
Task Oriented Software UnderstandingAli Erdem, W. Lewis Johnson, Stacy MarsellaUSC Information Sciences Institute & Computer Science Dept.4676 Admiralty WayMarina del Rey, CA 90292-6695+1 310 822 1511ferdem,johnson,marsellag@isi.eduABSTRACTThe main factors that a�ect software understanding arethe complexity of the problem solved by the program,the program text, the user's mental ability and expe-rience and the task being performed. This paper de-scribes a planning approach solution to the software un-derstanding problem that focuses on the user's task andexpertise. First, user questions about software artifactshave been studied and the most commonly asked ques-tions are identi�ed. These questions are organized intoa question model and procedures for answering them aredeveloped. Then, the patterns in user questions whileperforming certain tasks have been studied and thesepatterns are used to build generic task models. Theexplanation system uses these task models in severalways. The task model, along with a user model, is usedto generate explanations tailored to the user's task andexpertise. In addition, the task model allows the systemto provide explicit task support in its interface.Keywordssoftware explanation, software understanding, usermodel, task model, knowledge representationINTRODUCTION AND MOTIVATIONSoftware maintenance has become an important activityin the software industry. Maintenance of existing sys-tems consumes 50% to 75% of the total programminge�ort [16] and a signi�cant portion of this maintenanceactivity (30% to 60%) is spent on software understand-ing [5, 6].Software Understanding is the reconstruction of logic,structure and goals that were used in writing a pro-gram in order to understand what the program doesand how it does it [2, 3]. This reconstruction processis typically composed of inquiry episodes [3, 15] whichinvolve the following steps: read some code, ask a ques-tion about the code, form an hypothesis and search thedocumentation and the code to con�rm the hypothesis.The generation and veri�cation of the hypothesis arein
uenced by the salient features in the code and thedocumentation [3].Attempts to solve the software understanding problem

has focused on two methods: improving the search andautomating the recognition of features in the code. Thesearch process was improved either by providing an au-tomated search capability or by changing the organiza-tion of the documents. For example, Devanbu's LaSSIEsystem [6] used description logic to represent the do-main and the basic software knowledge. Users could dosearches by forming queries using the prede�ned domainand software concepts.Linked and layered documentation organizations havealso been used to improve the search process. Solowaylinked parts of the documentation to delocalize the pro-grammingplans [15]. SODOS [19] project at USC linkedall the Software Life Cycle documents of a softwareproject and also provided search capabilities. Rajlich[12] organized documentation into a problem domainlayer, an algorithm layer and a representation layer.Users easily guessed which layer would have the answerto their queries and restricted their search to that layer.The Programmer's Apprentice [13], Hartman's UN-PROG [8] and Will's GRASPR [20] programs tried toautomate the recognition of the standard programmingplans in the code. This approach improved both recog-nition of the features in the code and reduced the searchspace from the actual code to the programming plans.These improved search and automated recognitionmethods ignored one important factor, the user. Soft-ware understanding is a�ected by the complexity of theproblem solved by the program, the program text , theuser's mental ability and experience, and the task beingperformed [3]. The methods described above focused onthe �rst two factors, but ignored the latter two. Evenwith good documentation, users still prefer asking ques-tions to system experts or other users before consultingthe documentation. There are several reasons for thisbehavior. First, the dialogue between the user and theexpert facilitates the re�nement of the questions [21].The interactive nature of the dialogue also permits theusers to ask follow-on questions and clarify the partsthey did not understand. In addition, the human ex-perts can recognize the users' plans and provide answersto satisfy their goals [4]. Finally, The experts also rec-1



