
REVIEW Communicated by Wolfgang Maass

General-Purpose Computation with Neural Networks:
A Survey of Complexity Theoretic Results

Jiřı́ Šı́ma
sima@cs.cas.cz
Institute of Computer Science, Academy of Sciences of the Czech Republic,
P.O. Box 5, Prague 8, Czech Republic

Pekka Orponen
orponen@tcs.hut.fi
Laboratory for Theoretical Computer Science, Helsinki University of Technology,
P.O. Box 5400, FIN-02015 HUT, Finland

We survey and summarize the literature on the computational aspects of
neural network models by presenting a detailed taxonomy of the various
models according to their complexity theoretic characteristics. The criteria
of classification include the architecture of the network (feedforward ver-
sus recurrent), time model (discrete versus continuous), state type (binary
versus analog), weight constraints (symmetric versus asymmetric), net-
work size (finite nets versus infinite families), and computation type (de-
terministic versus probabilistic), among others. The underlying results
concerning the computational power and complexity issues of percep-
tron, radial basis function, winner-take-all, and spiking neural networks
are briefly surveyed, with pointers to the relevant literature. In our survey,
we focus mainly on the digital computation whose inputs and outputs are
binary in nature, although their values are quite often encoded as analog
neuron states. We omit the important learning issues.

1 Introduction

1.1 Computational Complexity of Neural Networks. Neural networks
are being investigated in many fields of artificial intelligence as a computa-
tional paradigm alternative to the conventional von Neumann model. The
computational potential and limits of conventional computers are by now
well understood in terms of classical models of computation such as Turing
machines. Analogously, many fundamental theoretical results have been
achieved in the past 15 years concerning the capabilities of neural networks
for general computation (Hartley & Szu, 1987; Orponen, 1994, 2000; Par-
berry, 1990, 1994; Roychowdhury, Siu, & Orlitsky, 1994; Siegelmann 1999a;
Šı́ma, 2001; Siu, Roychowdhury, & Kailath, 1995a; Wiedermann, 1994; cf.
Muroga, 1971).

Neural Computation 15, 2727–2778 (2003) c© 2003 Massachusetts Institute of Technology

2728 J. Šı́ma and P. Orponen

In particular, the computational power of neural nets has been investi-
gated by comparing their various models with each other and with more
traditional computational models and descriptive tools such as finite au-
tomata, regular expressions, grammars, Turing machines, and Boolean cir-
cuits. The aim of this approach is to find out what is, either ultimately or
efficiently, computable by particular neural models and how optimally to
implement the required functions. The main technical tool of this investiga-
tion is computational complexity theory (Balcázar, Dı́az, & Gabarró, 1995;
Bovet & Crescenzi, 1994; Papadimitriou, 1994). As a result, a complexity
theoretic taxonomy of neural networks has evolved, enriching the tradi-
tional repertoire of formal computational models and even pointing out
new sources of efficient computation.

In addition, since neural network models have also been inspired by
neurophysiological knowledge, the respective theoretical results may help
to broaden our understanding of the computational principles of mental
processes.

1.2 A Formal Computational Model of Neural Network. Let us first
recall a general model of an (artificial) neural network that consists of s
simple computational units or neurons, indexed as V = {1, . . . , s}, where
s = |V| is called the network size. Some of these units may serve as external
inputs or outputs, and hence we assume that the network has n input and m
output neurons, respectively. The remaining ones are called hidden neurons.
The units are densely connected into an oriented graph representing the
architecture of the network, in which each edge (i, j) leading from neuron i
to j is labeled with a real (synaptic) weight w(i, j) = wji ∈ R. The absence of
a connection within the architecture corresponds to a zero weight between
the respective neurons.

The computational dynamics of a neural network determines for each neu-
ron j ∈ V the evolution of its real state (output) y(t)

j ∈ R as a function of time

t ≥ 0. This establishes the network state y(t) = (y(t)
1 , . . . , y(t)

s) ∈ Rs at each
time instant t ≥ 0. At the beginning of a computation, the neural network is
placed in an initial state y(0), which may also include an external input. Typ-
ically, a network state is updated by a selected subset of neurons collecting
their inputs from the outputs of their incident neurons via the underlying
weighted connections and transforming these input values into their cur-
rent states. Finally, a global output from the network is read at the end of
computation, or even in the course of it.

In this survey, we mainly consider digital computations over binary exter-
nal inputs providing binary outputs, although these values may be encoded
as analog neuron states, and the intermediate stages of computation often
operate with real numbers.

1.3 An Outline of the Survey. Neural network models can be classified
according to the restrictions that are imposed on their parameters or compu-

General-Purpose Computation with Neural Networks 2729

tational dynamics. In this way, various model classes are obtained that have
different computational capabilities. In this article, we present a detailed
taxonomy of such classes from the complexity theoretic point of view. The
respective theoretical results concerning the computational power and com-
plexity issues of neural networks are briefly surveyed and complemented
by relevant references. Since the presented results share computational com-
plexity theory as their main technical tool, the appendix sets out the basic
definitions of the key complexity classes. Note that we completely omit
the pertinent learning issues, whose complexity aspects would deserve a
separate survey.

The structure of this survey partially follows the underlying taxonomy
of neural network models as depicted in Figure 1, where the numbers of
corresponding sections are indicated in parentheses. In section 2, we fo-
cus on the classical perceptron networks, whose computational aspects are by
now well understood. Both their discrete- (sections 2.1–2.4) and continuous-
time (section 2.5) dynamics are considered. Besides a single perceptron (sec-
tion 2.1), the models of discrete-time perceptron networks are basically di-
vided according to their architectures into feedforward (section 2.2) and re-
current (section 2.3) networks corresponding to bounded and unbounded
computations, respectively. This architectural criterion is also applied in the
classification of probabilistic perceptron networks in section 2.4. The compu-

RBF Unit (3.1)

Perceptron Unit (2)
Neural Network Models (1.2)

Winner-Take-All Unit (3.2)
Spiking Neuron (3.3)

Discrete Time (2.1.-2.4)

Continuous Time (2.5)

Deterministic Computation (2.1-2.3)

Probabilistic Computation (2.4)

Single Perceptron (2.1)
Feedforward Architecture (2.2)

Recurrent Architecture (2.3)

Feedforward Architecture (2.4.1)
Recurrent Architecture (2.4.2)

Binary State (2.2.1)
Analog State (2.2.2)

Finite Size (2.3.1)

Infinite Families of Binary Networks (2.3.4)

Asymmetric Weights (2.3.2)
Symmetric Weights (2.3.3)

Deterministic Computation (3.3.1)
Noisy Computation (3.3.2)

Figure 1: A taxonomy of neural network models.

2730 J. Šı́ma and P. Orponen

tational taxonomy of discrete-time perceptron networks is further refined
into binary (e.g., section 2.2.1) and analog networks (e.g., section 2.2.2), ac-
cording to the permissible domains of neuron state values. Also finite net-
works (e.g., section 2.3.1) and infinite families of networks (e.g., section 2.3.4)
are distinguished. In addition, the computational properties of symmetric
recurrent networks (section 2.3.3), that is, networks with undirected archi-
tecture graphs, differ from those of general asymmetric ones (section 2.3.2).

In section 3, we survey other neural network models, whose computa-
tional capabilities have been studied only recently. This includes the radial
basis function (section 3.1) and winner-take-all (section 3.2) networks, which
employ computational units that are alternative to the perceptrons. Finally,
the computational taxonomy is extended with the networks of biologically
more plausible spiking neurons (section 3.3) that make use of temporal cod-
ing of their state values. Both the deterministic (section 3.3.1) and noisy (sec-
tion 3.3.2) spiking networks are reviewed.

We conclude with overall comparison of the results in section 4, where
the main open problem areas are outlined. A preliminary version of this
article appeared as an extended abstract (Šı́ma, 2001).

2 Perceptron Networks

The perceptron networks represent the most popular neural network model.
Following current practice, the term perceptron is here applied in a more
general way than by Rosenblatt (1958) and also covers the types of units
that were later derived from the original perceptron (e.g., sigmoidal gates).
In this section, the computational aspects of perceptron networks will be
inspected mainly for discrete time.

A perceptron network, working in discrete time, updates its state only at
time instants t = 1, 2, An excitation,

ξ
(t)
j =

s∑
i=0

wjiy(t)
i , (2.1)

is assigned to each neuron j at time t ≥ 0 as the respective weighted sum
of its inputs. This includes a bias value wj0 ∈ R, which can be viewed as the
weight from a formal constant unit input y(t)

0 ≡ 1. Recall from section 1.2 that
some of the weights wji (1 ≤ i ≤ s) in equation 2.1 may be zero, indicating
the absence of a connection from neuron i to neuron j.

At the next instant t + 1, the neurons j ∈ αt+1 from a selected subset
αt+1 ⊆ V compute their new outputs y(t+1)

j by applying an activation function

σ : R −→ R to ξ
(t)
j as follows:

y(t+1)

j = σ(ξ
(t)
j), j ∈ αt+1, (2.2)

General-Purpose Computation with Neural Networks 2731

while the remaining units j �∈ αt+1 do not change their states, that is, y(t+1)

j =
y(t)

j for j �∈ αt+1. In this way, the new network state y(t+1) at time t + 1 is
determined.

Perceptron networks with binary states yj ∈ {0, 1} (for short, binary net-
works) usually employ the hard limiter or Heaviside activation function,

σ(ξ) =
{

1 for ξ ≥ 0
0 for ξ < 0,

(2.3)

and the corresponding units are often called threshold gates. Sometimes when
more appropriate, bipolar values {−1, 1} (or even more general discrete
domains) can be substituted for binary ones {0, 1} without any substantial
change in the size of weights (Parberry, 1990, 1994).

Analog-state networks (for short, analog networks), on the other hand, ap-
proximate the Heaviside function defined in equation 2.3 with some contin-
uous sigmoidal activation function, for example, the saturated-linear func-
tion,

σ(ξ) =


1 for ξ ≥ 1
ξ for 0 < ξ < 1
0 for ξ ≤ 0,

(2.4)

or the standard (logistic) sigmoid,

σ(ξ) = 1
1 + e−ξ

, (2.5)

and the corresponding units are also called the sigmoidal gates. Hence, the
outputs from sigmoidal gates are generally real numbers, for example, yj ∈
[0, 1]. For the purpose of computing Boolean functions, the analog states yj
of output neurons j can be interpreted as binary outputs 0 or 1 with separation
ε > 0 if yj ≤ h − ε or yj ≥ h + ε, respectively, for some fixed real threshold
value h ∈ R.

Now the computational aspects of discrete-time perceptron networks
will be surveyed. We start with a single perceptron unit in section 2.1.
We focus on the feedforward and recurrent architectures in sections 2.2
and 2.3, respectively. Furthermore, we consider probabilistic computation
with discrete-time perceptron networks in section 2.4. Finally, the determin-
istic model of perceptron networks will be extended to continuous time in
section 2.5.

2.1 Single Perceptron. A single perceptron with n external binary in-
puts computes an n-variable Boolean function f : {0, 1}n −→ {0, 1}. It has
been known for a long time that not all Boolean functions can be imple-
mented by a single perceptron, the parity (XOR) function being the most

2732 J. Šı́ma and P. Orponen

prominent example requiring more complicated devices (Minsky & Papert,
1969). Boolean functions that are computable by perceptrons are also called
linear threshold functions. This important function class includes basic logi-
cal functions such as AND, OR, NOT, and is closed, under the negation of
both the input variables and/or the output value, for example. The num-
ber of Boolean threshold functions over n variables is approximately 2�(n2),
which is a very small fraction of all the 22n

Boolean functions. The upper
bound 2n2−n log2 n+O(n) was already given by Schläfli (1901; see also Cover,
1965), whereas the almost matching lower bound 2n2−n log2 n−O(n) has only
recently been achieved (Kahn, Komlós, & Szemerédi, 1995). These bounds
have been further improved by Irmatov (1996). Moreover, it is known to be a
co-NP-complete problem to decide whether a Boolean function given in dis-
junctive or conjunctive normal form is a linear threshold function (Hegedüs
& Megiddo, 1996).

Also, the descriptive complexity of linear threshold functions has been
studied. It is known that any Boolean linear threshold function can be im-
plemented by using only integer weights (Minsky & Papert, 1969) and that
the number of bits that are necessary (Håstad, 1994) and sufficient (Muroga,
Toda, & Takasu, 1961) for representing a single integer weight parameter in
an n-input perceptron is �(n log n).

2.2 Feedforward Networks. The architecture of a feedforward (multilay-
ered) neural network is an acyclic graph. Hence, units in a feedforward
network can be grouped in a unique minimal way into a sequence of d + 1
pairwise disjoint layers α0, . . . , αd ⊆ V so that neurons in any layer αt are
connected only to neurons in subsequent layers αu, u > t. Usually the first,
or input layer α0, consists of n external inputs and is not counted in the num-
ber of layers and in the network size. The last, or output layer αd, is composed
of m output neurons. The hidden units are contained in the intermediate
hidden layers α1, . . . , αd−1. The number of layers d excluding the input one is
called the network depth (e.g., two-layered networks have depth 2). Compu-
tation proceeds layer by layer from the input layer via the hidden layers up
to the output layer. Initially, the states of the input units are set to represent
an external input. In a general step, supposing all the outputs of neurons
have been determined up to a certain layer t < d, the states of neurons in
the next layer αt+1 are computed in parallel according to formulas 2.1 and
2.2. In the end, the states of output neurons αd represent the result of the
computation. In this way, the so-called network function f: {0, 1}n −→ {0, 1}m

is evaluated within a parallel time equal to the depth d of the network.
This model of feedforward neural networks coincides with the model of

Boolean threshold circuits (hereafter referred to as circuits), where the compu-
tational units are more commonly called (threshold) gates. The computa-
tional aspects of circuits have been intensively studied in the area of Boolean
circuit complexity (Savage, 1998; Vollmer, 1999; Wegener, 1987). A single cir-

General-Purpose Computation with Neural Networks 2733

cuit C with n inputs computes a vector (multi-output) Boolean function f of
a fixed number n of variables. For universal computation purposes, where
inputs are of arbitrary lengths, infinite families {Cn} of circuits, each Cn for
one input length n ≥ 0, are considered. Within this framework, the com-
plexity measures for circuits such as size S(n), depth D(n), and maximum
weight W(n) (see below) are expressed in terms of the input length n. For
example, in a polynomial-size family of circuits, the function S(n) is bounded
by a polynomial O(nc) (for some constant c); in a constant-depth family, the
circuits have constant D(n) = c.

By the above definition, infinite families of circuits can in general be
nonuniform in the sense of not possessing any finite description relating the
circuits for different input lengths to each other. Hence, such families can
compute functions that are not computable by any finitely described algo-
rithm (Turing machine), and thus possess “super-Turing” computational
capabilities trivially by virtue of their definition. To avoid such patholo-
gies, one often considers uniform circuit families, where it is required that a
fixed Turing machine exists that for each input length n ≥ 0 constructs the
appropriate circuit Cn from this family. Uniform circuit families are compu-
tationally equivalent to Turing machines.

2.2.1 Binary-State Feedforward Networks. In this section, the computa-
tional capabilities of binary-state feedforward neural networks that employ
the Heaviside activation function (see equation 2.3) will be inspected.

Computational Universality. The simplest case of this model—a single
perceptron—has already been considered in section 2.1, and it is clear that
threshold gates must be connected to bigger circuits to be able to implement
arbitrary Boolean functions. In this setting, for any vector Boolean function
f: {0, 1}n −→ {0, 1}m, a threshold circuit can be constructed using

�

(√
m2n

n − log m

)
(2.6)

gates and depth 4 (Lupanov, 1972). This construction is optimal, as there
are functions that provably require a matching number of gates even for
unbounded depth (Horne & Hush, 1994). The respective lower (Nechiporuk,
1964) and upper (Lupanov, 1961) bounds had actually been earlier estimated
for single-output networks and coincide with the size given in equation 2.6
for m = 1. In addition, Cover (1968) derived a corresponding lower bound
for the number of connections required in threshold circuits computing
arbitrary Boolean functions, which can be expressed as formula 2.6 squared.
These results imply that (nonuniform) infinite families of constant-depth
threshold circuits with exponentially many gates are capable of computing
any input-output mapping in constant parallel time.

