g., IP forward-
ing) [10, 11, 34, 41]. For instance, the benefit of prefetching packet 2.
data is demonstrated i §, 20]; a high-performance memory sys-
tem based on wide-word accesses is describe®1fy pecial-
purpose route-caches are proposed in41]; and the effectiveness
of data-caches is shown i@4]. The literature, however, does not
contain any comparative evaluation of these mechanisms or guide-
lines for their usage in a broader class of applications.

In this paper, we ask the following fundamental question: what 2.1 Packet Processing Applications

minimal set of hardware mechanisms must a network processor We select packet processing applications based on the following

sugprc])_rthto acl?ieVﬁ the rt]winogoals of Zimplifieg progrhamm?bi!ity (semanticcharacterization. All packet processing systems perform
and high packet throughput? We conduct a thorough analysis of y,¢ f6|10wing four functions (in addition to thesceiveandtrans-

data.accessgs performed by a wide-range of moderq packet. PrOjt functions): (1) verify the integrity of packets; (2) classify each
cessing applications and show that no single mechanism suffices;

'packet as belonging to a flow; (3) process packets; and (4) deter-
the minimal set must include data-caches and multi-threading. Wep ging w; (3) p P @

METHODOLOGY

To compare the effectiveness of mechanisms for overcoming the
memory wall, we analyze data accesses performed by a wide-range
of packet processing applications. In what follows, we describe the
set of applications, the traffic traces and control data used in our
experiments, and the simulation environment.

mine the relative order of transmitting packets (i.e., scheduling).
demonstrate that:

e From the set of hammers, data-caches—generally not sup-
ported in today’s NPs—outperform such mechanisms as wide-
word accesses, special-purpose result-caches, and exposeg
multi-level memory hierarchy. However, because packet pro-
cessing applications are memory-access-intensive, data-cach
misses can cause significant processor stalls. Hence, data-
caches alone are insufficient to achieve high throughput.

e Because of the significant packet-level parallelism available
in workloads, hardware multi-threading is effective at hiding
memory access latency; its effectiveness, however, is lim-

Whereas only a small number of implementation variants exist for
integrity verification, classification, and scheduling, significant di-
versity exists for packet processing functions.

We consider two canonical integrity verification implementations
ased on the well-known IP-Checksum (RFC-1071) and MD5 (RFC-
é321) algorithms. Classification, in its most general form may in-
volve range, prefix or exact matching and hence can be very com-
plex [17]. We consider a simpler but an important case wherein
the five-tuple (source and destination addresses, ports and protocol)
are hashed to find thelowID. To determine the relative order for
transmitting packets, we consider an implementation of the Deficit
Round Robin (DRR) scheduling algorithrdZ] used in many com-

ited severely by constraints on off-chip memory bandwidth, Mercial routers.

context-switch overhead, and serialization required to protect
access to shared read-write data.

To cover a reasonable spectrum of packet processing functions,
we study several header- and payload-processing applications (see

Tablel).

e Data-caches and multi-threading are complementary. Data- Header-

caches exploit locality in the workload to reduce the number
of context-switches and the off-chip memory bandwidth re-
quirement. Multi-threading exploits parallelism in the work-
load to hide long cache-miss latencies and to reduce proces-
sor stalls. Hence, a hybrid architecture that supports data-
caches and multi-threading is highly effective in achieving
high throughput.

We also make two important observations. First, unlike general-
purpose processors where data-caches are used to reducgeavera
memory access latency, the primary benefit of supporting data-
caches in network processors is in reducmgnber of context-
switchesand off-chip memory bandwidthequirement. Second,
data-caches are transparent to programmers and compilers. The
presence of data-caches also simplifies the usage of hardware multi-
threading. In particular, in the presence of data-caches, NPs can
simply switch context from one thread to another on a cache miss.
This eliminates the need to schedule hardware threads explicitly
(by the programmer or the compiler). In such a case, a programmer
is only required to develop thread-safe applications suitable for ex-
ecution in a multi-processor environment; the existence and usage
of hardware multi-threading becomes transparent. Thus, a hybrid
architecture that supports both data-caches and multi-threading in
hardware simplifies programmability of NPs significantly.

The rest of the paper is organized as follows. In Sec@iowe
discuss our experimental methodology. We quantify the relative
benefits of using hammers and ladders to overcome the memory
wall and derive the minimal set of hardware mechanisms in Sec-
tion 3. We discuss the implications of our findings in Sectibn

processing applications:

1. IP forwarding (RFC-1812), which involves validating the

header, decrementing the time-to-live (TTL) field, route lookup
(longest-prefix match (LPM) for the destination IP address),
and processing of any IP-options. For the LPM functionality,
we consider four different implementations: (1) Patricia trie
(denoted bypat ri ci a), (2) bitmap trie i t map), (3) binary
search on prefix lengthégol ), and (4) dual trie from IXA
SDK (i xp).