ognize the users' level of expertise and provide tailoredanswers that are easier to understand.Our research goal is to develop an interactive softwareexplanation tool that can act as a system expert andprovide tailored explanations to user questions that areeasy to understand and are relevant to the user goals.Such a tool needs to have the necessary knowledge toanswer the user questions. To identify what type ofquestions are asked by the users and what governs theanswers the experts provide, we studied the questionsposted to the USENET Tcl/Tk newsgroup [9]. Basedon this study and a survey of the research literatureon questions, we later developed a domain independentquestion model for software understanding questions.The results of the USENET study are being used in theimplementation of an online documentation tool calledMediaDoc. MediaDoc's knowledge representation is or-ganized around the question model. Further, a planningcomponent has been added to MediaDoc for user tailor-ing. The planner uses the question model to determinethe explanation content. Finally, to address the knowl-edge acquisition problem we are exploring the utility ofusing the question model as an upper model in a textextraction subsystem.The USENET study also revealed the importance ofusers' plans and goals in both the questions and the an-swers. The most frequently asked questions included de-scriptions of what the users' goals were. If the users hadattempted to solve the problems themselves, the mes-sages also included their plans. In addition, the experts'tailored their answers by including only the informationrelevant to the user's goals and plans.Users in the study described their goals in detail becausethere was no surrounding task context. This placed anoverhead on the interaction. Clearly, an automated ex-planation tool which required the users to specify theirgoals in detail at every step would be unusable. To ad-dress this problem we needed a better understanding ofthe dynamics of the inquiry episodes and their relation-ship to the user's task. However, the USENET mes-sages typically contained only a single inquiry episodeand were not very useful for such a study.To determine the dynamics of the inquiry episodes andto investigate the types of questions users ask withinthe context of a task, we decided to study users whilethey performed a task. We were particularly interestedin �nding out how the users started their task, the goalsthey tried to achieve at each step and the relation be-tween the user goals and the questions they asked.We studied two users while they performed di�er-ent tasks on two di�erent large software systems andrecorded the questions they asked. Although the pro-

gram domains were di�erent, there was signi�cant over-lap in terms of the types of questions asked and the goalsof the task steps. We are using these patterns in userquestions and goals to build a task taxonomy. This tasktaxonomy can be exploited in several ways. First, weplan to use this taxonomy in MediaDoc to determinethe user goals and tailor the explanation accordingly.Second, this taxonomy is used for building generic taskmodels, which MediaDoc uses to give explicit task sup-port when needed.In this paper, we will describe the question model anduser tailoring brie
y to demonstrate how MediaDocworks. The focus of the paper however will be on thetask study. We will present the details of the study andthe observations we made. We will then describe howthese observations will a�ect MediaDoc.QUESTION MODELQuestions are the basis of user's interaction with thedocumentation and the system experts. Wright claimedthat people's interaction with documentation startswith formulating a question, therefore the documenta-tion content needs to be determined by the questionsusers ask [21].We studied the questions asked by Tcl/Tk program-mers in a USENET newsgroup and identi�ed the mostcommonly asked question types [9]. It was possible torequest the same information in many di�erent ways innatural language. For our purposes, What does X do?,What is the function of X?, What does X cause? all re-quested the same type of information. We classi�ed thequestions in the data set based on the type of informa-tion requested. In addition, since the USENET data setwas biased and did not include questions for all softwareengineering tasks [9], we decided to survey the researchliterature for other studies on questions. After review-ing Lehnert's [10] and Graesser's [7] question answeringsystems, Swartout's research on questions asked duringexpert system explanations [17], Letovsky's research onquestions asked during inquiry episodes [11] and Serba-nati's list of most commonly asked types of informationby programmers [14], we developed a question model.In this model, a question is represented based on itstopic, question type and the relation type.� Topic: The question topic is the entity referencedin the question. It can easily be identi�ed as thesubject of the question. For example, in What doesprocedure open do?, the topic is procedure open.� Question type: The question type identi�es thetype of information requested. It is one of veri�ca-tion (is), identi�cation (what), procedural (how),motivation (why), time (when) or space (where).� Relation type: The relation type identi�es what