2734 J. Šı́ma and P. Orponen

Polynomial Weights. In Boolean complexity theory, additional restric-
tions are imposed on circuits. For example, in threshold circuits, the integer
weight parameters are usually bounded by a polynomial O(nc) (for some
constant c) in terms of the input length n, which translates to O(log n) bits
for a single-weight representation. Clearly, such polynomial weights reduce
the computational power of threshold circuits since from section 2.1, we
know that exponential weights are generally required for general-purpose
perceptrons. However, it is known that unbounded weights in threshold
circuits can be replaced with polynomial ones by increasing the depth of a
circuit by at most one layer and imposing a polynomial overhead in its size
(Goldmann, Håstad, & Razborov, 1992). Goldmann and Karpinski (1998)
proposed an explicit construction of the underlying polynomial-weight cir-
cuit whose polynomial size increase is independent of the depth. Thus,
polynomial weights can be assumed in multilayered perceptron networks
if one extra computational step can be granted.

Another input convention assumes that each input Boolean variable is
presented to the circuit together with its negation. In this case, any threshold
circuit can be modified to contain only positive weights, while the size of the
circuit is at most doubled and its depth and size of weights stay the same
(Hajnal, Maass, Pudlák, Szegedy, & Turán, 1993).

Bounded Fan-In. Another restriction concerns the maximum fan-in of
gates in the circuit, that is, the maximum number of inputs to a single
unit. Circuits with bounded fan-in represent a model of conventional cir-
cuit technology in which the number of input wires to each gate is re-
stricted. Unbounded fan-in is a typical property of densely interconnected
neural networks, which thereby may gain more efficiency. For example,
any circuit of size s, depth d, and with maximum fan-in 2 can be imple-
mented by a threshold circuit with unbounded fan-in and O(s2) gates whose
depth is O(d/ log log s) (Chandra, Stockmeyer, & Vishkin, 1984). This yields
a speed-up factor of O(log log n) in polynomial-size feedforward neural
networks.

Polynomial Size and Constant Depth. The exponential size for the univer-
sal networks given in equation 2.6 is not practically realizable for large input
lengths. Actually, no naturally interesting function (e.g., from the complex-
ity class NP) has so far been decisively proved to require even a superlinear
number of gates in circuits of unbounded depth, but intuitively, functions
requiring large circuits abound (Wegener, 1987). Nevertheless, many im-
portant functions can be computed by threshold circuits of polynomial size
and constant depth, as will be seen below. In addition to their implementa-
tion interest, such results are also consonant with neurophysiological data
indicating that quite complicated functions are computed using only a few
layers of brain structure.

General-Purpose Computation with Neural Networks 2735

It is conventional to denote by TC0
d, d ≥ 1, the class of all functions

computable by polynomial-size and polynomial-weight threshold circuits
of depth d. (An alternative notation is L̂Td, where the unadorned notation
LTd refers to the corresponding unbounded-weight classes.) The complexity
class

TC0 =
⋃
d≥1

TC0
d (2.7)

then encompasses all the functions computable in constant parallel time by
such networks. Obviously,

TC0
1 ⊆ TC0

2 ⊆ TC0
3 ⊆ · · · (2.8)

is a possible TC0 hierarchy, which is depicted in Figure 2 together with
the corresponding probabilistic complexity classes RTC0

k discussed in sec-
tion 2.4.1. For example, class TC0

1, which contains all the functions com-
putable by single perceptrons with polynomial weights, is certainly a proper
subclass of TC0

2, that is,

TC0
1 � TC0

2, (2.9)

since, for example, the parity (XOR) function is not computable by a single
perceptron but is easily computed by a small depth-2 circuit.

A lesser-known result is the deeper separation

TC0
2 � TC0

3 (2.10)

TC RTC TC RTC TC

TC

0
1

0
2

0
3

0

XOR IP

0
1

0
2

Figure 2: A possible TC0 hierarchy with small depth separations.

2736 J. Šı́ma and P. Orponen

(Hajnal et al., 1993), which is also of great importance in practical applica-
tions of feedforward networks where one usually decides between the use
of two- or three-layered architectures. The witnessing example of a function
that belongs to TC0

3\TC0
2 is the Boolean inner product IP: {0, 1}2k −→ {0, 1}

(k ≥ 1), defined as

IP
(
x1, . . . , xk, x′

1, . . . , x′
k

) =
k⊕

i=1

AND
(
xi, x′

i
)
, (2.11)

where
⊕

stands for the k-bit parity function that has result 1 whenever the
number of 1’s among k input bits is odd. This result means that polynomial-
size and polynomial-weight three-layered perceptron networks are compu-
tationally more powerful than two-layered ones. However, the correspond-
ing separation for large-weight networks is still an open problem.

The separation of the TC0 hierarchy above depth 3 is unknown: this
represents one of the most important open problems in contemporary com-
plexity theory. It is conceivable that all problems in the complexity class P
(or even NP) could be solved by depth-3 threshold circuits with a linear
number of gates. In this case, the TC0 hierarchy would collapse at depth
3—that is, TC0 ⊆ TC0

3.

Symmetric Boolean Functions. An important class of functions are the
symmetric Boolean functions whose values are independent of the order of
input variables, that is, the value of a symmetric function depends on only
the number of 1’s in the input. A typical example is the parity function. It is
known that any symmetric function over n variables can be implemented
by a polynomial-weight threshold circuit of size O(

√
n) gates and depth 3

(Siu, Roychowdhury, & Kailath, 1991). In addition, this size is known to be
almost optimal; it cannot generally be reduced under �(

√
n/ log n) even if

any depth and unbounded weights are allowed; for depth 2, O’Neil (1971)
achieved even a matching lower bound �(

√
n).

This also illustrates the fact that threshold circuits are computationally
more powerful than so-called AND-OR circuits that employ only a basis of
logic gates consisting of the AND, OR, and NOT functions. In particular,
Furst, Saxe, and Sipser (1984) proved that the parity function cannot be com-
puted by polynomial-size constant-depth AND-OR circuits (corresponding
to a complexity class denoted AC0); a stronger exponential-size lower bound
was shown by Yao (1985) and later simplified by Håstad (1989). This has led
to a conjecture of a weaker TC0 hierarchy collapse, such that AC0 ⊆ TC0

3. A
partial result along this line is that AC0 functions are computable by thresh-
old circuits of depth 3 and subexponential size nlogc n, for some constant c
(Allender, 1989).

General-Purpose Computation with Neural Networks 2737

Arithmetic Functions. The computational power of polynomial-size and
polynomial-weight threshold circuits of small constant depth can further be
illustrated by their capability of computing the basic arithmetic functions
(Razborov, 1992; Roychowdhury et al., 1994; Siu et al., 1995a). For exam-
ple, two-layered perceptron networks of polynomial size and weights can
be constructed for comparing and computing the sum of two n-bit binary
numbers (Alon & Bruck, 1994) or even the multiple sum of n such num-
bers, as follows from the work by Siu and Roychowdhury (1994) by using
the result due to Goldmann and Karpinski (1998). Further, the product and
quotient of two n-bit binary numbers, powering to n (Siu & Roychowd-
hury, 1994), and sorting (Siu, Bruck, Kailath, & Hofmeister, 1993) of n such
numbers can be achieved with three-layered feedforward networks. It is
also known that the depth in these circuits (except for powering where
this issue is still unresolved) cannot be reduced when polynomial size and
weights are required; generally, this follows from the result due to Hajnal et
al. (1993). More explicit proofs for division were presented by Hofmeister
and Pudlák (1992) and Wegener (1993), while Siu et al. (1993) showed the
argument for sorting. Moreover, the multiple product of n n-bit binary num-
bers is performable in depth 4 (Siu & Roychowdhury, 1994). These depth
complexity results for polynomial-size and polynomial-weight threshold
circuits implementing the basic arithmetic functions are summarized in Ta-
ble 1, which was first presented by Razborov (1992) and later updated by
Hofmeister (1994). It thus follows that any analytic function can be approx-
imated to high precision by a perceptron network of polynomial size and
weights, and using only a small constant number of layers, given as input
an n-bit binary representation of its real argument (Reif & Tate, 1992).

Trade-Off Results. There are also trade-off results known among differ-
ent complexity measures, including size, depth, and connectivity in thresh-
old circuits. For example, one can achieve smaller polynomial-size feedfor-

Table 1: Number of Layers in Feedforward Networks of Polynomial Size and
Weights Computing Arithmetic Functions.

Function Lower Bound Upper Bound

Comparison 2 2
Addition 2 2
Multiple addition 2 2
Multiplication 3 3
Division 3 3
Powering 2 3
Sorting 3 3
Multiple multiplication 3 4

2738 J. Šı́ma and P. Orponen

ward networks with polynomial weights for some of the arithmetic tasks
discussed above if the permissible depth is increased by a few layers, for
example, a two-number multiplier implementation with O(n2) threshold
gates in depth 4 (Hofmeister, Hohberg, & Köhling, 1991), which reduces
the size O(n27 log n) of the corresponding optimal-depth implementation
by three-layered networks (Siu & Roychowdhury, 1994).

Further, general trade-off results are known for the parity function (Siu,
Roychowdhury, & Kailath, 1993), showing that for every d > 0, the n-
variable parity function can be computed by depth-O(d log n/ log f) thresh-
old circuits of size O(dn/f 1−1/d) with O(dnf 1/d) polynomial-weight edges
and fan-in bounded by f . The corresponding lower bound on the size of
any depth-(d+1), polynomial-weight threshold circuit computing the parity
function is �(n1/d/ log2 n). Another example of trade-offs between the depth
and the maximum fan-in is an implementation of any n-variable symmetric
Boolean function by a depth-O(d log n/ log f) threshold circuit of edge com-
plexity O(2−d/2nf 1/(2d−1)

√
log f), or O(n log n) if f 1/(2d−1)

√
log f = o(log n),

and with fan-in bounded by f , for every fixed integer d > 0 (Siu, Roychowd-
hury, & Kailath, 1995b).

Total Wire Length. So-called total wire length was introduced recently
(Legenstein & Maass, 2001) as a new complexity measure for feedforward
networks. This measure tries to take into account some significant VLSI
implementation issues in, for example, networks for efficient sensory pro-
cessing where the number of parallel inputs is quite large. One possible
model here assumes that the gates are placed at the intersection points of
a two-dimensional grid, with unit distance between adjacent intersection
points. The gates can be arbitrarily connected in the plane by wires, which
may cross. The quantity of interest is then the sum of wire lengths in the
circuit, and the minimal value of this taken over all possible placements of
the gates defines the total wire length of the circuit. General k-input (thresh-
old) gates are here modeled as microcircuits with unit evaluation time, each
occupying a set of k intersection points of the grid and connected by an
undirected wire in some arbitrary fashion.

The architectures of feedforward networks that are efficient (e.g., almost
linear) in terms of the total wire length must substantially differ from com-
monly designed circuits, since complete connectivity between two linear-
size two-dimensional layers requires a total wire length of �(n2.5). For ex-
ample, a Boolean function Pk

LR: {0, 1}2k −→ {0, 1} (k ≥ 2) defined as

Pk
LR(x1, . . . , xk, x′

1, . . . , x′
k) = 1 iff (∃ 1 ≤ i < j ≤ k) xi = x′

j = 1, (2.12)

representing a simple global pattern detection prototype, can be computed
by a two-layered network with 2 log2 k + 1 threshold gates and total wire
length O(k log k) (Legenstein & Maass, 2001).

General-Purpose Computation with Neural Networks 2739

2.2.2 Analog-State Feedforward Networks. The computational capabili-
ties of binary-state feedforward neural networks will now be compared
to those of analog units employing, for example, the standard sigmoid ac-
tivation function defined in equation 2.5 (although the following results
are valid for much more general classes of sigmoidal gates). This is prob-
ably the most common computational model used in practical neural net-
works, for example, in backpropagation learning (Rumelhart, Hinton, &
Williams, 1986; Werbos, 1974). Obviously, Boolean threshold circuits can be
implemented by analog feedforward networks of the same architecture by
increasing the absolute values of weights when a more precise approxima-
tion of the function defined in equation 2.3 by the one defined in formula 2.5
is needed (Maass, Schnitger, & Sontag, 1991).

Constant Size. It appears that using real-valued states may bring more
efficiency in small analog networks of constant size. For example, Boolean
functions Fk: {0, 1}2k −→ {0, 1} (k ≥ 1) defined as

Fk(x1, . . . , xk, x′
1, . . . , x′

k)

= Majority(x1, . . . , xk) ⊕ Majority(x′
1, . . . , x′

k) (2.13)

where

Majority(x1, . . . , xk) = 1 iff
k∑

i=1

xi ≥ k
2
, (2.14)

and ⊕ stands for the XOR function, can be computed by two-layered net-
works having only five analog units and bounded weights, with separation
ε = �(k−2) (or ε = �(1) when polynomial weights are allowed). However,
Fk cannot be implemented by any depth-2 threshold circuit with a constant
number of binary-output gates, even with unbounded weights (Maass et
al., 1991). This confirms that analog feedforward networks are somewhat
more powerful computational devices than their binary counterparts.

A similar but depth-independent result was shown for the unary squaring
functions SQk: {0, 1}k2+k −→ {0, 1} (k ≥ 1), defined as

SQk(x1, . . . , xk, z1, . . . , zk2) = 1 iff

(
k∑

i=1

xi

)2

≥
k2∑

i=1

zi. (2.15)

These functions can be computed by only two analog units having polyno-
mial weights, with separation ε = �(1), while any Boolean threshold circuit
that computes SQk requires size �(log k) gates even for unbounded depth
and weights (DasGupta & Schnitger, 1996). Thus, the size of feedforward
networks can sometimes be reduced by a logarithmic factor when threshold
gates are replaced by sigmoidal ones.

2740 J. Šı́ma and P. Orponen

Polynomial Size. The complexity classes TC0
d can be generalized to their

analog versions TC0
d(σ) (d ≥ 1) containing all the functions computable by

polynomial-size and polynomial-weight, analog-state feedforward neural
networks with d layers and separation ε = �(1) employing the activation
function defined in equation 2.5. It turns out that at this level of considera-
tion, the analog and binary classes coincide, that is,

TC0
d(σ) = TC0

d, (2.16)

for every d ≥ 1 (Maass et al., 1991). In other words, there is no substan-
tial difference in the computational power of polynomial-size analog- and
binary-state feedforward networks of the same fixed depth, and in par-
ticular three-layer networks maintain their computational advantage over
two-layer networks even in this case. This computational equivalence of
polynomial-size analog and binary networks remains valid even for un-
bounded depth and exponential weights, provided that the depth of the
(simulating) binary threshold circuits is allowed to increase by a constant
factor (DasGupta & Schnitger, 1993).

Moreover, the functions computable with arbitrary small separation ε

by analog feedforward networks of constant depth and polynomial size,
having arbitrary real weights and employing the saturated-linear activation
function defined in equation 2.4, have been shown to belong to the class
TC0 (Maass, 1997a).

Finally, the trade-off lower bounds concerning the n-variable parity func-
tion have also been generalized for analog feedforward networks with poly-
nomial weights, d + 1 layers, and separation ε = �(n−c) (for some constant
c > 0), to the size of �(dn1/d−δ) neurons for any fixed δ > 0 (Siu, Roychowd-
hury, & Kailath, 1994), which is almost optimal since as we already know,
O(dn1/d) units are sufficient.

2.3 Recurrent Neural Networks. The architecture underlying recurrent
(cyclic) neural networks is in general a cyclic graph, and hence computations
on these devices may not terminate in a bounded number of steps. In this
context, special attention has been paid to symmetric or Hopfield networks
whose weights satisfy

w(i, j) = w(j, i) (2.17)

for every i, j ∈ V, and consequently the underlying architecture is an undi-
rected graph.

