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Abstract

There are many unexpected or unexpectedly difficult obstacles to deploying anonymous
communications. Drawing on our experiences deploying Tor (the second-generation onion
routing network), we describe social challenges and technical issues that must be faced in
building, deploying, and sustaining a scalable, distributed, low-latency anonymity network.

1 Introduction

Anonymous communication is full of surprises. This paper discusses some unexpected chal-
lenges arising from our experiences deploying Tor, a low-latency general-purpose anonymous
communication system. We will discuss some of the difficulties we have experienced and how
we have met them (or how we plan to meet them, if we know). We also discuss some less
troublesome open problems that we must nevertheless eventually address.

Tor is an overlay network for anonymizing TCP streams over the Internet [13]. It addresses
limitations in earlier Onion Routing designs [17, 27, 35, 36] by adding perfect forward secrecy,
congestion control, directory servers, data integrity, configurable exit policies, and location-
hidden services using rendezvous points. Tor works on the real-world Internet, requires
no special privileges or kernel modifications, requires little synchronization or coordination
between nodes, and provides a reasonable trade-off between anonymity, usability, and efficiency.

We deployed the public Tor network in October 2003; since then it has grown to over a
hundred volunteer-operated nodes and as much as 80 megabits of average traffic per second.
Tor’s research strategy has focused on deploying a network to as many users as possible; thus, we
have resisted designs that would compromise deployability by imposing high resource demands
on node operators, and designs that would compromise usability by imposing unacceptable
restrictions on which applications we support. Although this strategy has drawbacks (including
a weakened threat model, as discussed below), it has made it possible for Tor to serve many
thousands of users and attract funding from diverse sources whose goals range from security
on a national scale down to individual liberties.

In [13] we gave an overall view of Tor’s design and goals. Here we describe some policy,
social, and technical issues that we face as we continue deployment. Rather than providing
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complete solutions to every problem, we instead lay out the challenges and constraints that we
have observed while deploying Tor. In doing so, we aim to provide a research agenda of general
interest to projects attempting to build and deploy practical, usable anonymity networks in the
wild.

2 Background

Here we give a basic overview of the Tor design and its properties, and compare Tor to other
low-latency anonymity designs.

2.1 Tor, threat models, and distributed trust

Tor provides forward privacy, so that users can connect to Internet sites without revealing
their logical or physical locations to those sites or to observers. It also provides location-
hidden services, so that servers can support authorized users without giving an effective vector
for physical or online attackers. Tor provides these protections even when a portion of its
infrastructure is compromised.

To connect to a remote server via Tor, the client software learns a signed list of Tor nodes
from one of several central directory servers, and incrementally creates a private pathway or
circuit of encrypted connections through authenticated Tor nodes on the network, negotiating a
separate set of encryption keys for each hop along the circuit. The circuit is extended one node
at a time, and each node along the way knows only the immediately previous and following
nodes in the circuit, so no individual Tor node knows the complete path that each fixed-sized
data packet (or cell) will take. Thus, neither an eavesdropper nor a compromised node can see
both the connection’s source and destination. Later requests use a new circuit, to complicate
long-term linkability between different actions by a single user.

Tor also helps servers hide their locations while providing services such as web publish-
ing or instant messaging. Using “rendezvous points”, other Tor users can connect to these
authenticated hidden services, neither one learning the other’s network identity.

Tor attempts to anonymize the transport layer, not the application layer. This approach is
useful for applications such as SSH where authenticated communication is desired. However,
when anonymity from those with whom we communicate is desired, application protocols that
include personally identifying information need additional application-level scrubbing proxies,
such as Privoxy [26] for HTTP. Furthermore, Tor does not relay arbitrary IP packets; it only
anonymizes TCP streams and DNS requests (but see Section 4.1).

Most node operators do not want to allow arbitrary TCP traffic. To address this, Tor provides
exit policies so each exit node can block the IP addresses and ports it is unwilling to allow. Tor
nodes advertise their exit policies to the directory servers, so that clients can tell which nodes
will support their connections.

As of January 2005, the Tor network has grown to around a hundred nodes on four
continents, with a total capacity exceeding 1Gbit/s. Appendix A shows a graph of the number
of working nodes over time, as well as a graph of the number of bytes being handled by the
network over time. The network is now sufficiently diverse for further development and testing;
but of course we always encourage new nodes to join.

2



Tor research and development has been funded by ONR and DARPA for use in securing
government communications, and by the Electronic Frontier Foundation for use in maintaining
civil liberties for ordinary citizens online. The Tor protocol is one of the leading choices for
the anonymizing layer in the European Union’s PRIME directive to help maintain privacy in
Europe. The AN.ON project in Germany has integrated an independent implementation of the
Tor protocol into their popular Java Anon Proxy anonymizing client.

Threat models and design philosophy. The ideal Tor network would be practical, useful
and anonymous. When trade-offs arise between these properties, Tor’s research strategy has
been to remain useful enough to attract many users, and practical enough to support them.
Only subject to these constraints do we try to maximize anonymity.1 Because of our strategy,
Tor has a weaker threat model than many designs in the literature. In particular, because we
support interactive communications without impractically expensive padding, we fall prey to a
variety of intra-network [4, 24, 38] and end-to-end [8, 31] anonymity-breaking attacks.

Tor does not attempt to defend against a global observer. In general, an attacker who can
measure both ends of a connection through the Tor network can correlate the timing and volume
of data on that connection as it enters and leaves the network, and so link communication
partners. Known solutions to this attack would seem to require introducing a prohibitive degree
of traffic padding between the user and the network, or introducing an unacceptable degree of
latency (but see Section 4.2). Also, it is not clear that these methods would work at all against
a minimally active adversary who could introduce timing patterns or additional traffic. Thus,
Tor only attempts to defend against external observers who cannot observe both sides of a
user’s connections.

