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Abstract

The digital information revolution has brought about profound changes in our society

and our lives. The many advantages of digital information have also generated new

challenges and new opportunities for innovation. This thesis discusses the issues

regarding multimedia data hiding and its application to multimedia security and

communication, addressing both theoretical and practical aspects, and tackling both

design and attack problems.

In the fundamental part, we identify a few key elements of data hiding through

a layered structure. Data hiding is modeled as a communication problem where

the embedded data is the signal to be transmitted. Various embedding mechanisms

target different robustness-capacity tradeoffs. We study this tradeoff for two major

categories of embedding mechanisms. In addition, we have found that the un-

evenly distributed embedding capacity brings difficulty in data hiding. We propose

a comprehensive solution to this problem, addressing the considerations for choosing

constant or variable embedding rate and enhancing the performance for each case.

In the design part, we present new data hiding algorithms for binary images,

grayscale and color images, and videos, covering such applications as annotation,

tamper detection, copy/access control, fingerprinting, and ownership protection. The

designs provide concrete examples regarding the choice of embedding mechanisms,

the selection of modulation/multiplexing technique(s) for hiding multiple bits, and

the handling of uneven embedding capacity. Data hiding can also be used in video

communication to convey side information for additional functionalities or better

performance. This is demonstrated by the novel approaches for real-time transcoding

and error concealment.
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Because many data hiding applications are in a competitive environment where

an adversary has an incentive to obliterate the embedded data, testing the systems’

robustness and security via attacks is important. In the attack part, we discuss a

number of attacks and countermeasures for data hiding systems. Our investigation

begins with three specific types of watermarking schemes, in which full knowledge of

the watermarking algorithms is available. We then study the attack problems for

digital music under a unique competitive environment, in which the watermarking

algorithms are unknown to analysts.
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Chapter 1

Introduction

The digital information revolution has brought about profound changes in our society

and our lives. The many advantages of digital information have also generated new

challenges and new opportunities for innovation. Along with powerful software, new

devices, such as digital camera and camcorder, high quality scanners and printers,

digital voice recorder, MP3 player and PDA, have reached consumers worldwide to

create, manipulate, and enjoy the multimedia data. Internet and wireless network

offer ubiquitous channels to deliver and to exchange information. The security and

fair use of the multimedia data, as well as the fast delivery of multimedia content

to a variety of end users/devices with guaranteed QoS are important yet challenging

topics. The solutions to these problems will not only contribute to our understanding

of this fast moving complex technology, but also offer new economic opportunities to

be explored. This thesis addresses the issues regarding multimedia data hiding and

its applications in multimedia security and communication.

With the ease of editing and perfect reproduction in digital domain, the protec-

tion of ownership and the prevention of unauthorized tampering of multimedia data

(audio, image, video, and document) become important concerns. Digital watermark-

ing and data hiding, schemes to embed secondary data in digital media, have made

1



CHAPTER 1. INTRODUCTION 2

considerable progress in recent years and attracted attention from both academia and

industry. Techniques have been proposed for a variety of applications, including own-

ership protection, authentication, access control, and annotation. Data hiding is also

found useful as a general tool to send side information in multimedia communication

for achieving additional functionalities or enhancing performance. Imperceptibility,

robustness against moderate processing such as compression, and the ability to hide

many bits are the basic but rather conflicting requirements for many data hiding

applications. In addition, a few other important problems encountered in practice,

such as the uneven embedding capacity for image/video and the perceptual models for

binary images, have received little attention in literature. The works included in this

thesis intend to contribute toward the understanding of multimedia data hiding, ad-

dressing both theoretical and practical aspects, and tackling both design and attack

problems. Various issues of data hiding are studied with new principles and tech-

niques being proposed. This introductory chapter first provides a brief overview of

recent technologies and progress of data hiding, then outlines the problems addressed

in this thesis and summarizes its major original contributions.