In order to specify the computational dynamics of cyclic networks com-
pletely, one needs to add some conventions. For example, various computa-
tional modes are possible for recurrent networks, depending on the choice
of sets αt of updated units in equation 2.2. A recurrent network is said to
operate in sequential mode if at every time instant t ≥ 1, at most one unit up-
dates its state according to formula 2.2, that is, |αt| ≤ 1. In order to formally

General-Purpose Computation with Neural Networks 2741

avoid long, constant, intermediate computations when only those units are
updated that effectively do not change their outputs, the notion of a produc-
tive computation of length t� discrete updates is introduced, meaning that
for every 1 ≤ t ≤ t�, there exists a unit j ∈ αt updated at time t such that
y(t)

j �= y(t−1)

j . A productive computation of a recurrent network terminates,

converges, or reaches a stable state y(t�) at time t� ≥ 0 if y(t�) = y(t�+k) for all
k ≥ 1 (or for analog networks, at least ‖y(t�) − y(t�+k)‖ ≤ ε holds for some
small constant 0 ≤ ε < 1). Usually, some systematic choice of αt is employed,
for example, ατ s+j = {j} for j = 1, . . . , s where a discrete macroscopic time
τ = 0, 1, 2, . . . is introduced during which all the units in the network are
updated (in general, some of them may update their outputs even several
times).

For a parallel mode, in contrast, there exists a time instant t ≥ 1 when
at least two neurons recompute their new outputs simultaneously, that is,
with |αt| ≥ 2. Typically, a fully parallel mode is considered in which all the
units are updated at each time instant, that is, αt = V for every t ≥ 1.

In asynchronous computations, the choice of the update set αt is random,
so each unit in the network may in fact decide independently at which time
instant its state is updated. In contrast, in synchronous computations, the sets
αt are predestined deterministically for each time instant t. The seemingly
less powerful asynchronous models have been shown for binary states to
have the same computational power as their systematic synchronous coun-
terparts, at the cost of only a small overhead in the size and time of the
(simulating) asynchronous network for both sequential and parallel modes
and even for symmetric networks (Orponen, 1997b). Hence, a synchronous
model will mostly be assumed in the sequel.

For the purpose of universal computations over inputs of arbitrary
lengths, different input protocols have been introduced. Thus, in the fol-
lowing, both finite networks with a finite number of units (see section 2.3.1)
and infinite families of cyclic networks, one for each input length (see sec-
tion 2.3.4), are considered. Particularly for the finite recurrent networks, we
distinguish between the asymmetric and symmetric weights in sections 2.3.2
and 2.3.3, respectively.

2.3.1 Finite Neural Language Acceptors. The computational power of re-
current networks has been studied analogously to the traditional models of
computations so that the networks are exploited as acceptors of languages
L ⊆ {0, 1}� = ∪n≥0{0, 1}n over the binary alphabet. In this context, a language
L corresponds to a decision problem in the sense that L is composed of those
input instances for which the answer to the problem is yes. For example, the
problem of deciding whether a given Boolean formula is satisfiable is asso-
ciated with language SAT containing all satisfiable Boolean formulas. Recall
that a language L ⊆ {0, 1}� with characteristic function cL: {0, 1}� −→ {0, 1}
(i.e., a word x ∈ {0, 1}� belongs to language L iff cL(x) = 1) is accepted by a

2742 J. Šı́ma and P. Orponen

computational model M (i.e., the corresponding decision problem is solv-
able by M) if M partially implements cL in the sense that M may possibly
not terminate for inputs x �∈ L. Furthermore, a language L is recognized by
M if cL is totally implemented by M.

In the case of finite networks, or so-called neural acceptors working under
fully parallel updates, an input word (string) x = x1 · · · xn ∈ {0, 1}n of arbi-
trary length n ≥ 0 is sequentially presented to the network bit by bit via an
input neuron in ∈ V. The state of this unit is externally set to the respective
input bits at prescribed time instants, regardless of any influence from the
remaining units in the network. The output neuron out ∈ V subsequently
signals whether the input word x belongs to the underlying language L.

Especially in the case of binary-state neural acceptors (for short, binary
neural acceptors), the input bits x1, . . . , xn are sequentially presented, each
only once in a given period of p ≥ 1 discrete steps, that is,

y(p(i−1))

in = xi (2.18)

for i = 1, . . . , n, and the output neuron recognizes each prefix of the input
word on-line, possibly with some time delay k ≥ 1, that is,

y(p(i−1)+k+1)

out =
{

1 if x1 . . . xi ∈ L
0 if x1 . . . xi �∈ L.

(2.19)

It has been shown for binary networks that the constant time delay k can
always be reduced to 1 with only a linear increase in network size (Šı́ma &
Wiedermann, 1998).

In the case of analog-state networks, usually p = 1, and an additional
validation input unit ival ∈ V is employed to indicate the end of an input
word:

y(t)
ival =

{
1 for t = 0, . . . , n − 1
0 for t ≥ n.

(2.20)

Correspondingly, the output neuron after some time T(n) ≥ n, which de-
pends on the input length n, provides the result of recognition,

y(t)
out =

{
1 if x ∈ L and t = T(n)

0 otherwise,
(2.21)

which is again announced by a validation output unit oval ∈ V,

y(t)
oval =

{
1 for t = T(n)

0 for t �= T(n).
(2.22)

General-Purpose Computation with Neural Networks 2743

Table 2: Computational Power of Deterministic and Probabilistic Discrete-Time
Analog Neural Networks with the Saturated-Linear Activation Function.

Power of Deterministic Networks Power of Probabilistic Networks

Probability
Weight Unbounded Polynomial Value Unbounded Polynomial
Domain Time Time Domain Time Time

Integer Regular Regular Real Regular Regular
Rational Recursive P Rational Recursive BPP

Real Arbitrary Pref-BPP/log
Real Arbitrary P/poly Real Arbitrary P/poly

In analog networks, an alternative input protocol is also possible (Siegel-
mann & Sontag, 1995) by encoding an input word x of arbitrary length n
into a real initial state of the input neuron, for example, as

y(0)

in =
n∑

i=1

2xi + 1
4i . (2.23)

2.3.2 Finite Asymmetric Recurrent Networks. The computational power
of finite recurrent neural networks with in general asymmetric weights em-
ploying the saturated-linear activation function defined in equation 2.4 de-
pends on the descriptive complexity of their weights. The respective results
are summarized in Table 2 as presented by Siegelmann (1994), including
the comparison with the probabilistic recurrent networks discussed in sec-
tion 2.4.2.

Binary-State Networks. For integer weights, these models coincide with
finite binary-state recurrent networks employing the Heaviside activation
function defined in equation 2.3. Since binary neural acceptors composed
of threshold gates have only a finite number of global network states, their
computational power corresponds to that of finite automata (Kleene, 1956;
cf. Minsky, 1967), and they can be called threshold automata for recognizing
regular languages. Finer descriptive measures have been studied (Alon,
Dewdney, & Ott, 1991) to find out how efficient such neural implementations
of finite automata can be. The results concerning the descriptive complexity
of threshold automata are summarized in Table 3.

In particular, it has been shown that any deterministic finite automaton
with q states can be simulated by a threshold automaton of size O(

√
q)

and a constant period p = 4 of presenting the input bits (Horne & Hush,
1996; Indyk, 1995). Furthermore, in the worst case, the size �(

√
q) of the

simulating automaton cannot be reduced if either the period is at most
p = O(log q) (Horne & Hush, 1996) or polynomial weights are assumed
(Indyk, 1995).

2744 J. Šı́ma and P. Orponen

Table 3: Optimal Size of Threshold Automaton Implementation.

Implementation of Threshold Automaton

Description of Period of Presenting
Regular Language Size the Input Bits

q-state deterministic �(
√

q) 4
finite automaton

Regular expression �(
) 1
of length

The size of threshold automata can also be compared to the length of reg-
ular expressions, which are known to have higher descriptional efficiency
than deterministic finite automata. In this case, any regular language de-
scribed by a regular expression of length
 can be recognized by a threshold
automaton of optimal size �(
) (Šı́ma & Wiedermann, 1998). In some cases,
linear-size threshold automata can be constructed for regular languages that
provably require regular expressions of exponential length, thus confirming
the powerful descriptive capabilities of this model.

Analog Networks with Rational Weights. Finite analog recurrent networks
with rational weights employing the saturated-linear activation function
(see equation 2.4) can simulate arbitrary Turing machines step by step
(Siegelmann & Sontag, 1995). By implementing a universal Turing machine
using this technique, it follows that any function computable by a Turing
machine in time T(n) can be computed by a fixed analog recurrent network
with only 886 units in time O(T(n)). The size of this universal network can be
reduced further even to 25 neurons, at the cost of increasing the simulation
time to O(n2T(n)) (Indyk, 1995). It follows that polynomial-time computa-
tions of such finite-size networks correspond to the well-known complexity
class P. In addition, Turing universality of a fixed analog network has been
shown for more general classes of activation functions (Koiran, 1996), in-
cluding the standard sigmoid defined in equation 2.5 (Kilian & Siegelmann,
1996), although in this case, the known simulations require exponential time
overhead per each computational step.

Analog Networks with Arbitrary Real Weights. Finite analog recurrent net-
works with arbitrary real weights employing the saturated-linear activation
function (see equation 2.4) can even derive “super-Turing” computational
capabilities from the unbounded amount of information encodable in ar-
bitrarily precise real numbers. In particular, the computational power of
such analog neural acceptors working within time T(n) is exactly the same
as that of infinite (nonuniform) families of threshold circuits whose size is
polynomially related to T(n) (Siegelmann & Sontag, 1994). This means that

General-Purpose Computation with Neural Networks 2745

polynomial-time computations by such networks correspond to the nonuni-
form complexity class P/poly. (See the appendix or Balcázar et al., 1995, for
a definition of this class.) Furthermore, within exponential time, any input-
output mapping can be computed by such a network with appropriately
coded weights.

A proper hierarchy of nonuniform complexity classes between P and
P/poly has been established for polynomial-time computations of finite
analog recurrent networks with increasing Kolmogorov complexity (infor-
mation content) of their real weights (Balcázar, Gavaldà, & Siegelmann,
1997). For example, setting a logarithmic bound on the resource-bounded
Kolmogorov complexity of the real weights, the languages accepted cor-
respond to the complexity class Pref-P/log, as defined in the appendix
or Balcázar and Hermo (1998). By allowing only recursive (computable)
weights, the polynomial-time computations of analog networks can rec-
ognize exactly the languages from the recursive part of P/poly, which is
known to be strictly stronger than P. This means that this model exhibits a
speed-up without the use of nonrecursive weights.

Analog Noise. All the preceding results concerning analog computations
in finite recurrent networks assume arbitrary-precision real number calcula-
tions. However, subjecting the output of each analog neuron to any amount
of analog noise reduces the computational power of such networks to at
most that of threshold automata (Casey, 1996; Maass & Orponen, 1998). In
fact, for any common noise distribution that is nonzero on a sufficiently
large part of the state space, such networks are unable to recognize even ar-
bitrary regular languages (Maass & Sontag, 1999; Siegelmann, Roitershtein,
& Ben-Hur, 2000). More precisely, they can recognize only so-called definite
languages (Rabin, 1963; see the appendix for a definition), but they do that
with any reliability that is desired. If the noise level is bounded, then all
regular languages can be recognized with perfect reliability, and the upper
bounds on the size of neural acceptors presented in Table 3 remain valid
for a general class of activation functions σ required only to have finite and
different limits at plus and minus infinity:

lim
ξ→−∞

σ(ξ) = a �= b = lim
ξ→∞

σ(ξ) where |a|, |b| < ∞ (2.24)

(Maass & Orponen, 1998; Siegelmann, 1996; Šı́ma, 1997).

Halting Problem. The complexity of various decision problems related
to finite recurrent networks has also been studied. For example, the problem
of deciding whether there exists a stable state in a given binary-state net-
work is known to be NP-complete (Alon, 1985; Godbeer, Lipscomb, & Luby,
1988; Lipscomb, 1987; Porat, 1989). Furthermore, the halting problem of de-
ciding whether a recurrent network terminates its computation over a given

2746 J. Šı́ma and P. Orponen

input has been shown to be PSPACE-complete for binary networks (Floréen
& Orponen, 1994; Lepley & Miller, 1983; Porat, 1989). The problem is fully
algorithmically undecidable for analog networks with rational weights and
only 25 units, as follows from the computational universality of such net-
works (Indyk, 1995). Note also that the computations of recurrent networks
of size s that terminate within time t� can be “unwound” into circuits of size
st� and depth t� (Savage, 1972), which, for example, implies the computa-
tional equivalence of feedforward and convergent recurrent networks up to
a factor of t� in size (Goldschlager & Parberry, 1986).

2.3.3 Finite Symmetric Recurrent Networks

Convergence Results. The well-known fundamental property of sym-
metric (Hopfield) networks is that their dynamics are constrained by a
Lyapunov, or energy function E, which is a bounded function defined on
their state space whose value decreases along any productive computation
path. It follows from the existence of such a function that the network state
converges toward some stable state corresponding to a local minimum of
E. In binary-state symmetric nets, sequential computations starting from
any initial state terminate provided that w(j, j) ≥ 0 for every j ∈ V (such
networks are sometimes called semisimple) (Hopfield, 1982). This result can
be proved by using, for example, the Lyapunov function

E(y) = −
s∑

j=1

yj

wj0 + 1
2

s∑
i=1; i�=j

wjiyi + wjjyj

 . (2.25)

Parallel computations of binary Hopfield nets can be shown either to
reach a stable state, for example, when the quadratic form introduced in
equation 2.25 is negative definite (Goles, 1987; Goles-Chacc, Fogelman-
Soulié, & Pellegrin, 1985), or eventually alternate between two different
states (Bruck & Goodman, 1988; Goles & Olivos 1981a; Goles, 1987; Poljak
& Sůra, 1983; Tchuente, 1986). These convergence results were further gener-
alized for analog symmetric networks with activation function σ , which can
be proved under mild hypotheses to converge to a fixed point or to a limit
cycle of length at most two for parallel updates (Fogelman-Soulié, Mejia,
Goles, & Martı́nez, 1989; Koiran, 1994) by applying a Lyapunov function of
the form 2.25 extended with an additive term (cf. equation 2.36),

s∑
j=1

∫ yj

0
σ−1(y)dy. (2.26)

Convergence Time. The convergence time in Hopfield nets, that is, the
number of discrete-time updates before the network converges (with a given

General-Purpose Computation with Neural Networks 2747

precision for analog states), has also been studied. In symmetric networks
of s binary neurons, a trivial 2s upper bound holds since there are only 2s

different network states. In the worst case, the convergence time of Hopfield
nets may indeed be exponential for both sequential (Haken & Luby, 1988)
and parallel (Goles & Olivos, 1981b) modes. This is witnessed, for example,
by symmetric, sequential, or parallel implementations of a binary counter that
traverses most of the network state space before it converges in time �(2s/8)

asynchronous sequential updates (Haken, 1989) or �(2s/3) fully parallel
steps (Goles & Martı́nez, 1989, 1990). On the other hand, a very fast average-
case convergence of only O(log log s) parallel update steps can be shown
for binary Hopfield nets under reasonable assumptions (Komlós & Paturi,
1988).

However, the previous bounds do not take into account the size of the
weights. An upper bound of O(W) on the convergence time, where

W =
∑
j,i∈V

|wji| (2.27)

is the total weight of the network, follows from the characteristics of the
energy function defined in equation 2.25 for both binary sequential (Fogel-
man, Goles, & Weisbuch, 1983; Goles, 1985; Goles-Chacc et al., 1985; Goles &
Martı́nez, 1990) and parallel (Goles, 1987) Hopfield nets. For integer weights,
this upper bound can be expressed more precisely as∑s

j=1
∑s

i=1; i�=j |wji| + ∑s
j=1 |wj0 + ej|

2(1 + minj∈V wjj)
(2.28)

for sequential mode, or

1
2

 s∑
j=1

s∑
i=1

|wji| + 3
s∑

j=1

|wj0 + ej| − s

 (2.29)

for parallel updates where

ej =
{

1 if
∑s

i=0 wji is even
0 otherwise (2.30)

(Floréen, 1991). For more precise upper bounds with real weights, see Fo-
gelman et al. (1983) and Goles-Chacc et al. (1985). These bounds yield
polynomial-time convergence for binary symmetric networks with poly-
nomial weights.

