Task Oriented Software Understanding

Ali Erdem, W. Lewis Johnson, Stacy Marsella
USC Information Sciences Institute & Computer Science Dept.
4676 Admiralty Way
Marina del Rey, CA 90292-6695
+1 310 822 1511

{erdem,johnson,marsella}@isi.edu

ABSTRACT

The main factors that affect software understanding are
the complexity of the problem solved by the program,
the program text, the user’s mental ability and expe-
rience and the task being performed. This paper de-
scribes a planning approach solution to the software un-
derstanding problem that focuses on the user’s task and
expertise. First, user questions about software artifacts
have been studied and the most commonly asked ques-
tions are identified. These questions are organized into
a question model and procedures for answering them are
developed. Then, the patterns in user questions while
performing certain tasks have been studied and these
patterns are used to build generic task models. The
explanation system uses these task models in several
ways. The task model, along with a user model, is used
to generate explanations tailored to the user’s task and
expertise. In addition, the task model allows the system
to provide explicit task support in its interface.

Keywords
software explanation, software understanding, user
model, task model, knowledge representation

INTRODUCTION AND MOTIVATION
Software maintenance has become an important activity
in the software industry. Maintenance of existing sys-
tems consumes 50% to 75% of the total programming
effort [16] and a significant portion of this maintenance
activity (30% to 60%) is spent on software understand-
ing [5, 6].

Software Understanding is the reconstruction of logic,
structure and goals that were used in writing a pro-
gram in order to understand what the program does
and how it does it [2, 3]. This reconstruction process
is typically composed of inquiry episodes [3, 15] which
involve the following steps: read some code, ask a ques-
tion about the code, form an hypothesis and search the
documentation and the code to confirm the hypothesis.
The generation and verification of the hypothesis are
influenced by the salient features in the code and the
documentation [3].

Attempts to solve the software understanding problem

has focused on two methods: improving the search and
automating the recognition of features in the code. The
search process was improved either by providing an au-
tomated search capability or by changing the organiza-
tion of the documents. For example, Devanbu’s LaSSIE
system [6] used description logic to represent the do-
main and the basic software knowledge. Users could do
searches by forming queries using the predefined domain
and software concepts.

Linked and layered documentation organizations have
also been used to improve the search process. Soloway
linked parts of the documentation to delocalize the pro-
gramming plans [15]. SODOS [19] project at USC linked
all the Software Life Cycle documents of a software
project and also provided search capabilities. Rajlich
[12] organized documentation into a problem domain
layer, an algorithm layer and a representation layer.
Users easily guessed which layer would have the answer
to their queries and restricted their search to that layer.

The Programmer’s Apprentice [13], Hartman’s UN-
PROG [8] and Will’s GRASPR [20] programs tried to
automate the recognition of the standard programming
plans in the code. This approach improved both recog-
nition of the features in the code and reduced the search
space from the actual code to the programming plans.

These improved search and automated recognition
methods ignored one important factor, the user. Soft-
ware understanding is affected by the complexity of the
problem solved by the program, the program text , the
user’s mental ability and experience, and the task being
performed [3]. The methods described above focused on
the first two factors, but ignored the latter two. Even
with good documentation, users still prefer asking ques-
tions to system experts or other users before consulting
the documentation. There are several reasons for this
behavior. First, the dialogue between the user and the
expert facilitates the refinement of the questions [21].
The interactive nature of the dialogue also permits the
users to ask follow-on questions and clarify the parts
they did not understand. In addition, the human ex-
perts can recognize the users’ plans and provide answers
to satisfy their goals [4]. Finally, The experts also rec-

ognize the users’ level of expertise and provide tailored
answers that are easier to understand.

Our research goal is to develop an interactive software
explanation tool that can act as a system expert and
provide tailored explanations to user questions that are
easy to understand and are relevant to the user goals.
Such a tool needs to have the necessary knowledge to
answer the user questions. To identify what type of
questions are asked by the users and what governs the
answers the experts provide, we studied the questions
posted to the USENET Tecl/Tk newsgroup [9]. Based
on this study and a survey of the research literature
on questions, we later developed a domain independent
question model for software understanding questions.

The results of the USENET study are being used in the
implementation of an online documentation tool called
MediaDoc. MediaDoc’s knowledge representation is or-
ganized around the question model. Further, a planning
component has been added to MediaDoc for user tailor-
ing. The planner uses the question model to determine
the explanation content. Finally, to address the knowl-
edge acquisition problem we are exploring the utility of
using the question model as an upper model in a text
extraction subsystem.

