
Overcoming the Memory Wall in Packet Processing:
Hammers or Ladders?

Jayaram Mudigonda
Dept. of Computer Scienes
University of Texas at Austin

jram@cs.utexas.edu

Harrick M. Vin
Dept. of Computer Scienes
University of Texas at Austin

vin@cs.utexas.edu

Raj Yavatkar
Intel Corporation

raj.yavatkar@intel.com

ABSTRACT
Overhead of memory accesses limits the performance of packet
processing applications. To overcome this bottleneck, today’s net-
work processors can utilize a wide-range of mechanisms—such as
multi-level memory hierarchy, wide-word accesses, special-purpose
result-caches, asynchronous memory, and hardware multi-threading.
However, supporting all of these mechanisms complicates
programmability and hardware design, and wastes system resources.
In this paper, we address the following fundamental question: what
minimal set of hardware mechanisms must a network processor
support to achieve the twin goals of simplified programmability and
high packet throughput? We show that no single mechanism suffi-
cies; the minimal set must includedata-cachesandmulti-threading.
Data-caches and multi-threading are complementary; whereas data-
caches exploit locality to reduce the number of context-switches
and the off-chip memory bandwidth requirement, multi-threading
exploits parallelism to hide long cache-miss latencies.

Categories and Subject Descriptors:C.2.6 [Internetworking]:
Routers C.2.6 [Internetworking]: Routers C.2.m [Computer-
Communication Networks]: Miscellaneous C.5.m Comuter Sys-
tems Implementation Miscellaneous, D.4.4 [Communication man-
agement]: Network communication

General Terms: Measurement, Performance, Design.

Keywords: Network processors, Data-caches, Multithreading

1. INTRODUCTION
The gap between processor and memory performance—often re-

ferred to as thememory wall[39]—has been a major source of
concern for all of computing; this problem is exacerbated in packet
processing systems. Over the past decade, the link bandwidths sup-
ported by these systems have doubled every year; processor perfor-
mance has doubled every 18 months (Moore’s law); and memory
latencies have improved only by about 10% a year. To put this ar-
gument in perspective, consider a system supporting OC-192 (or
10Gbps) links. In this case, minimum size SONET packets can ar-
rive at the system every 32ns, which is roughly the latency for only
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a few memory accesses. Today, packet processing systems support
a wide-range ofheader-processing applicationssuch as network
address translation (NAT), protocol conversion (e.g., IPv4/v6 inter-
operation gateway) and firewall; as well aspayload-processing ap-
plicationssuch as Secure Socket Layer (SSL), intrusion detection,
content-based load balancing, and virus scanning. Many of these
applications perform hundreds of memory accesses per packet.

To overcome this memory wall,network processors (NPs)[12],
the building blocks of today’s packet processing systems, support
two types of mechanisms: (1)hammers—that exploit locality to
reduce the overhead of memory accesses (i.e.,reduce the height
of the memory wall), and (2)ladders—that exploitparallelism to
hide memory access latencies (i.e.,climb overthe memory wall).
Hammers include such mechanisms as wide-word accesses [18,
31], special-purpose caches (e.g., route-caches) [11, 41], and multi-
level memory hierarchy [19]. Ladders, on the other hand, include
asynchronous (non-blocking) memory accesses and hardware multi-
threading [19]. Wide-word accesses exploit spatial locality to re-
duce the number of memory accesses performed per packet. Special-
purpose caches—such as route-caches—exploit the locality inher-
ent in packet streams by caching and reusing results of repeated
computations (e.g., route lookups); a hit in suchresult-cacheselim-
inates the repeated computation and the corresponding memory ac-
cesses. Multi-level memory hierarchies exploit temporal locality of
data accesses to reduce average latency of memory access. Asyn-
chronous memory accesses and multi-threading, respectively, ex-
ploit the intra/inter-packet parallelism to overlap the execution of
independent instructions/packets with memory accesses.

Observe that unlike general-purpose processors that rely primar-
ily on data-caches(a hammer) to overcome the memory wall, NPs
can utilize a much wider-range of mechanisms. This is facilitated
by three characteristics of the packet processing domain. First, the
domain offers significant packet-level parallelism. Second, net-
work traffic, consisting of interleaved streams of related packets,
exhibits locality [15, 21, 27, 28]. Finally, for packet processing
systems, throughput—and not latency—is the primary optimiza-
tion criterion.

Although the availability of wider-range of mechanisms offers
greater hope in overcoming the memory wall, supporting all of
these mechanisms in hardware without clear guidelines for their
usage has two limitations. First, judicious use of these mechanisms
is crucial for achieving high packet throughput; today, this task
is often left to the programmers, which makes NPs very difficult
to program. Second, provisioning, in hardware, mechanisms that
yield only marginal benefits leads to unnecessary hardware com-
plexity and wasted system resources (e.g., chip-area and memory
bandwidth).



Much of the prior work on overcoming the memory wall in packet
processing has focused on demonstrating the benefits of specific
mechanisms and only for specific applications (e.g., IP forward-
ing) [10, 11, 34, 41]. For instance, the benefit of prefetching packet
data is demonstrated in [18, 20]; a high-performance memory sys-
tem based on wide-word accesses is described in [31]; special-
purpose route-caches are proposed in [11, 41]; and the effectiveness
of data-caches is shown in [24]. The literature, however, does not
contain any comparative evaluation of these mechanisms or guide-
lines for their usage in a broader class of applications.