Moreover, the results may be translated into convergence time bounds
with respect to the full descriptional complexity of Hopfield nets, that is,
the number of bits in their representations of weights (Šı́ma, Orponen, &

2748 J. Šı́ma and P. Orponen

Antti-Poika, 2000). For binary symmetric networks described with M bits,
convergence-time lower and upper bounds of 2�(M1/3) and 2O(M1/2), respec-
tively, have been shown. This can be compared to the convergence-time
result for analog Hopfield nets in which the precision of real weight param-
eters plays an important role. In particular, a corresponding lower bound
of 2�(g(M)) updates has been obtained, where g(M) is an arbitrary contin-
uous function such that g(M) = �(M2/3), g(M) = o(M), and M/g(M) is
increasing, which provides an example of the analog Hopfield net whose
computation terminates later than that of any other binary symmetric net-
work of the same representation size.

Stable States. As the Hopfield networks were originally proposed for use
as associative memories, it is of interest to determine the number of their
stable states, corresponding to the stored patterns. It has been shown that
there are on the average asymptotically 1.05 × 20.2874s many stable states
in a binary Hopfield net of size s whose feedbacks and biases are zero
(wjj = wj0 = 0 for j ∈ V) and whose other weights are independent and iden-
tically distributed zero-mean gaussian random variables (McEliece, Posner,
Rodemich, & Venkatesh, 1987; Tanaka & Edwards, 1980). For a particular
binary symmetric network, however, the issue of deciding whether there
are, for example, at least one (when negative feedback weights are allowed)
(Floréen & Orponen, 1989), two (Lipscomb, 1987), or three (Floréen & Orpo-
nen, 1989) stable states is NP-complete. In fact, the problem of determining
the exact number of stable states for a given binary Hopfield net is #P-
complete (Floréen & Orponen, 1989; Lipscomb, 1987). (See the appendix or
Garey & Johnson, 1979, for a definition of the complexity class #P.)

Also, the problem of finding a stable state in a binary symmetric net-
work is known to be complete (by so-called logspace reductions) for the
complexity class of polynomial-time local search problems PLS (Schäffer
& Yannakakis, 1991) (see the appendix or Johnson, Papadimitriou, & Yan-
nakakis, 1988, for a precise definition of this class. Furthermore, the problem
of computing the attraction radius of a stable state, that is, how many binary
outputs may be flipped in a given stable network state so that the respective
sequential or fully parallel Hopfield net still converges back to it, is NP-hard
(Floréen & Orponen, 1993). There is even no polynomial-time algorithm that
approximates the attraction radius in a sequential or fully parallel binary
Hopfield net to within a factor of s1−ε for any fixed 0 < ε ≤ 1, unless
P = NP.

Minimum Energy Problem. Hopfield networks have also been applied
to the fast approximate solution of combinatorial optimization problems
(Hopfield & Tank, 1985). The cost function of an optimization problem is
here encoded into the Lyapunov function of a Hopfield network, which is
then minimized in the course of computation. Hence, the MIN ENERGY

General-Purpose Computation with Neural Networks 2749

problem of finding a network state with minimal energy or energy less than
a prescribed value for a given Hopfield net is of special interest. However,
this problem is in general NP-complete for both binary (Barahona, 1982;
Bertoni & Campadelli, 1994) and analog (Šı́ma et al., 2000) Hopfield nets.

Nevertheless, for binary Hopfield nets whose architectures are planar lat-
tices (Bieche, Maynard, Rammal, & Uhry, 1980) or planar graphs (Barahona,
1982) this issue is polynomial-time solvable. Furthermore, a polynomial-
time approximate algorithm that solves the MIN ENERGY problem to within
an absolute error of less than 0.243W in binary Hopfield nets of weight W
can be implemented (Šı́ma et al., 2000), based on a high-performance ap-
proximate algorithm for the MAX CUT problem (Goemans & Williamson,
1995; Mahajan & Ramesh, 1999). For W = O(s2), for example, for symmetric
networks with s binary neurons and constant weights, this result matches
the lower bound of �(s2−ε) (Bertoni & Campadelli, 1994), which cannot be
guaranteed by any approximate polynomial-time MIN ENERGY algorithm
for every ε > 0, unless P = NP. In addition, the MIN ENERGY problem
can be approximately solved to within absolute error O(s/ log s) in polyno-
mial time for special binary Hopfield nets whose architectures are two-level
grids (Bertoni, Campadelli, Gangai, & Posenato, 1997).

Computational Power. Finally, we survey some results on the computa-
tional power of Hopfield nets (cf. section 2.3.2 for corresponding results
for asymmetric networks). In the case of binary-state neurons, it turns out
that symmetric networks are actually capable of simulating arbitrary con-
vergent asymmetric networks with only a linear overhead in time and size
(Šı́ma et al., 2000). This linear-overhead simulation is an improvement of the
original quadratic-size construction (Orponen, 1996). This tight converse to
Hopfield’s convergence theorem (Hopfield, 1982) thus shows that in binary
networks, it holds in a quite strong sense that

convergence ≡ symmetry,

that is, not only do all binary symmetric network converge, but all con-
vergent computations, including those with asymmetric weights, can be
implemented efficiently in symmetric Hopfield nets. This had previously
been known for acyclic threshold circuits that can be implemented by us-
ing only symmetric interconnections with the same architecture (Parberry,
1990).

However, in the case of finite binary neural acceptors for arbitrary-length
input sequences, symmetric devices are properly weaker than finite au-
tomata (Hartley & Szu, 1987) and recognize a strict subclass of the regular
languages called the Hopfield languages (Šı́ma & Wiedermann, 1998). More
precisely, Šı́ma (1995) proved that a regular language L ⊆ {0, 1}� is a Hop-
field language iff for every prefix and suffix v1, v2 ∈ {0, 1}� and for any
two-bit string x ∈ {0, 1}2, there exists k0 such that either v1xkv2 ∈ L for every
k ≥ k0 or v1xkv2 �∈ L for every k ≥ k0.

2750 J. Šı́ma and P. Orponen

Also, analog symmetric neural acceptors are able to faithfully recognize
Hopfield languages (Šı́ma, 1997), which provides a lower bound on the
computational power of finite analog Hopfield nets. Because of the con-
vergence property (Koiran, 1994), finite analog Hopfield nets are unlikely
to simulate arbitrary Turing machines. On the other hand, if fully parallel
analog symmetric networks are augmented with an external oscillator that
produces some infinite binary sequence containing infinitely many three-bit
substrings of the form bxb̄ ∈ {0, 1}3, where b �= b̄, then such devices can be
exploited for simulating any given analog asymmetric recurrent network
within linear size and the same Kolmogorov complexity of real weights
(Šı́ma et al., 2000). This implies that the results on the computational power
of deterministic asymmetric networks summarized in Table 2 are still valid
for Hopfield nets with an external oscillator of certain type. Especially for
rational weights, these devices are Turing universal. Thus, this provides
a full characterization of the computational power of finite analog-state
discrete-time networks with rational weights in the form of

Turing universality ≡ asymmetric network

≡ symmetric network + oscillator,

together with the necessary and sufficient condition that the external oscil-
lator needs to satisfy in order to qualify for this equivalence.

2.3.4 Infinite Families of Binary Recurrent Networks. In section 2.3.1, we
discussed finite neural acceptors and their input protocol of entering the
input sequentially bit by bit. Another approach to treating inputs of arbitrary
lengths, analogous to the input convention used for feedforward networks
in section 2.2, is to have an infinite family {Nn} of binary-state recurrent
networks, one Nn for each input length n ≥ 0. Thus, for n-bit binary inputs
x ∈ {0, 1}n, a network Nn is used whose n input neurons are initialized
accordingly in the initial network state. For recognizing a language L ⊆
{0, 1}�, the respective network Nn is employed for an input word x ∈ {0, 1}n,
and after it converges in time t�, its single output neuron out is read, which
indicates whether x belongs to L, that is,

y(t�)
out = 1 iff x ∈ L. (2.31)

Within this context the size S(n) can be defined as the number of units in Nn.
It is known that polynomial-size families of binary recurrent networks

recognize exactly the languages in the complexity class PSPACE/poly (Lep-
ley & Miller, 1983; see the appendix or Balcázar et al., 1995, for a definition).
The equivalence between convergent asymmetric and symmetric networks
gives the same result for polynomial-size families of Hopfield nets; that is,
they also recognize exactly PSPACE/poly (Orponen, 1996). In addition, if

General-Purpose Computation with Neural Networks 2751

Table 4: The Computational Power of Polynomial-Size Families of Binary Re-
current Networks.

Weights Unbounded Polynomial

Asymmetric PSPACE/poly PSPACE/poly
Symmetric PSPACE/poly P/poly

the Hopfield nets in these families are restricted to have polynomial sym-
metric weights (with respect to the input length), then their computational
power reduces to P/poly. The dependence of computational power on the
type of weights for polynomial-size families of binary networks is summa-
rized in Table 4.

2.4 Probabilistic Networks. The computational properties of various
stochastic versions of discrete-time perceptron networks have also been
studied. A reference model of probabilistic (stochastic) networks can be de-
fined by augmenting the respective deterministic model with additional
random binary input units i ∈ �, whose states in time represent indepen-
dent and identically distributed binary sequences, that is, for all discrete
time instants t ≥ 0, the probability of y(t)

i = 1 is given by a real value pi

(0 ≤ pi ≤ 1), and consequently y(t)
i = 0 with probability 1 − pi (i ∈ �). This

model of probabilistic networks can usually be related by polynomial (in the
model parameters) mutual simulations to other types of stochastic neural
networks, such as those with unreliable computing states and connecting
units (Siegelmann, 1999b; von Neumann, 1956), Boltzmann machines (Ack-
ley, Hinton, & Sejnowski, 1985; Parberry, 1994; Parberry & Schnitger, 1989),
and others.

Probabilistic networks can also be exploited for language recognition
in a similar way as their deterministic counterparts in order to analyze
their computational power. Thus, a language L ⊆ {0, 1}� is ε-recognized by
a network when its error probability is at most ε, 0 ≤ ε < 1/2, that is, the
probability that the network outputs 1 for input x ∈ {0, 1}� is at least 1 − ε

if x ∈ L and at most ε for x �∈ L. Such symmetry in the probability of errors
in accepting and rejecting an input can always be achieved by, for example,
adding a few random input units (Hajnal et al., 1993).

We shall divide the analysis of probabilistic networks into section 2.4.1
for feedforward and section 2.4.2 for recurrent architectures.

2.4.1 Probabilistic Feedforward Networks. For simplicity, consider first
probabilistic binary-state feedforward networks (probabilistic threshold cir-
cuits). Language recognition with families of probabilistic single-output
threshold circuits having a high probability of error (e.g., ε = 0.4) is not
very reliable; however, the error can be reduced arbitrarily by repeating

2752 J. Šı́ma and P. Orponen

the computation in parallel. In particular, any language that is ε-recognized
(0 < ε < 1/2) by probabilistic feedforward networks of size s units and
d layers can be λ-recognized by depth-(d + 1) stochastic threshold circuits
with �2 log4ε(1−ε) λ�s+1 gates for any 0 < λ < ε. Therefore, any probabilistic
binary feedforward network can be replaced with a reasonably large equiv-
alent deterministic threshold circuit. Indeed, Parberry and Schnitger (1989)
proved that for any language L ⊆ {0, 1}n that is ε-recognized (1/4 < ε < 1/2)
by a probabilistic feedforward network of size s units, n inputs, and d layers,
there exists a depth-(d + 1) (deterministic) threshold circuit of size⌈

8ε ln 2
(1 − 2ε)2 + 1

⌉
ns + 1 (2.32)

recognizing L.
Also, the complexity class TC0

d (d ≥ 1) associated with the families of
threshold circuits has been generalized to its probabilistic version RTC0

d,
which is the class of all languages ε(n)-recognized by families of polynomial-
size and polynomial-weight probabilistic threshold circuits of depth d with
an error given by a real sequence of probabilities

ε(n) = 1
2

− 1
nO(1)

, (2.33)

one for each input length n ≥ 0. For example, the language IP, which con-
sists of all the input instances for which the Boolean inner product defined
in equation 2.11 has value 1, has been shown to belong to RTC0

2 (Hajnal
et al., 1993), thus confirming that probabilistic feedforward networks may
be more efficient than their deterministic counterparts since IP �∈ TC0

2 (cf.
section 2.2.1). On the other hand, at least for nonuniform circuit families,
at most one layer can be saved by introducing stochasticity in threshold
circuits, since in this case it holds that

RTC0
d ⊆ TC0

d+1 (2.34)

for every d ≥ 1 (Hajnal et al., 1993), as depicted in Figure 2.

2.4.2 Probabilistic Recurrent Networks. Such a computational analysis
has also been generalized to finite probabilistic recurrent networks with the
saturated-linear activation function defined in equation 2.4 (Siegelmann,
1999b). The results are summarized and compared to the corresponding
deterministic models in Table 2. Thus, for integer weights, the results co-
incide with those for deterministic networks (see section 2.3.2), that is, the
binary-state probabilistic networks ε-recognize the regular languages.

Further, analog-state probabilistic networks with rational weights can
ε-recognize in polynomial time exactly the languages from the nonuniform

General-Purpose Computation with Neural Networks 2753

complexity class Pref-BPP/log, corresponding to polynomial-time bound-
ed-error probabilistic Turing machines with so-called prefix-closed loga-
rithmic-length advice functions. (See the appendix or Balcázar et al., 1995;
or Balcázar & Hermo, 1998, for precise definitions.) The weak super-Turing
computational capability comes here from the probabilities pi associated
with random input units i ∈ �, which are allowed to be arbitrary real num-
bers. If one restricts these probabilities to be rational numbers, the compu-
tational power of polynomial-time analog-state probabilistic networks with
rational weights reduces to the recursive complexity class BPP.

Finally, T(n)-time bounded probabilistic recurrent networks with arbi-
trary real weights can be simulated in time nT(n) + n2 by corresponding
deterministic networks. Consequently, polynomial-time computations in
this network model correspond to the complexity class P/poly.

2.5 Continuous-Time Dynamics. In continuous-time neural networks,
the dynamics of the analog network state y(t) ∈ Rs is defined for every real
t > 0, usually as the solution of a system of s differential equations—one
equation for each continuous-time unit. The boundary conditions for the
system are given by an initial network state y(0). For example, consider the
system

dyj

dt
(t) = −yj(t) + σ(ξj(t)) = −yj(t) + σ

(
s∑

i=0

wjiyi(t)

)
(2.35)

for j = 1, . . . , s, where the excitation ξj(t) of unit j is defined as in equation
2.1 and the saturated-linear activation function introduced in equation 2.4
is employed, implying that y(t) ∈ [0, 1]s.

Using the Lyapunov function,

E(y) = −
s∑

j=1

yj

(
wj0 + 1

2

s∑
i=1

wjiyi

)
+

s∑
j=1

∫ yj

0
σ−1(y)dy, (2.36)

it can be shown that a continuous-time symmetric network (with wji = wij)
conforming to this model converges from any initial state y(0) to some stable
state satisfying dyj/dt = 0 for all j = 1, . . . , s (Cohen & Grossberg, 1983;
Hopfield, 1984). Then the set of stable states of the corresponding discrete
system described by equation 2.2 coincides with that of the continuous-
time system introduced in equation 2.35. Also, an exponential lower bound
on the convergence time of such continuous-time Hopfield nets has been
obtained in terms of the system dimension (Šı́ma & Orponen, 2001).

Moreover, for any given finite binary-state discrete-time recurrent net-
work, a continuous-time asymmetric network controlled by dynamics equa-
tion 2.35 can be constructed that simulates the given discrete system faith-
fully and has only a linear size overhead (Orponen, 1997c). In fact, such a

2754 J. Šı́ma and P. Orponen

simulation can even be achieved with continuous-time symmetric Hopfield
nets (Šı́ma & Orponen, 2000, 2003). This implies that polynomial-size fami-
lies of continuous-time (symmetric) networks are able to recognize at least
the complexity class PSPACE/poly (see section 2.3.4).