The USENET study also revealed the importance of
users’ plans and goals in both the questions and the an-
swers. The most frequently asked questions included de-
scriptions of what the users’ goals were. If the users had
attempted to solve the problems themselves, the mes-
sages also included their plans. In addition, the experts’
tailored their answers by including only the information
relevant to the user’s goals and plans.

Users in the study described their goals in detail because
there was no surrounding task context. This placed an
overhead on the interaction. Clearly, an automated ex-
planation tool which required the users to specify their
goals in detail at every step would be unusable. To ad-
dress this problem we needed a better understanding of
the dynamics of the inquiry episodes and their relation-
ship to the user’s task. However, the USENET mes-
sages typically contained only a single inquiry episode
and were not very useful for such a study.

To determine the dynamics of the inquiry episodes and
to investigate the types of questions users ask within
the context of a task, we decided to study users while
they performed a task. We were particularly interested
in finding out how the users started their task, the goals
they tried to achieve at each step and the relation be-
tween the user goals and the questions they asked.

We studied two users while they performed differ-
ent tasks on two different large software systems and
recorded the questions they asked. Although the pro-

gram domains were different, there was significant over-
lap in terms of the types of questions asked and the goals
of the task steps. We are using these patterns in user
questions and goals to build a task taxonomy. This task
taxonomy can be exploited in several ways. First, we
plan to use this taxonomy in MediaDoc to determine
the user goals and tailor the explanation accordingly.
Second, this taxonomy is used for building generic task
models, which MediaDoc uses to give explicit task sup-
port when needed.

In this paper, we will describe the question model and
user tailoring briefly to demonstrate how MediaDoc
works. The focus of the paper however will be on the
task study. We will present the details of the study and
the observations we made. We will then describe how
these observations will affect MediaDoc.

QUESTION MODEL

Questions are the basis of user’s interaction with the
documentation and the system experts. Wright claimed
that people’s interaction with documentation starts
with formulating a question, therefore the documenta-

tion content needs to be determined by the questions
users ask [21].

We studied the questions asked by Tecl/Tk program-
mers in a USENET newsgroup and identified the most
commonly asked question types [9]. It was possible to
request the same information in many different ways in
natural language. For our purposes, What does X do?,
What s the function of X?, What does X cause? all re-
quested the same type of information. We classified the
questions in the data set based on the type of informa-
tion requested. In addition, since the USENET data set
was biased and did not include questions for all software
engineering tasks [9], we decided to survey the research
literature for other studies on questions. After review-
ing Lehnert’s [10] and Graesser’s [7] question answering
systems, Swartout’s research on questions asked during
expert system explanations [17], Letovsky’s research on
questions asked during inquiry episodes [11] and Serba-
nati’s list of most commonly asked types of information
by programmers [14], we developed a question model.
In this model, a question is represented based on its
topic, question type and the relation type.

e Topic: The question topic is the entity referenced
in the question. It can easily be identified as the
subject of the question. For example, in What does
procedure open do?, the topic is procedure open.

e Question type: The question type identifies the
type of information requested. It is one of verifica-
tion (is), identification (what), procedural (how),
motivation (why), time (when) or space (where).

e Relation type: The relation type identifies what

Table 1: Simple Questions

self input output |[structure |cause [|use goal require satisfy context
Verification |Does it{Does it|Does it|Does it|Does 1t|ls it|Does Does it have|Does it sat-|Does
(Is) exist? have have have do used? |it have a|requirements?|isfy it have a
inputs? |outputs? |structure? |anything goal? anything? |context?
Identification|What is|What are|What are|What is its|What What |What is|What does it|What does|What is
(What) it? its its structure? |does 1it|uses |its goal? |require? it satisfy? |its
inputs? |outputs? do? it? context?
Procedural |How does|How are|How arelHow is it|How How is|How do|How can the|How are|How does
(How) it work? |the the structured?|does it |it the goal|requirements |the condi-|it interact
inputs outputs do? used? |arise? be met? tions with its
processed? processed? satisfied? |context?
Motivation |Why is it|Why are|Why are|Why is it|Why Why is|Why Why are the|Why Why s
(Why) necessary?|the the structured?|does it |it is the goal |[requirements |are the sat-|the
inputs outputs do? used? |necessary?|necessary? isfied con-|context
necessary?|necessary’| ditions necessary?|
necessary?
Time When When are|When When 1s it |[When |When |When When do the When does|When 1is
(When) does it|the is the out- |structured?|does it|is it|does the|requirements |the the
exist? inputs put work? |used? [goal arise? post condi- |context
provided? |received? arise? tions arise? |ready?
Space Where Where Where Where is it [Where |Where [Where Where are|Where are|Where is
(Where) does it|are thelare the|structured?|does it|is it|does the|the the post|the
exist? inputs? |outputs? work? |used? [goal requirements?|conditions? [context?
arise?

kind of information about the question topic 1s re-
quested. We identified the most commonly asked
relation types from our data set, but further addi-
tions to this set are possible. The identified relation
types are as follows:

Topic (self): These questions ask about the
question topic, e.g. What is an integer?, How
does function X work?