Table 1: Simple Questionsself input output structure cause use goal require satisfy contextVeri�cation(Is) Does itexist? Does ithaveinputs? Does ithaveoutputs? Does ithavestructure? Does itdoanything?Is itused? Doesit have agoal? Does it haverequirements? Does it sat-isfyanything? Doesit have acontext?Identi�cation(What) What isit? What areitsinputs? What areitsoutputs? What is itsstructure? Whatdoes itdo? Whatusesit? What isits goal? What does itrequire? What doesit satisfy? What isitscontext?Procedural(How) How doesit work? How aretheinputsprocessed?How aretheoutputsprocessed?How is itstructured? Howdoes itdo? How isitused? How dothe goalarise? How can therequirementsbe met? How arethe condi-tionssatis�ed? How doesit interactwith itscontext?Motivation(Why) Why is itnecessary?Why aretheinputsnecessary?Why aretheoutputsnecessary?Why is itstructured? Whydoes itdo? Why isitused? Whyis the goalnecessary?Why are therequirementsnecessary? Whyare the sat-is�ed con-ditionsnecessary? Why isthecontextnecessary?Time(When) Whendoes itexist? When aretheinputsprovided? Whenis the out-putreceived? When is itstructured? Whendoes itwork? Whenis itused? Whendoes thegoalarise? When do therequirementsarise? When doesthepost condi-tions arise? When isthecontextready?Space(Where) Wheredoes itexist? Whereare theinputs? Whereare theoutputs? Where is itstructured? Wheredoes itwork? Whereis itused? Wheredoes thegoalarise? Where aretherequirements? Where arethe postconditions? Where isthecontext?kind of information about the question topic is re-quested. We identi�ed the most commonly askedrelation types from our data set, but further addi-tions to this set are possible. The identi�ed relationtypes are as follows:{ Topic (self): These questions ask about thequestion topic, e.g. What is an integer?, Howdoes function X work?{ Behavior (input/output): These questions askabout the input/output relationships, e.g.What are the inputs to X?{ Structure: These questions ask about thestructure of the topic, e.g. What are the com-ponents of Y?{ Function (cause): This type of questions askabout the causal relations between topics, e.g.What does X do?{ Use: This type of questions ask about the us-age of the topic, e.g. What uses X?{ Goal/Purpose: These questions ask about thegoal of the topic, e.g. What is the goal ofX? The goal relation type and the motivationquestion type are di�erent in the sense thatone asks for the purpose of the topic whereasthe other asks for the reason of existence.{ Require: These questions ask about the re-quirements (preconditions) of the topic, e.g.

What needs to be done before function X iscalled?{ Satisfy: These questions ask the post condi-tions the topic satis�es, e.g. What is true afterfunction X is called?{ Context: These questions ask about the re-lationship between the topic and its environ-ment, e.g. Does X windows require a speci�coperating system?More question types and relation types can be added tothis model if necessary. For example, a Who questiontype can be added to answer questions about the own-ership of topics. Some question type, relation type pairsdo not apply to all topics, e.g. data items do not haveprocesses and it is not very meaningful to ask how aninteger variable works.We categorized the questions into two groups based onhow the answers can be calculated:� Simple questions: These questions can be answeredby simple data retrieval and are shown in table 1.Simple questions are represented as a three tuple(topic, question type, relation type), e.g. How doesprocedure open work? is represented as (procedureopen, how, self), What are the parts of studentrecord? is represented as (student record, what,structure).



Explanation
Planner

Web
Server

Web
Client

Explanation
Repository

Dynamic
User Model

Software
Repository

Source
Code

LOOM
Knowledge

Base
Assertions

Parser

Documentation LOOM
classifier

LOOM Concepts

Assertions

Text
Generator

Content &
presentation planning

operators

CGI
Scripts

User
Questions

Explanation Generation

Knowledge Acquisition 
Domain Model

Web Interface

Code Repository

Knowledge Base

Figure 1: MediaDoc Architecture� Complex Questions: These questions require a dataretrieval and evaluation of the retrieved data toanswer the question. Complex questions are rep-resented as a four tuple, (topic, question type, re-lation type, evaluation function) where the evalua-tion function is a user supplied, prede�ned function.Some of these prede�ned functions are as follows:{ Count: How many inputs are there to functionX? is represented by (function X, what, input,count).{ Signi�cance: What is the most important com-ponent of X? is represented by (X, what,structure, importance).{ Comparison: What is the di�erence betweenX and Y? is represented by (X and Y, what,self, di�erence).USER TAILORINGThe current MediaDoc architecture is given in �gure1. User tailoring is done by the explanation generationcomponent which will be the focus of this section. Whena user asks a question, this question is communicatedby the web interface to the planner. The planner thencreates a top level goal for explaining the question to theuser. This top level goal is represented as (knows usertopic question-type relation-type). For example, whenthe user guest asks How does function-X work?, the toplevel goal will be (knows guest function-X how self).Then, the planner tries to create an explanation planusing the plan operators. The plan operators interactwith the user model and the domain model to createa user tailored explanation plan. The user model con-tains information about the user's domain knowledge,his preferences, his task and level of experience. For ex-ample, if user guest is a novice programmer and knowswhat function-X is the user model will contain the facts