3 Other Neural Network Models

Finally, we shall review the only recently analyzed computational capabili-
ties of the radial basis function (RBF), winner-take-all, and spiking networks
in sections 3.1, 3.2, and 3.3, respectively.

3.1 RBF Networks. The RBF networks represent an important alterna-
tive to the classical discrete-time perceptron networks. Units in RBF net-
works compute radial basis functions, which were introduced in the context
of interpolation problems (see the survey in Powell, 1985). In this case, the
perceptron update rule 2.1 and 2.2 is modified so that the “excitation”

ξ
(t)
j =

‖x(t)
j − wj‖

wj0
(3.1)

of unit j is proportional to the distance between the input vector x(t)
j =

(y(t)
ji1

, . . . , y(t)
jinj

) ∈ Rnj , consisting of the states of units i1, . . . , inj ∈ V incident

on j, and unit j’s center wj = (wji1 , . . . , wjinj
) ∈ Rnj , represented in terms of

the corresponding “weights.” In addition, a real positive “bias” parameter
wj0 > 0 determines a width of RBF unit j. Usually the widths are the same
for all units in the network, for example, wj0 = 1 for j = 1, . . . , s, although
already two different width values in the RBF network provide provably
more computational power than uniform widths (Schmitt, 2002). The new
state of unit j at the next time instant t + 1 is determined similarly as in
equation 2.2 but with an activation function σ : R −→ R such as the gaussian
function

σ(ξ) = e−ξ 2
, (3.2)

whose shape usually differs from that of sigmoidal functions (cf. equa-
tions 2.3–2.5).

For representing the binary values 0 and 1, two different analog states of
RBF units are reserved. For this convention, any Boolean NAND gate over
multiple literals (input variables or their negations) can be implemented by
an RBF unit employing the maximum norm (‖x‖ = ‖x‖∞ = maxi=1,...,n |xi|
for x = (x1, . . . , xn) ∈ Rn) in equation 3.1. For a large class of smooth activa-
tion functions σ , including the gaussian function, which possess a special
type of inflexion point ξ0 (e.g., σ ′′(ξ0) = 0 and σ ′(ξ0)σ

′′′(ξ0) < 0 if σ ′′′ exists),

General-Purpose Computation with Neural Networks 2755

this NAND implementation is robust even when the analog representations
of binary values are allowed to lie within specific disjoint small intervals
around the exact real states (Šorel & Šı́ma, 2000).

It follows that many results described in section 2 concerning the com-
putational power of perceptron networks can be reformulated for RBF net-
works. For example, deterministic finite automata with q states can be im-
plemented by recurrent networks with O(

√
q log q) RBF units in a robust

way (Šorel & Šı́ma, 2000). The Turing universality of finite RBF networks,
however, remains an open problem.

3.2 Winner-Take-All Networks. Another neural network model whose
computational power has recently been studied consists of so-called winner-
take-all (WTA) gates that employ the competitive strategy used in many
practical models, such as the Kohonen networks (Kohonen, 2001). The com-
petition principle appears to be neurophysiologically plausible and also
has efficient analog VLSI implementations (Yuille & Geiger, 2003). Thus, a
k-WTAn gate with n real inputs and n binary outputs computes a mapping
k-WTAn: Rn −→ {0, 1}n, defined as

k − WTAn(x1, . . . , xn) = (y1, . . . , yn), (3.3)

where the ith output gives yi = 1 (1 ≤ i ≤ n) iff the number of input values
greater than xi is at most k − 1, that is,

yi = 1 iff
∣∣{j; xj > xi, 1 ≤ j ≤ n

}∣∣ ≤ k − 1. (3.4)

In particular, a WTAn gate for k = 1 (which is omitted in notation) indicates
which of the n inputs has maximal value.

However, even this simple WTAn device (n ≥ 3) cannot be implemented
by any perceptron network having fewer than

(n
2

)+n threshold gates (Maass,
2000), which clearly suffice for WTAn computation. This implies also that
no recurrent perceptron network with O(n) threshold gates can compute the
WTAn function in sublinear time o(n).

Furthermore, any Boolean function f : {0, 1}n −→ {0, 1} in TC0
2 (i.e., com-

puted by two-layered networks of polynomial size and weights) can be
computed by a single k-WTAr gate applied to r = O(nc) (for some constant
c) weighted sums of n input variables (cf. equation 2.1) with polynomial
natural (positive) weights (Maass, 2000).

Winner-take-all networks may also gain efficiency in the total wire length
measure, as the function Pk

LR introduced in section 2.2.1 by equation 2.12 can
be computed by a two-layered network consisting of only two winner-take-
all units (with weighted inputs) and one threshold gate, whose total wire
length reduces to O(k) (Legenstein & Maass, 2001). Hence, it appears that
winner-take-all gates are more efficient than perceptrons.

2756 J. Šı́ma and P. Orponen

3.3 Networks of Spiking Neurons. The most prominent position among
neural network models proposed as alternatives to the classical perceptron
paradigm is occupied by networks of spiking neurons (artificial pulsed neural
networks) or, for short, spiking networks. The spiking neurons are supposed
to be more biologically plausible units than previous neuron models (Maass
& Bishop, 1998). Their computational properties will first be surveyed for a
deterministic model in section 3.3.1, and subsequently a noisy version will
be considered in section 3.3.2.

3.3.1 Deterministic Spiking Networks. The main feature differentiating
spiking networks from perceptron-type models is their encoding of com-
putational states as temporal differences between spikes, or firing times of
neurons. Thus, suppose a sequence

0 ≤ y(1)

j < y(2)

j < · · · < y(τ)

j < · · · (3.5)

of firing times is associated with each spiking neuron j ∈ V.
The spikes for the input neurons Vin ⊆ V are given externally and encode

the input. For example, a binary input string x = (x1, . . . , xn) ∈ {0, 1}n can
be presented by either n separate input neurons, or on-line (bit after bit) by
a single input unit in ∈ Vin, so that each bit is represented by the firing or
nonfiring within a given time interval (e.g., after the firing of a designated
neuron). Or this input is encoded by the temporal difference

y(2)

in − y(1)

in =
n∑

i=1

2−i−cxi (3.6)

(for sufficiently large integer constant c > 0) between the only two spikes
y(1)

in < y(2)

in of input neuron in.
In addition, for each connection from i to j, a response function εji: R+

0 −→
R (R+

0 denotes the set of nonnegative real numbers) is introduced that mod-
els the generic response εji(t) of neuron j to a spike from presynaptic unit
i in continuous time t ≥ 0 after the spike. For a discussion concerning the
choice of the response functions, see the following section, which also in-
cludes examples of their simple shapes in Figure 3 (equations 3.18 and 3.19).
For notational simplicity, the response functions are formally defined to be
zero in the case of missing connections, that is, εji(t) ≡ 0 when wji = 0.
In addition, all weights wji associated with connections are assumed to be
positive, that is,

wji ≥ 0 for all j, i ∈ V. (3.7)

Further, for each noninput unit j ∈ V\Vin, a nonpositive bias function
wj0: R+

0 −→ R−
0 ∪ {−∞} determines its nonnegative threshold potential

General-Purpose Computation with Neural Networks 2757

∆ ∆ ∆

ε

∆ ∆

(a)

(b)

1

0 t

t0

1

ε

1 2ij

ji

ji

ji

ji ji

ji endt

+ +

+ E

Figure 3: Examples of simple response functions: (a) piecewise linear and
(b) piecewise constant functions.

value

�j(t) = −wj0(t) ≥ 0 (3.8)

at time t ≥ 0 (passed since last firing), which, after being reached, causes
neuron j to generate a spike, as will be described in equation 3.12. Figure 4
shows an example of a simple bias function defined in equation 3.21. Note
that the opposite function �j = −wj0, called the threshold function, is usually

0

t tref

8

h

j0w

Figure 4: An example of simple bias function.

2758 J. Šı́ma and P. Orponen

employed in this context. Nevertheless, in this article, we use the bias func-
tion in order to differentiate it from the linear threshold function introduced
in section 2.1.

Moreover, denote by

Yj(t) = {y(τ)

j < t; τ ≥ 1} (3.9)

the set of spikes of neuron j before a continuous time instant t ≥ 0, and let

yj(t) =
{

max Yj(t) for Yj(t) �= ∅
t for 0 ≤ t ≤ y(1)

j
(3.10)

denote its last firing time for Yj(t) �= ∅; yj(t) is defined formally to be t before
the first firing of j. Then an excitation

ξj(t) = wj0(t − yj(t)) +
s∑

i=1

∑
y∈Yi(t)

wji · εji(t − y) (3.11)

of neuron j at continuous time t ≥ yj(t) (i.e., after its last firing yj(t)) is
defined as a weighted sum of j’s responses to all preceding spikes from
every neuron i ∈ V incident on j (cf. equation 2.1). This includes the bias
term wj0(t−yj(t)), which represents the opposite current threshold potential
introduced in equation 3.8. Note that before j’s first firing, wj0(t − yj(t))
corresponds to its initial value wj0(0) = −�(0) according to equation 3.10.
The excitation defined in equation 3.11, excluding the bias term wj0(t−yj(t)),
is usually called the potential of neuron j.

The spikes y(τ)

j (τ ≥ 1) for each noninput neuron j ∈ V\Vin are deter-

mined recursively as follows. Formally choose y(0)

j < 0 arbitrarily. Then the
next firing time

y(τ)

j = inf{t ≥ 0; t > y(τ−1)

j & ξj(t) ≥ 0} (3.12)

of neuron j for τ ≥ 1 is computed as the least time instant after j’s last firing
y(τ−1)

j when its excitation reaches zero, that is, when its potential reaches
current threshold value defined in equation 3.8 (cf. equations 2.2 and 2.3).

Finally, the spikes of output neurons encode the corresponding result of
the computation. Here, the same output protocol as for the input can be
used.

Response Functions. The subsequent results concerning the computa-
tional power of spiking networks are valid for a very general class of re-
sponse and bias functions satisfying the following relatively weak condi-
tions (Maass, 1996b).

General-Purpose Computation with Neural Networks 2759

Each response function εji associated with a connection from neuron i to
neuron j is everywhere either nonnegative εji ≥ 0 or nonpositive εji ≤ 0,
thus modeling biologically either an excitatory (EPSP) or an inhibitory (IPSP)
postsynaptic potential. Furthermore,

εji(t) = 0 for t ∈ [0,
ji], (3.13)

where 0 <
min ≤
ji ≤
max is the individual synaptic delay associated
with connection from i to j.

The response functions εji are stereotyped so that there exist some general
functions εE, εI: R+

0 −→ R with

εE(t) = 0 for t ≥ tE
end (3.14)

εI(t) = 0 for t ≥ tI
end, (3.15)

such that for every j, i ∈ V and for all t ≥ 0, the EPSP

εji(
ji + t) = εE(t) ≥ 0 (3.16)

and the IPSP

εji(
ji + t) = εI(t) ≤ 0. (3.17)

In addition, εE has a global maximum, and there exist at least two short
time segments where εE is linearly increasing and decreasing, respectively.
On the other hand, εI is negative in (0, tI

end), nonincreasing in [0, t1], and
nondecreasing in [t2, tI

end] for some 0 < t1 < t2 < tI
end.

Examples of possible EPSP functions include mathematically simple
piecewise linear functions such as

εji(t) =


0 for 0 ≤ t ≤
ji
1 − ∣∣t −
ji − 1

∣∣ for
ji < t <
ji + 2
0 for t ≥
ji + 2,

(3.18)

depicted in Figure 3a. Sometimes not even the strict monotony of the EPSP
functions is required (Maass & Ruf, 1999) and simple piecewise constant
functions are employed, for example,

εji(t) =


0 for 0 ≤ t ≤
ji
1 for
ji < t <
ji + tE

end
0 for t ≥
ji + tE

end,

(3.19)

shown in Figure 3b. Examples of possible IPSP functions include the func-
tions −εji, defined as the counterparts of the EPSP functions εji by for-
mula 3.18 or 3.19. It appears that the preceding general assumptions are
also satisfied by more biologically plausible response functions.

2760 J. Šı́ma and P. Orponen

Bias Functions. A general bias function w0: R+
0 −→ R−

0 ∪ {−∞} is often
employed so that

wj0(t) = w0(t) for every j ∈ V\Vin, and all t ≥ 0. (3.20)

It is assumed that w0(0) = −h for some constant h > 0, and w0(t) = −∞
for t ∈ (0, tref) in order to prevent neurons from firing in the refractory period
tref following the previous spike. Further, w0(t) returns to its initial value
−h after some time t ≥ tend. Examples of possible bias functions include
mathematically simple piecewise constant functions such as

wj0(t) =


−h for t = 0
−∞ for 0 < t < tref
−h for t ≥ tref ,

(3.21)

depicted in Figure 4.

Single Spiking Neuron. We first consider a simplified model of a single
spiking neuron with n external inputs computing an n-variable Boolean
function f : {0, 1}n −→ {0, 1}. We assume that each input i (1 ≤ i ≤ n) is
associated with weight wi and the piecewise constant response function εi(t)
defined by formula 3.19 with delay parameter
i and tE

end = 1 corresponding
to the EPSP, that is,

εi(t) =
{

0 for 0 ≤ t ≤
i or t ≥
i + 1
1 for
i < t <
i + 1,

(3.22)

or its opposite −εi(t) corresponding to the IPSP. Moreover, we assume here
that the neuron has not fired for a while, so that its bias has returned to its
initial value, that is, the bias function w0(t) ≡ −h is constant. In the input
protocol, the spike at the ith input at time t = 0 means xi = 1, while xi = 0
is encoded so that there is no firing at the ith input at all. Similarly, the
spiking neuron outputs f (x1, . . . , xn) = 1 iff it fires at any time as a result of
computation on the input x1, . . . , xn.

Maass and Schmitt (1999) observed that such a spiking neuron is strictly
more powerful than a threshold gate (for n ≥ 3) that can obviously be
constructed as a special case by setting all the delays
i equal. In addition,
a spiking neuron can compute any Boolean function that can be written as
a so-called µ-DNF formula, that is, a disjunctive normal form where each
variable occurs at most once. On the other hand, a spiking neuron with n
inputs can be implemented by a two-layered perceptron network having
n − 1 hidden threshold gates and an output OR gate (Schmitt, 1998). The
number of hidden units in such a two-layered network, called the threshold
number (Hammer, Ibaraki, & Peled, 1981), can here be lower-bounded by
�n/2�. Nevertheless, there exists a Boolean function with threshold number
2 (i.e., a disjunction of two threshold gates) that cannot be computed by a

General-Purpose Computation with Neural Networks 2761

Table 5: Lower Bounds on the Computational Power of Spiking Networks.

Computational
Simulating Spiking Network

Model Size Weights Simulation Time

Depth-d threshold O(s) Unbounded O(d)

circuit of size s Polynomial [0, 1]

q-state deterministic O(
√

q) Unbounded Constant Period
finite automaton O(

√
q · log q) [0, 1]

Turing machine Finite Rational O(T(n))

with running time T(n) from [0, 1]

single spiking neuron (Schmitt, 1998).
The number of n-variable Boolean functions that can be computed by a

spiking neuron is upper-bounded by 2n2+O(n log n), which together with the
corresponding lower bound 2n2

on the number of linear threshold functions
mentioned in section 2.1 yields an estimate of approximately 2�(n2) Boolean
functions computable by a single unit (Maass & Schmitt, 1999).