In this paper, we ask the following fundamental question: what
minimal set of hardware mechanisms must a network processor
support to achieve the twin goals of simplified programmability
and high packet throughput? We conduct a thorough analysis of
data accesses performed by a wide-range of modern packet pro-
cessing applications and show that no single mechanism suffices;
the minimal set must include data-caches and multi-threading. We
demonstrate that:

• From the set of hammers, data-caches—generally not sup-
ported in today’s NPs—outperform such mechanisms as wide-
word accesses, special-purpose result-caches, and exposed
multi-level memory hierarchy. However, because packet pro-
cessing applications are memory-access-intensive, data-cache
misses can cause significant processor stalls. Hence, data-
caches alone are insufficient to achieve high throughput.

• Because of the significant packet-level parallelism available
in workloads, hardware multi-threading is effective at hiding
memory access latency; its effectiveness, however, is lim-
ited severely by constraints on off-chip memory bandwidth,
context-switch overhead, and serialization required to protect
access to shared read-write data.

• Data-caches and multi-threading are complementary. Data-
caches exploit locality in the workload to reduce the number
of context-switches and the off-chip memory bandwidth re-
quirement. Multi-threading exploits parallelism in the work-
load to hide long cache-miss latencies and to reduce proces-
sor stalls. Hence, a hybrid architecture that supports data-
caches and multi-threading is highly effective in achieving
high throughput.

We also make two important observations. First, unlike general-
purpose processors where data-caches are used to reduce average
memory access latency, the primary benefit of supporting data-
caches in network processors is in reducingnumber of context-
switchesand off-chip memory bandwidthrequirement. Second,
data-caches are transparent to programmers and compilers. The
presence of data-caches also simplifies the usage of hardware multi-
threading. In particular, in the presence of data-caches, NPs can
simply switch context from one thread to another on a cache miss.
This eliminates the need to schedule hardware threads explicitly
(by the programmer or the compiler). In such a case, a programmer
is only required to develop thread-safe applications suitable for ex-
ecution in a multi-processor environment; the existence and usage
of hardware multi-threading becomes transparent. Thus, a hybrid
architecture that supports both data-caches and multi-threading in
hardware simplifies programmability of NPs significantly.

The rest of the paper is organized as follows. In Section2, we
discuss our experimental methodology. We quantify the relative
benefits of using hammers and ladders to overcome the memory
wall and derive the minimal set of hardware mechanisms in Sec-
tion 3. We discuss the implications of our findings in Section4.

Section5 discusses related work, and finally, Section6 summarizes
our contributions.

2. METHODOLOGY
To compare the effectiveness of mechanisms for overcoming the

memory wall, we analyze data accesses performed by a wide-range
of packet processing applications. In what follows, we describe the
set of applications, the traffic traces and control data used in our
experiments, and the simulation environment.

2.1 Packet Processing Applications
We select packet processing applications based on the following

semanticcharacterization. All packet processing systems perform
the following four functions (in addition to thereceiveand trans-
mit functions): (1) verify the integrity of packets; (2) classify each
packet as belonging to a flow; (3) process packets; and (4) deter-
mine the relative order of transmitting packets (i.e., scheduling).
Whereas only a small number of implementation variants exist for
integrity verification, classification, and scheduling, significant di-
versity exists for packet processing functions.

We consider two canonical integrity verification implementations
based on the well-known IP-Checksum (RFC-1071) and MD5 (RFC-
1321) algorithms. Classification, in its most general form may in-
volve range, prefix or exact matching and hence can be very com-
plex [17]. We consider a simpler but an important case wherein
the five-tuple (source and destination addresses, ports and protocol)
are hashed to find theFlowID. To determine the relative order for
transmitting packets, we consider an implementation of the Deficit
Round Robin (DRR) scheduling algorithm [32] used in many com-
mercial routers.

To cover a reasonable spectrum of packet processing functions,
we study several header- and payload-processing applications (see
Table1).

Header-processing applications:

1. IP forwarding (RFC-1812), which involves validating the
header, decrementing the time-to-live (TTL) field, route lookup
(longest-prefix match (LPM) for the destination IP address),
and processing of any IP-options. For the LPM functionality,
we consider four different implementations: (1) Patricia trie
(denoted bypatricia), (2) bitmap trie (bitmap), (3) binary
search on prefix lengths (bsol), and (4) dual trie from IXA
SDK (ixp).

Many Free-BSD-based implementations use a uni-bit trie, re-
ferred to asPatricia trie [33]. Bitmap trie [14] is a variant of
multi-bit trie that uses bitmaps to compress the child and data
pointers in the trie nodes. This is used in many commercial
routers. Unlike the other schemes, Binary search on prefix
lengths [35] does not use a tree-based lookup data structure;
instead, it uses a set of hash tables (one per prefix length) and
does a binary search on the prefix lengths to find the longest
prefix match. It has the best known average-case complexity.
Finally, the reference design in the IntelR©’s SDK for the IXP
series of processors (IXA SDK 3.0) uses two multi-bit tries
simultaneously and bounds both lookup and insertion cost.