:operator inform-how-it-works:parameters (?user ?topic ?experience ?task):precondition(and (verbosity ?user high)(knows ?user ?topic what self)):effect (knows ?user ?topic how self))Figure 2: A sample plan operator(expertise guest novice), (task guest programmer) and(knows guest function-X what self).A sample plan operator is shown in �gure 2. This planoperator can be summarized as if a user asks how some-thing works and if he prefers detailed explanations thenexplain what that thing is �rst if he doesn't already know.So in our example above, if the user guest did not knowwhat function-X was then the system would have ex-plained what the function-X is before explaining howit works. After an explanation, the user model is up-dated to re
ect the fact that user guest now knows howfunction-X works. Note that, since the user guest knewwhat function-X was, the precondition of this plan oper-ator would have been satis�ed and as a result the systemwould not have explained what the user already knew.Some of the tailoring methods implemented by the cur-rent plan operators are as follows:� Don't tell the user what he already knows� Tailor the explanation to the user's role, e.g. ifan end user asks what something is, describe it interms of what it does.� Tailor to the user's expertise, e.g. if a novice asksabout a topic, describe the topic in general termsand not in system speci�c terms.� Tailor to the domain knowledge, e.g. if a userknows how all the components of a topic works andhow the topic is structured, he also knows how thetopic works.TASK MODELUsers frequently described their plans and what theywere trying to achieve in the messages posted toUSENET Tcl/Tk newsgroup. The answers providedby the experts were also tailored to the users' goals.This showed the importance of producing explanationsthat are tailored to the users' goals and plans. How-ever, it is unreasonable to expect the users to specifytheir goals at every step while using an online explana-tion system. Users do not need to specify their goals atevery step when they consult a system expert, because



both the system experts and the users share commonhuman problem solving knowledge.Identifying the user task is one way of �nding out theuser goals. We de�ne user task as the operations theuser wants to perform on a set of topics, e.g. mod-ify route behavior, write an interface function, integrateradar and display components etc.. Each task have anassociated user goal. Some other observations aboutuser tasks are as follows:� Task determines the question topics: Not all topicsare relevant to the user task. Once the user decidesto perform a particular task, he will focus on a setof topics and ask questions about them.� Task a�ects the types of questions asked by users:Similarly task a�ects the types of questions theusers ask. For example, a system integrator is inter-ested in the system architecture and how the com-ponents �t together, so he will ask questions aboutthe structure of the system and the input outputbehavior of individual components. A programmerworking on an individual component on the otherhand is going to ask questions about the functionsof that component and how the component works.� Novices require help for performing the task:Novices ask questions like What do I do now? thatcan only be answered if the system has knowledgeabout the task. Experts also bene�t from this taskinformationwhen it's made explicit during the task,since it reduces their short term memory load.The users go through many inquiry episodes while theyperform a task. We were interested in �nding out thedynamics of these episodes in order to learn how to guidethe user to his goal and also to prevent users from tak-ing explanation paths which fail to address their goals.The USENET data did not help us much for this, be-cause each message in that study contained informationonly about a single inquiry episode. Every question inour model is composed of two major components: thetopic and the question part. When the user moves fromone inquiry episode to another either the topic or thequestion or both the topic and the question part canchange. To understand the dynamics of this behaviorbetter, we decided to study the user questions whilethey performed a certain task. We were particularlyinterested in �nding the answers to the following ques-tions:� Where do the users start their task? How do theyidentify the system components relevant to the taskat hand?

� Is there a structure to the task being performed?Do the users move from one inquiry episode to an-other based on some criteria? Do they try to satisfyparticular goals at each step?� What type of goals do the users try to achieve ateach step? What type of questions do they ask? Isthere a relation between the type of the questionsand the goals?� Can all user questions be represented by our ques-tion model?To �nd the answers to these questions, we studied twousers performing di�erent tasks on two large softwaresystems. In the �rst study, the task was to make a mod-i�cation to a large software system and analyze the im-pact to other system components. The user performedthe task in a day and recorded the individual steps hetook along with the reasons for taking them. In thesecond study, the user was given a report of a problemthat happened during system integration and was as-signed the task of �nding the source of the problem. Inthis study, the user did not perform the task, but ratherdescribed the interviewer the steps he would take andthe questions he would ask at each step.ModSAF Impact Analysis StudyModSAF (Modular Semi-Autonomous Forces) is part ofa distributed simulation (DIS) system for training thatcreates a virtual environment where trainees in simula-tors can interact with virtual automated forces whichModSAF simulates. ModSAF is written mainly in Cand the version we were employing (version 2.1) hadover 250 libraries and over 1.5 million lines of code.The task to perform was to study the impact of creatingan interface to the aircraft simulation components thatwould allow the dynamic modi�cation to the route 
y-ing behavior. The subject's knowledge of ModSAF wasbased on �ve months experience in ModSAF, modifyingit to build an interface that reported back the status ofautomated ground vehicles. Included in that knowledgewas the awareness that ModSAF's simulations of an au-tomated entity performing some mission were built fromcollections of lower level behaviors called tasks. The re-sources available for this impact analysis included thesource code and the documentation which was in GNUinfo �le format. In addition, the subject had available,and knew how to use, a specially instrumented versionof ModSAF that could report what low level tasks werebeing invoked when a vehicle was performing some mis-sion.The subject took the following steps to complete thetask:� Step 1. Comprehend the desired behavior:



The �rst step the subject took was to understandthe desired modi�cation. He was already familiarwith ModSAF and knew what was meant by thedynamic route 
ying behavior.The questions he asked in this step were What ismeant by dynamic modi�cation to the route 
yingbehavior? What is the desired behavior of the mod-i�ed system?� Step 2. Identify the relevant components:The second step the subject took was to iden-tify the relevant system components. The sub-ject ran a special instrumented version of ModSAF,which told him what ModSAF tasks had started orstopped, in order to identify the libraries that wereinvolved in route 
ying behavior. The subject rantwo di�erent missions, a sweep mission and an at-tack ground target mission to identify the libraries.Running two missions was necessary for identify-ing if there was more than one implementation ofvehicle navigation in ModSAF.The question he asked in this step was What li-braries are used in implementing route 
ying be-havior?� Step 3. Test whether route modi�cation willwork: In this step, the subject modi�ed the routesusing ModSAF's task modi�cation and GUI inter-face while the missions were running. His goalswere to identify whether it was possible to modifythe routes at all and also to �nd out the librariesinvolved in the route modi�cation. Route modi�ca-tion with task modi�cation interface was successful,but changing the route through the GUI interfacefailed.The question he asked in this step was Is it possibleto change the 
ight routes during a mission?� Step 4. Comprehend unknown concepts: Thesubject found out the names of the libraries in-volved in the previous steps and using ModSAF'snaming conventions, he was able to �nd the doc-umentation for these libraries. He read the docu-mentation to understand what these libraries wereand how they worked.The questions he asked in this step were What islibrary X? What does it do? How does it work?� Step 5. Comprehend how the system cur-rently works: In this step, the subject lookedat the implementations of the libraries he thoughtwere relevant to the route 
ying behavior. Helooked at the route data structure, the parametersof the 
ight task data structure and the �nite statemachine code for the route 
ying task. He inves-tigated why route modi�cation through the task

modi�cation interface was successful and why GUIinterface modi�cation failed. He concluded thatroutes were assigned persistent object ids and inGUI modi�cation case this id becomes invalid re-sulting in termination of route 
ying. He also in-vestigated how groups of vehicles follow a route.The questions he asked in this step were How isroute implemented? What is the data structure fora route? What are the parameters to the task datastructures? What are the dependencies between li-braries?� Step 6. Find methods for implementing thedesired behavior: Based on his observations, thesubject came up with a list of suggestions for im-plementing the desired behavior. He did not ac-tually implement the suggested modi�cations. Heused his general programming knowledge to comeup with the suggestions. He did not record anyquestions in this step, but we would expect himto ask some questions, especially when there arealternatives for implementation.Northrop-Grumman Integration Task StudyThe system used in the second study was B2 aviationsoftware. The engineer who performed the task was anexpert in this area. He was given the problem report of apost integration problem on the airplane and was askedto �nd the source of the problem. The problem was acorrupted display service message during initialization.It only occurred once during the initialization stage andwas a transient problem. The e�ect was either the lossof radar video or connection of the display unit to thewrong radar bu�er.The information sources that were accessible by the en-gineer were the video recording of the problem, themessage bus tra�c log from the airplane, a messagedatabase which contained the descriptions of all mes-sage types, the requirements documentation, the pro-gram code and the system experts, i.e. programmersand requirements people involved. The subject was notfamiliar with the details of the radar and display unitcomponents, but he was familiar with the overall sys-tem architecture and had extensive knowledge in trou-bleshooting these kinds of problems.The subject did not actually perform the task, but de-scribed the interviewer the steps he would take and thequestions he would ask at each step.� Step 1. Identify the problem: The �rst stepwas to understand exactly what the problem was.The engineer read the problem description carefullyand identi�ed all the terms he did not know. Hewould talk to the experts who wrote the problem