Many Free-BSD-based implementations use a uni-bit trie, re-
ferred to adPatricia trie [33]. Bitmap trie [14] is a variant of
multi-bit trie that uses bitmaps to compress the child and data
pointers in the trie nodes. This is used in many commercial
routers. Unlike the other schemes, Binary search on prefix
lengths B5] does not use a tree-based lookup data structure;
instead, it uses a set of hash tables (one per prefix length) and
does a binary search on the prefix lengths to find the longest
prefix match. It has the best known average-case complexity.
Finally, the reference design in the I8 SDK for the IXP
series of processors (IXA SDK 3.0) uses two multi-bit tries
simultaneously and bounds both lookup and insertion cost.

. Metering which involves marking packets based on the packet

and byte count of the flow (the FlowID derived during clas-
sification is used to access and update the FlowRecord). We
consider three implementations: €t cm the Single-Rate-
Three-Color Marker (RFC-2697), (2)y t cm the Two-Rate-
Three-Color Marker (RFC-2698), and 3wt cm the Time-
Sliding-Window-Three-Color Marker (RFC-2859).



Functionality Application Source ANL and MRA traces. All the traces are of 90 seconds duration

Integrity IP-Checksum | checksum | Free BSD Each ANL trace (collected from an OC-3 (i.e., 155 Mbps) link)

‘(’:‘T”f'c.af‘.t'o? l\H/IDSh —— ”Fs — S;I_S'A Inc. contains about 0.5 million packets while each MRA trace (collected

Przfiil ication P:tsriciaa'ls'ﬁe ;a?fiSIci Z Free BSD from an OC-12 link) has about 5 mi_IIion packets. _

match Bitmap Trie bi t map UT We construct our route table using the data obtained from the
Binary Search | bsol UT RouteViewproject B]. We utilize the database @frus signatures
IXADual Trie | i xp XA SDK 3.0 published by Snort].

Metering Sliding Window | t swtcm uT Utilizing these traces and control data for our experiments presents
Single Rate srtem IXA SDK 3.0 two challenges. First, the publicly available packet traces are al-
Two Rate trtem IXA SDK 3.0 waysanonymized An unfortunate side-effect of this anonymiza-

Header Stream-4 stream Snort 2.0 . . . .

processing | PortScan portscan | Snort2.0 tion process is that IP ad_dresses_ contained in these tr_aces do not

Payload CAST cast SSLeay Lib match any IP address prefixes available from the RouteViews. Hence,

processing Pattern matcher| vscan Snort 2.0 before using these traces with our route table, deeanonymize

Scheduler DRR drr uT them; we substitute every occurrence of IP address in the trace

with another randomly selected address for which the route table

contains a prefix. This de-anonymization process preserves the
Table 1: Packet Processing Applications (UT = We developed) traffic pattern and flow characteristics; further, it conforms to the

traffic generation guidelines recommended by the network proces-
sor forum P]. Second, for the virus scan application, the mem-

3. Stream-4 Stream-4 is a module of the Snort-2.0 intrusion ory access profile depends not only on the signatures, but also on
detection systenf|. It emulates the TCP state machine for the packet content. Unfortunately, none of the publicly available

each ongoing session and reconstructs the byte stream outraces contain valid packet content. Hence, for our experiments,

of the packets. It performs most of the the TCP process- we consider two scenarios: (1) packets with random payload; and

ing generally performed in end-systems. The primary data (2) packets with payload containing web pages from popular web
structures are the per-session data and a session table thasites (containing valid English text). By doing so, we characterize
maintains pointers to individual session data items. It uses thecommon casehere the packets do not match any signature in

splay trees for the session table and also to keep track of thethe database.

artially re-assembled byte streams. . . .
P y y 2.3 Simulation Environment

4. Portscan This is also a module of Snor] It is used to de- _Singl(_e—threaded Processor Environment:'l’o profile data accesses _
tect suspicious port-scanning activity. The main data struc- in @ Single-threaded processor environment, we execute our appli-
tures are splay trees. First, a splay tree that is keyed on thegatlons within théSlmpIeScaIa[6] S|mulat|0n gnwronmept. In par-
source address is looked up. This lookup yields a pointer ticular, we use thei m safe CPU 5|mu_lat_or.S| m saf e simulates
to another splay tree that keeps track of the recent ports the & Very simple RISC |nstruct|9n set similar to the ones supported
source address in question has accessed. Port-scanner dd?y today’s NPs. We enhancsdm saf e to produce an instruction