Against internal attackers who sign up Tor nodes, the situation is more complicated. In
the simplest case, if an adversary has compromised c of n nodes on the Tor network, then the
adversary will be able to compromise a random circuit with probability c2

n2 (since the circuit
initiator chooses hops randomly). But there are complicating factors: (1) If the user continues
to build random circuits over time, an adversary is pretty certain to see a statistical sample of
the user’s traffic, and thereby can build an increasingly accurate profile of her behavior. (See
Section 4.3 for possible solutions.) (2) An adversary who controls a popular service outside
the Tor network can be certain to observe all connections to that service; he can therefore
trace connections to that service with probability c

n
. (3) Users do not in fact choose nodes

with uniform probability; they favor nodes with high bandwidth or uptime, and exit nodes
that permit connections to their favorite services. (See Section 4.5 for discussion of larger
adversaries and our dispersal goals.)

More powerful attacks may exist. In [18] it was shown that an attacker who can catalog
data volumes of popular responder destinations (say, websites with consistent data volumes)
may not need to observe both ends of a stream to learn source-destination links for those
responders. Similarly, latencies of going through various routes can be cataloged [4] to connect

1This is not the only possible direction in anonymity research: designs exist that provide more anonymity than
Tor at the expense of significantly increased resource requirements, or decreased flexibility in application support
(typically because of increased latency). Such research does not typically abandon aspirations toward deployability
or utility, but instead tries to maximize deployability and utility subject to a certain degree of structural anonymity
(structural because usability and practicality affect usage which affects the actual anonymity provided by the
network [1, 4]).
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endpoints. It has not yet been shown whether these attacks will succeed or fail in the presence
of the variability and volume quantization introduced by the Tor network, but it seems likely
that these factors will at best delay rather than halt the attacks in the cases where they succeed.
Along similar lines, the same paper suggests a “clogging attack” in which the throughput on a
circuit is observed to slow down when an adversary clogs the right nodes with his own traffic.
To determine the nodes in a circuit this attack requires the ability to continuously monitor
the traffic exiting the network on a circuit that is up long enough to probe all network nodes
in binary fashion. Murdoch and Danezis [24] show a practical interference attack against
portions of the fifty node Tor network as deployed in mid 2004. An outside attacker can actively
trace a circuit through the Tor network by observing changes in the latency of his own traffic
sent through various Tor nodes. This can be done simultaneously at multiple nodes; however,
like clogging, this attack only reveals the Tor nodes in the circuit, not initiator and responder
addresses, so it is still necessary to discover the endpoints to complete an effective attack.
Increasing the size and diversity of the Tor network may help counter these attacks.

Distributed trust. In practice Tor’s threat model is based on dispersal and diversity. Our
defense lies in having a diverse enough set of nodes to prevent most real-world adversaries
from being in the right places to attack users, by distributing each transaction over several
nodes in the network. This “distributed trust” approach means the Tor network can be safely
operated and used by a wide variety of mutually distrustful users, providing sustainability and
security.

No organization can achieve this security on its own. If a single corporation or government
agency were to build a private network to protect its operations, any connections entering or
leaving that network would be obviously linkable to the controlling organization. The members
and operations of that agency would be easier, not harder, to distinguish.

Instead, to protect our networks from traffic analysis, we must collaboratively blend the
traffic from many organizations and private citizens, so that an eavesdropper can’t tell which
users are which, and who is looking for what information. The Tor network has a broad
range of users, including ordinary citizens concerned about their privacy, corporations who
don’t want to reveal information to their competitors, and law enforcement and government
intelligence agencies who need to do operations on the Internet without being noticed. Naturally,
organizations will not want to depend on others for their security. If most participating providers
are reliable, Tor tolerates some hostile infiltration of the network. For maximum protection,
the Tor design includes an enclave approach that lets data be encrypted (and authenticated)
end-to-end, so high-sensitivity users can be sure it hasn’t been read or modified. This even
works for Internet services that don’t have built-in encryption and authentication, such as
unencrypted HTTP or chat, and it requires no modification of those services.

2.2 Related work

Tor differs from other deployed systems for traffic analysis resistance in its security and
flexibility. Mix networks such as Mixmaster [23] or its successor Mixminion [9] gain the
highest degrees of anonymity at the expense of introducing highly variable delays, making
them unsuitable for applications such as web browsing. Commercial single-hop proxies [2]

4



can provide good performance, but a single compromise can expose all users’ traffic, and a
single-point eavesdropper can perform traffic analysis on the entire network. The Java Anon
Proxy [5] provides similar functionality to Tor but handles only web browsing rather than all
TCP. The Freedom network from Zero-Knowledge Systems [3] was even more flexible than Tor
in transporting arbitrary IP packets, and also supported pseudonymity in addition to anonymity;
but it had a different approach to sustainability (collecting money from users and paying ISPs
to run Tor nodes), and was eventually shut down due to financial load. Finally, peer-to-peer
designs that are intended to be more scalable, for example Tarzan [16] and MorphMix [28],
have been proposed in the literature but have not been fielded. These systems differ somewhat
in threat model and presumably practical resistance to threats. Note that MorphMix differs
from Tor only in node discovery and circuit setup; so Tor’s architecture is flexible enough to
contain a MorphMix experiment. We direct the interested reader to [13] for a more in-depth
review of related work.

3 Social challenges

Many of the issues the Tor project needs to address extend beyond system design and technology
development. In particular, the Tor project’s image with respect to its users and the rest of
the Internet impacts the security it can provide. With this image issue in mind, this section
discusses the Tor user base and Tor’s interaction with other services on the Internet.

3.1 Communicating security

Usability for anonymity systems contributes to their security, because usability affects the
possible anonymity set [1, 4]. Conversely, an unusable system attracts few users and thus can’t
provide much anonymity.