Lower Bounds. We further review the lower bounds on the computa-
tional power of spiking networks due to Maass (1996b) as they are summa-
rized in Table 5. Thus, for a given feedforward circuit with s threshold gates
of unbounded weights and depth d, a neural network of O(s) spiking neu-
rons (or a spiking network of polynomial size with bounded weights from
[0, 1]) can be constructed that simulates any of the circuit’s computations
within a time interval of length O(d). It follows that any deterministic finite
automaton (and Mealy or Moore machines) with q states can be simulated
by a spiking network with a constant period of presenting the input bits
that has O(

√
q) neurons or O(

√
q · log q) units with bounded weights from

[0, 1]. Finally, one can build a network consisting of a finite number of spik-
ing neurons with rational weights from [0, 1] (while all the other parameters
introduced in the assumptions on response and bias functions are also ra-
tional numbers) that simulates any (multiple-tape) Turing machine in linear
time so that each computational step requires only a fixed constant number
of spikes. Furthermore, any input-output mapping can be computed by a
finite spiking network with arbitrary real weights.

Upper Bounds. The computational power of spiking networks can com-
pletely be characterized by introducing the upper bounds. Maass (1995)
proved that the computational power of finite spiking networks with any
piecewise linear response and bias functions (not necessarily satisfying the
above assumptions) equals that of finite discrete-time analog recurrent per-
ceptron networks with any piecewise linear activations functions (e.g., the
activation functions defined in equations 2.3 and 2.4 together are univer-

2762 J. Šı́ma and P. Orponen

sal in this context). These networks are further computationally equivalent
to so-called N-RAMs, which are random access machines with O(1) regis-
ters working with arbitrary real numbers of bounded absolute values (see
Maass, 1995, for further details). Thus, we obtain a full characterization of
the computational power of finite spiking networks in the form of

spiking network ≡ discrete-time analog perceptron network

≡ N-RAM,

provided that piecewise linear functions are involved. In addition, the pre-
vious equivalence is achieved with linear-time pairwise simulations and
is also valid if one restricts all the numerical parameters in the models to
be rational numbers. It follows that spiking networks with any piecewise
linear response functions can easily be programmed to perform efficiently
basic operations on analog variables in temporal coding such as addition
and multiplication with a constant.

Piecewise Constant Response Functions. If one restricts to the piecewise
constant response functions (Maass & Ruf, 1999), for example, such as de-
fined in equation 3.19, which are easier to implement in hardware, then the
spiking networks with piecewise monotone and continuous bias functions
employing arbitrary real-valued parameters cannot carry out addition and
multiplication with a constant on arbitrary small differences in firing times
between neurons with a bounded number of spikes. Indeed, spiking net-
works with piecewise constant response functions and piecewise linear bias
functions with rational parameters are for on-line binary-string inputs com-
putationally equivalent to deterministic finite automata for a fixed number
of spikes per one simulated step. Furthermore, for arbitrary real parame-
ters, these restricted spiking networks with on-line inputs can, in principle,
simulate any Turing machine but, in general, not with polynomial number
of spikes. It follows that the computational power of spiking networks de-
pends on the shape of the postsynaptic potentials and reduces essentially
for piecewise constant response functions.

Different Synaptic Delays. The preceding results concerning digital com-
putations on spiking networks are based on the forced synchronization
mechanism for the spikes. However, the small temporal differences in the
firing times may be exploited to encode additional analog information. In-
deed, the spiking neurons with different synaptic delays
ji employing
piecewise constant response and bias functions are more powerful than the
perceptrons.

In particular, the Boolean coincidence-detection function CDk: {0, 1}2k −→
{0, 1} (k ≥ 1), which formalizes a simple pattern-matching task as

CDk(x1, . . . , xk, x′
1, . . . , x′

k) = 1 iff (∃ 1 ≤ i ≤ k) xi = x′
i = 1, (3.23)

General-Purpose Computation with Neural Networks 2763

can easily be implemented by a single spiking neuron whose inputs are suit-
ably delayed. In contrast, any feedforward perceptron network that com-
putes CDk requires at least k/ log(k+1) threshold gates (see equation 2.3), or
either �(

√
k) or �(k1/4) units with piecewise polynomial (e.g., see equation

2.4) or exponential (e.g., see equation 2.5) activation functions, respectively
(Maass, 1997c).

This result has further been generalized for analog inputs and arbitrary
reasonable response functions. For example, the witnessing element distinct-
ness function EDn: (R+

0)n −→ {0, 1} (n ≥ 2), which is defined as

EDn(x1, . . . , xn)

=


1 if (∃ 1 ≤ i < j ≤ n) xi = xj
0 if (∀ 1 ≤ i < j ≤ n) |xi − xj| ≥ 1
arbitrarily otherwise,

(3.24)

can be computed by a single spiking neuron, while any feedforward net-
work computing EDn requires �(n log n) first-layer threshold gates or (n −
4)/2 − 1 hidden sigmoidal gates with the activation function defined in
equation 2.5 (Maass, 1997c).

3.3.2 Noisy Spiking Networks. As the spiking networks were supposed
to model the information processing in biological neurons, it is quite natural
to introduce the notion of noise since the deterministic model in section 3.3.1
that assumes the precise firing times is not very realistic from that point of
view. Thus, in the noisy spiking networks, the excitation of spiking neuron
j introduced in equation 3.11 governs just the probability that unit j fires.
In particular, there are two functions L, U: R × R+

0 −→ [0, 1] given so that
L(�,
) provides a lower bound and U(�,
) determines an upper bound on
the probability that neuron j fires during a time interval T of length
 ≥ 0
in which ξj(t) ≥ � respectively ξj(t) ≤ � for all t ∈ T up to the next spike
of j.

It is assumed that L, U are nondecreasing in each of their two arguments
(for any fixed value of the other argument) and lim�→−∞ U(�,
) = 0
for any fixed
 > 0 and lim�→∞ L(�,
) > 0 for any fixed
 ≥ t1/6 where
t1 > 0 determines the interval [0, t1] in which the function εE is now assumed
to be initially nondecreasing. In addition, there exists a constant δ > 0 such
that εE(t1/6+ t) ≥ εE(t)+ δ for all t ∈ [0, 2t1/3]. In this case, the function −εI

satisfies the same conditions as εE. Finally, there exists a source of negative
background noise that contributes to the excitation of spiking neuron j defined
in equation 3.11 an additive term that deviates for an arbitrarily long time
interval by an arbitrarily small percentage from its average optional value
w−

j ≤ 0.
For digital computations, Maass (1996a) has shown that under the pre-

vious weak conditions, any Boolean function can be implemented by a suf-

2764 J. Šı́ma and P. Orponen

ficiently large network of noisy spiking neurons with arbitrarily high prob-
ability of correctness. Furthermore, for any deterministic finite automaton,
one can construct a network of noisy spiking neurons that simulates its com-
putations of any given length with arbitrarily high probability of correct-
ness. Similar results have been achieved for analog computations (Maass,
1997b; Maass & Natschläger, 1997, 2000); for example, the noisy spiking
networks with temporal encoding of analog values can reliably simulate
the feedforward perceptron networks with real inputs and outputs (Maass,
1997b).

4 Conclusion and Open Problems

We have presented a systematic survey of the known complexity theoretic
properties of neural network models viewed from the perspective of digital
computation. Several intriguing open questions remain. In this section, we
conclude with a brief evaluation of these models based on the results dis-
cussed in the article. In particular, we will compare the models according
to the taxonomy in Figure 1 and outline the main open problem areas.

4.1 Unit Type. We have considered several types of units. The main fo-
cus is on the traditional perceptron networks (see section 2) since their com-
plexity theoretic properties are best understood. A similar analysis for other
unit types (see section 3) is still not complete, and their taxonomy should
also be refined for different architectures, parameter domains, probabilistic
computation, and so forth, as is clearly visible in Figure 1. In addition, sev-
eral important open issues should be resolved, such as Turing universality
of finite RBF networks and the power of recurrent WTA networks. Never-
theless it appears that RBF networks are comparable to perceptron networks
(see section 3.1), while the WTA gates (see section 3.2) may provably bring
more efficient implementations of certain functions.

Also, networks of spiking neurons are slightly, but not significantly, more
efficient than their perceptron counterparts (see section 3.3). However, in ad-
dition to their increased biological plausibility, spiking neurons introduce
temporal coding of computational states as a new source of efficient com-
putation, which undoubtedly deserves deeper study.

4.2 Discrete versus Continuous Time. The results presented have
mainly been concerned with discrete-time dynamics. Thus, apart from the
spiking neurons that exploit the possibility of continuous time intervals
for determining the firing times, we know only that continuous-time per-
ceptron networks are at least as powerful as the discrete-time models (see
section 2.5). In addition, the technique introduced within this context is
somewhat unsatisfying, since the continuous-time computation is still ba-
sically discretized. We seem to be limited in our thinking by the discrete-
time mind-set of traditional complexity theory, which provides no adequate

General-Purpose Computation with Neural Networks 2765

theoretical tools (e.g., complexity measures, reductions, universal computa-
tion) for “naturally” continuous-time computations (Moore, 1998; Orponen
1997a). Perhaps continuous-time neural networks will provide useful refer-
ence models for developing such tools. First steps along this direction have
recently been established (Ben-Hur, Siegelmann, & Fishman, 2002; Gori &
Meer, 2002).

4.3 Deterministic versus Probabilistic Computation. Stochasticity rep-
resents an additional source of efficient computation in probabilistic (per-
ceptron) networks (see section 2.4.1). As we know for feedforward archi-
tectures, there are functions that provably require three layers in efficient
deterministic networks but can be implemented with only two layers in
probabilistic networks (cf. Figure 2). Furthermore, Table 2, summarizing the
results concerning the computational power of recurrent neural networks,
shows that the only difference between deterministic and probabilistic mod-
els is in polynomial time computations with rational weights, which are
characterized by the corresponding Turing complexity classes P and BPP.
This means that from the computational power point of view, stochasticity
plays a similar role in neural networks as in conventional Turing computa-
tions. An interesting open question then concerns whether a more efficient
implementation of finite automata by binary-state probabilistic neural net-
works can be achieved than that by deterministic threshold automata (see
Table 3).

4.4 Feedforward versus Recurrent Architectures. Feedforward archi-
tectures (section 2.2) correspond to bounded computations and thus can
compete only in computational power with convergent recurrent networks,
or equivalently with symmetric networks. Nevertheless, we know that com-
mon interesting function (e.g., arithmetic operations) can be implemented
efficiently with only a small number of layers, supporting the widespread
use of two- or three-layered networks in practical applications. A very im-
portant fact in this context is that two layers of perceptrons are not sufficient
for an efficient implementation of certain functions. This is related to per-
haps the most fascinating open problems concerning the TC hierarchies.
Is the bounded-depth TC0 hierarchy infinite, as is the corresponding AC0

hierarchy (Håstad, 1989; Yao, 1985)? At the moment, even the separation
of TC0

3 from TC0
4 is open. Is AC0 ⊆ TC0

d for some constant d? Also, it is not
known whether the inclusion TC0 ⊆ P, or even TC0 ⊆ NP, is proper.

On the other hand, the computational power of finite recurrent networks
is nicely characterized by the descriptive complexity of their parameters (see
Tables 2 and 5) and, for example, for rational weights, these networks are
Turing universal. However, more realistic models with fixed precision of
real parameters or analog noise recognize only regular languages. Thus, we
can conclude that practical recurrent networks essentially represent efficient
implementations of finite automata (see Table 3).

2766 J. Šı́ma and P. Orponen

4.5 Binary versus Analog States. Analog-state neural networks prove
to be at least as powerful and efficient computational devices as their binary-
state counterparts. Regarding feedforward networks, the computational
power of binary and analog states is almost equal, although we know that
the number of neurons in a binary feedforward network can sometimes be
reduced by a logarithmic factor when threshold gates are replaced by sig-
moidal ones (section 2.2.2). In order to relate binary and analog feedforward
networks more closely to each other, it would be of significance to extend
the result of Maass et al. (1991) on the equivalence of sigmoidal and thresh-
old gate functions to cover also large-weight networks—that is, to prove
that for the activation functions σ given by formula 2.4 or 2.5, for example,
not just TC0

d(σ) = TC0
d but even LTd(σ) = LTd holds for all d ≥ 1. Similar

questions can be asked regarding binding the spiking neuron hierarchies
more tightly to the classical Boolean circuit hierarchies.

For recurrent architectures, one can theoretically exploit the analog states
in finite networks to store infinite amounts of information, which drastically
increases the computational power of analog networks from that of thresh-
old automata to Turing universality or even more. However, this model,
although theoretically elegant, is not very realistic from a practical point of
view. Nevertheless, the result comparing the convergence times of binary
and analog Hopfield nets in terms of representation size (see section 2.3.3)
suggests that analog models of computation may be worth investigating
more for their efficiency gains than for their (theoretical) capability for
arbitrary-precision real number computation. Again, we can ask how ef-
ficient implementations of finite automata by analog neural networks can
be achieved and how this efficiency depends on the chosen activation func-
tion (cf. Table 3).

4.6 Symmetric versus Asymmetric Weights. At least for binary-state
perceptron networks, we know that symmetric weights correspond to con-
vergent dynamics in quite a strong sense, since not only do all Hopfield nets
converge, but all convergent computations can be efficiently implemented
using symmetric weights (see section 2.3.3). An important special case of
convergent asymmetric networks are those with feedforward architectures
that can straightforwardly be implemented with symmetric weights. For
analog states, such an equivalence has not yet been established. In the case
of recurrent analog networks, the power of asymmetric weights is character-
ized also by the condition that an external oscillator needs to satisfy in order
to boost the power of symmetric networks to that of asymmetric ones (sec-
tion 2.3.3). Without such an oscillator, symmetric networks cannot perform
arbitrary unbounded computations, and thus are probably less powerful
than finite automata.

The previous convergence results are valid only for perceptron networks.
Another interesting problem area is to find conditions under which net-
works based on other types of units converge.

General-Purpose Computation with Neural Networks 2767

As this survey has shown, our understanding of the general computa-
tional power of neural network models has increased dramatically over the
past 10 to 15 years and appears rather satisfactory now. One of the main is-
sues for further research is to develop analysis and synthesis techniques for
special-purpose neural networks, in view of their applications in associative
memory, trajectory following, or time-series analysis, for example.

Appendix

In order to make the survey more self-contained and comprehensible for
readers of different backgrounds, we provide basic definitions of the com-
plexity classes and related notions in this article. Nevertheless, we assume
that readers are at least familiar with the basic abstract computational mod-
els such as finite automata and Turing machines. For further information, see
Balcázar et al. (1995), Bovet and Crescenzi (1994), or Papadimitriou (1994).

g = O(f(n)): for some real ε > 0 and for all but finitely many natural n,
g(n) < ε · f (n).

g = o(f(n)): for every real ε > 0 and for all but finitely many natural n,
g(n) < ε · f (n).

g = �(f(n)): for some real ε > 0 and for all but finitely many natural n,
g(n) > ε · f (n).

g = �(f(n)): g = O(f (n)) and g = �(f (n)).

Recursive function: A function computable by an algorithm (Turing ma-
chine). A problem not solvable by any Turing machine is considered to
be algorithmically undecidable.

P: The class of languages accepted by (deterministic) Turing machines in
polynomial time, that is, within a number of computation steps T(n) =
O(nc) for some fixed c, where n is the length of input (e.g., the number
of bits in its representation in a binary coding). Class P contains the
problems that are believed to be computationally feasible.

NP: The class of languages accepted by nondeterministic Turing machines
in polynomial time. At each computational step, a nondeterministic Tur-
ing machine may choose its next move from a set of several (without
loss of generality at most two) possibilities. It follows that on a given
input, there is not only one computation (path), but a set (a tree) of possi-
ble computations. According to the definition, an input is accepted by a
nondeterministic Turing machine iff there is at least one accepting com-
putation in this set. In other words, class NP contains those problems
whose solution can first be guessed (corresponds to a nondeterministic
guess of an accepting computation from the set of possible computations)
and then checked for correctness (whether this computation is accepting
indeed) in polynomial time. For example, the class of satisfiable Boolean

2768 J. Šı́ma and P. Orponen

formulas SAT is in NP since for a given Boolean formula, one can guess
an assignment for each occurring variable and check in polynomial time
whether this assignment satisfies the formula.