Behavior (input/output): These questions ask
about the input/output relationships, e.g.
What are the imputs to X?

Structure: These questions ask about the
structure of the topic, e.g. What are the com-
ponents of Y?

Funetion (cause): This type of questions ask
about the causal relations between topics, e.g.

What does X do?

Use: This type of questions ask about the us-
age of the topic, e.g. What uses X?

Goal/Purpose: These questions ask about the
goal of the topic, e.g. What is the goal of
X? The goal relation type and the motivation
question type are different in the sense that
one asks for the purpose of the topic whereas
the other asks for the reason of existence.

Require: These questions ask about the re-
quirements (preconditions) of the topic, e.g.

What needs to be done before function X is
called?

Satisfy: These questions ask the post condi-
tions the topic satisfies, e.g. What is true after
function X is called?

Contert: These questions ask about the re-
lationship between the topic and its environ-
ment, e.g. Does X windows require a specific
operaling system?

More question types and relation types can be added to
this model if necessary. For example, a Who question
type can be added to answer questions about the own-
ership of topics. Some question type, relation type pairs
do not apply to all topics, e.g. data items do not have
processes and it 1s not very meaningful to ask how an
integer variable works.

We categorized the questions into two groups based on
how the answers can be calculated:

o Simple questions: These questions can be answered

by si

mple data retrieval and are shown in table 1.

Simple questions are represented as a three tuple

(topi

¢, question type, relation type), e.g. How does

procedure open work? is represented as (procedure

open, how, self), What are the parts of student
record? is represented as (student record, what,
structure).

Domain Model

Software
Repository

Explanation
Repository

LOOM Concepts
]
LOOM
Explanation Generation Web Interf
presentation planning

Knowledge Acquisition nowledge Base
LOOM <T
classifier
i
—
Base
Text Explanation CaGl Web Web
Generator Planner Scripts Server Client
operators

&

]
ﬂ Code Repositon
Source
-
A
Content &

Dynamic
User Model

Figure 1: MediaDoc Architecture

e Compler Questions: These questions require a data
retrieval and evaluation of the retrieved data to
answer the question. Complex questions are rep-
resented as a four tuple, (topic, question type, re-
lation type, evaluation function) where the evalua-
tion function is a user supplied, predefined function.
Some of these predefined functions are as follows:

— Count: How many inputs are there to function
X?is represented by (function X, what, input,
count).

— Significance: What ts the most important com-
ponent of X? is represented by (X, what,
structure, importance).

— Comparison: What is the difference between
X and Y?is represented by (X and Y, what,
self, difference).

USER TAILORING

The current MediaDoc architecture is given in figure
1. User tailoring is done by the explanation generation
component which will be the focus of this section. When
a user asks a question, this question is communicated
by the web interface to the planner. The planner then
creates a top level goal for explaining the question to the
user. This top level goal is represented as (knows user
topic question-type relation-type). For example, when
the user guest asks How does function-X work?, the top
level goal will be (knows guest function-X how self).

Then, the planner tries to create an explanation plan
using the plan operators. The plan operators interact
with the user model and the domain model to create
a user tailored explanation plan. The user model con-
tains information about the user’s domain knowledge,
his preferences, his task and level of experience. For ex-
ample, if user guest is a novice programmer and knows
what function-X is the user model will contain the facts

:operator inform-how-it-works
:parameters (7user ?topic 7experience ?task)
:precondition
(and (verbosity 7?user high)

(knows ?user 7topic what self))
:effect (knows ?7user ?topic how self))

Figure 2: A sample plan operator

(expertise guest novice), (task guest programmer) and
(knows guest function-X what self).