2. Metering, which involves marking packets based on the packet
and byte count of the flow (the FlowID derived during clas-
sification is used to access and update the FlowRecord). We
consider three implementations: (1)srtcm: the Single-Rate-
Three-Color Marker (RFC-2697), (2)trtcm: the Two-Rate-
Three-Color Marker (RFC-2698), and (3)tswtcm: the Time-
Sliding-Window-Three-Color Marker (RFC-2859).



Functionality Application Source
Integrity IP-Checksum checksum Free BSD
verification MD5 md5 R.S.A Inc.
Classification Hash based classify UT
Prefix Patricia Trie patricia Free BSD
match Bitmap Trie bitmap UT

Binary Search bsol UT
IXA Dual Trie ixp IXA SDK 3.0

Metering Sliding Window tswtcm UT
Single Rate srtcm IXA SDK 3.0
Two Rate trtcm IXA SDK 3.0

Header Stream-4 stream Snort 2.0
processing PortScan portscan Snort 2.0
Payload CAST cast SSLeay Lib
processing Pattern matcher vscan Snort 2.0
Scheduler DRR drr UT

Table 1: Packet Processing Applications (UT = We developed)

3. Stream-4: Stream-4 is a module of the Snort-2.0 intrusion
detection system [5]. It emulates the TCP state machine for
each ongoing session and reconstructs the byte stream out
of the packets. It performs most of the the TCP process-
ing generally performed in end-systems. The primary data
structures are the per-session data and a session table that
maintains pointers to individual session data items. It uses
splay trees for the session table and also to keep track of the
partially re-assembled byte streams.

4. Portscan: This is also a module of Snort [5]. It is used to de-
tect suspicious port-scanning activity. The main data struc-
tures are splay trees. First, a splay tree that is keyed on the
source address is looked up. This lookup yields a pointer
to another splay tree that keeps track of the recent ports the
source address in question has accessed. Port-scanner de-
clares an attack if a source accesses too many ports during a
short period.

Payload processing applications:We consider two applications:
(1) vscan, a pattern matcher[38, 5] that matches packet content
against a set of pre-defined patterns (e.g., virus signatures)—we
consider the default and preferred pattern matching implementa-
tion [38] from Snort-2.0 [5]; and (2) CAST (RFC-2612), which is
used to encrypt and decrypt the packet payload to implement Vir-
tual Private Networks (VPN).

These applications subsume NP benchmarks [23, 36].

2.2 Packet Traces and Control Data
To study data accesses, we execute the applications with three

inputs:packet traces, a route table, andvirus signatures.
We use packet traces collected from four locations in the In-

ternet. Three of them (ANL, FRG and MRA) are provided by
NLANR [26] while the fourth one (UNC) is obtained from the
University of North Carolina. The ANL trace represents traffic
on a link that connects an enterprise (the Argonne National Lab)
to its service provider. The UNC trace represents traffic on a link
connecting a large university to its ISP. The FRG trace represents
the aggregation of traffic from several universities in the Denver
area to the high-speed Abilene network. Finally, MRA traces rep-
resent traffic on a link connecting Merit and Abilene—two large
networks. The qualitative conclusions remain same across all these
traces, with the ANL and MRA traces often forming the extremes
quantitatively. Hence, for brevity, we present results only for the

ANL and MRA traces. All the traces are of 90 seconds duration1.
Each ANL trace (collected from an OC-3 (i.e., 155 Mbps) link)
contains about 0.5 million packets while each MRA trace (collected
from an OC-12 link) has about 5 million packets.

We construct our route table using the data obtained from the
RouteViewsproject [8]. We utilize the database ofvirus signatures
published by Snort [5].

Utilizing these traces and control data for our experiments presents
two challenges. First, the publicly available packet traces are al-
waysanonymized. An unfortunate side-effect of this anonymiza-
tion process is that IP addresses contained in these traces do not
match any IP address prefixes available from the RouteViews. Hence,
before using these traces with our route table, wede-anonymize
them; we substitute every occurrence of IP address in the trace
with another randomly selected address for which the route table
contains a prefix. This de-anonymization process preserves the
traffic pattern and flow characteristics; further, it conforms to the
traffic generation guidelines recommended by the network proces-
sor forum [2]. Second, for the virus scan application, the mem-
ory access profile depends not only on the signatures, but also on
the packet content. Unfortunately, none of the publicly available
traces contain valid packet content. Hence, for our experiments,
we consider two scenarios: (1) packets with random payload; and
(2) packets with payload containing web pages from popular web
sites (containing valid English text). By doing so, we characterize
thecommon casewhere the packets do not match any signature in
the database.