A is NP-hard: Any problem from NP can be reduced to A in polynomial
time, that is, for any B in NP, there exists a function f computable in
polynomial time that maps an input x for problem B to some input f(x)

for problem A so that x ∈ B iff f(x) ∈ A. Hence, by solving only one NP-
hard problem in polynomial time, one would obtain polynomial-time
solutions for all problems in NP, implying P=NP.

A is NP-complete: A is NP-hard and A in NP. Thus, the class of NP-com-
plete problems contains the hardest problems in NP that are believed
to be not computationally feasible in general. For example, the set of
satisfiable Boolean formulas (in conjunctive normal form) SAT is NP-
complete.

co-NP: The class of languages whose complements are accepted by poly-
nomial-time nondeterministic Turing machines.

A is co-NP-complete: A is in co-NP, and any problem from co-NP can be
reduced to A in polynomial time.

PSPACE: The class of languages accepted by (deterministic) Turing ma-
chines working in polynomial space, that is, by using a number of tape
cells S(n) = O(nc) for some fixed c where n is the length of input. It holds
that

P ⊆ NP ⊆ PSPACE, P ⊆ co − NP ⊆ PSPACE.

None of these inclusions is known to be proper at the moment, but all
are conjectured to be so.

A is PSPACE-complete: A is in PSPACE and any problem from PSPACE
can be reduced to A in polynomial time. The set of true quantified Boolean
formulas (without free variables) QBF represents an example of PSPACE-
complete problem.

BPP: The class of languages accepted by polynomial-time probabilistic Tur-
ing machines with an error probability bounded above by some positive
constant ε < 1/2. A probabilistic Turing machine is a nondeterministic
Turing machine that has exactly two different possible actions allowed
at each computation step. In addition, on a given input, the number of
steps in all possible computations is equal, while each such computation
ends in a final state either accepting or rejecting the input. For any input
x, the error probability is defined by the ratio of computations on x giving
the wrong answer, to the total number of computations on x. Class BPP
is admitted to consist of computationally feasible problems, and it holds
that

P ⊆ BPP ⊆ PSPACE.

General-Purpose Computation with Neural Networks 2769

None of these inclusions is known to be proper.

#P: The class of integer valued functions f each corresponding to a nonde-
terministic Turing machine that has exactly f (x) accepting computations
on any input x.

f is #P-complete: f is in #P, and every function from #P can be computed in
polynomial time when any value of f is granted within one computation
step.

P/poly: The class of languages accepted by polynomial-time Turing ma-
chines with polynomial-length advice functions. An advice function f,
which does not need to be recursive, provides a Turing machine with an
external advice, that is, a string f(n) that depends on only the input length
n. For a polynomial-length advice function, |f(n)| = O(nc) for some
fixed c.

PSPACE/poly: The class of languages accepted by polynomial-space Tur-
ing machines with polynomial-length advice functions.

Pref-P/log: The class of languages accepted by polynomial-time Turing ma-
chines with logarithmic-length advice functions f (|f(n)| = O(log n)) that
are closed under prefixes, that is, f(n1) is a prefix of f(n2) for every n1 < n2.

Pref-BPP/log: The class of languages accepted by polynomial-time bound-
ed-error probabilistic Turing machines with logarithmic-length advice
functions closed under prefixes.

PLS: The class of polynomial-time local search problems. In a local search
problem, we are given a set of feasible solutions, each associated with
an integer cost to be optimized and with a set of neighboring feasible
solutions, and we want to find a locally optimal solution. A polynomial-
time local search problem then assumes that in polynomial time, one
can produce an initial feasible solution, compute the cost of any feasible
solution, and decide whether a feasible solution is locally optimal or find
a better neighboring solution if it is not the case.

L is a definite language: There exist two finite sets of strings L1 and L2 such
that w ∈ L iff either w ∈ L1 or w = v1v2 for some prefix v1 and v2 ∈ L2.

Acknowledgments

J.Š.’s research is partially supported by grants GA AS CR B2030007, GA CR
No. 201/02/1456. P.O.’s research is partially supported by grant 81120 from
the Academy of Finland.

References

Ackley, D. H., Hinton, G. E., & Sejnowski, T. J. (1985). A learning algorithm for
Boltzmann machines. Cognitive Science, 9(1), 147–169.

2770 J. Šı́ma and P. Orponen

Allender, E. (1989). A note on the power of threshold circuits. In Proceedings of the
30th Annual Symposium on Foundations of Computer Science (FOCS’89), Research
Triangle Park, North Carolina (pp. 580–584). New York: IEEE Computer Society
Press.

Alon, N. (1985). Asynchronous threshold networks. Graphs and Combinatorics, 1,
305–310.

Alon, N., & Bruck, J. (1994). Explicit construction of depth-2 majority circuits for
comparison and addition. SIAM Journal on Discrete Mathematics, 7(1), 1–8.

Alon, N., Dewdney, A. K., & Ott, T. J. (1991). Efficient simulation of finite au-
tomata by neural nets. Journal of the ACM, 38(2), 495–514.

Balcázar, J. L., Dı́az, J., & Gabarró, J. (1995). Structural complexity I (2nd ed.).
Berlin: Springer-Verlag.

Balcázar, J. L., Gavaldà, R., & Siegelmann, H. T. (1997). Computational power
of neural networks: A characterization in terms of Kolmogorov complexity.
IEEE Transactions on Information Theory, 43(4), 1175–1183.

Balcázar, J. L., & Hermo, M. (1998). The structure of logarithmic advice com-
plexity classes. Theoretical Computer Science, 207(1), 217–244.

Barahona, F. (1982). On the computational complexity of Ising spin glass models.
Journal of Physics A: Mathematical and General, 15(10), 3241–3253.

Ben-Hur, A., Siegelmann, H. T., & Fishman, S. (2002). A theory of complexity
for continuous time systems. Journal of Complexity, 18(1), 51–86.

Bertoni, A., & Campadelli, P. (1994). On the approximability of the energy func-
tion. In Proceedings of the 4th International Conference on Artificial Neural Net-
works (ICANN’94) (pp. 1157–1160). Berlin: Springer-Verlag.

Bertoni, A., Campadelli, P., Gangai, C., & Posenato, R. (1997). Approximability of
the ground state problem for certain Ising spin glasses. Journal of Complexity,
13(3), 323–339.

Bieche, I., Maynard, R., Rammal, R., & Uhry, J. P. (1980). On the ground states of
the frustration model of a spin glass by a matching method of graph theory.
Journal of Physics A: Mathematical and General, 13(8), 2553–2576.

Bovet, D. P., & Crescenzi, P. (1994). Introduction to the theory of complexity. Hemel
Hempstead: Prentice Hall International.

Bruck, J., & Goodman, J. W. (1988). A generalized convergence theorem for
neural networks. IEEE Transactions on Information Theory, 34(5), 1089–1092.

Casey, M. (1996). The dynamics of discrete-time computation, with application
to recurrent neural networks and finite state machine extraction. Neural Com-
putation, 8(6), 1135–1178.

Chandra, A. K., Stockmeyer, L. J., & Vishkin, U. (1984). Constant depth reducibil-
ity. SIAM Journal on Computing, 13(2), 423–439.

Cohen, M. A., & Grossberg, S. (1983). Absolute stability of global pattern for-
mation and parallel memory storage by competitive neural networks. IEEE
Transactions on Systems, Man, and Cybernetics, 13(5), 815–826.

Cover, T. M. (1965). Geometrical and statistical properties of systems of linear
inequalities with applications in pattern recognition. IEEE Transactions on
Electronic Computers, 14(3), 326–334.

Cover, T. M. (1968). Capacity problems for linear machines. In L. Kanal (Ed.),
Pattern recognition (pp. 283–289). Washington, DC: Thompson Book Co.

General-Purpose Computation with Neural Networks 2771

DasGupta, B., & Schnitger, G. (1993). The power of approximating: A comparison
of activation functions. In S. J. Hanson, J. D. Cowan, & C. L. Giles (Eds.),
Advances in neural information processing systems (NIPS’92), 5 (pp. 615–622).
San Mateo, CA: Morgan Kaufmann.

DasGupta, B., & Schnitger, G. (1996). Analog versus discrete neural networks.
Neural Computation, 8(4), 805–818.

Floréen, P. (1991). Worst-case convergence times for Hopfield memories. IEEE
Transactions on Neural Networks, 2(5), 533–535.

Floréen, P., & Orponen, P. (1989). On the computational complexity of analyzing
Hopfield nets. Complex Systems, 3(6), 577–587.

Floréen P., & Orponen, P. (1993). Attraction radii in Hopfield nets are hard to
compute. Neural Computation, 5(5), 812–821.

Floréen, P., & Orponen, P. (1994). Complexity issues in discrete Hopfield networks
(Research Rep. No. A–1994–4). Helsinki: Department of Computer Science,
University of Helsinki.

Fogelman, F., Goles, E., & Weisbuch, G. (1983). Transient length in sequential
iterations of threshold functions. Discrete Applied Mathematics, 6(1), 95–98.

Fogelman-Soulié, F., Mejia, C., Goles, E., & Martı́nez, S. (1989). Energy functions
in neural networks with continuous local functions. Complex Systems, 3(3),
269–293.

Furst, M., Saxe, J. B., & Sipser, M. (1984). Parity, circuits and the polynomial-time
hierarchy. Mathematical Systems Theory, 17(1), 13–27.

Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the
theory of NP-completeness. New York: Freeman.

Godbeer, G. H., Lipscomb, J., & Luby, M. (1988). On the computational complexity
of finding stable state vectors in connectionist models (Hopfield nets) (Technical
Rep. No. 208/88). Toronto: Department of Computer Science, University of
Toronto.

Goemans, M. X., & Williamson, D. P. (1995). Improved approximate algorithms
for maximum cut and satisfiability problems using semidefinite program-
ming. Journal of the ACM, 42(6), 1115–1145.

Goldmann, M., Håstad, J., & Razborov, A. (1992). Majority gates vs. general
weighted threshold gates. Computational Complexity, 2(4), 277–300.

Goldmann, M., & Karpinski, M. (1998). Simulating threshold circuits by majority
circuits. SIAM Journal on Computing, 27(1), 230–246.

Goldschlager, L. M., & Parberry, I. (1986). On the construction of parallel com-
puters from various bases of Boolean functions. Theoretical Computer Science,
43(1), 43–48.

Goles, E. (1985). Dynamics of positive automata networks. Theoretical Computer
Science, 41(1), 19–32.

Goles, E. (1987). Lyapunov functions associated to automata networks. In
F. Fogelman-Soulié, Y. Robert, & M. Tchuente (Eds.), Automata networks in
computer science—theory and applications (pp. 58–81). Manchester: Manchester
University Press.

Goles, E., & Martı́nez, S. (1989). Exponential transient classes of symmetric neu-
ral networks for synchronous and sequential updating. Complex Systems, 3(6),
589–597.

2772 J. Šı́ma and P. Orponen

Goles, E., & Martı́nez, S. (1990). Neural and automata networks: Dynamical behavior
and applications. Dordrecht: Kluwer.

Goles, E., & Olivos, J. (1981a). Comportement periodique des fonctions a seuil
binaires et applications. Discrete Applied Mathematics, 3(2), 93–105.

Goles, E., & Olivos, J. (1981b). The convergence of symmetric threshold au-
tomata. Information and Control, 51(2), 98–104.

Goles-Chacc, E., Fogelman-Soulié, F., & Pellegrin, D. (1985). Decreasing energy
functions as a tool for studying threshold networks. Discrete Applied Mathe-
matics, 12(3), 261–277.

Gori, M., & Meer, K. (2002). A step towards a complexity theory for analog
systems. Mathematical Logic Quarterly, 48(1), 45–58.

Hajnal, A., Maass, W., Pudlák, P., Szegedy, M., & Turán, G. (1993). Threshold
circuits of bounded depth. Journal of Computer and System Sciences, 46(2), 129–
154.

Haken, A. (1989). Connectionist networks that need exponential time to stabilize.
Unpublished manuscript, Department of Computer Science, University of
Toronto.

Haken, A., & Luby, M. (1988). Steepest descent can take exponential time for
symmetric connectionist networks. Complex Systems, 2(2), 191–196.

Hammer, P. L., Ibaraki, T., & Peled, U. N. (1981). Threshold numbers and thresh-
old completions. In P. Hansen (Ed.), Studies on graphs and discrete programming,
Annals of discrete mathematics, 11, Mathematics studies, 59 (pp. 125–145). Ams-
terdam: North-Holland.

Hartley, R., & Szu, H. (1987). A comparison of the computational power of neural
network models. In Proceedings of the IEEE First International Conference on
Neural Networks, San Diego (pp. 15–22). New York: IEEE Press.

Håstad, J. (1989). Almost optimal lower bounds for small depth circuits. In
S. Micali (Ed.), Advances in computing research, randomness and computation, 5
(pp. 143–170). Greenwich, CT: JAI Press.

Håstad, J. (1994). On the size of weights for threshold gates. SIAM Journal on
Discrete Mathematics 7(3), 484–492.

Hegedüs, T., & Megiddo, N. (1996). On the geometric separability of Boolean
functions. Discrete Applied Mathematics 66(3), 205–218.

Hofmeister, T. (1994). Depth-efficient threshold circuits for arithmetic functions.
In V. P. Roychowdhury, K.-Y. Siu, & A. Orlitsky (Eds.), Theoretical advances in
neural computation and learning (pp. 37–84). Boston: Kluwer.

Hofmeister, T., Hohberg, W., & Köhling, S. (1991). Some notes on threshold
circuits, and multiplication in depth 4. Information Processing Letters, 39(4),
219–225.

Hofmeister T., & Pudlák, P. (1992). A proof that division is not in TC0
2 (Res. Rep.

No. 447). Dortmund: Dortmund University.
Hopfield, J. J. (1982). Neural networks and physical systems with emergent col-

lective computational abilities. Proceedings of the National Academy of Sciences
USA, 79, 2554–2558.

Hopfield, J. J. (1984). Neurons with graded response have collective computa-
tional properties like those of two-state neurons. Proceedings of the National
Academy of Sciences USA, 81, 3088–3092.

General-Purpose Computation with Neural Networks 2773

Hopfield, J. J., & Tank, D. W. (1985). “Neural” computation of decision in opti-
mization problems. Biological Cybernetics, 52(3), 141–152.

Horne, B. G., & Hush, D. R. (1994). On the node complexity of neural networks.
Neural Networks, 7(9), 1413–1426.

Horne B. G., & Hush, D. R. (1996). Bounds on the complexity of recurrent neural
network implementations of finite state machines. Neural Networks, 9(2), 243–
252.

Indyk, P. (1995). Optimal simulation of automata by neural nets. In Proceed-
ings of the 12th Annual Symposium on Theoretical Aspects of Computer Science
(STACS’95), LNCS 900 (pp. 337–348). Berlin: Springer-Verlag.

Irmatov, A. A. (1996). Bounds for the number of threshold functions. Discrete
Mathematics and Applications, 6(6), 569–583.

Johnson, D. S., Papadimitriou, C. H., & Yannakakis, M. (1988). How easy is local
search? Journal of Computer and System Sciences, 37(1), 79–100.

Kahn, J., Komlós, J., & Szemerédi, E. (1995). On the probability that a random
{±1}n-matrix is singular. Journal of the American Mathematical Society, 8(1),
223–240.

Kilian, J., & Siegelmann, H. T. (1996). The dynamic universality of sigmoidal
neural networks. Information and Computation, 128(1), 48–56.

Kleene, S. C. (1956). Representation of events in nerve nets and finite automata.
In C. E. Shannon, & J. McCarthy (Eds.), Automata studies, Annals of mathematics
studies, 34 (pp. 3–41). Princeton, NJ: Princeton University Press.

Kohonen, T. (2001). Self-organizing maps (3rd ext. ed.). Springer series in infor-
mation sciences, 30. Berlin: Springer-Verlag.

Koiran, P. (1994). Dynamics of discrete time, continuous state Hopfield net-
works. Neural Computation, 6(3), 459–468.

Koiran, P. (1996). A family of universal recurrent networks. Theoretical Computer
Science, 168(2), 473–480.