clares an attack if a source accesses too many ports during s&xecution trace that is partitioned intdocks where each block
short period. represents the execution of a packet. Each block consists of (1)

the arrival time (relative to the the first packet in the trace) of the
Payload processing applicationsWe consider two applications: ~ Packet; and (2) the sequence of all the ALU instructions, mem-
(1) vscan, a pattern matchef38, 5] that matches packet content ~ Ory accesses, and mutex operations performed while processing the
against a set of pre-defined patterns (e.g., virus signatures)—wePacket. Each memory access is described by the typiemory
consider the default and preferred pattern matching implementa- address, the number of bytes accessed, the data strugtuaich

tion [38] from Snort-2.0 b]; and (2) CAST (RFC-2612), whichis ~ Mutex acquire/release event describes the identifier of the lock. We
used to encrypt and decrypt the packet payload to implement Vir- also use a utility based on tleéeet ah cache simulator library of

tual Private Networks (VPN). the Simplescalar toolkit. _
These applications subsume NP benchma?Rs36]. Multi-threaded Processor Environment: Most network proces-
sors today support processor cores with multiple hardware threads.
2.2 Packet Traces and Control Data To study such environments, we designed a discrete-event simula-

To study data accesses, we execute the applications with threeltgr' ;ﬂiﬁgﬂf&gi}:ﬁgn&jw':}psu;ftgednzt;uscé'ﬁen dgl?r?e ;ﬂ:ﬁg? us-
inputs: packet tracesaroute table andvirus signatures 9 P g Y

; . access, the simulator switches context to the thread at the head of
We use packet traces collected from four locations in the In- thereadyqueue. When the memory access completes, the blocked
ternet. Three of them (ANL, FRG and MRA) are provided by thread is pl d thead 0 leti th' i
NLANR [26] while the fourth one (UNC) is obtained from the . read Is placed on theadyqueue. ©n completing the process-
University of North Carolina. The ANL trace represents traffic Ing of a packet, the simulator assigns to the thread a new packet (if

on a link that connects an enterprise (the Argonne National Lab) one 1s available) or adds the thread to thlg queue, eaph thread

. - : ! .7 is assumed to process one packet at a time. Our simulator cap-
to its service provider. The UNC trace represents traffic on a link tures several details—such as context switch overhead. memor
connecting a large university to its ISP. The FRG trace represents ; . i ' y
the aggregation of traffic from several universities in the Denver contention a&?‘queumg, etc.—of a multi-threaded network proces-
area to the high-speed Abilene network. Finally, MRA traces rep- sor (e.g., Inte¥’s IXP2800 [L9)).
resent traffic on a link connecting Merit and Abilene—two large
networks. The qualitative conclusions remain same across all theselzpout 90% of the traffic consists of short-lived (a few seconds)
traces, with the ANL and MRA traces often forming the extremes TCP flows [L]. In our experiments, the hit-rates reach steady-state
quantitatively. Hence, for brevity, we present results only for the for traces longer than 50-seconds.




3. RESULTS 3.1.1 Wide-word Accesses

Packet processing applications access three types of data: (1) The mechanism for issuing wide-word accesses to reduce mem-
packet-data—that include packet header, payload, and any packet- ory access overhead exploits two observations. First, for many ap-
specific meta-data such as packet arrival time and interfacelD; (2) plications, application-data is organized into semantic units that are
temporary-data—that include data structures allocated on the stack; larger than one word (4bytes). For instance, forpthte i ci a, each
and (3)application-data—that refer to any persistent data struc- trie node is 16bytes and when a trie node is accessed, most of the
tures used by the packet processing application (e.g., a route tablefields within the node are accessed. Second, wide-word accesses
per-flow metering counters, and a virus signature database). In thisamortize fixed but significant parts of the access latency, such as
paper, we consider the overhead resulting only from application- the bus arbitration overhead, over a larger number of bytes. For
data accesses. This is because of three rea8dhs [ instance, accessing a double-word requires only marginally more
cycles than accessing a single-word, and substantially less than ac-
cessing two single-words in succession.