2.3 Simulation Environment
Single-threaded Processor Environment:To profile data accesses
in a single-threaded processor environment, we execute our appli-
cations within theSimpleScalar[6] simulation environment. In par-
ticular, we use thesim-safe CPU simulator.Sim-safe simulates
a very simple RISC instruction set similar to the ones supported
by today’s NPs. We enhancedsim-safe to produce an instruction
execution trace that is partitioned intoblocks, where each block
represents the execution of a packet. Each block consists of (1)
the arrival time (relative to the the first packet in the trace) of the
packet; and (2) the sequence of all the ALU instructions, mem-
ory accesses, and mutex operations performed while processing the
packet. Each memory access is described by the tuple:〈memory
address, the number of bytes accessed, the data structure id〉. Each
mutex acquire/release event describes the identifier of the lock. We
also use a utility based on thecheetah cache simulator library of
the Simplescalar toolkit.
Multi-threaded Processor Environment: Most network proces-
sors today support processor cores with multiple hardware threads.
To study such environments, we designed a discrete-event simula-
tor. The simulator takes as input the instruction trace collected us-
ing our enhanced version ofsim-safe. Upon scheduling a memory
access, the simulator switches context to the thread at the head of
thereadyqueue. When the memory access completes, the blocked
thread is placed on thereadyqueue. On completing the process-
ing of a packet, the simulator assigns to the thread a new packet (if
one is available) or adds the thread to theidle queue; each thread
is assumed to process one packet at a time. Our simulator cap-
tures several details—such as context switch overhead, memory
contention and queuing, etc.—of a multi-threaded network proces-
sor (e.g., IntelR©’s IXP2800 [19]).

1About 90% of the traffic consists of short-lived (a few seconds)
TCP flows [1]. In our experiments, the hit-rates reach steady-state
for traces longer than 50-seconds.



3. RESULTS
Packet processing applications access three types of data: (1)

packet-data—that include packet header, payload, and any packet-
specific meta-data such as packet arrival time and interfaceID; (2)
temporary-data—that include data structures allocated on the stack;
and (3)application-data—that refer to any persistent data struc-
tures used by the packet processing application (e.g., a route table,
per-flow metering counters, and a virus signature database). In this
paper, we consider the overhead resulting only from application-
data accesses. This is because of three reasons [24].

• For all the applications, packet-data is relatively small in size
(44bytes meta-data, and 704/736bytes of payload on an aver-
age for ANL/MRA traces, respectively). Further, packet-data
is generally accessed sequentially. Hence, prefetching [18,
20] is effective in minimizing the overhead of accessing packet-
data.

• Temporary-data is relatively small in size; for 12 out of 16
applications, temporary-data is smaller than 108bytes, with
the maximum being only 496bytes. Further, accesses to
temporary-data exhibit considerable temporal locality. Thus,
by making use of registers, and where available, the small
fast memories close to the processor [22] to store temporary-
data, the overhead for temporary-data accesses can be elimi-
nated.

• Application-data sizes are significantly larger than packet-
data and temporary-data. For our applications, the application-
data sizes range from 135KB in bsol to as high as 10MB
in portscan. These sizes are significantly larger than the
fast local-memories supported in today’s network processors.
Further, application-data accesses account for a large fraction
of the total number of accesses in most applications; even
payload processing applications, such asvscan, make far
greater number of accesses to application-data than packet-
data. In many cases, application-data accesses constitute as
high as 90% of the non-temporary-data accesses.

Today’s NPs rely on multiple processor cores to achieve high
packet throughput. However, since most application-data are either
read-only (e.g., route table) or flow-specific (e.g., metering coun-
ters), we ensure the coherence of application-data by pinning each
flow to a processor core (i.e., by processing all packets of a flow on
the same processor core).

In what follows, we study the effectiveness of reducing the over-
head of application-data accesses using two types of mechanisms:
(1) hammers—that exploit locality to reduce the overhead of mem-
ory accesses, and (2)ladders—that exploit parallelism to hide mem-
ory access latencies. We demonstrate that, to overcome the mem-
ory wall, network processors should support in hardware ahammer
(namely, adata-cache) and aladder(namely,multi-threading). No
single mechanism in isolation suffices. Together, these two mecha-
nisms enable network processors to achieve the twin goals of sim-
plified programmability and high packet throughput.

3.1 Hammers: Reducing Overhead
Hammers exploit locality in the workload to do one of two things:

(1) Reduce the number of memory accesses, or (2) reduce average
access latency. We consider two mechanisms each as representa-
tives of the two categories:wide-word accessesandresult-caches
for reducing the number of memory accesses, andexposed multi-
level memory hierarchyanddata-cachesfor reducing average la-
tency. We first evaluate the effectiveness of each of these mecha-
nisms in isolation, and then compare their relative benefits.

3.1.1 Wide-word Accesses
The mechanism for issuing wide-word accesses to reduce mem-

ory access overhead exploits two observations. First, for many ap-
plications, application-data is organized into semantic units that are
larger than one word (4bytes). For instance, for thepatricia, each
trie node is 16bytes and when a trie node is accessed, most of the
fields within the node are accessed. Second, wide-word accesses
amortize fixed but significant parts of the access latency, such as
the bus arbitration overhead, over a larger number of bytes. For
instance, accessing a double-word requires only marginally more
cycles than accessing a single-word, and substantially less than ac-
cessing two single-words in succession.

Programmers can use wide-word accesses explicitly or compil-
ers, through data dependence analysis, can in some cases, issue
wide-word accesses to fetch entire data items in one go. The effec-
tiveness of wide-word accesses depends on thespatial localityof
data accesses exhibited by applications and thesizeof the wide-
word. Figure1(a) shows the observed percentage reductions in
memory accesses as a function of wide-word size; the applications
shown here cover the entire range of observed values. It shows for
a wide-word size of 32bytes, the number of memory accesses per-
formed by applications while processing a packet reduces by about
10% forvscan application to 80% forDRR.