This phenomenon has a second-order effect: knowing this, users should choose which
anonymity system to use based in part on how usable and secure others will find it, in order to
get the protection of a larger anonymity set. Thus we might supplement the adage “usability is
a security parameter” [4] with a new one: “perceived usability is a security parameter.” From
here we can better understand the effects of publicity on security: the more convincing your
advertising, the more likely people will believe you have users, and thus the more users you
will attract. Perversely, over-hyped systems (if they are not too broken) may be a better choice
than modestly promoted ones, if the hype attracts more users [12].

So it follows that we should come up with ways to accurately communicate the available
security levels to the user, so she can make informed decisions. JAP aims to do this by including
a comforting ‘anonymity meter’ dial in the software’s graphical interface, giving the user an
impression of the level of protection for her current traffic.

However, there’s a catch. For users to share the same anonymity set, they need to act like
each other. An attacker who can distinguish a given user’s traffic from the rest of the traffic
will not be distracted by anonymity set size. For high-latency systems like Mixminion, where
the threat model is based on mixing messages with each other, there’s an arms race between
end-to-end statistical attacks and counter-strategies [7, 9, 22, 30]. But for low-latency systems
like Tor, end-to-end traffic correlation attacks [8, 21, 31] allow an attacker who can observe
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both ends of a communication to correlate packet timing and volume, quickly linking the
initiator to her destination.

Like Tor, the current JAP implementation does not pad connections apart from using
small fixed-size cells for transport. In fact, JAP’s cascade-based network topology may be
more vulnerable to these attacks, because its network has fewer edges. JAP was born out
of the ISDN mix design [25], where padding made sense because every user had a fixed
bandwidth allocation and altering the timing pattern of packets could be immediately detected.
But in its current context as an Internet web anonymizer, adding sufficient padding to JAP
would probably be prohibitively expensive and ineffective against a minimally active attacker.2

Therefore, since under this threat model the number of concurrent users does not seem to
have much impact on the anonymity provided, we suggest that JAP’s anonymity meter is not
accurately communicating security levels to its users.

On the other hand, while the number of active concurrent users may not matter as much as
we’d like, it still helps to have some other users on the network. We investigate this issue next.

3.2 Reputability and perceived social value

Another factor impacting the network’s security is its reputability: the perception of its social
value based on its current user base. If Alice is the only user who has ever downloaded the
software, it might be socially accepted, but she’s not getting much anonymity. Add a thousand
activists, and she’s anonymous, but everyone thinks she’s an activist too. Add a thousand
diverse citizens (cancer survivors, privacy enthusiasts, and so on) and now she’s harder to
profile.

Furthermore, the network’s reputability affects its operator base: more people are willing
to run a service if they believe it will be used by human rights workers than if they believe it
will be used exclusively for disreputable ends. This effect becomes stronger if node operators
themselves think they will be associated with their users’ disreputable ends.

So the more cancer survivors on Tor, the better for the human rights activists. The more
malicious hackers, the worse for the normal users. Thus, reputability is an anonymity issue for
two reasons. First, it impacts the sustainability of the network: a network that’s always about
to be shut down has difficulty attracting and keeping adequate nodes. Second, a disreputable
network is more vulnerable to legal and political attacks, since it will attract fewer supporters.

While people therefore have an incentive for the network to be used for “more reputable”
activities than their own, there are still trade-offs involved when it comes to anonymity. To
follow the above example, a network used entirely by cancer survivors might welcome file
sharers onto the network, though of course they’d prefer a wider variety of users.

Reputability becomes even more tricky in the case of privacy networks, since the good uses
of the network (such as publishing by journalists in dangerous countries) are typically kept
private, whereas network abuses or other problems tend to be more widely publicized.

The impact of public perception on security is especially important during the bootstrapping
phase of the network, where the first few widely publicized uses of the network can dictate the

2Even if JAP could fund higher-capacity nodes indefinitely, our experience suggests that many users would
not accept the increased per-user bandwidth requirements, leading to an overall much smaller user base. But see
Section 4.2.
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types of users it attracts next. As an example, some U.S. Department of Energy penetration
testing engineers are tasked with compromising DoE computers from the outside. They only
have a limited number of ISPs from which to launch their attacks, and they found that the
defenders were recognizing attacks because they came from the same IP space. These engineers
wanted to use Tor to hide their tracks. First, from a technical standpoint, Tor does not support
the variety of IP packets one would like to use in such attacks (see Section 4.1). But aside from
this, we also decided that it would probably be poor precedent to encourage such use—even
legal use that improves national security—and managed to dissuade them.

3.3 Sustainability and incentives

One of the unsolved problems in low-latency anonymity designs is how to keep the nodes
running. ZKS’s Freedom network depended on paying third parties to run its servers; the JAP
project’s bandwidth depends on grants to pay for its bandwidth and administrative expenses.
In Tor, bandwidth and administrative costs are distributed across the volunteers who run
Tor nodes, so we at least have reason to think that the Tor network could survive without
continued research funding.3 But why are these volunteers running nodes, and what can we do
to encourage more volunteers to do so?

We have not formally surveyed Tor node operators to learn why they are running nodes,
but from the information they have provided, it seems that many of them run Tor nodes for
reasons of personal interest in privacy issues. It is possible that others are running Tor nodes
to protect their own anonymity, but of course they are hardly likely to tell us specifics if they
are. Tor exit node operators do attain a degree of “deniability” for traffic that originates at that
exit node. For example, it is likely in practice that HTTP requests from a Tor node’s IP will be
assumed to be from the Tor network. More significantly, people and organizations who use Tor
for anonymity depend on the continued existence of the Tor network to do so; running a node
helps to keep the network operational.

Since Tor is run by volunteers, the most crucial software usability issue is usability by
operators: when an operator leaves, the network becomes less usable by everybody. To keep
operators pleased, we must try to keep Tor’s resource and administrative demands as low as
possible.