A sample plan operator is shown in figure 2. This plan
operator can be summarized as ¢f a user asks how some-
thing works and if he prefers detailed explanations then
explain what that thing is first if he doesn’t already know.
So in our example above, if the user guest did not know
what function-X was then the system would have ex-
plained what the function-X is before explaining how
it works. After an explanation, the user model 1s up-
dated to reflect the fact that user guest now knows how
function-X works. Note that, since the user guest knew
what function-X was, the precondition of this plan oper-
ator would have been satisfied and as a result the system
would not have explained what the user already knew.

Some of the tailoring methods implemented by the cur-
rent plan operators are as follows:

e Don’t tell the user what he already knows

e Tailor the explanation to the user’s role, e.g. if
an end user asks what something is, describe it in
terms of what it does.

e Tailor to the user’s expertise, e.g. if a novice asks
about a topic, describe the topic in general terms
and not in system specific terms.

e Tailor to the domain knowledge, e.g. if a user
knows how all the components of a topic works and
how the topic is structured, he also knows how the
topic works.

TASK MODEL

Users frequently described their plans and what they
were trying to achieve in the messages posted to
USENET Tecl/Tk newsgroup. The answers provided
by the experts were also tailored to the users’ goals.
This showed the importance of producing explanations
that are tailored to the users’ goals and plans. How-
ever, it 1s unreasonable to expect the users to specify
their goals at every step while using an online explana-
tion system. Users do not need to specify their goals at
every step when they consult a system expert, because

both the system experts and the users share common
human problem solving knowledge.

Identifying the user task is one way of finding out the
user goals. We define user task as the operations the
user wants to perform on a set of topics, e.g. mod-
ify route behavior, write an interface function, integrate
radar and display components etc.. Each task have an
associated user goal. Some other observations about
user tasks are as follows:

o Task determines the question topics: Not all topics
are relevant to the user task. Once the user decides
to perform a particular task, he will focus on a set
of topics and ask questions about them.

e Task affects the types of questions asked by users:
Similarly task affects the types of questions the
users ask. For example, a system integrator is inter-
ested in the system architecture and how the com-
ponents fit together, so he will ask questions about
the structure of the system and the input output
behavior of individual components. A programmer
working on an individual component on the other
hand is going to ask questions about the functions
of that component and how the component works.

e Novices require help for performing the task:
Novices ask questions like What do I do now? that
can only be answered if the system has knowledge
about the task. Experts also benefit from this task
information when it’s made explicit during the task,
since 1t reduces their short term memory load.

The users go through many inquiry episodes while they
perform a task. We were interested in finding out the
dynamics of these episodes in order to learn how to guide
the user to his goal and also to prevent users from tak-
ing explanation paths which fail to address their goals.
The USENET data did not help us much for this, be-
cause each message in that study contained information
only about a single inquiry episode. Every question in
our model is composed of two major components: the
topic and the question part. When the user moves from
one inquiry episode to another either the topic or the
question or both the topic and the question part can
change. To understand the dynamics of this behavior
better, we decided to study the user questions while
they performed a certain task. We were particularly
interested in finding the answers to the following ques-
tions:

e Where do the users start their task? How do they
identify the system components relevant to the task
at hand?

e Is there a structure to the task being performed?
Do the users move from one inquiry episode to an-
other based on some criteria? Do they try to satisfy
particular goals at each step?

e What type of goals do the users try to achieve at
each step? What type of questions do they ask? Is
there a relation between the type of the questions
and the goals?

e Can all user questions be represented by our ques-
tion model?

To find the answers to these questions, we studied two
users performing different tasks on two large software
systems. In the first study, the task was to make a mod-
ification to a large software system and analyze the im-
pact to other system components. The user performed
the task in a day and recorded the individual steps he
took along with the reasons for taking them. In the
second study, the user was given a report of a problem
that happened during system integration and was as-
signed the task of finding the source of the problem. In
this study, the user did not perform the task, but rather
described the interviewer the steps he would take and
the questions he would ask at each step.

ModSAF Impact Analysis Study

ModSAF (Modular Semi-Autonomous Forces) is part of
a distributed simulation (DIS) system for training that
creates a virtual environment where trainees in simula-
tors can interact with virtual automated forces which
ModSAF simulates. ModSAF is written mainly in C
and the version we were employing (version 2.1) had
over 250 libraries and over 1.5 million lines of code.

The task to perform was to study the impact of creating
an interface to the aircraft simulation components that
would allow the dynamic modification to the route fly-
ing behavior. The subject’s knowledge of ModSAF was
based on five months experience in ModSAF, modifying
it to build an interface that reported back the status of
automated ground vehicles. Included in that knowledge
was the awareness that ModSAF’s simulations of an au-
tomated entity performing some mission were built from
collections of lower level behaviors called tasks. The re-
sources availlable for this impact analysis included the
source code and the documentation which was in GNU
info file format. In addition, the subject had available,
and knew how to use, a specially instrumented version
of ModSAF that could report what low level tasks were
being invoked when a vehicle was performing some mis-
sion.