3.1.2 Result Caches
In some applications, the result of a computation depends solely

on the input packet details (e.g., destination IP address). Such
applications are amenable to caching theresults of computation;
cached results can be reused when another packet with the same
header fields appears. This eliminates the entire computation as
well as the corresponding memory accesses. An example of such
a scheme is aroute-cachethat caches the results of route lookups.
When a packet destined to the same IP address arrives again, the
result of the previous lookup is re-used. Observe that while wide-
word accesses exploit intra-packet spatial locality, result-caching
exploits temporal locality in the input packet stream.

Figure1(b) evaluates the effectiveness of result-caches in terms
of the percentage reduction in the memory accesses as a function of
the result-cache size for different longest-prefix-match (LPM) im-
plementations. Figure1(b) shows two sets of lines—for the ANL
and MRA traces. It demonstrates that the percentage reduction in
memory accesses isonly a function of the trace, and not of the dif-
ferent LPM implementations. Further, it shows that the percent-
age reduction in memory accesses is higher for the ANL traces
than the MRA traces. This is because, result-cache reduces mem-
ory accesses only when packets of the same flow are processed.
MRA traces are collected from a link closer to the core of the In-
ternet, while ANL traces are collected at the edge of the network.
Hence, MRA traces contain traffic aggregated from a larger num-
ber of sources and contain larger number of simultaneous flows.
This results in larger working sets and smaller hit-rates for a given
result-cache size.

Note that a serious drawback of such result-caches is that many
applications do not lend themselves to result-caching; in particular,
result-caches can’t be used in applications where the processing
of a packet updates the persistent application state. For instance,
in our metering applications, processing a packet updates the state
(namely, byte and packet counters) maintained for the flow; further,
the color of the mark a packet receives depends on this flow state.
Thus, the color of the mark cannot be cached since the next packet
in the flow may receive a different colored mark.
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Figure 1: Effectiveness of hammers

3.1.3 Exposed Memory Hierarchy
Today’s NPs expose the memory hierarchy to the programmers;

programmersmapdata structures to different levels of the memory
hierarchy explicitly to reduce average latency.

In the simplest case, to map a data structure to a certain level of
the memory hierarchy, the memory size should be at least as large
as the maximum data structure size. This “entire” data structure
mapping scheme is essential for most of the application data struc-
tures (e.g., a hash table or the virus-signature table). However, for
certain data structures—such as the trie used in LPM—it is pos-
sible to partition the data structure such that the most frequently
accessed portions of the data structure (namely, the top-levels of
the trie) are placed in fast memory and the remaining structure is
stored in a larger, slower memory [9, 22]. This approach approx-
imates the behavior of a cache through static partitioning of the
data structures. Figure1(c) shows the percentage reduction in the
number of memory accesses made to slower memory levels as a
result of partitioning the trie across multiple levels of the hierarchy.
Note that the data structures used inbsol andixp have a very wide
fanout at the first level; hence, they can’t take advantage of small,
fast memories using static mapping.

3.1.4 Data Caches
To study the effectiveness of data-caches, we consider a 4-way

set-associative cache with 16-byte (4-word) wide lines2. Figure1(d)
depicts the percentage reduction in accesses to slow memory as a
function of data-cache size for various applications under the MRA
and ANL traces; the results shown cover the entire range of ob-
served percentage reductions. It shows that even for a small data-
cache size (8KB), the number of accesses to memory reduces by
65-99%. Further, as was the case for result-caches, because of the
greater locality present in ANL traces, the percentage reduction in
memory accesses is greater for ANL traces than MRA traces.

3.1.5 Comparative Evaluation of Hammers
Figure 2 compares, for all the applications and MRA traces,

the percentage reduction in memory accesses resulting from the
four different hammers: wide-word accesses, result-caches, ex-
posed memory hierarchies, and data-caches. It illustrates that data-
caches dominate wide-word accesses and exposed memory hier-
archy in all cases; further, data-caches perform better than result-
caches in all applications exceptbsol andixp. In both of these ap-
plications, the data structure constructed for LPM has a very wide
fanout at the first level; hence, there is little reuse of data across
packets with different destination IP addresses. Further, because

2We have experimented with a range of associativity and line
widths; all of these cases yield the same set of qualitative conclu-
sions we report in this paper.
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Figure 2: Comparison of Hammers

data-caches maintain individual data items (as opposed to only the
result of the lookup), the working set size for data-caches in these
applications is larger than result-caches.

From the above discussion, we conclude that data-caches pro-
vide an attractive alternative to wide-word accesses and exposed
memory hierarchies. Unlike result-caches, data-caches are more
general and can be used for all data structures. Further, data-caches
are transparent to programmers and compilers, and thus simplify
programmability. Hence, data-cache is an effective hammer for
packet processing.

In Figure3, we demonstrate the benefits and limits of using data-
caches with respect to two performance metrics: (1)reduction in
the processing timeof a single packet, and (2)processor utilization,
defined as 1 minus the percentage of the time a processor stalls
waiting for memory accesses. For our experiments, we use a miss
penalty of 150 cycles, which represents the latency in accessing
off-chip QDR SRAM in IXP2800 [22].