description and the programmers to clarify the un-known or ambiguous terms.Some of the questions he asked in this step wereWhat is term? What does term do? What is therelationship between the term and the problem?� Step 2. Comprehend the desired behavior:In the second step, the subject wanted to know thedesired behavior. He would consult with the ex-perts and the requirements documentation to �ndthe answer. He would �rst attempt to do a key-word search in the requirements documentation. Ifthe keyword search fails to produce an answer, hewould do a sequential search on the table of con-tents. His search would also attempt to identifythe messages related to the correct behavior fromthe requirements documents. The search processwas an iterative one. After reading a requirementsdocument found with a keyword search, the subjectwould add new keywords to his list. The processwould continue until all the relevant requirementswere satisfactorily covered.The questions asked in this step were of the formWhat are the requirements that include these key-words? Is the requirement relevant to the problem?What does the requirement say about the desired be-havior?� Step 3. Identify the messages used in imple-menting the requirements: At this point, thesubject had a good understanding of the desiredbehavior. He assumed the problem was due to in-correct implementation of requirements, since if itwere due to incorrect requirements he would havenoticed it in the previous step. So he started thesearch to identify the messages used in implement-ing the behavior. His main information source inthis step was the message database. He would doa keyword driven search in the message databaseto �nd out which messages were involved with thebehavior.The questions he asked in this step were in the formWhat message descriptions include this keyword?Is this message relevant to the problem?� Step 4. Test the hypotheses generated inprevious steps: In this step, the subject testedthe hypotheses generated in previous steps andasked whether he found the source of the prob-lem. The steps were not necessarily executed se-quentially, that is the subject could investigate acouple of messages, form an hypothesis and exe-cute step four to verify whether he had found thesource of the problem.The main question he asked in this step was HaveI found the source of the problem?

� Step 5. Identify the problems in the bus traf-�c: If the problem had not been solved yet, thesubject would generate new hypotheses by lookingat the bus tra�c. He had some heuristics to iden-tify the problems. For example, he would check tosee the correct ordering of the messages, he wouldlook for unexpected separation of messages or hewould check if the problem was caused by a timingdependent message ordering. He formed this prob-lem solving knowledge in previous troubleshootingepisodes.The questions he asked in this step were mainly ver-i�cation questions in the form of Does this happenin the bus tra�c?� Step 6. Identify similar problems: If every-thing else fails, the subject would ask the devel-opers and other experts if they had seen anythingsimilar to this problem. This was another methodfor hypothesis generation. He would also attemptto run an instrumented version of the avionics soft-ware in the lab to reproduce the problem and cap-ture more data about the problem. This would alsoenable him to generate new hypotheses.The main question in this step was What could bewrong?Observations� Were there similarities between the two tasks? Al-though the tasks and the problems were di�erent,there were similar steps in the problem solving be-havior. These were not necessarily executed in thesame order, but both subjects had a gather step inwhich they identi�ed the relevant concepts, a com-prehend step in which they read the documentationto understand these concepts, a test step in whichthey tested the hypotheses. The second subject wasrequired only to �nd the source of the problem. Histask did not include making modi�cations. That'swhy he did not have a �nd method step like the �rstsubject.� Where do users start their task? Both subjects hadan initial information gathering step to identify therelevant topics. The �rst subject ran an instru-mented version of ModSAF to identify which tasksstarted and stopped. The second subject preferreda keyword search on requirements to start. Thereare many ways of satisfying information gatheringgoal and some of these are domain dependent. Forexample, an instrumented version of the programmight not be available to all the users. However,some techniques like keyword searches are domainindependent and would be useful in all domains.



The method used for information gathering de-pends both on personal preferences and the costsassociated. For example, in Northrop study run-ning the instrumented avionics software in the labwas costlier than doing keyword searches on therequirements and was not preferred.� Was there a structure to the task being performed?There were similar steps used by both subjects andthe problem solving behavior seemed to be struc-tured. The ordering of the steps, however, was notexactly the same and the subjects did not executethe subtasks sequentially.� Was there a relation between the goal and the typeof question? The subjects asked similar questionsduring the subtasks. Gather task was addressedby the search process, comprehend asked What is(term)? and How does (term) work? types of ques-tions and test asked veri�cation questions.� Su�ciency of the question model: Most of the ques-tions asked by the subjects were supported by thequestion model, but there were also some problems.These problems were as follows:{ Weak support for gather task: The questionmodel requires a well de�ned question topicand does not support gather type of ques-tions. These questions are intended mainlyfor search and usually include a description orsome other search criteria. However, there aresearch mechanisms which do not use the ques-tion model in MediaDoc, and these types ofquestions are supported by them. Another op-tion of supporting these questions is to extendthe question model and allow descriptions andsearch criteria to be given as a topic. A topicresolution component can then do the searchfor the user and �nd the corresponding topicsthat satisfy the search criteria.{ Complex topic descriptions are problematic:The question model shifts the complexity ofthe topics to the domain model. So the ques-tion Is it possible to change the 
ight routesduring a mission? can be modeled as a com-plex question, e.g. (changing the 
ight routesduring a mission, is, self, possible). However,extensions to the domain model are necessaryfor representing such complex topics.{ No support for Have I found the source of theproblem? questions: Some of the questionsrequire external evaluation and decision mak-ing capabilities. These questions are not sup-ported well by the question model. In general,the test task step requires such external eval-uations and are not well supported.