The subject took the following steps to complete the
task:

e Step 1. Comprehend the desired behavior:

The first step the subject took was to understand
the desired modification. He was already familiar
with ModSAF and knew what was meant by the
dynamic route flying behavior.

The questions he asked in this step were What is
meant by dynamic modification to the route flying
behavior? What is the desired behavior of the mod-
ified system?

Step 2. Identify the relevant components:
The second step the subject took was to iden-
tify the relevant system components. The sub-
ject ran a special instrumented version of ModSAF,
which told him what ModSAF tasks had started or
stopped, in order to identify the libraries that were
involved in route flying behavior. The subject ran
two different missions, a sweep mission and an at-
tack ground target mission to identify the libraries.
Running two missions was necessary for identify-
ing if there was more than one implementation of
vehicle navigation in ModSAF.

The question he asked in this step was What li-
braries are used wn tmplementing route flying be-
havior?

Step 3. Test whether route modification will
work: In this step, the subject modified the routes
using ModSAF’s task modification and GUT inter-
face while the missions were running. His goals
were to identify whether it was possible to modify
the routes at all and also to find out the libraries
involved in the route modification. Route modifica-
tion with task modification interface was successful,
but changing the route through the GUI interface
failed.

The question he asked in this step was Is it possible
to change the flight routes during a mission?

Step 4. Comprehend unknown concepts: The
subject found out the names of the libraries in-
volved in the previous steps and using ModSAF’s
naming conventions, he was able to find the doc-
umentation for these libraries. He read the docu-
mentation to understand what these libraries were
and how they worked.

The questions he asked in this step were What is
library X? What does it do? How does it work?

Step 5. Comprehend how the system cur-
rently works: In this step, the subject looked
at the implementations of the libraries he thought
were relevant to the route flying behavior. He
looked at the route data structure, the parameters
of the flight task data structure and the finite state
machine code for the route flying task. He inves-
tigated why route modification through the task

modification interface was successful and why GUI
interface modification failed. He concluded that
routes were assigned persistent object ids and in
GUI modification case this id becomes invalid re-
sulting in termination of route flying. He also in-
vestigated how groups of vehicles follow a route.

The questions he asked in this step were How 1is
route tmplemented? What is the data structure for
a route? What are the parameters to the task data
structures? What are the dependencies between li-
braries?

e Step 6. Find methods for implementing the
desired behavior: Based on his observations, the
subject came up with a list of suggestions for im-
plementing the desired behavior. He did not ac-
tually implement the suggested modifications. He
used his general programming knowledge to come
up with the suggestions. He did not record any
questions in this step, but we would expect him
to ask some questions, especially when there are
alternatives for implementation.

Northrop-Grumman Integration Task Study
The system used in the second study was B2 aviation
software. The engineer who performed the task was an
expert in this area. He was given the problem report of a
post integration problem on the airplane and was asked
to find the source of the problem. The problem was a
corrupted display service message during initialization.
It only occurred once during the initialization stage and
was a transient problem. The effect was either the loss
of radar video or connection of the display unit to the
wrong radar buffer.

The information sources that were accessible by the en-
gineer were the video recording of the problem, the
message bus traffic log from the airplane, a message
database which contained the descriptions of all mes-
sage types, the requirements documentation, the pro-
gram code and the system experts, 1.e. programmers
and requirements people involved. The subject was not
familiar with the details of the radar and display unit
components, but he was familiar with the overall sys-
tem architecture and had extensive knowledge in trou-
bleshooting these kinds of problems.

The subject did not actually perform the task, but de-
scribed the interviewer the steps he would take and the
questions he would ask at each step.

e Step 1. Identify the problem: The first step
was to understand exactly what the problem was.
The engineer read the problem description carefully
and 1dentified all the terms he did not know. He
would talk to the experts who wrote the problem

description and the programmers to clarify the un-
known or ambiguous terms.

Some of the questions he asked in this step were
What is term? What does term do? What s the
relationship between the term and the problem?