For the MRA traces, Figure3(a) shows the reduction in packet
processing time as a function of cache size for six applications (that
capture the full range of reductions observed for all the applica-
tions). Note that the applicationbitmap that benefits the least is in
fact the one with higher hit-rates than many other applications. This
is because,bitmap examines long bitmaps to determine the next
trie node to visit and hence executes a larger number of compute
operations per memory access. Thus, the impact of reducing aver-
age memory latency is small. On the other hand, applications such
asDRR exhibit significantly lower amount of locality; yet, because
of their memory-access-intensive nature, even a small data-cache
of 8KB can reduce the per-packet processing time by as much as
85%.

Figure3(b) depicts processor utilization as a function of cache
size for the same six applications. The compute-boundbitmap
achieve nearly 80% utilization for small cache sizes.ixp per-
forms as well asbitmap, but it needs a larger cache (about 32KB).
For all other applications, processor utilization does not increase
much beyond 30% even for very large cache sizes (64KB). Be-
cause of the memory-access-intensive nature of these applications,
even a small number of data-cache misses cause significant pro-

cessor stalls. Thus, we conclude that although data-caches can re-
duce the processing time of a single packet significantly, they alone
are insufficient to achieve acceptable processor utilization and high
packet processing throughput in many applications.

3.2 Ladders: Hiding Overhead
Since throughput is often the primary performance metric for

packet processing systems, NPs utilize ladders–such ashardware
multi-threadingandasynchronous memory–that exploit inter- and
intra-packet parallelism, respectively, tohide memory access la-
tencies and to improve processor utilization. In this section, we
demonstrate that systems that use ladders alone can be severely
limited by the available off-chip memory bandwidth.

Figure4shows, for various applications, the processor utilization
attainable using hardware multi-threading; with multi-threading,
processor switches context to a different thread upon scheduling a
memory access. We show only a subset of applications due to space
constraints. However, the results for each of the remaining appli-
cations resemble closely to one of these four and our conclusions
remain valid. For this and other experiments in this section, we use
a context switch overhead of two cycles (the minimum mandatory
in IXP2800) and a miss-penalty of 150 cycles [22]. Figure4 illus-
trates that, for all applications, processor utilization improves lin-
early with increase in the number of threads supported. However,
the rate of improvement as well as the saturation levels are different
for different applications. The following application charateristics
influence the rate of improvement and saturation levels.

• The number of computation instructions executed per context-
switch (C). Higher values ofC amortize the context-switch
overhead better; the higher theC, the greater is the rate of
improvement in processor utilization with increase in num-
ber of threads and higher is the saturation level. For in-
stance, the values ofC are 26.71 and 1.8 for theixp and
patricia, respectively. Thus, for a context switch over-
head of 2 cycles, while theixp is able to achieve a utiliza-
tion of 26.71/(26.71+2) = 0.93, thepatricia is limited to
1.8/(1.8+2) = 0.47.
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Figure 3: Benefits and limits of data-caches

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70

P
ro

ce
ss

or
 U

til
iz

at
io

n

Number of Threads

ixp
patricia
classify
stream

Figure 4: Effectiveness of Hardware Threads

• Access to shared read/write data: The need to serialize access
to shared read/write data limits the amount of parallelism,
and hence the effectiveness of multi-threading. This effect is
quantified in Figure4 for the two applicationsstream and
classify. stream involves accessing and updating a shared
splay tree for every packet; hence, increasing the number
of threads yields little improvement in processor utilization.
The portscan and theDRR applications exhibit similar be-
havior. Theclassify application, on the other hand, in-
volves a small critical section that serializes processing of
packets when a flow is either added or deleted. Hence, the
impact of serialization is marginal. The metering schemes
we consider exhibit behavior similar toclassify.

Limitations of multi-threading: We argued above that the perfor-
mance of multi-threading is limited byC and the serailization con-
siderations resulting from access to shared read/write data. NPs can
utilize another ladder—namely,asynchronous memory accesses—
to switch context only after issuing multiple memory accesses; this
increases the value ofC and improves the achievable processor uti-
lization. Today, however, a programmer is required to utilize asyn-
chronous memory explicitly; this complicates programming.

A more significant limitation of multi-threading is that the mem-
ory bandwidth requirement of a multi-threaded processor grows

linearly with increase in number of threads. This is because, with
multi-threading, the number of memory accesses made during the
time taken to serve one grows linearly with the number of threads in
use and saturates atPenalty/(C+ContextSwitchOverhead) where
C denotes the number of compute operations performed per context-
switch, andPenaltydenotes the memory access latency. Thus, pro-
cessor utilization achieved by multi-threading is limited not only
by C but also by the available memory bandwidth.
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Figure5 shows the bandwidth usage for the two applicationsixp
andpatricia in references/cycle. The memory bandwidth avail-
able for IXP2800 is computed based on the aggregate bandwidth of
the four QDR SDRAM banks and the processor clock of 1.4GHz.
Figure5 illustrates that, if all the 8 threads on an IXP2800 core ex-
ecutepatricia, then the core would consume almost 4 times the
fair bandwidth share of the core. In other terms, runningpatricia
on only 4 out of the 16 cores available on IXP2800 would saturate
the available memory bandwidth.ixp, the hand-tuned implemen-
tation of LPM for IXP2800 does better. However, even in this case,
ixp can utilize only 7 of the 16 cores before saturating the avail-
able memory bandwidth (since runningixp on 8 threads on a core
requires almost twice the fair bandwidth share of the core). Thus,
we conclude that ladders that hide latency to improve processor uti-
lization are necessary, but not sufficient to achieve high throughput.
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3.3 Hybrid Network Processor Architecture
In the previous subsections, we have demonstrated that hammers