1.1 Overview of Multimedia Data Hiding

The ideas of information hiding can be traced back to a few thousand years ago. As

surveyed in [29], simply obscuring the content of a messages by encryption is not al-

ways adequate in practice. In many rivalry environments, concealing the existence of

communication is desirable to avoid suspicion from adversaries. The word “steganog-

raphy”, which originated from Greek and is still in use today, literally means “covered

writing”. Stories of covert communications have been passed for generations, but they
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were mainly used by military and intelligence agencies. It is until the recent decade

that information hiding began receiving wide attention from research community and

information technology industry, with hundreds of publications and dozens of patents

coming out in the past few years. Digital information revolution and the thriving

progress in network communication are the major driving forces of this change. The

perfect reproduction, the ease of editing, and the Internet distribution of digital mul-

timedia data have brought about concerns of copyright infringement, illegal distri-

bution, and unauthorized tampering. Techniques of associating some imperceptible

data with multimedia sources via embedding started to come out to alleviate these

concerns. Interestingly, while most such techniques embed data imperceptibly to re-

tain the perceptual quality and value of the host multimedia source, many of them

were referred as digital watermarking whose traditional counterpart is not necessarily

imperceptible. The analogy emphasizes on the applications: as a technique in the art

of paper making, the paper watermarks usually indicate the origin, the ownership,

and/or the integrity of the document printed on the associated pieces of paper, in

addition to artistic decorations. As the application domain of embedding data in dig-

ital multimedia sources becomes broaden, several terms are used by various groups

of researchers, including steganography, digital watermarking, and data hiding. Some

explanation and comparison of terminologies related to information hiding were pre-

sented in [29, 30]. Rather than playing with the terminologies, this thesis uses the

two terms data hiding and digital watermarking almost interchangeably, referring to

embedding secondary data into the primary multimedia sources. The embedded data,

usually called watermark(s), can be used for various purposes, each of which is asso-

ciated with different robustness, security, and embedding capacity requirements. The

principal advantage of data hiding versus other solutions is its ability to associate
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secondary data with the primary media in a seamless way. As we shall see later in

this thesis, the seamless association is desirable in many applications. For example,

compared with cryptographic encryptions, the embedded watermarks can travel with

the host media and assume their protection functions even after decryption. With

the only exception of visible watermarks that will be discussed below, the secondary

data are expected to be imperceptible.

There are many ways to categorize data hiding techniques. A straightforward

classification is according to the type of primary multimedia sources, giving us data

hiding systems for perceptual and non-perceptual sources. This thesis is primarily

concerned with perceptual multimedia sources, including audio, binary image, color or

grayscale image, video, and 3-D graphics. Among digital sources, the major difference

between perceptual and non-perceptual data is that the non-perceptual data, like text

and executable codes, usually requires lossless processing, transmission and storage.

Flipping a single bit may lead to different meaning. Perceptual data, however, has a

perceptual tolerance range, which allows minor change before being noticed by human.

This perceptual property enables data embedding as well as lossy compression either

imperceptibly or with a controllable amount of perceptual degradation. Although

many general techniques of data hiding can be applied to audio, image, video, and

3-D graphics [30, 124], there are unique treatments associated with each type of

perceptual sources. The main reason is that they are related to particular sense(s)

and the way we see things is quite different from the way we hear. Proper perceptual

models have to be exploited to ensure the host data is changed in such a way that

does not introduce noticeable difference. Dimensionality and causality are another

two reasons leading to different treatments. The techniques and resources required

for processing 1-D data would be quite different from that for 2-D and for 3-D. Similar
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argument holds for non-progressive data like image versus progressive data like audio

and video. We shall clarify that the perceptual property is not a necessity for hiding

data. There are changes that can be made to non-perceptual data while preserving

the semantic meaning. For example, a word can be changed to its synonyms, special

pattern of spaces and blank lines can be added to computer source code, and jumping

instructions in assembly code can be rearranged [125]. These changes can be used to

enforce certain relations (either deterministically or statistically) to encode secondary

data, as we do for hiding data in perceptual sources. The detailed discussion of data

hiding in non-perceptual sources is beyond the scope of this thesis.

In terms of perceptibility, data hiding techniques can be classified into two groups,

perceptible and imperceptible hiding. Perceptible watermarks are mainly used in

image and video. A visually meaningful pattern, such as a logo, is overlaid on an

image or video, which is essentially an image editing or synthesis problem. The visible

watermarks explicitly exhibit the copyright, ownership information, or access control

policies so as to discourage the misuse of the watermarked images. For example, semi-

transparent logos are commonly added to TV programs by broadcasting networks,

and to the preview images accessible via World Wide Web by copyright holders.