Programmers can use wide-word accesses explicitly or compil-
ers, through data dependence analysis, can in some cases, issue
wide-word accesses to fetch entire data items in one go. The effec-
‘tiveness of wide-word accesses depends orsfiatial locality of
data accesses exhibited by applications andstheof the wide-

o Temporary-data is relatively small in size; for 12 out of 16 Wword. Figurel(a) shows the observed percentage reductions in
applications, temporary-data is smaller than 108bytes, with memory accesses as a function of wide-word size; the applications
the maximum being only 496bytes. Further, accesses to shown here cover the entire range of observed values. It shows for
temporary-data exhibit considerable temporal locality. Thus, @ wide-word size of 32bytes, the number of memory accesses per-
by making use of registers, and where available, the small formed by applications while processing a packet reduces by about
fast memories close to the process#f|fto store temporary- ~ 10% forvscan application to 80% fobRR.
data, the overhead for temporary-data accesses can be elimi-
nated.

e For all the applications, packet-data is relatively small in size
(44bytes meta-data, and 704/736bytes of payload on an aver-
age for ANL/MRA traces, respectively). Further, packet-data
is generally accessed sequentially. Hence, prefetcHig [
20] is effective in minimizing the overhead of accessing packet
data.

o Application-data sizes are significantly larger than packet- 3 1.2 Result Caches
data and temporary-data. For our applications, the application-
data sizes range from 1BB in bsol to as high as 1B
in portscan. These sizes are significantly larger than the
fast local-memories supported in today’s network processors.
Further, application-data accesses account for a large fraction
of the total number of accesses in most applications; even

In some applications, the result of a computation depends solely
on the input packet details (e.g., destination IP address). Such
applications are amenable to caching thsults of computatign
cached results can be reused when another packet with the same
header fields appears. This eliminates the entire computation as

X O well h rr nding memor . An example of h
payload processing applications, suchvasan, make far ell as the corresponding memory accesses exampie ot Suc

greater number of accesses to application-data than packet-svsk’fheme 'S lfo uge-ca_\ch(ejthat (k:]aches thIePreZlélts of route lOOku_pS' h
data. In many cases, application-data accesses constitute as en a packet destined to the same 1P address arrives again, the
high as 90% of the non-temporary-data accesses. result of the preV|ous.Io.okup is re-used. .ObserV(.e that while w@e-
word accesses exploit intra-packet spatial locality, result-caching
Today’s NPs rely on multiple processor cores to achieve high exploits temporal locality in the input packet stream.
packet throughput. However, since most application-data are either Figure1(b) evaluates the effectiveness of result-caches in terms
read-only (e.g., route table) or flow-specific (e.g., metering coun- of the percentage reduction in the memory accesses as a function of
ters), we ensure the coherence of application-data by pinning eachthe result-cache size for different longest-prefix-match (LPM) im-
flow to a processor core (i.e., by processing all packets of a flow on plementations. Figur&(b) shows two sets of lines—for the ANL
the same processor core). and MRA traces. It demonstrates that the percentage reduction in
In what follows, we study the effectiveness of reducing the over- memory accesses @ly a function of the trace, and not of the dif-
head of application-data accesses using two types of mechanismsferent LPM implementations. Further, it shows that the percent-
(1) hammers-that exploit locality to reduce the overhead of mem- age reduction in memory accesses is higher for the ANL traces
ory accesses, and (Ridders—that exploit parallelism to hide mem-  than the MRA traces. This is because, result-cache reduces mem-
ory access latencies. We demonstrate that, to overcome the memeory accesses only when packets of the same flow are processed.
ory wall, network processors should support in hardwdraramer MRA traces are collected from a link closer to the core of the In-
(namely, adata-cachgand aladder (namely,multi-threading. No ternet, while ANL traces are collected at the edge of the network.
single mechanism in isolation suffices. Together, these two mecha-Hence, MRA traces contain traffic aggregated from a larger num-
nisms enable network processors to achieve the twin goals of sim-ber of sources and contain larger number of simultaneous flows.

plified programmability and high packet throughput. This results in larger working sets and smaller hit-rates for a given
. result-cache size.
3.1 Hammers: Reducmg Overhead Note that a serious drawback of such result-caches is that many

Hammers exploit locality in the workload to do one of two things: applications do not lend themselves to result-caching; in particular,
(1) Reduce the number of memory accessef?) reduce average result-caches can't be used in applications where the processing
access latencyWe consider two mechanisms each as representa- of a packet updates the persistent application state. For instance,
tives of the two categoriesvide-word accesseandresult-caches in our metering applications, processing a packet updates the state
for reducing the number of memory accesses, expbsed multi- (namely, byte and packet counters) maintained for the flow; further,
level memory hierarchgnd data-cachedor reducing average la-  the color of the mark a packet receives depends on this flow state.
tency. We first evaluate the effectiveness of each of these mecha-Thus, the color of the mark cannot be cached since the next packet
nisms in isolation, and then compare their relative benefits. in the flow may receive a different colored mark.
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Figure 1: Effectiveness of hammers