and ladders are both necessary to achieve high throughput; how-
ever, no single mechanism in isolation is sufficient. In this sec-
tion, we consider a hybrid NP architecture that combines a ham-
mer (namely, data-cache) and a ladder (namely, multi-threading).
We consider this combination for three reasons. First, data-caches
and multi-threading are complementary. Data-caches exploit lo-
cality in the workload to reduce the number of context-switches
and the off-chip memory bandwidth requirement. Multi-threading
exploits parallelism in the workload to hide long cache-miss laten-
cies and to reduce processor stalls. Second, data-caches are the
best-of-breed in hammers, and multi-threading is the most effec-
tive ladder. Third, with respect to reducing the number of context-
switches and increasing the value ofC, data-caches outperform
asynchronous memory accesses significantly (see Figure6); fur-
ther, asynchronous memory accesses do not reduce the off-chip
memory requirement of multi-threaded processors.

To demostrate the effectiveness of this hybrid architecture, we
consider two alternative processor architectures that are identical
in terms of the functional units and the overall chip-area, but dif-
ferent with respect to their multi-threading and caching configura-
tions. The first alternative (denoted asthreads-only) uses the avail-
able chip-area (i.e., the area remaining after including appropri-
ate functional units and pipeline stages) to support as many hard-
ware threads as possible; this is representative of today’s NP de-
signs [19]. The second alternative (denoted ashybrid) splits the
available chip-area between cache and threads. For this case, we
determine the optimal configuration by exhaustively simulating all
possible combinations of cache sizes and number of threads. We
allocate chip-area to hardware threads and cache in units ofthread-
equivalents, which refers to the chip-area required to support a sin-
gle hardware thread. We estimate a thread-equivalent using infor-
mation about Intel’s IXP2800 [19]; we use the Cacti toolkit [3] to
estimate the number of cache lines that can be accommodated in a
certain chip-area.

Figure7 compares the processor utilization achieved by threads-
only and hybrid architectures as a function of available off-chip
memory bandwidth. We consider the two LPM implementations,
ixp andpatricia, from the previous plots. For this experiment,
we fix the chip-space available to the two processor configurations
at 64 thread-equivalents. As Figure7 demonstrates, forpatrica,
the hybrid processor achieves almost 3 times the utilization (and
hence throughput) of the threads-only processor. Forixp, threads-
only and hybrid systems achieve similar peak utilizations; however,
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the hybrid system uses only a small fraction of the memory band-
width (0.006 instead of 0.02 references/cycle). The horizontal lines
for the hybrid system indicate that its throughput is not constrained
by memory bandwidth at all; thus, the hybrid architecture scales
better with increase in chip area than the threads-only architecture.

Based on our analyses, we make the following three observa-
tions. First, hybrid architecture that combines data-caches and multi-
threading is effective in overcoming the memory wall in packet
processing. Second, unlike general-purpose processors where data-
caches are used to reduce average memory access latency, the pri-
mary benefit of supporting data-caches in network processors is in
reducingnumber of context-switchesand off-chip memory band-
width requirement. Third, data-caches are transparent to the pro-
grammers and compilers. The presence of data-caches also sim-
plifies the usage of hardware multi-threading. In particular, in the
presence of data-caches, NPs can simply switch context from one
thread to another on a cache miss. This eliminates the need to
schedule hardware threads explicitly (by the programmer or the
compiler). In such a case, a programmer isonly required to de-
velop thread-safe applications suitable for execution on a multi-
processor; the existence and usage of multi-threading becomes trans-
parent. Thus, a hybrid architecture that supports both data-caches
and multi-threading in hardware simplifies programmability of NPs
significantly.

4. DISCUSSION
In this paper, we have argued that NPs should include data-caches

to address the shortcomings of hardware multi-threading. How-
ever, none of today’s commercial NPs support data-caches. This
is often attributed to two main hypotheses. First, since throughput
is the primary performance metric for packet processing systems,
mechanisms–such as hardware multi-threading–thathide memory
access latency are sufficient; data-caches–thatreduceaverage mem-
ory access latency–are not necessary. Second, packet processing
systems must be (and are) provisioned with sufficient resources to
meet theworst-casetraffic demands; since caches only improve the
average-case, they are not beneficial.

In the previous sections, we showed that the first hypothesis does
not hold. In what follows, we argue that most modern packet pro-
cessing systems are provisioned with sufficient resourcesonly to
process anexpectedtraffic mix; hence, including caches in NPs to
improve the average-case is valuable.



Traditionally, vendors of IP routers (Layer-2 and Layer-3 sys-
tems) have advertised resource provisioning levels needed to meet
the demands of theworst-case traffic. This has led to a commonly
held belief that packet processing systems must be (and are) pro-
visioned with sufficient processing resources to ensure that even a
worst-case stream of packet arrivals can be serviced by the system
without dropping any packets.