In [122], a visible watermarking technique is proposed by modifying the luminance of

the original image according to a binary or ternary watermark pattern. The amount

of modification is adaptive to the local luminance to give a consistent perceptual

contrast [16]. In addition, the modification is modulated by a random sequence

to make it difficult to systematically remove the visible marks via an automated

algorithm. Video can be visibly marked using similar ideas [123]. The majority of

current data hiding research concerns with imperceptible watermarking. It is also the

focus of this thesis. As we mentioned earlier, perceptual models need to be explored
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to ensure the changes imposed by an embedding system are imperceptible to retain

the perceptual quality and value of the multimedia sources.

Application domain is another criterion to categorize data hiding techniques. Clas-

sic applications include ownership protection, authentication, fingerprinting, copy /

access control, and annotation. We shall briefly explain the design requirement of

each application:

• Ownership Protection: a watermark indicating ownership is embedded in the

multimedia source. The watermark, known only to the copyright holder, is

expected to survive common processing and intentional attack so that the owner

can show the presence of this watermark in case of dispute to demonstrate

his/her ownership. The detection should have as little ambiguity and false

alarm as possible. The total embedding capacity, namely, the number of bits

that can be embedded and extracted with small probability of error, does not

have to be high in most scenarios.

• Authentication or Tampering Detection: a set of secondary data is embedded in

the multimedia source beforehand, and later is used to determine whether the

host media is tampered or not. The robustness against removing the watermark

or making it undetectable is not a concern as there is no such incentive from

attacker point of view. However, forging a valid authentication watermark in

an unauthorized or tampered media source must be prevented. In practical ap-

plications, it is also desirable to locate the tampering, and to distinguish some

changes (such as the non-content change incurred by moderate lossy compres-

sion) from some other changes (such as content tampering). The embedding

capacity has to be high in general to accommodate these needs. The detection

should be performed without the original unwatermarked copy because either
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this original is unavailable or its integrity has not been established yet. This

kind of detection is usually called non-coherent detection or blind detection.

• Fingerprinting or Labeling : the watermark in this application is used to trace

the originator or recipients of a particular copy of multimedia source. For

example, different watermarks are embedded in different copies of multimedia

sources before distributing to a number of recipients. The robustness against

obliterating and the ability to convey a non-trivial number of bits are required.

• Copy Control & Access Control : the embedded watermark in this case repre-

sents certain copy control or access control policy. A watermark detector is

usually integrated in a recording/playback system, like the proposed DVD copy

control [121] and the on-going SDMI activities [140]. Upon detection, the policy

is enforced by directing certain hardware or software actions such as enabling

or disabling a recording module. The robustness against removal, the ability

of blind detection, and the capability of conveying a non-trivial number of bits

are required.

• Annotation: the embedded watermark in this application is expected to convey

as many bits as possible without the use of original unmarked copy in detection.

While the robustness against intentional attack is not required, a certain degree

of robustness against common processing like lossy compression may be desired.

More generally, data hiding is a tool to convey side information while retaining the

original appearance. This property is found useful in some multimedia communication

scenarios [129] to achieve additional functionalities or better performance.
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From a theoretical point of view, data hiding can be considered as a communi-

cation problem where the watermark is the signal to be transmitted. Many com-

munication theories and techniques are found very useful in studying data hiding.

A fundamental problem along this direction is the total embedding capacity. It is

impossible to answer how many bits can be embedded if without specifying the re-

quired robustness. This is not hard to understand from the aspects of information

theory, where the capacity is tied with a specific channel model and is a function of

the channel parameters. Although the classic results of channel capacity in informa-

tion theory [7], including the capacity theorem in terms of an optimization of mutual

information between the channel input and output, the AWGN channel capacity, the

capacity of parallel channels, and the zero-error capacity, have been found beneficial

toward the understanding of data hiding capacity [41, 89, 90, 91, 92, 93, 94, 95, 96],

there are many important differences between data hiding and conventional com-

munication: (1) the noises incurred by processing or intentional attack are diverse

and rather complicated to model, and (2) the shape and parameter constraints of

watermark signals are determined by human perceptual system, which is far more

sophisticated than a simple L2 model and has not been completely understood yet.