Because of ISP billing structures, many Tor operators have underused capacity that they
are willing to donate to the network, at no additional monetary cost to them. Features to limit
bandwidth have been essential to adoption. Also useful has been a “hibernation” feature that
allows a Tor node that wants to provide high bandwidth, but no more than a certain amount in
a giving billing cycle, to become dormant once its bandwidth is exhausted, and to reawaken
at a random offset into the next billing cycle. This feature has interesting policy implications,
however; see the next section below. Exit policies help to limit administrative costs by limiting
the frequency of abuse complaints (see Section 3.5). We discuss technical incentive mechanisms
in Section 5.1.

3It also helps that Tor is implemented with free and open source software that can be maintained by anybody
with the ability and inclination.
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3.4 Bandwidth and file-sharing

Once users have configured their applications to work with Tor, the largest remaining usability
issue is performance. Users begin to suffer when websites “feel slow.” Clients currently try to
build their connections through nodes that they guess will have enough bandwidth. But even
if capacity is allocated optimally, it seems unlikely that the current network architecture will
have enough capacity to provide every user with as much bandwidth as she would receive if
she weren’t using Tor, unless far more nodes join the network.

Much of Tor’s recent bandwidth difficulties have come from file-sharing applications. These
applications provide two challenges to any anonymizing network: their intensive bandwidth
requirement, and the degree to which they are associated (correctly or not) with copyright
infringement.

High-bandwidth protocols can make the network unresponsive, but tend to be somewhat
self-correcting as lack of bandwidth drives away users who need it. Issues of copyright violation,
however, are more interesting. Typical exit node operators want to help people achieve private
and anonymous speech, not to help people (say) host Vin Diesel movies for download; and
typical ISPs would rather not deal with customers who draw menacing letters from the MPAA.
While it is quite likely that the operators are doing nothing illegal, many ISPs have policies of
dropping users who get repeated legal threats regardless of the merits of those threats, and
many operators would prefer to avoid receiving even meritless legal threats. So when letters
arrive, operators are likely to face pressure to block file-sharing applications entirely, in order
to avoid the hassle.

But blocking file-sharing is not easy: popular protocols have evolved to run on non-standard
ports to get around other port-based bans. Thus, exit node operators who want to block
file-sharing would have to find some way to integrate Tor with a protocol-aware exit filter.
This could be a technically expensive undertaking, and one with poor prospects: it is unlikely
that Tor exit nodes would succeed where so many institutional firewalls have failed. Another
possibility for sensitive operators is to run a restrictive node that only permits exit connections
to a restricted range of ports that are not frequently associated with file sharing. There are
increasingly few such ports.

Other possible approaches might include rate-limiting connections, especially long-lived
connections or connections to file-sharing ports, so that high-bandwidth connections do not
flood the network. We might also want to give priority to cells on low-bandwidth connections
to keep them interactive, but this could have negative anonymity implications.

For the moment, it seems that Tor’s bandwidth issues have rendered it unattractive for bulk
file-sharing traffic; this may continue to be so in the future. Nevertheless, Tor will likely remain
attractive for limited use in file-sharing protocols that have separate control and data channels.

3.5 Tor and blacklists

It was long expected that, alongside legitimate users, Tor would also attract troublemakers
who exploit Tor to abuse services on the Internet with vandalism, rude mail, and so on. Our
initial answer to this situation was to use “exit policies” to allow individual Tor nodes to block
access to specific IP/port ranges. This approach aims to make operators more willing to run Tor
by allowing them to prevent their nodes from being used for abusing particular services. For
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example, all Tor nodes currently block SMTP (port 25), to avoid being used for spam.
Exit policies are useful, but they are insufficient: if not all nodes block a given service, that

service may try to block Tor instead. While being blockable is important to being good netizens,
we would like to encourage services to allow anonymous access. Services should not need to
decide between blocking legitimate anonymous use and allowing unlimited abuse.

This is potentially a bigger problem than it may appear. On the one hand, services should
be allowed to refuse connections from sources of possible abuse. But when a Tor node
administrator decides whether he prefers to be able to post to Wikipedia from his IP address, or
to allow people to read Wikipedia anonymously through his Tor node, he is making the decision
for others as well. (For a while, Wikipedia blocked all posting from all Tor nodes based on IP
addresses.) If the Tor node shares an address with a campus or corporate NAT, then the decision
can prevent the entire population from posting. This is a loss for both Tor and Wikipedia: we
don’t want to compete for (or divvy up) the NAT-protected entities of the world.

Worse, many IP blacklists are coarse-grained: they ignore Tor’s exit policies, partly because
it’s easier to implement and partly so they can punish all Tor nodes. One IP blacklist even
bans every class C network that contains a Tor node, and recommends banning SMTP from
these networks even though Tor does not allow SMTP at all. This strategic decision aims to
discourage the operation of anything resembling an open proxy by encouraging its neighbors
to shut it down to get unblocked themselves. This pressure even affects Tor nodes running in
middleman mode (disallowing all exits) when those nodes are blacklisted too.

Problems of abuse occur mainly with services such as IRC networks and Wikipedia, which
rely on IP blocking to ban abusive users. While at first blush this practice might seem to depend
on the anachronistic assumption that each IP is an identifier for a single user, it is actually more
reasonable in practice: it assumes that non-proxy IPs are a costly resource, and that an abuser
can not change IPs at will. By blocking IPs which are used by Tor nodes, open proxies, and
service abusers, these systems hope to make ongoing abuse difficult. Although the system is
imperfect, it works tolerably well for them in practice.

Of course, we would prefer that legitimate anonymous users be able to access abuse-prone
services. One conceivable approach would require would-be IRC users, for instance, to register
accounts if they want to access the IRC network from Tor. In practice this would not significantly
impede abuse if creating new accounts were easily automatable; this is why services use IP
blocking. To deter abuse, pseudonymous identities need to require a significant switching cost
in resources or human time. Some popular webmail applications impose cost with Reverse
Turing Tests, but this step may not deter all abusers. Freedom used blind signatures to limit the
number of pseudonyms for each paying account, but Tor has neither the ability nor the desire
to collect payment.