3.1.3 Exposed Memory Hierarchy set-associative cache with 16-byte (4-word) wide fnéSgurel(d)
Today's NPs expose the memory hierarchy to the programmers; depic_ts the percentage _reduction_in accesses to slow memory as a
programmersnapdata structures to different levels of the memory function of data-cache size for various applications under the MRA
hierarchy explicitly to reduce average latency. and ANL traces; the resu_lts shown cover the entire range of ob-
In the simplest case, to map a data structure to a certain level ofserved percentage reductions. It shows that even for a small data-
the memory hierarchy, the memory size should be at least as largecache size (8B), the number of accesses to memory reduces by
as the maximum data structure size. This “entire” data structure 65-99%. Further, as was the case for result-caches, because of the
mapping scheme is essential for most of the application data struc-greater locality present in ANL traces, the percentage reduction in
tures (e.g., a hash table or the virus-signature table). However, forMemory accesses is greater for ANL traces than MRA traces.
certain data structures—such as the trie used in LPM—it is pos- . .
sible to partition the data structure such that the most frequently 3.1.5 Comparative Evaluation of Hammers
accessed portions of the data structure (namely, the top-levels of Figure 2 compares, for all the applications and MRA traces,
the trie) are placed in fast memory and the remaining structure is the percentage reduction in memory accesses resulting from the
stored in a larger, slower memor9,[22]. This approach approx- four different hammers: wide-word accesses, result-caches, ex
imates the behavior of a cache through static partitioning of the posed memory hierarchies, and data-caches. It illustrates that data-
data structures. FigurEc) shows the percentage reduction in the caches dominate wide-word accesses and exposed memory hier-
number of memory accesses made to slower memory levels as aarchy in all cases; further, data-caches perform better than result-
result of partitioning the trie across multiple levels of the hierarchy. caches in all applications excegstol andi xp. In both of these ap-
Note that the data structures usedéswol andi xp have a very wide plications, the data structure constructed for LPM has a very wide
fanout at the first level; hence, they can’t take advantage of small, fanout at the first level; hence, there is little reuse of data across
fast memories using static mapping. packets with different destination IP addresses. Further, because

2We have experimented with a range of associativity and line
3.1.4 Data Caches widths; all of these cases yield the same set of qualitative conclu-
To study the effectiveness of data-caches, we consider a 4-waysions we report in this paper.
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data-caches maintain individual data items (as opposed to only thecessor stalls. Thus, we conclude that although data-caches can re-

result of the lookup), the working set size for data-caches in these duce the processing time of a single packet significantly, they alone

applications is larger than result-caches. are insufficient to achieve acceptable processor utilization and high
From the above discussion, we conclude that data-caches pro-packet processing throughput in many applications.

vide an attractive alternative to wide-word accesses and exposed

memory hierarchies. Unlike result-caches, data-caches are more3,2 | adders: Hiding Overhead
general and can be used for all data structures. Further, datascach Since throughput is often the primary performance metric for

are transparent to programmers and compilers, and thus simplifypacket processing systems, NPs utilize ladders—suttamsvare

p;%?(r;m?;igggﬁ Hence, data-cache is an effective hammer for multi-threadingand asynchronous memosthat exploit inter- and
P In Figpure3 we gémonstrate the benefits and limits of using data- |ntra_-packet parallellsm, respectlvely! _Imd_e Mmemory access la-

o o o tencies and to improve processor utilization. In this section, we
caches W'th. res_pect to .tWO performance metrlcs.reﬂ).l_c_tlon In demonstrate that systems that use ladders alone can be severely
the_processmg t!mef a single packet, and (b)o'cessor utilization limited by the available off-chip memory bandwidth.
def_|r_1ed as 1 minus the percentage of the t!me a processor stglls Figure4 shows, for various applications, the processor utilization
waliting for memory accesses. For our experiments, we use a MISS, ttainable using hardware multi-threading; with multi-threading,

g;?;:}g nglsgéxc,\;eisr; l‘;‘égggorgggle sents the latency in accessmgprocessor switches context to a different thread upon scheduling a
For the MRA traces, Figurd(a) sﬁows the reduction in packet memory access. We show only a subset of applications due to space
ing ti p ’ tg f cache size for si i t'p th tconstraints. However, the results for each of the remaining appli-
E;O(;ﬁf(esl?hge Ier l? ?asna eug;: rlggl?ct(i::r?s %Eg;\gds'féfgﬁ L(;]aelgns I(icaa} cations resemble closely to one of these four and our conclusions
P 9 PP remain valid. For this and other experiments in this section, we use