Step 2. Comprehend the desired behavior:
In the second step, the subject wanted to know the
desired behavior. He would consult with the ex-
perts and the requirements documentation to find
the answer. He would first attempt to do a key-
word search in the requirements documentation. If
the keyword search fails to produce an answer, he
would do a sequential search on the table of con-
tents. His search would also attempt to identify
the messages related to the correct behavior from
the requirements documents. The search process
was an iterative one. After reading a requirements
document found with a keyword search, the subject
would add new keywords to his list. The process
would continue until all the relevant requirements
were satisfactorily covered.

The questions asked in this step were of the form
What are the requirements that include these key-
words? Is the requirement relevant to the problem?
What does the requirement say about the desired be-
havior?

Step 3. Identify the messages used in imple-
menting the requirements: At this point, the
subject had a good understanding of the desired
behavior. He assumed the problem was due to in-
correct implementation of requirements, since if it
were due to incorrect requirements he would have
noticed 1t in the previous step. So he started the
search to 1dentify the messages used in implement-
ing the behavior. His main information source in
this step was the message database. He would do
a keyword driven search in the message database
to find out which messages were involved with the
behavior.

The questions he asked in this step were in the form
What message descriptions include this keyword?
Is this message relevant to the problem?

Step 4. Test the hypotheses generated in
previous steps: In this step, the subject tested
the hypotheses generated in previous steps and
asked whether he found the source of the prob-
lem. The steps were not necessarily executed se-
quentially, that is the subject could investigate a
couple of messages, form an hypothesis and exe-
cute step four to verify whether he had found the
source of the problem.

The main question he asked in this step was Have
I found the source of the problem?

e Step 5. Identify the problems in the bus traf-

fic: If the problem had not been solved yet, the
subject would generate new hypotheses by looking
at the bus traffic. He had some heuristics to iden-
tify the problems. For example, he would check to
see the correct ordering of the messages, he would
look for unexpected separation of messages or he
would check if the problem was caused by a timing
dependent message ordering. He formed this prob-
lem solving knowledge in previous troubleshooting
episodes.

The questions he asked in this step were mainly ver-
ification questions in the form of Does this happen
in the bus traffic?

Step 6. Identify similar problems: If every-
thing else fails, the subject would ask the devel-
opers and other experts if they had seen anything
similar to this problem. This was another method
for hypothesis generation. He would also attempt
to run an instrumented version of the avionics soft-
ware in the lab to reproduce the problem and cap-
ture more data about the problem. This would also
enable him to generate new hypotheses.

The main question in this step was What could be
wrong?

Observations

o Were there similarities between the two tasks? Al-

though the tasks and the problems were different,
there were similar steps in the problem solving be-
havior. These were not necessarily executed in the
same order, but both subjects had a gather step in
which they identified the relevant concepts, a com-
prehend step in which they read the documentation
to understand these concepts, a test step in which
they tested the hypotheses. The second subject was
required only to find the source of the problem. His
task did not include making modifications. That’s
why he did not have a find method step like the first
subject.

Where do users start their task? Both subjects had
an initial information gathering step to identify the
relevant topics. The first subject ran an instru-
mented version of ModSAF to identify which tasks
started and stopped. The second subject preferred
a keyword search on requirements to start. There
are many ways of satisfying information gathering
goal and some of these are domain dependent. For
example, an instrumented version of the program
might not be available to all the users. However,
some techniques like keyword searches are domain
independent and would be useful in all domains.

The method used for information gathering de-
pends both on personal preferences and the costs
associated. For example, in Northrop study run-
ning the instrumented avionics software in the lab
was costlier than doing keyword searches on the
requirements and was not preferred.

Was there a structure to the task being performed?
There were similar steps used by both subjects and
the problem solving behavior seemed to be struc-
tured. The ordering of the steps, however, was not
exactly the same and the subjects did not execute
the subtasks sequentially.

Was there a relation between the goal and the type
of question? The subjects asked similar questions
during the subtasks. Gather task was addressed
by the search process, comprehend asked What is
(term)? and How does (term) work? types of ques-
tions and test asked verification questions.

Sufficiency of the question model: Most of the ques-
tions asked by the subjects were supported by the
question model, but there were also some problems.
These problems were as follows:

— Weak support for gather task: The question
model requires a well defined question topic
and does not support gather type of ques-
tions. These questions are intended mainly
for search and usually include a description or
some other search criteria. However, there are
search mechanisms which do not use the ques-
tion model in MediaDoc, and these types of
questions are supported by them. Another op-
tion of supporting these questions is to extend
the question model and allow descriptions and
search criteria to be given as a topic. A topic
resolution component can then do the search
for the user and find the corresponding topics
that satisfy the search criteria.