{ No support for What could be wrong? ques-tions: These questions require the system tohave problem diagnostics skills and are hard toanswer without such a component. Our goalin MediaDoc is not to build a diagnostics tool,but if we had such a tool it could have beenused to answer these types of questions.� Hierarchical and multi-layered mental representa-tions: The programming process constructs map-pings from the problem domain to the program-ming domain, possibly through several intermedi-ate domains and software understanding is the re-construction of these mappings [3]. As a result,the experts' mental representation of computer pro-grams are hierarchical and multi-layered [18]. Inour studies, we observed con�rming evidence forthis hypothesis. The �rst subject constructed map-pings from the vehicle behaviors of the running pro-gram to ModSAF tasks, from ModSAF tasks to �-nite state machines and �nally from the �nite statemachines to the code. The second subject con-structed mappings from the requirements to mes-sages, and from these messages to the code. Bothsubjects' hypothesis generation was top down anddriven by these layers.� Heuristics for ordering hypotheses: Both subjectsused some criteria for ordering and testing hypoth-esis. The �rst subject looked �rst at the route be-havior of individual units then groups. His orderingcriteria was based on the complexity of the behav-ior. The second subject explained the criteria heused as "How likely it is for this to be the prob-lem and how easy it is to test it". He assumedthat the problem wouldn't be trivial, since the pro-grammers usually did not make trivial errors andthe components were already unit tested before theintegration.� Users desire automated support for mundane tasks:Both subjects claimed that their performancewould have improved if they had a tool to sup-port their gather, identify tasks. They both hadto shu�e through the documentation and do key-word searches to �nd out the information they weresearching.Software Engineering TasksWe are using the results of the task study for building atask taxonomy. In this taxonomy, each task will be as-sociated with a speci�c user goal. Since, studying twotasks is not su�cient for identifying all possible tasksteps and the user goals addressed by these, we inves-tigated the software engineering task descriptions usedby other researchers. The taxonomy in �gure 3 is pre-pared after reviewing the task de�nitions in Serbanati



AnalysisidentificationcomprehensionclassificationassessmentSynthesisdesignplanningmodelingFault findingdiagnosisrepairverificationConfigurationModificationInformativeSpecificationDocumentationExplanationManagementFigure 3: A taxonomy of software engineering task[14], CommonKADS [1] and Programmer's Apprentice[13]. In this taxonomy, gather is an identi�cation task,comprehend is a comprehension task and test is an as-sessment task.IMPLICATIONS FOR MediaDocWe are incorporating the results of the question and thetask studies into MediaDoc. Some of the implicationsthese studies have on MediaDoc are as follows:� Explicit support for the user task: Explicit tasksupport is critical for novices and useful for ex-perts. We are incorporating task support in Medi-aDoc using domain independent generic task mod-els. These models are based on the task taxonomy.When a user wants to perform a task on a topic, thetask model will be instantiated and placed in thetask agenda. This way, both the user will know thetask steps and MediaDoc will be able to identifythe user goals for each task step.� Support inquiry episodes using the question model:The users generate and test many hypotheses dur-ing software understanding. These inquiry episodesare going to be supported in MediaDoc in two dif-ferent ways. First the users will be able to askquestions about any topic using the question model.Second, MediaDoc will keep track of the future userquestions in the task agenda. The user can thenfocus on which question to investigate next ratherthan trying to remember all the questions he have.