;'Orlst’z]' N(;te thtaht ;‘hehar:ﬂl.'tcft'tm ;ﬁaﬁ ;:art] bepheflrts th? lef.‘Str]'S ';]h. a context switch overhead of two cycles (the minimum mandatory
actthe one with fugher hit-rates than many other applications. 1his IXP2800) and a miss-penalty of 150 cycl@2]. Figure4 illus-

is becausebi t map examines long bitmaps to determine the next trates that, for all applications, processor utilization improves lin-

trie node to visit and hence executes a larger number of computeearly with increase in the number of threads supported. However,

operations per memory access. Thus, the impact of “?d“F:'”g V€6 rate of improvement as well as the saturation levels are different
age memory latency is small. On the other hand, applications such

) for different lications. The followin lication charateristi
asDRR exhibit significantly lower amount of locality; yet, because or different applications € fofowing application charateristics

- ) . influence the rate of improvement and saturation levels.
of their memory-access-intensive nature, even a small data-cache
of 8KB can reduce the per-packet processing time by as much as

85%. e The number of computation instructions executed per context-
Figure 3(b) depicts processor utilization as a function of cache switch ). Higher values oC amortize the context-switch
size for the same six applications. The compute-bohirtcrap overhead better; the higher tkk the greater is the rate of
achieve nearly 80% utilization for small cache sizes«p per- improvement in processor utilization with increase in num-
forms as well adi t nap, but it needs a larger cache (aboukK®). ber of threads and higher is the saturation level. For in-
For all other applications, processor utilization does not increase stance, the values & are 26.71 and 1.8 for thiexp and
much beyond 30% even for very large cache sizeXH4 Be- patricia, respectively. Thus, for a context switch over-
cause of the memory-access-intensive nature of these applications, head of 2 cycles, while thiexp is able to achieve a utiliza-
even a small number of data-cache misses cause significant pro- tion of 2671/(26.71+ 2) = 0.93, thepat ri ci a is limited to

1.8/(1.842) = 0.47.
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Figure 3: Benefits and limits of data-caches

linearly with increase in number of threads. This is because, with

multi-threading, the number of memory accesses made during the
time taken to serve one grows linearly with the number of threads in
08 1 1 use and saturates Benalty/ (C + ContextSwitchOverheadvhere
5 C denotes the number of compute operations performed per context-
g o6l ] switch, andPenaltydenotes the memory access latency. Thus, pro-
5 o cessor utilization achieved by multi-threading is limited not only
s oooo0o000 by C but also by the available memory bandwidth.
o 04f o o .
s o o
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e Access to shared read/write data: The need to serialize access 3 %01 "
to shared read/write data limits the amount of parallelism, & .| 4/*< )
and hence the effectiveness of multi-threading. This effect is
quantified in Figured for the two applicationst r eamand 0 . . . . L : .

0 1 2 3 4 5 6 7 8

cl assi fy. st reaminvolves accessing and updating a shared
Number of Threads

splay tree for every packet; hence, increasing the number
of threads yields little improvement in processor utilization.
The port scan and theDRR applications exhibit similar be-
havior. Thecl assi fy application, on the other hand, in- ) ) o
volves a small critical section that serializes processing of ~ Figure5 shows the bandwidth usage for the two applications

packets when a flow is either added or deleted. Hence, the andpatrici a in references/cycle. The memory bandwidth avail-
impact of serialization is marginal. The metering schemes able for IXP2800 is computed based on the aggregate bandwidth of

we consider exhibit behavior similar tb assi fy. the four QDR SDRAM banks and the processor clock of 1.4GHz.
Figure5illustrates that, if all the 8 threads on an IXP2800 core ex-
Limitations of multi-threading: We argued above that the perfor-  ecutepatri ci a, then the core would consume almost 4 times the
mance of multi-threading is limited by and the serailization con-  fair bandwidth share of the core. In other terms, runmiaty i ci a
siderations resulting from access to shared read/write data. NPs caron only 4 out of the 16 cores available on IXP2800 would saturate
utilize another ladder—namelgisynchronous memory accesses the available memory bandwidthxp, the hand-tuned implemen-
to switch context only after issuing multiple memory accesses; this tation of LPM for IXP2800 does better. However, even in this case,
increases the value €fand improves the achievable processor uti- i xp can utilize only 7 of the 16 cores before saturating the avail-
lization. Today, however, a programmer is required to utilize asyn- able memory bandwidth (since runningp on 8 threads on a core
chronous memory explicitly; this complicates programming. requires almost twice the fair bandwidth share of the core). Thus,
A more significant limitation of multi-threading is that the mem-  we conclude that ladders that hide latency to improve processor uti-
ory bandwidth requirement of a multi-threaded processor grows lization are necessary, but not sufficient to achieve high throughput.