— Complex topic descriptions are problematic:
The question model shifts the complexity of
the topics to the domain model. So the ques-
tion Is it possible to change the flight routes
during a mission? can be modeled as a com-
plex question, e.g. (changing the flight routes
during a mission, is, self, possible). However,
extensions to the domain model are necessary
for representing such complex topics.

— No support for Have I found the source of the
problem? questions: Some of the questions
require external evaluation and decision mak-
ing capabilities. These questions are not sup-
ported well by the question model. In general,
the test task step requires such external eval-
uations and are not well supported.

— No support for What could be wrong? ques-
tions: These questions require the system to
have problem diagnostics skills and are hard to
answer without such a component. Our goal
in MediaDoc is not to build a diagnostics tool,
but if we had such a tool it could have been
used to answer these types of questions.

e Hierarchical and multi-layered mental representa-
tions: The programming process constructs map-
pings from the problem domain to the program-
ming domain, possibly through several intermedi-
ate domains and software understanding is the re-
construction of these mappings [3]. As a result,
the experts’ mental representation of computer pro-
grams are hierarchical and multi-layered [18]. In
our studies, we observed confirming evidence for
this hypothesis. The first subject constructed map-
pings from the vehicle behaviors of the running pro-
gram to ModSAF tasks, from ModSAF tasks to fi-
nite state machines and finally from the finite state
machines to the code. The second subject con-
structed mappings from the requirements to mes-
sages, and from these messages to the code. Both
subjects’ hypothesis generation was top down and
driven by these layers.

e Heuristics for ordering hypotheses: Both subjects
used some criteria for ordering and testing hypoth-
esis. The first subject looked first at the route be-
havior of individual units then groups. His ordering
criteria was based on the complexity of the behav-
ior. The second subject explained the criteria he
used as "How likely it is for this to be the prob-
lem and how easy it is to test it”. He assumed
that the problem wouldn’t be trivial, since the pro-
grammers usually did not make trivial errors and
the components were already unit tested before the
integration.

e Users desire automated support for mundane tasks:
Both subjects claimed that their performance
would have improved if they had a tool to sup-
port their gather, identify tasks. They both had
to shuffle through the documentation and do key-
word searches to find out the information they were
searching.

Software Engineering Tasks

We are using the results of the task study for building a
task taxonomy. In this taxonomy, each task will be as-
sociated with a specific user goal. Since, studying two
tasks is not sufficient for identifying all possible task
steps and the user goals addressed by these, we inves-
tigated the software engineering task descriptions used
by other researchers. The taxonomy in figure 3 is pre-
pared after reviewing the task definitions in Serbanati

Analysis
identification
comprehension
classification
assessment

Synthesis
design
planning
modeling

Fault finding
diagnosis
repair
verification

Configuration

Modification

Informative
Specification
Documentation
Explanation

Management

Figure 3: A taxonomy of software engineering task

[14], CommonKADS [1] and Programmer’s Apprentice
[13]. In this taxonomy, gather is an identification task,
comprehend 1s a comprehension task and test 1s an as-
sessment task.

IMPLICATIONS FOR MediaDoc

We are incorporating the results of the question and the
task studies into MediaDoc. Some of the implications
these studies have on MediaDoc are as follows:

e FExplicit support for the user task: Explicit task
support 1s critical for novices and useful for ex-
perts. We are incorporating task support in Medi-
aDoc using domain independent generic task mod-
els. These models are based on the task taxonomy.
When a user wants to perform a task on a topic, the
task model will be instantiated and placed in the
task agenda. This way, both the user will know the
task steps and MediaDoc will be able to identify
the user goals for each task step.

e Support inquiry episodes using the question model:
The users generate and test many hypotheses dur-
ing software understanding. These inquiry episodes
are going to be supported in MediaDoc in two dif-
ferent ways. First the users will be able to ask
questions about any topic using the question model.
Second, MediaDoc will keep track of the future user
questions in the task agenda. The user can then
focus on which question to investigate next rather
than trying to remember all the questions he have.

e Tailor the explanation to the user goals: The task
steps in the generic task model will have distinct
goals. MediaDoc will tailor the explanation to the
users’ goals at each task step. For example, in the
gather task step, MediaDoc will emphasize the rel-
evance of the topics, in comprehend task step 1t will
explain what the topic is and how 1t works.

e Support for gather task: Users start their task by
an information gathering step. Support for this
step needs to be built in MediaDoc. Techniques
like keywords searches and query mechanisms are
being enhanced to support the gather task.