We stress that as far as we can tell, most Tor uses are not abusive. Most services have not
complained, and others are actively working to find ways besides banning to cope with the
abuse. For example, the Freenode IRC network had a problem with a coordinated group of
abusers joining channels and subtly taking over the conversation; but when they labelled all
users coming from Tor IPs as “anonymous users,” removing the ability of the abusers to blend
in, the abuse stopped.
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4 Design choices

In addition to social issues, Tor also faces some design trade-offs that must be investigated as
the network develops.

4.1 Transporting the stream vs transporting the packets

Tor transports streams; it does not tunnel packets. It has often been suggested that like the old
Freedom network [3], Tor should “obviously” anonymize IP traffic at the IP layer. Before this
could be done, many issues need to be resolved:

1. IP packets reveal OS characteristics. We would still need to do IP-level packet normalization,
to stop things like TCP fingerprinting attacks. This is unlikely to be a trivial task, given
the diversity and complexity of TCP stacks.

2. Application-level streams still need scrubbing. We still need Tor to be easy to integrate
with user-level application-specific proxies such as Privoxy. So it’s not just a matter of
capturing packets and anonymizing them at the IP layer.

3. Certain protocols will still leak information. For example, we must rewrite DNS requests
so they are delivered to an unlinkable DNS server rather than the DNS server at a user’s
ISP; thus, we must understand the protocols we are transporting.

4. The crypto is unspecified. First we need a block-level encryption approach that can provide
security despite packet loss and out-of-order delivery. Freedom allegedly had one, but
it was never publicly specified. Also, TLS over UDP is not yet implemented or specified,
though some early work has begun [29].

5. We’ll still need to tune network parameters. Since the above encryption system will likely
need sequence numbers (and maybe more) to do replay detection, handle duplicate
frames, and so on, we will be reimplementing a subset of TCP anyway—a notoriously
tricky path.

6. Exit policies for arbitrary IP packets mean building a secure IDS. Our node operators tell
us that exit policies are one of the main reasons they’re willing to run Tor. Adding an
Intrusion Detection System to handle exit policies would increase the security complexity
of Tor, and would likely not work anyway, as evidenced by the entire field of IDS and
counter-IDS papers. Many potential abuse issues are resolved by the fact that Tor only
transports valid TCP streams (as opposed to arbitrary IP including malformed packets and
IP floods), so exit policies become even more important as we become able to transport
IP packets. We also need to compactly describe exit policies so clients can predict which
nodes will allow which packets to exit.

7. The Tor-internal name spaces would need to be redesigned. We support hidden service
.onion addresses (and other special addresses, like .exit which lets the user request
a particular exit node), by intercepting the addresses when they are passed to the Tor
client. Doing so at the IP level would require a more complex interface between Tor and
the local DNS resolver.
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This list is discouragingly long, but being able to transport more protocols obviously has
some advantages. It would be good to learn which items are actual roadblocks and which are
easier to resolve than we think.

To be fair, Tor’s stream-based approach has run into stumbling blocks as well. While Tor
supports the SOCKS protocol, which provides a standardized interface for generic TCP proxies,
many applications do not support SOCKS. For them we already need to replace the networking
system calls with SOCKS-aware versions, or run a SOCKS tunnel locally, neither of which is easy
for the average user. Even when applications can use SOCKS, they often make DNS requests
themselves before handing an IP address to Tor, which advertises where the user is about to
connect. We are still working on more usable solutions.

4.2 Mid-latency

Some users need to resist traffic correlation attacks. Higher-latency mix-networks introduce
variability into message arrival times: as timing variance increases, timing correlation attacks
require increasingly more data [22]. Can we improve Tor’s resistance without losing too much
usability?

We need to learn whether we can trade a small increase in latency for a large anonymity
increase, or if we’d end up trading a lot of latency for only a minimal security gain. A trade-
off might be worthwhile even if we could only protect certain use cases, such as infrequent
short-duration transactions. We might adapt the techniques of [22] to a lower-latency mix
network, where the messages are batches of cells in temporally clustered connections. These
large fixed-size batches can also help resist volume signature attacks [18]. We could also
experiment with traffic shaping to get a good balance of throughput and security.

We must keep usability in mind too. How much can latency increase before we drive
users away? We’ve already been forced to increase latency slightly, as our growing network
incorporates more DSL and cable-modem nodes and more nodes in distant continents. Perhaps
we can harness this increased latency to improve anonymity rather than just reduce usability.
Further, if we let clients label certain circuits as mid-latency as they are constructed, we could
handle both types of traffic on the same network, giving users a choice between speed and
security—and giving researchers a chance to experiment with parameters to improve the quality
of those choices.

4.3 Enclaves and helper nodes

It has long been thought that users can improve their anonymity by running their own node [13,
17, 36], and using it in an enclave configuration, where all their circuits begin at the node
under their control. Running Tor clients or servers at the enclave perimeter is useful when
policy or other requirements prevent individual machines within the enclave from running Tor
clients [27, 35].

Of course, Tor’s default path length of three is insufficient for these enclaves, since the entry
and/or exit themselves are sensitive. Tor thus increments path length by one for each sensitive
endpoint in the circuit. Enclaves also help to protect against end-to-end attacks, since it’s
possible that traffic coming from the node has simply been relayed from elsewhere. However,
if the node has recognizable behavior patterns, an attacker who runs nodes in the network
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can triangulate over time to gain confidence that it is in fact originating the traffic. Wright
et al. [37] introduce the notion of a helper node—a single fixed entry node for each user—to
combat this predecessor attack.

However, the attack in [24] shows that simply adding to the path length, or using a helper
node, may not protect an enclave node. A hostile web server can send constant interference
traffic to all nodes in the network, and learn which nodes are involved in the circuit (though
at least in the current attack, he can’t learn their order). Using randomized path lengths may
help some, since the attacker will never be certain he has identified all nodes in the path unless
he probes the entire network, but as long as the network remains small this attack will still be
feasible.