Figure 5: Multi-threading under bandwidth constraints
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3.3 Hybrid Network Processor Architecture

In the previous subsections, we have demonstrated that hammer§he hybrid system uses only a small fraction of the memory band-

and 'addefs are both necessary to ?Ch'?ve h'gh throughp_ut; hc)W'Width (0.006 instead of 0.02 references/cycle). The horizontal lines
ever, no single mechanism in isolation is sufficient. In this sec-

tion, we consider a hybrid NP architecture that combines a ham- for the hybrid system indicate that its throughput is not constrained

mer (namely, data-cache) and a ladder (namely, multi-threading). by memory bandwidth at all; thus, the hybrid architecture scales

. . L . better with increase in chip area than the threads-only architecture.
We consider this combination for three reasons. First, data-caches :
Based on our analyses, we make the following three observa-

anql multl-threadlng are complementary. Data-caches exp_lont lo- tions. First, hybrid architecture that combines data-caches and multi-
cality in the workload to reduce the number of context-switches Lo S . i
threading is effective in overcoming the memory wall in packet

and the off-chip memory bandwidth requirement. Multi-threading processing. Second, unlike general-purpose processors wdtare d

exploits parallelism in the workload to hide long cache-miss laten- .
: caches are used to reduce average memory access latency, the pri-
cies and to reduce processor stalls. Second, data-caches are thé

best-of-breed in hammers, and multi-threading is the most effec- mary benefit of supporting data-caches in network processors is in

tive ladder. Third, with respect to reducing the number of context- re_ducmgm_;mber of co_ntext switchesnd off-chip memory band
; . . width requirement. Third, data-caches are transparent to the pro-
switches and increasing the value ©f data-caches outperform . .
T i grammers and compilers. The presence of data-caches also sim-
asynchronous memory accesses significantly (see F@urkir-

. plifies the usage of hardware multi-threading. In particular, in the
ther, asynchronous memory accesses do not reduce the off-chi . .
. . presence of data-caches, NPs can simply switch context from one
memory requirement of multi-threaded processors. . T
. . ) . thread to another on a cache miss. This eliminates the need to
To demostrate the effectiveness of this hybrid architecture, we L
. . . . .__.schedule hardware threads explicitly (by the programmer or the
consider two alternative processor architectures that are |dent|caICOm iler). In such a case, a programmenisy required to de
in terms of the functional units and the overall chip-area, but dif- P ) » @ prog Y req

: . . ; . ' velop thread-safe applications suitable for execution on a multi-
ferent with respect to their multi-threading and caching configura- . ; . .
tions. The first alternative (denotedthseads-only uses the avail- processor; the existence and usage of multi-threading becomes trans-

able chip-area (i.e., the area remaining after including appropri- parent. '!'hus, a_hyprid architectulre tha}t supports both ‘d.ata-caches
ate functional units land pipeline stages) to support as many hard_and multi-threading in hardware simplifies programmability of NPs

ware threads as possible; this is representative of today’'s NP de_5|gn|f|cantly.

signs [L9). The second alternative (denoted agorid) splits the

available chip-area between cache and threads. For this case, we

determine thg optimal configuration by exhaustively simulating all 4. DISCUSSION

possible combinations of cache sizes and number of threads. We In this paper, we have argued that NPs should include data-caches
allocate chip-area to hardware threads and cache in urtiseatd- to address the shortcomings of hardware multi-threading. How-
equivalentswhich refers to the chip-area required to support a sin- ever, none of today’s commercial NPs support data-caches. This
gle hardware thread. We estimate a thread-equivalent using infor-is often attributed to two main hypotheses. First, since throughput

mation about Intel's IXP28001P]; we use the Cacti toolkitd] to is the primary performance metric for packet processing systems,
estimate the number of cache lines that can be accommodated in anechanisms—such as hardware multi-threading-ttut memory
certain chip-area. access latency are sufficient; data-caches+¢laiceaverage mem-

Figure7 compares the processor utilization achieved by threads- ory access latency—are not necessary. Second, packet pngcess
only and hybrid architectures as a function of available off-chip systems must be (and are) provisioned with sufficient resources to
memory bandwidth. We consider the two LPM implementations, meet thevorst-casdraffic demands; since caches only improve the
i xp andpatri ci a, from the previous plots. For this experiment, average-case, they are not beneficial.
we fix the chip-space available to the two processor configurations  In the previous sections, we showed that the first hypothesis does

at 64 thread-equivalents. As Figurealemonstrates, fgrat ri ca, not hold. In what follows, we argue that most modern packet pro-
the hybrid processor achieves almost 3 times the utilization (and cessing systems are provisioned with sufficient resounogsto
hence throughput) of the threads-only processor.i kpr threads- process aexpectedraffic mix; hence, including caches in NPs to

only and hybrid systems achieve similar peak utilizations; however, improve the average-case is valuable.