CONCLUSION

Software understanding has become an important prob-
lem in the software industry. Better tools are needed
for solving this problem and these tools can be devel-
oped only after we study how the users understand soft-
ware. Qur research goal is to build a tool that supports
human software understanding. We studied user ques-
tions within and outside the task context and found
out that interactivity, user and task tailoring are im-
portant requirements for such a tool. We took a plan-
ning approach solution to address these requirements
and were successful in producing explanations tailored
to the user.

We will work on incorporating task oriented explana-
tions to the tool we developed. Then we will evaluate
the effectiveness of our tool in software understanding.

ACKNOWLEDGMENTS
This work 1s sponsored by DARPA under DARPA order
number D880.

REFERENCES

[1] Agnar Aamodt, Bart Benus, Cuno Duursma,
Christine Tomlinson, Ronald Schrooten, and Wal-
ter Van de Velde. Task features and their use in
CommonKADS. Technical report, Vrije Universi-
tiet Brussel, University of Amsterdam, 1993.

[2] Deborah A. Boehm-Davis. Software comprehen-
sion. In M. Helander, editor, Handbook of Human-
Computer Interaction, chapter b, pages 107-121.
Elsevier Science Publishers B.V. (North Holland),
1988.

[3] Ruven Brooks. Towards a theory of the comprehen-
sion of computer programs. International Journal

of Man-Machine Studies, 18:543-554, 1983.

[4] Sandra Carberry. Plan Recognition in Natural Lan-
guage Dialogue. MIT Press, 1990.

[5] T.A. Corbi. Program understanding: Challenge for
the 1990s. IBM Systems Journal, 28(2):294-306,
1990.

[6]

[10]

[11]

[18]

Premkumar T. Devanbu. Software Information
Systems. PhD thesis, Rutgers, The State Univer-
sity of New Jersey, New Brunswick, October 1994.

Arthur C. Graesser, Paul J. Byrne, and Michael L.
Behrens. Answering questions about information in
databases. In Thomas W. Lauer, Eileen Peacock,
and Arthur C. Graesser, editors, Questions and
Information Systems, chapter 12, pages 229-252.
Lawrence Erlbaum Associates, Publishers, 1992.

John Hartman. Automatic Control Understanding
for Natural Programs. PhD thesis, The University
of Texas at Austin, May 1991.

W. Lewis Johnson and Ali Erdem. Interactive ex-
planation of software systems. In KBSE "95. IEEE,
1995.

Wendy G. Lehnert. The Process of Question An-
swering: A Computer Simulation of Cognition.
Lawrence Erlbaum Associates, Publishers, 1978.

Stanley Letovsky. Cognitive processes in program
comprehension. The Journal of Systems and Soft-

ware, (7):325-339, July 1987.

V. Rajlich, J. Doran, and R.T.S. Gudla. Layered
explanation of software: A methodology for pro-
gram comprehension. In Proceedings of the Work-
shop on Program Comprehension, 1994.

Charles Rich and Richard C. Waters. The Pro-
grammer’s Apprentice. ACM Press, 1990.

L.D. Serbanati. Integrating Tools for Software De-
velopment. Yourdon Press; 1993.

E. Soloway, J. Pinto, S.I. Letovsky, D. Littman, and
R. Lampert. Designing documentation to compen-
sate for delocalized plans. Communications of the

ACM, 31(11), November 1988.

I. Sommerville. Software Engineering. Addison-

Wesley, 4th edition, 1992.

William R. Swartout and Johanna D. Moore. Ex-
planation in second generation expert systems. In
Jean Marc David, Jean-Paul Krivine, and Reid
Simmons, editors, Second Generation Expert Sys-
tems, chapter 24, pages 543-585. Springer-Verlag,
1993.

Susan Wiedenbeck and Vikki Fix. Characteris-
tics of the mental representations of novice and
expert programmers: an empirical study. Inter-
national Journal of Man-Machine Studies, 39:793—
812, 1993.

[19]

Ronald Charles Williamson. SODOS - A Software
Documentation Support Environment. PhD thesis,
University of Southern California, Los Angeles, De-
cember 1984.

Linda Mary Wills. Automated Program Recogni-
tion by Graph Parsing. PhD thesis, Massachusetts
Institute of Technology, July 1992.

P. Wright. Issues of content and presentation in
document design. In M. Helander, editor, Handbook
of Human-Computer Interaction, chapter 28, pages
629-652. Elsevier Science Publishers B.V. (North
Holland), 1988.