� Tailor the explanation to the user goals: The tasksteps in the generic task model will have distinctgoals. MediaDoc will tailor the explanation to theusers' goals at each task step. For example, in thegather task step, MediaDoc will emphasize the rel-evance of the topics, in comprehend task step it willexplain what the topic is and how it works.� Support for gather task: Users start their task byan information gathering step. Support for thisstep needs to be built in MediaDoc. Techniqueslike keywords searches and query mechanisms arebeing enhanced to support the gather task.CONCLUSIONSoftware understanding has become an important prob-lem in the software industry. Better tools are neededfor solving this problem and these tools can be devel-oped only after we study how the users understand soft-ware. Our research goal is to build a tool that supportshuman software understanding. We studied user ques-tions within and outside the task context and foundout that interactivity, user and task tailoring are im-portant requirements for such a tool. We took a plan-ning approach solution to address these requirementsand were successful in producing explanations tailoredto the user.We will work on incorporating task oriented explana-tions to the tool we developed. Then we will evaluatethe e�ectiveness of our tool in software understanding.ACKNOWLEDGMENTSThis work is sponsored by DARPA under DARPA ordernumber D880.REFERENCES[1] Agnar Aamodt, Bart Benus, Cuno Duursma,Christine Tomlinson, Ronald Schrooten, and Wal-ter Van de Velde. Task features and their use inCommonKADS. Technical report, Vrije Universi-tiet Brussel, University of Amsterdam, 1993.[2] Deborah A. Boehm-Davis. Software comprehen-sion. In M. Helander, editor, Handbook of Human-Computer Interaction, chapter 5, pages 107{121.Elsevier Science Publishers B.V. (North Holland),1988.[3] Ruven Brooks. Towards a theory of the comprehen-sion of computer programs. International Journalof Man-Machine Studies, 18:543{554, 1983.[4] Sandra Carberry. Plan Recognition in Natural Lan-guage Dialogue. MIT Press, 1990.[5] T.A. Corbi. Program understanding: Challenge forthe 1990s. IBM Systems Journal, 28(2):294{306,1990.



[6] Premkumar T. Devanbu. Software InformationSystems. PhD thesis, Rutgers, The State Univer-sity of New Jersey, New Brunswick, October 1994.[7] Arthur C. Graesser, Paul J. Byrne, and Michael L.Behrens. Answering questions about information indatabases. In Thomas W. Lauer, Eileen Peacock,and Arthur C. Graesser, editors, Questions andInformation Systems, chapter 12, pages 229{252.Lawrence Erlbaum Associates, Publishers, 1992.[8] John Hartman. Automatic Control Understandingfor Natural Programs. PhD thesis, The Universityof Texas at Austin, May 1991.[9] W. Lewis Johnson and Ali Erdem. Interactive ex-planation of software systems. In KBSE '95. IEEE,1995.[10] Wendy G. Lehnert. The Process of Question An-swering: A Computer Simulation of Cognition.Lawrence Erlbaum Associates, Publishers, 1978.[11] Stanley Letovsky. Cognitive processes in programcomprehension. The Journal of Systems and Soft-ware, (7):325{339, July 1987.[12] V. Rajlich, J. Doran, and R.T.S. Gudla. Layeredexplanation of software: A methodology for pro-gram comprehension. In Proceedings of the Work-shop on Program Comprehension, 1994.[13] Charles Rich and Richard C. Waters. The Pro-grammer's Apprentice. ACM Press, 1990.[14] L.D. Serbanati. Integrating Tools for Software De-velopment. Yourdon Press, 1993.[15] E. Soloway, J. Pinto, S.I. Letovsky, D. Littman, andR. Lampert. Designing documentation to compen-sate for delocalized plans. Communications of theACM, 31(11), November 1988.[16] I. Sommerville. Software Engineering. Addison-Wesley, 4th edition, 1992.[17] William R. Swartout and Johanna D. Moore. Ex-planation in second generation expert systems. InJean Marc David, Jean-Paul Krivine, and ReidSimmons, editors, Second Generation Expert Sys-tems, chapter 24, pages 543{585. Springer-Verlag,1993.[18] Susan Wiedenbeck and Vikki Fix. Characteris-tics of the mental representations of novice andexpert programmers: an empirical study. Inter-national Journal of Man-Machine Studies, 39:793{812, 1993.

[19] Ronald Charles Williamson. SODOS - A SoftwareDocumentation Support Environment. PhD thesis,University of Southern California, Los Angeles, De-cember 1984.[20] Linda Mary Wills. Automated Program Recogni-tion by Graph Parsing. PhD thesis, MassachusettsInstitute of Technology, July 1992.[21] P. Wright. Issues of content and presentation indocument design. In M. Helander, editor, Handbookof Human-Computer Interaction, chapter 28, pages629{652. Elsevier Science Publishers B.V. (NorthHolland), 1988.