Helper nodes also aim to help Tor clients, because choosing entry and exit points randomly
and changing them frequently allows an attacker who controls even a few nodes to eventually
link some of their destinations. The goal is to take the risk once and for all about choosing a
bad entry node, rather than taking a new risk for each new circuit. (Choosing fixed exit nodes
is less useful, since even an honest exit node still doesn’t protect against a hostile website.)
But obstacles remain before we can implement helper nodes. For one, the literature does not
describe how to choose helpers from a list of nodes that changes over time. If Alice is forced
to choose a new entry helper every d days and c of the n nodes are bad, she can expect to
choose a compromised node around every dc/n days. Statistically over time this approach only
helps if she is better at choosing honest helper nodes than at choosing honest nodes. Worse, an
attacker with the ability to DoS nodes could force users to switch helper nodes more frequently,
or remove other candidate helpers.

4.4 Location-hidden services

Tor’s rendezvous points let users provide TCP services to other Tor users without revealing the
service’s location. Since this feature is relatively recent, we describe here a couple of our early
observations from its deployment.

First, our implementation of hidden services seems less hidden than we’d like, since they
build a different rendezvous circuit for each user, and an external adversary can induce them
to produce traffic. This insecurity means that they may not be suitable as a building block for
Free Haven [11] or other anonymous publishing systems that aim to provide long-term security,
though helper nodes, as discussed above, would seem to help.

Hot-swap hidden services, where more than one location can provide the service and loss of
any one location does not imply a change in service, would help foil intersection and observation
attacks where an adversary monitors availability of a hidden service and also monitors whether
certain users or servers are online. The design challenges in providing such services without
otherwise compromising the hidden service’s anonymity remain an open problem; however,
see [34].

In practice, hidden services are used for more than just providing private access to a web
server or IRC server. People are using hidden services as a poor man’s VPN and firewall-buster.
Many people want to be able to connect to the computers in their private network via secure
shell, and rather than playing with dyndns and trying to pierce holes in their firewall, they run
a hidden service on the inside and then rendezvous with that hidden service externally.

12



News sites like Bloggers Without Borders (www.b19s.org) are advertising a hidden-service
address on their front page. Doing this can provide increased robustness if they use the dual-IP
approach we describe in [13], but in practice they do it to increase visibility of the Tor project
and their support for privacy, and to offer a way for their users, using unmodified software, to
get end-to-end encryption and authentication to their website.

4.5 Location diversity and ISP-class adversaries

Anonymity networks have long relied on diversity of node location for protection against
attacks—typically an adversary who can observe a larger fraction of the network can launch a
more effective attack. One way to achieve dispersal involves growing the network so a given
adversary sees less. Alternately, we can arrange the topology so traffic can enter or exit at many
places (for example, by using a free-route network like Tor rather than a cascade network like
JAP). Lastly, we can use distributed trust to spread each transaction over multiple jurisdictions.
But how do we decide whether two nodes are in related locations?

Feamster and Dingledine defined a location diversity metric in [15], and began investigating
a variant of location diversity based on the fact that the Internet is divided into thousands of
independently operated networks called autonomous systems (ASes). The key insight from their
paper is that while we typically think of a connection as going directly from the Tor client to
the first Tor node, actually it traverses many different ASes on each hop. An adversary at any of
these ASes can monitor or influence traffic. Specifically, given plausible initiators and recipients,
and given random path selection, some ASes in the simulation were able to observe 10% to
30% of the transactions (that is, learn both the origin and the destination) on the deployed Tor
network (33 nodes as of June 2004).

The paper concludes that for best protection against the AS-level adversary, nodes should be
in ASes that have the most links to other ASes: Tier-1 ISPs such as AT&T and Abovenet. Further,
a given transaction is safest when it starts or ends in a Tier-1 ISP. Therefore, assuming initiator
and responder are both in the U.S., it actually hurts our location diversity to use far-flung nodes
in continents like Asia or South America.

Many open questions remain. First, it will be an immense engineering challenge to get an
entire BGP routing table to each Tor client, or to summarize it sufficiently. Without a local
copy, clients won’t be able to safely predict what ASes will be traversed on the various paths
through the Tor network to the final destination. Tarzan [16] and MorphMix [28] suggest that
we compare IP prefixes to determine location diversity; but the above paper showed that in
practice many of the Mixmaster nodes that share a single AS have entirely different IP prefixes.
When the network has scaled to thousands of nodes, does IP prefix comparison become a more
useful approximation? Second, we can take advantage of caching certain content at the exit
nodes, to limit the number of requests that need to leave the network at all. What about taking
advantage of caches like Akamai or Google [32]? (Note that they’re also well-positioned as
global adversaries.) Third, if we follow the recommendations in [15] and tailor path selection
to avoid choosing endpoints in similar locations, how much are we hurting anonymity against
larger real-world adversaries who can take advantage of knowing our algorithm? Fourth, can
we use this knowledge to figure out which gaps in our network most affect our robustness to
this class of attack, and go recruit new nodes with those ASes in mind?
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4.6 The Anti-censorship problem

Citizens in a variety of countries, such as most recently China and Iran, are blocked from
accessing various sites outside their country. These users try to find any tools available to
allow them to get around these firewalls. Some anonymity networks, such as Six-Four [33],
are designed specifically with this goal in mind; others like the Anonymizer [2] are paid by
sponsors such as Voice of America to encourage Internet freedom. Even though Tor wasn’t
designed with ubiquitous access to the network in mind, thousands of users across the world
are now using it for exactly this purpose.

Anti-censorship networks hoping to bridge country-level blocks face a variety of challenges.
One of these is that they need to find enough exit nodes—servers on the ‘free’ side that are
willing to relay traffic from users to their final destinations. Anonymizing networks like Tor are
well-suited to this task since we have already gathered a set of exit nodes that are willing to
tolerate some political heat.