Komlós, J., & Paturi, R. (1988). Convergence results in an associative memory
model. Neural Networks, 1(3), 239–250.

Legenstein, R. A., & Maass, W. (2001). Foundations for a circuit complexity
theory of sensory processing. In T. K. Leen, T. G. Dietterich, & V. Tresp (Eds.),
Advances in neural information processing systems (NIPS 2000), 13 (pp. 259–265).
Cambridge, MA: MIT Press.

Lepley, M., & Miller, G. (1983). Computational power for networks of threshold devices
in asynchronous environment (Tech. Rep.). Cambridge, MA: Department of
Mathematics, MIT.

Lipscomb, J. (1987). On the computational complexity of finding a connectionist
model’s stable state vectors. Unpublished master’s thesis, Dept. of Computer
Science, University of Toronto.

Lupanov, O. B. (1961). Implementing the algebra of logic functions in terms
of bounded depth formulas in the basis +,∗,−. Soviet Physics Doklady, 6(2),
107–108.

Lupanov, O. B. (1972). Circuits using threshold elements. Soviet Physics Doklady,
17(2), 91–93.

Maass, W. (1995). On the computational complexity of networks of spiking neu-
rons. In G. Tesauro, D. S. Touretzky, & T. K. Leen (Eds.), Advances in neural

2774 J. Šı́ma and P. Orponen

information processing systems (NIPS’94), 7 (pp. 183–190). Cambridge, MA:
MIT Press.

Maass, W. (1996a). On the computational power of noisy spiking neurons. In
D. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances in neural in-
formation processing systems (NIPS’95), 8 (pp. 211–217). Cambridge, MA: MIT
Press.

Maass, W. (1996b). Lower bounds for the computational power of networks of
spiking neurons. Neural Computation, 8(1), 1–40.

Maass, W. (1997a). Bounds for the computational power and learning complexity
of analog neural nets. SIAM Journal on Computing, 26(3), 708–732.

Maass, W. (1997b). Fast sigmoidal networks via spiking neurons. Neural Com-
putation, 9(2), 279–304.

Maass, W. (1997c). Networks of spiking neurons: The third generation of neural
network models. Neural Networks, 10(9), 1659–1671.

Maass, W. (2000). On the computational power of Winner–Take–All. Neural Com-
putation, 12(11), 2519–2536.

Maass, W., & Bishop, C. M. (Eds.) (1998). Pulsed neural networks. Cambridge,
MA: MIT Press.

Maass, W., & Natschläger, T. (1997). Networks of spiking neurons can emulate
arbitrary Hopfield nets in temporal coding. Network: Computation in Neural
Systems, 8(4), 355–371.

Maass, W., & Natschläger, T. (2000). A model for fast analog computation based
on unreliable synapses. Neural Computation, 12(7), 1679–1704.

Maass, W., & Orponen, P. (1998). On the effect of analog noise in discrete-time
analog computations. Neural Computation, 10(5), 1071–1095.

Maass, W., & Ruf, B. (1999). On computation with pulses. Information and Com-
putation, 148(2), 202–218.

Maass, W., & Schmitt, M. (1999). On the complexity of learning for spiking
neurons with temporal coding. Information and Computation, 153(1), 26–46.

Maass, W., Schnitger, G., & Sontag, E. D. (1991). On the computational power of
sigmoid versus Boolean threshold circuits. In Proceedings 32nd Annual Sym-
posium on Foundations of Computer Science (FOCS’91), San Juan, Puerto Rico
(pp. 767–776). New York: IEEE Press.

Maass, W., & Sontag, E. D. (1999). Analog neural nets with gaussian or other
common noise distribution cannot recognize arbitrary regular languages.
Neural Computation, 11(3), 771–782.

Mahajan, S., & Ramesh, H. (1999). Derandomizing approximation algorithms
based on semidefinite programming. SIAM Journal on Computing, 28(5), 1641–
1663.

McEliece, R. J., Posner, E. C., Rodemich, E. R., & Venkatesh, S. S. (1987). The
capacity of the Hopfield associative memory. IEEE Transactions on Information
Theory, 33(4), 461–482.

Minsky, M. L. (1967). Computation: Finite and infinite machines. Englewood Cliffs,
NJ: Prentice Hall.

Minsky, M. L., & Papert, S. A. (1969). Perceptrons. Cambridge, MA: MIT Press.

General-Purpose Computation with Neural Networks 2775

Moore, C. (1998). Finite-dimensional analog computers: flows, maps, and re-
current neural networks. In Proceedings of the 1st International Conference on
Unconventional Models of Computation (pp. 59–71). Berlin: Springer-Verlag.

Muroga, S. (1971). Threshold logic and its applications. New York: Wiley Inter-
science.

Muroga, S., Toda, I., & Takasu, S. (1961). Theory of majority decision elements.
Journal of the Franklin Institute, 271, 376–418.

Nechiporuk, E. I. (1964). The synthesis of networks from threshold elements.
Problemy Kibernetiki, 11, 49–62.

O’Neil, P. E. (1971). Hyperplane cuts of an n-cube. Discrete Mathematics, 1(2),
193–195.

Orponen, P. (1994). Computational complexity of neural networks: A survey.
Nordic Journal of Computing, 1(1), 94–110.

Orponen, P. (1996). The computational power of discrete Hopfield nets with
hidden units. Neural Computation, 8(2), 403–415.

Orponen, P. (1997a). A survey of continuous-time computation theory. In D.-
Z. Du, & K.-I. Ko (Eds.), Advances in algorithms, languages, and complexity
(pp. 209–224). Dordrecht: Kluwer.

Orponen, P. (1997b). Computing with truly asynchronous threshold logic net-
works. Theoretical Computer Science, 174(1-2), 123–136.

Orponen, P. (1997c). The computational power of continuous time neural net-
works. In Proceedings of the 24th Seminar on Current Trends in Theory and Practice
of Informatics (SOFSEM’97), Milovy, Czech Republic, LNCS 1338 (pp. 86–103).
Berlin: Springer-Verlag.

Orponen, P. (2000). An overview of the computational power of recurrent neural
networks. In H. Hyötyniemi (Ed.), Proceedings of the 9th Finnish AI Conference
STeP 2000–Millennium of AI, Espoo, Finland, “AI of Tomorrow”: Symposium on
Theory (Vol. 3, pp. 89–96). Vaasa, Finland: Finnish AI Society.

Papadimitriou, C. H. (1994). Computational complexity. Reading, MA: Addison-
Wesley.

Parberry, I. (1990). A primer on the complexity theory of neural networks. In
R. B. Banerji (Ed.), Formal techniques in artificial intelligence: A sourcebook, Stud-
ies in computer science and artificial intelligence, 6 (pp. 217–268). Amster-
dam: Elsevier–North-Holland.

Parberry, I. (1994). Circuit complexity and neural networks. Cambridge, MA: MIT
Press.

Parberry, I., & Schnitger, G. (1989). Relating Boltzmann machines to conventional
models of computation. Neural Networks, 2(1), 56–67.

Poljak, S., & Sůra, M. (1983). On periodical behaviour in societies with symmetric
influences. Combinatorica, 3(1), 119–121.

Porat, S. (1989). Stability and looping in connectionist models with asymmetric
weights. Biological Cybernetics, 60, 335–344.

Powell, M. J. D. (1985). Radial basis functions for multivariable interpolation: A
review. In J. C. Mason & M. G. Cox (Eds.), Proceedings of the IMA Conference on
Algorithms for the Approximation of Functions and Data (pp. 143–167). Oxford:
Oxford Science Publications.

2776 J. Šı́ma and P. Orponen

Rabin, M. (1963). Probabilistic automata. Information and Control, 6(3), 230–245.
Razborov, A. A. (1992). On small depth threshold circuits. In O. Nurmi &

E. Ukkonen (Eds.), Proceedings of the 3rd Scandinavian Workshop on Algorithm
Theory (SWAT’92), Helsinki, Finland, LNCS 621 (pp. 42–52). Berlin: Springer-
Verlag.

Reif, J. H., & Tate, S. R. (1992). On threshold circuits and polynomial computa-
tions. SIAM Journal on Computing, 21(5), 896–908.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information
storage and organization in the brain. Psychological Review, 65(6), 386–408.

Roychowdhury, V. P., Siu, K.-Y., & Orlitsky, A. (Eds.). (1994). Theoretical advances
in neural computation and learning. Boston: Kluwer.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations
by back-propagating errors. Nature, 323, 533–536.

Savage, J. E. (1972). Computational work and time on finite machines. Journal of
the ACM, 19(4), 660–674.

Savage, J. E. (1998). Models of computation: Exploring the power of computing. Read-
ing, MA: Addison-Wesley.

Schäffer, A. A., & Yannakakis, M. (1991). Simple local search problems that are
hard to solve. SIAM Journal on Computing, 20(1), 56–87.

Schläfli, L. (1901). Theorie der vielfachen Kontinuität. Zürich: Zürcher & Furrer.
Schmitt, M. (1998). On computing Boolean functions by a spiking neuron. Annals

of Mathematics and Artificial Intelligence, 24(1-4), 181–191.
Schmitt, M. (2002). Descartes’ rule of signs for radial basis function neural net-

works. Neural Computation, 14(12), 2997–3011.
Siegelmann, H. T. (1994). On the computational power of probabilistic and faulty

neural networks. In S. Abiteboul & E. Shamir (Eds.), Proceedings of the 21st
International Colloquium on Automata, Languages, and Programming (ICALP’94),
LNCS 820 (pp. 23–34). Berlin: Springer-Verlag.

Siegelmann, H. T. (1996). Recurrent neural networks and finite automata. Journal
of Computational Intelligence, 12(4), 567–574.

Siegelmann, H. T. (1999a). Neural networks and analog computation: Beyond the
Turing limit. Boston: Birkhäuser.

Siegelmann, H. T. (1999b). Stochastic analog networks and computational com-
plexity. Journal of Complexity, 15(4), 451–475.

Siegelmann, H. T., Roitershtein, A., & Ben-Hur, A. (2000). Noisy neural net-
works and generalizations. In S. A. Solla, T. K. Leen, & K.-R. Müller (Eds.),
Advances in neural information processing systems (NIPS’92), 12 (pp. 335–341).
Cambridge, MA: MIT Press.

Siegelmann, H. T., & Sontag, E. D. (1994). Analog computation via neural net-
works. Theoretical Computer Science, 131(2), 331–360.

Siegelmann, H. T., & Sontag, E. D. (1995). Computational power of neural net-
works. Journal of Computer System Science, 50(1), 132–150.

Šı́ma, J. (1995). Hopfield languages. In Proceedings of the 22nd Seminar on Cur-
rent Trends in Theory and Practice of Informatics (SOFSEM’95), Milovy, Czech
Republic, LNCS 1012 (pp. 461–468). Berlin: Springer-Verlag.

Šı́ma, J. (1997). Analog stable simulation of discrete neural networks. Neural
Network World, 7(6), 679–686.

General-Purpose Computation with Neural Networks 2777

Šı́ma, J. (2001). The computational capabilities of neural networks (extended
abstract). In Proceedings of the 5th International Conference on Artificial Neu-
ral Networks and Genetic Algorithms (ICANNGA’01), Prague, Czech Republic
(pp. 22–26). Vienna: Springer-Verlag.

Šı́ma, J., & Orponen, P. (2000). A continuous-time Hopfield net simulation of dis-
crete neural networks. In Proceedings of the 2nd International ICSC Symposium
on Neural Computation (NC 2000), Berlin, Germany (pp. 36–42). Wetaskiwin,
Canada: ICSC Academic Press.

Šı́ma, J., & Orponen, P. (2001). Exponential transients in continuous-time sym-
metric Hopfield nets. In Proceedings of the 11th International Conference on Arti-
ficial Neural Networks (ICANN’01), Vienna, Austria, LNCS 2130 (pp. 806–813).
Berlin: Springer-Verlag.

Šı́ma, J., & Orponen, P. (2003). Continuous-time symmetric Hopfield nets are
computationally universal. Neural Computation, 15(3), 693–733.

Šı́ma, J., Orponen, P., & Antti-Poika, T. (2000). On the computational complexity
of binary and analog symmetric Hopfield nets. Neural Computation, 12(12),
2965–2989.

Šı́ma, J., & Wiedermann, J. (1998). Theory of neuromata. Journal of the ACM,
45(1), 155–178.

Siu, K.-Y., Bruck, J., Kailath, T., & Hofmeister, T. (1993). Depth efficient neural
networks for division and related problems. IEEE Transactions on Information
Theory, 39(3), 946–956.

Siu, K.-Y., & Roychowdhury, V. P. (1994). On optimal depth threshold circuits for
multiplication and related problems. SIAM Journal on Discrete Mathematics,
7(2), 284–292.

Siu, K.-Y., Roychowdhury, V. P., & Kailath, T. (1991). Depth-size tradeoffs for
neural computation. IEEE Transactions on Computers, 40(12), 1402–1412.

Siu, K.-Y., Roychowdhury, V. P., & Kailath, T. (1993). Computing with almost
optimal size neural networks. In S. J. Hanson, J. D. Cowan, & C. L. Giles
(Eds.), Advances in neural information processing systems (NIPS’92), 5 (pp. 19–
26). San Mateo, CA: Morgan Kaufmann.

Siu, K.-Y., Roychowdhury, V. P., & Kailath, T. (1994). Rational approximation
techniques for analysis of neural networks. IEEE Transactions on Information
Theory, 40(2), 455–466.

Siu, K.-Y., Roychowdhury, V. P., & Kailath, T. (1995a). Discrete neural computation:
A theoretical foundation. Englewood Cliffs, NJ: Prentice Hall.

Siu, K.-Y., Roychowdhury, V. P., & Kailath, T. (1995b). Toward massively parallel
design of multipliers. Journal of Parallel and Distributed Computing, 24(1), 86–
93.

Šorel, M., & Šı́ma, J. (2000). Robust implementation of finite automata by re-
current RBF networks. In Proceedings of the 27th Seminar on Current Trends
in Theory and Practice of Informatics (SOFSEM 2000), Milovy, Czech Republic,
LNCS 1963 (pp. 431–439). Berlin: Springer-Verlag.

Tanaka, F., & Edwards, S. F. (1980). Analytic theory of the ground state properties
of a spin glass: I. Ising spin glass. Journal of Physics F: Metal Physics, 10, 2769–
2778.

2778 J. Šı́ma and P. Orponen

Tchuente, M. (1986). Sequential simulation of parallel iterations and applica-
tions. Theoretical Computer Science, 48(2-3), 135–144.

Vollmer, H. (1999). Introduction to circuit complexity. Berlin: Springer-Verlag.
von Neumann, J. (1956). Probabilistic logics and the synthesis of reliable organ-

isms from unreliable components. In C. E. Shannon & J. McCarthy (Eds.),
Automata studies, Annals of mathematics studies, 34 (pp. 43–98). Princeton,
NJ: Princeton University Press.

Wegener, I. (1987). The complexity of Boolean functions. Chichester: Wi-
ley/Teubner. Available on-line at http://www.eccc.uni-trier.de/eccc-local/
ECCC-Books/wegener book readme.html.

Wegener, I. (1993). Optimal lower bounds on the depth of polynomial-size
threshold circuits for some arithmetic functions. Information Processing Letters,
46(2), 85–87.

Werbos, P. J. (1974). Beyond regression: New tools for prediction and analysis in the
behavioral sciences. Unpublished doctoral dissertation, Harvard University.

Wiedermann, J. (1994). Complexity issues in discrete neurocomputing. Neural
Network World, 4(1), 99–119.

Yao, A. C.-C. (1985). Separating the polynomial–time hierarchy by oracles. Pro-
ceedings of the 26th Annual Symposium on the Foundations of Computer Science
(FOCS’85), Portland, Oregon (pp. 420–428). New York: IEEE Computer Society.

Yuille, A. L., & Geiger, D. (2003). Winner-take-all networks. In M. A. Arbib
(Ed.), The handbook of brain theory and neural networks (2nd ed., pp. 1228–1231).
Cambridge, MA: MIT Press.

Received November 25, 2002; accepted May 19, 2003.