Traditionally, vendors of IP routers (Layer-2 and Layer-3 sys- for particular lookup schemes are considered & 3[l]. Locality
tems) have advertised resource provisioning levels needed to meetn destination IP addresses has also been well-charactetifed [
the demands of thejorst-case traffic This has led to a commonly 21, 27, 28]. This observation forms the basis of several proposals
held belief that packet processing systems must be (and are) profor result-caches For instance, special-purposmite-cachehard-
visioned with sufficient processing resources to ensure that even aware has been proposed for route lookup and for a similar but more
worst-case stream of packet arrivals can be serviced by the systengeneral problem of Layer-4 classification itl] and [41], respec-
without dropping any packets. tively. Techniques for improving performance of such route-cache

Worst-case provisioning advertised in IP routers, however, is are explored in16)].
somewhat misleading. This is because, benchmarks defined by Memory access behavior of some packet processing applications
IETF and used by most vendorg fefine worst-case only interms  is analyzed in 13, 23, 24, 29, 36, 42]. However, none of these
of the arrival rate of packets (namely, arrival of smallest size pack studies compare the relative benefits of the various techniques for
ets at the line rate) that request the basic IP forwarding service addressing memory bottleneck.

(RFC-1812). An IP router, in reality, processes multiple types of

packets (e.g., IP packets with and without options). Processing IP

packets with options, for instance, takes considerably larger num- 6. CONCLUSION

ber of processor cycles than basic IP forwarding; provisioning suf-  In this paper, we address the question: whatimalset of hard-
ficient resources in an IP router to service worst-case arrival pat- ware mechanisms must a network processor support to achieve the
tern of packets that request IP options processing is prohibitively twin goals of simplified programmability and high packet through-
expensive. The well-known attack in which every packet sent to a Put? We show that no single mechanism suffices; the minimal
router requests IP options processing has exposed the vulnerabilityset must includelata-cachesind multi-threading Data-caches—

of existing routers to suctvorst-case traffic mix The practice of ~ generally not supported in today’s network processors—dominate
optimizing for the average-case is also evident in current commer- Such mechanisms as wide-word accesses, exposed multi-level mem-
cial IP routers that useraute-cacheo expedite route lookup inthe ~ Ory hierarchy and special-purpose caches. However, becackset pa

average-case. processing applications are memory-access-intensive, cachesmisse
The engineering practice of provisioning sufficient processors can cause significant processor stalls. Hence, data-caches a@one ar
to meet the demands @ixpectedtraffic mix is even more pro- insufficient to achieve high throughput. Hardware multi-threading

nounced in packet processing systems Supporting Comp|ex appﬁ-iS effective in hldlng memory access Iatency; its effectiveness, how-
cations (e.g., SSL, NAT (RFC-1631), firewall, IPv4/IPv6 Interop €ver, is limited severely by constraints on off-chip memory band-
(RFC-Z?GG)) These systems are genera”y dep|oyed in edge andNidth, context-switch overhead, and serialization required to pro-
enterprise networks and constitute 93.6% of all of the network pro- tect access to shared read-write data.

cessor deployments todaf]] Most of these applications involve Data-caches and multi-threading are complementary; whereas
multiple types of packets; each of these packet types contributes adata-caches exploit locality to reduce the number of context-switches
reasonable percentage of the total traffic; and the arrival rate of and the off-chip memory bandwidth requirement, multi-threading
packet types can vary widely over time. Hence, most of these exploits parallelism to hide long cache-miss latencies. We also ar-
systems are designed with sufficient resources to servicexan  gued that a hybrid architecture that supports both data-caches and
pectedmix of packet types, while ensuring that the worst-case per- multi-threading in hardware simplifies programmability of NPs sig-
formance requirements for only the basic IP-forwarding bench- nificantly.

mark are met. In such systems, data caching not only can im- This study raises several interesting questions. First, given a
prove processor utilization and throughput, but can also simplify chip-area and off-chip memory bandwidth, what combination of

programmability. number of cores, threads-per-core and cache-per-core shauld
NP provision to maximize throughput? Second, since the balance
5. RELATED WORK among these three dimensions may depend upon application, sys-

. . . tem, and trace characteristics, is it possible to design a fixed NP
In this paper, we considered the problem of overcoming the mem- 5 citecture that achieves performance similar to the architecture
ory wall resulting from data accesses in packet processing applica-pegt.gyited for each deployment scenario? If not, how should one

tions. Much of the prior work on overcoming the memory wall  jagign versatile NP architectures? Addressing these questions will
has focused either on accesses resulting from instruction fetch, Orimpact the design and use of future generations of NPs.

on demonstrating the benefits of specific mechanisms for handling
data accesses in the context of specific applications (e.g., IP for-
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