The other main challenge is to distribute a list of reachable relays to the users inside the
country, and give them software to use those relays, without letting the censors also enumerate
this list and block each relay. Anonymizer solves this by buying lots of seemingly-unrelated
IP addresses (or having them donated), abandoning old addresses as they are ‘used up,’ and
telling a few users about the new ones. Distributed anonymizing networks again have an
advantage here, in that we already have tens of thousands of separate IP addresses whose users
might volunteer to provide this service since they’ve already installed and use the software for
their own privacy [19]. Because the Tor protocol separates routing from network discovery
[13], volunteers could configure their Tor clients to generate node descriptors and send them
to a special directory server that gives them out to dissidents who need to get around blocks.

Of course, this still doesn’t prevent the adversary from enumerating and preemptively
blocking the volunteer relays. Perhaps a tiered-trust system could be built where a few
individuals are given relays’ locations. They could then recommend other individuals by telling
them those addresses, thus providing a built-in incentive to avoid letting the adversary intercept
them. Max-flow trust algorithms [20] might help to bound the number of IP addresses leaked
to the adversary. Groups like the W3C are looking into using Tor as a component in an overall
system to help address censorship; we wish them success.

5 Scaling

Tor is running today with hundreds of nodes and tens of thousands of users, but it will certainly
not scale to millions. Scaling Tor involves four main challenges. First, to get a large set of nodes,
we must address incentives for users to carry traffic for others. Next is safe node discovery, both
while bootstrapping (Tor clients must robustly find an initial node list) and later (Tor clients
must learn about a fair sample of honest nodes and not let the adversary control circuits). We
must also detect and handle node speed and reliability as the network becomes increasingly
heterogeneous: since the speed and reliability of a circuit is limited by its worst link, we must
learn to track and predict performance. Finally, we must stop assuming that all points on the
network can connect to all other points.
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5.1 Incentives by Design

There are three behaviors we need to encourage for each Tor node: relaying traffic; providing
good throughput and reliability while doing it; and allowing traffic to exit the network from
that node.

We encourage these behaviors through indirect incentives: that is, by designing the system
and educating users in such a way that users with certain goals will choose to relay traffic. One
main incentive for running a Tor node is social: volunteers altruistically donate their bandwidth
and time. We encourage this with public rankings of the throughput and reliability of nodes,
much like seti@home. We further explain to users that they can get deniability for any traffic
emerging from the same address as a Tor exit node, and they can use their own Tor node as an
entry or exit point with confidence that it’s not run by an adversary. Further, users may run a
node simply because they need such a network to be persistently available and usable, and the
value of supporting this exceeds any countervening costs. Finally, we can encourage operators
by improving the usability and feature set of the software: rate limiting support and easy
packaging decrease the hassle of maintaining a node, and our configurable exit policies allow
each operator to advertise a policy describing the hosts and ports to which he feels comfortable
connecting.

To date these incentives appear to have been adequate. As the system scales or as new issues
emerge, however, we may also need to provide direct incentives: providing payment or other
resources in return for high-quality service. Paying actual money is problematic: decentralized
e-cash systems are not yet practical, and a centralized collection system not only reduces
robustness, but also has failed in the past (the history of commercial anonymizing networks is
littered with failed attempts). A more promising option is to use a tit-for-tat incentive scheme,
where nodes provide better service to nodes that have provided good service for them.

Unfortunately, such an approach introduces new anonymity problems. There are many sur-
prising ways for nodes to game the incentive and reputation system to undermine anonymity—
such systems are typically designed to encourage fairness in storage or bandwidth usage, not
fairness of provided anonymity. An adversary can attract more traffic by performing well or can
target individual users by selectively performing, to undermine their anonymity. Typically a
user who chooses evenly from all nodes is most resistant to an adversary targeting him, but
that approach hampers the efficient use of heterogeneous nodes.

A possible solution is a simplified approach to the tit-for-tat incentive scheme based on two
rules: (1) each node should measure the service it receives from adjacent nodes, and provide
service relative to the received service, but (2) when a node is making decisions that affect its
own security (such as building a circuit for its own application connections), it should choose
evenly from a sufficiently large set of nodes that meet some minimum service threshold [14].
This approach allows us to discourage bad service without opening Alice up as much to attacks.
All of this requires further study.

5.2 Trust and discovery

The published Tor design is deliberately simplistic in how new nodes are authorized and
how clients are informed about Tor nodes and their status. All nodes periodically upload
a signed description of their locations, keys, and capabilities to each of several well-known
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directory servers. These directory servers construct a signed summary of all known Tor nodes
(a “directory”), and a signed statement of which nodes they believe to be operational then (a
“network status”). Clients periodically download a directory to learn the latest nodes and keys,
and more frequently download a network status to learn which nodes are likely to be running.
Tor nodes also operate as directory caches, to lighten the bandwidth on the directory servers.

To prevent Sybil attacks (wherein an adversary signs up many purportedly independent
nodes to increase her network view), this design requires the directory server operators to
manually approve new nodes. Unapproved nodes are included in the directory, but clients do
not use them at the start or end of their circuits. In practice, directory administrators perform
little actual verification, and tend to approve any Tor node whose operator can compose a
coherent email. This procedure may prevent trivial automated Sybil attacks, but will do little
against a clever and determined attacker.

There are a number of flaws in this system that need to be addressed as we move forward.
First, each directory server represents an independent point of failure: any compromised
directory server could start recommending only compromised nodes. Second, as more nodes
join the network, directories become infeasibly large, and downloading the list of nodes
becomes burdensome. Third, the validation scheme may do as much harm as it does good. It
does not prevent clever attackers from mounting Sybil attacks, and it may deter node operators
from joining the network—if they expect the validation process to be difficult, or they do not
share any languages in common with the directory server operators.