Worst-case provisioning advertised in IP routers, however, is
somewhat misleading. This is because, benchmarks defined by
IETF and used by most vendors [7] define worst-case only in terms
of the arrival rate of packets (namely, arrival of smallest size pack-
ets at the line rate) that request the basic IP forwarding service
(RFC-1812). An IP router, in reality, processes multiple types of
packets (e.g., IP packets with and without options). Processing IP
packets with options, for instance, takes considerably larger num-
ber of processor cycles than basic IP forwarding; provisioning suf-
ficient resources in an IP router to service worst-case arrival pat-
tern of packets that request IP options processing is prohibitively
expensive. The well-known attack in which every packet sent to a
router requests IP options processing has exposed the vulnerability
of existing routers to suchworst-case traffic mix. The practice of
optimizing for the average-case is also evident in current commer-
cial IP routers that use aroute-cacheto expedite route lookup in the
average-case.

The engineering practice of provisioning sufficient processors
to meet the demands ofexpectedtraffic mix is even more pro-
nounced in packet processing systems supporting complex appli-
cations (e.g., SSL, NAT (RFC-1631), firewall, IPv4/IPv6 Interop
(RFC-2766)). These systems are generally deployed in edge and
enterprise networks and constitute 93.6% of all of the network pro-
cessor deployments today [4]. Most of these applications involve
multiple types of packets; each of these packet types contributes a
reasonable percentage of the total traffic; and the arrival rate of
packet types can vary widely over time. Hence, most of these
systems are designed with sufficient resources to service anex-
pectedmix of packet types, while ensuring that the worst-case per-
formance requirements for only the basic IP-forwarding bench-
mark are met. In such systems, data caching not only can im-
prove processor utilization and throughput, but can also simplify
programmability.

5. RELATED WORK
In this paper, we considered the problem of overcoming the mem-

ory wall resulting from data accesses in packet processing applica-
tions. Much of the prior work on overcoming the memory wall
has focused either on accesses resulting from instruction fetch, or
on demonstrating the benefits of specific mechanisms for handling
data accesses in the context of specific applications (e.g., IP for-
warding).

Nahum et al. [25] study the instruction cache locality of a TCP
implementation on a general-purpose processor. Xie et al. [40] an-
alyze the instruction cache behavior with the goal of designing an
efficient ISA. Wolf et al. [37] propose a multiprocessor scheduler
that avoids cold instruction caches when assigning packets to pro-
cessors.

As for the data accesses, a significant amount of prior work
considers the problem of efficiently transferring the packet-data
(header and payload) from the ingress to the egress interface [18,
20]. The problem of application-data accesses is well-studied in
the context of route lookup. Many techniques have been proposed
for reducing the number of memory accesses performed during
lookup [30]. While lookup schemes that can exploit data-caches are
proposed in [10, 34], memory hierarchy designs specifically meant

for particular lookup schemes are considered in [9, 31]. Locality
in destination IP addresses has also been well-characterized [15,
21, 27, 28]. This observation forms the basis of several proposals
for result-caches. For instance, special-purposeroute-cachehard-
ware has been proposed for route lookup and for a similar but more
general problem of Layer-4 classification in [11] and [41], respec-
tively. Techniques for improving performance of such route-caches
are explored in [16].

Memory access behavior of some packet processing applications
is analyzed in [13, 23, 24, 29, 36, 42]. However, none of these
studies compare the relative benefits of the various techniques for
addressing memory bottleneck.

6. CONCLUSION
In this paper, we address the question: whatminimalset of hard-

ware mechanisms must a network processor support to achieve the
twin goals of simplified programmability and high packet through-
put? We show that no single mechanism suffices; the minimal
set must includedata-cachesandmulti-threading. Data-caches—
generally not supported in today’s network processors—dominate
such mechanisms as wide-word accesses, exposed multi-level mem-
ory hierarchy and special-purpose caches. However, because packet
processing applications are memory-access-intensive, cache misses
can cause significant processor stalls. Hence, data-caches alone are
insufficient to achieve high throughput. Hardware multi-threading
is effective in hiding memory access latency; its effectiveness, how-
ever, is limited severely by constraints on off-chip memory band-
width, context-switch overhead, and serialization required to pro-
tect access to shared read-write data.

Data-caches and multi-threading are complementary; whereas
data-caches exploit locality to reduce the number of context-switches
and the off-chip memory bandwidth requirement, multi-threading
exploits parallelism to hide long cache-miss latencies. We also ar-
gued that a hybrid architecture that supports both data-caches and
multi-threading in hardware simplifies programmability of NPs sig-
nificantly.

This study raises several interesting questions. First, given a
chip-area and off-chip memory bandwidth, what combination of
number of cores, threads-per-core and cache-per-core shouldan
NP provision to maximize throughput? Second, since the balance
among these three dimensions may depend upon application, sys-
tem, and trace characteristics, is it possible to design a fixed NP
architecture that achieves performance similar to the architecture
best-suited for each deployment scenario? If not, how should one
design versatile NP architectures? Addressing these questions will
impact the design and use of future generations of NPs.
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