We could try to move the system in several directions, depending on our choice of threat
model and requirements. If we did not need to increase network capacity to support more
users, we could simply adopt even stricter validation requirements, and reduce the number of
nodes in the network to a trusted minimum. But, we can only do that if we can simultaneously
make node capacity scale much more than we anticipate to be feasible soon, and if we can find
entities willing to run such nodes, an equally daunting prospect.

In order to address the first two issues, it seems wise to move to a system including a
number of semi-trusted directory servers, no one of which can compromise a user on its own.
Ultimately, of course, we cannot escape the problem of a first introducer: since most users
will run Tor in whatever configuration the software ships with, the Tor distribution itself will
remain a single point of failure so long as it includes the seed keys for directory servers, a
list of directory servers, or any other means to learn which nodes are on the network. But
omitting this information from the Tor distribution would only delegate the trust problem to
each individual user. A well publicized, widely available, authoritatively and independently
endorsed and signed list of initial directory servers and their keys is a possible solution. But,
setting that up properly is itself a large bootstrapping task.

5.3 Measuring performance and capacity

One of the paradoxes with engineering an anonymity network is that we’d like to learn as much
as we can about how traffic flows so we can improve the network, but we want to prevent
others from learning how traffic flows in order to trace users’ connections through the network.
Furthermore, many mechanisms that help Tor run efficiently require measurements about the
network.
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Currently, nodes try to deduce their own available bandwidth (based on how much traffic
they have been able to transfer recently) and include this information in the descriptors
they upload to the directory. Clients choose servers weighted by their bandwidth, neglecting
really slow servers and capping the influence of really fast ones. This is, of course, eminently
cheatable. A malicious node can get a disproportionate amount of traffic simply by claiming to
have more bandwidth than it does. But better mechanisms have their problems. If bandwidth
data is to be measured rather than self-reported, it is usually possible for nodes to selectively
provide better service for the measuring party, or sabotage the measured value of other
nodes. Complex solutions for mix networks have been proposed, but do not address the issues
completely [10, 14].

Even with no cheating, network measurement is complex. It is common for views of a node’s
latency and/or bandwidth to vary wildly between observers. Further, it is unclear whether total
bandwidth is really the right measure; perhaps clients should instead be considering nodes
based on unused bandwidth or observed throughput. And even if we can collect and use this
network information effectively, we must ensure that it is not more useful to attackers than to
us. While it seems plausible that bandwidth data alone is not enough to reveal sender-recipient
connections under most circumstances, it could certainly reveal the path taken by large traffic
flows under low-usage circumstances.

5.4 Non-clique topologies

Tor’s comparatively weak threat model may allow easier scaling than other designs. High-
latency mix networks need to avoid partitioning attacks, where network splits let an attacker
distinguish users in different partitions. Since Tor assumes the adversary cannot cheaply observe
nodes at will, a network split may not decrease protection much. Thus, one option when the
scale of a Tor network exceeds some size is simply to split it. Nodes could be allocated into
partitions while hampering collaborating hostile nodes from taking over a single partition [14].
Clients could switch between networks, even on a per-circuit basis.

More conservatively, we can try to scale a single Tor network. Likely problems with adding
more servers to a single Tor network include an explosion in the number of sockets needed on
each server as more servers join, and increased coordination overhead to keep each users’ view
of the network consistent. As we grow, we will also have more instances of servers that can’t
reach each other simply due to Internet topology or routing problems.

We can address these points by reducing the network’s connectivity. Danezis [6] considers
the anonymity implications of restricting routes on mix networks and recommends an approach
based on expander graphs (where any subgraph is likely to have many neighbors). It is not
immediately clear that this approach will extend to Tor, which has a weaker threat model but
higher performance requirements: instead of analyzing the probability of an attacker’s viewing
whole paths, we will need to examine the attacker’s likelihood of compromising the endpoints.
Tor may not need an expander graph per se: it may be enough to have a single central subnet
that is highly connected, like an Internet backbone. There are many open questions: how
to distribute connectivity information (presumably nodes will learn about the central nodes
when they download Tor), whether central nodes will need to function as a ‘backbone’, and so
on. As above, this could reduce the amount of anonymity available from a mix-net, but for a
low-latency network where anonymity derives largely from the edges, it may be feasible.
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6 The Future

Tor is the largest and most diverse low-latency anonymity network available, but we are still in
the beginning stages of deployment. Several major questions remain.

First, will our volunteer-based approach to sustainability work in the long term? As we add
more features and destabilize the network, the developers spend a lot of time keeping the server
operators happy. Even though Tor is free software, the network would likely stagnate and die
at this stage if the developers stopped actively working on it. We may get an unexpected boon
from the fact that we’re a general-purpose overlay network: as Tor grows more popular, other
groups who need an overlay network on the Internet are starting to adapt Tor to their needs.
Second, Tor is only one of many components that preserve privacy online. For applications
where it is desirable to keep identifying information out of application traffic, someone must
build more and better protocol-aware proxies that are usable by ordinary people. Third, we
need to gain a reputation for social good, and learn how to coexist with the variety of Internet
services and their established authentication mechanisms. We can’t just keep escalating the
blacklist standoff forever. Fourth, the current Tor architecture does not scale even to handle
current user demand. We must find designs and incentives to let some clients relay traffic too,
without sacrificing too much anonymity.

These are difficult and open questions. Yet choosing not to solve them means leaving most
users to a less secure network or no anonymizing network at all.
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Figure 1: Number of Tor nodes over time, through January 2005. Lowest line is number of exit
nodes that allow connections to port 80. Middle line is total number of verified (registered) Tor
nodes. The line above that represents nodes that are running but not yet registered.

Figure 2: The sum of traffic reported by each node over time, through January 2005. The
bottom pair show average throughput, and the top pair represent the largest 15 minute burst
in each 4 hour period.
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