These differences limit the direct application of information theoretical results to

practical scenarios.

In addition to the total embedding capacity, we notice another fundamental prob-

lems associated with data hiding. Due to the non-stationary nature of perceptual

sources, the amount of data that can be embedded varies significantly from region to

region. This uneven embedding capacity adds great difficulty to high-rate embedding.

The problem does not receive much attention in literature because a highly sub-

optimal approach is generally used in practice by embedding a predetermined small
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number of bits to each region. Although the low constant rate embedding seems work

well in experiments involving only a few test sources, where the embedding rate can

be tuned toward this small test set, it hardly works in practical systems that need

to accommodate much more diverse sources. The simple constant rate embedding

not only wastes much embedding capacity in regions that are capable of hiding many

bits, but also create dilemma in regions that can hardly embed any bits without in-

troducing noticeable artifacts. Solutions to this problem would substantially improve

the performance of many practical systems.

1.2 Thesis Organization and Contributions

This thesis is organized into three parts: Fundamental Issues (Part I), Algorithm

and System Designs (Part II), and Attacks and Countermeasures (Part III). We

conclude the thesis with final remarks and suggestions of avenues for further study in

Chapter 11.

1.2.1 Fundamental Issues and Solutions

We begin our discussion with a general framework and a list of key elements associated

with almost all data hiding problems in Chapter 2. A layered view analogous to

network communication is presented to show the relations among those key elements.

This view point of data hiding motivates the divide-and-conquer strategies for data

hiding problem so that the general approaches for each element can be pursued, based

on which solutions to specific applications can be systematically found.

In Chapter 3, we consider data hiding as a communication problem where the em-

bedded data is the signal to be transmitted. Different embedding mechanisms target
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at different robustness-capacity tradeoff. We study this tradeoff for two major cate-

gories of embedding mechanisms, including the capacity of simplified channel models

and the set-partitioning nature. This study serves as a guideline for selecting an ap-

propriate embedding algorithm given the design requirements of an application, such

as the proposed data hiding algorithms for binary images (Chapter 5) and data hid-

ing applications in video communication (Chapter 8). It also serves as a foundation

of multi-level data hiding (Chapter 6), a new embedding framework/algorithm with

improved performance. In addition, we discuss a number of modulation/multiplexing

techniques for embedding multiple bits in multimedia sources. While many data hid-

ing publications use one or several modulation techniques, there is little systematic

study and justification regarding how to embed multiple bits given a set of design

requirements. Our work compares the advantages and disadvantages of various tech-

niques in a quantitive way. The principles discussed here are used intensively in our

algorithm and system designs.

Due to the non-stationary nature of natural multimedia source such as digital

image, video and audio, the number of bits that can be embedded varies significantly

from segment to segment. This unevenly distributed embedding capacity adds dif-

ficulty in data hiding: using constant embedding rate generally wastes embedding

capability, and using variable embedding rate requires sending additional side infor-

mation that sometimes forms an expensive overhead. Unfortunately there are few

solutions in literature. In Chapter 4, we address this problem and propose a compre-

hensive solution. Specifically, when the total number of bits that can be embedded is

much larger than the number of bits needed to convey how many bits are embedded,

we choose variable embedding rate and hide the side information to facilitate detec-

tion without wasting too much embedding capability. When the two bit numbers are
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comparable, we hide data using constant embedding and shuffling. We will show via

analysis and experiments that shuffling is an efficient and effective tool to equalize the

uneven embedding capacity. The solutions to uneven embedding capacity problem

are applied to many of our designs presented in Part II.

1.2.2 Algorithm and System Designs

In Part II, we present new data hiding algorithms for binary images, grayscale and

color images, and videos. For each design, we follow the list of key elements discussed

in the fundamental part, explaining how these elements are handled. We shall see

concrete examples regarding the choice of embedding mechanism, the selection of

modulation/multiplexing technique(s) for hiding multiple bits, and the handling of

uneven embedding capacity via techniques like random shuffling.

We begin with designing data hiding algorithms for binary images in Chapter 5.

Embedding data in binary images are generally considered difficult because there is

little room to make invisible changes. Very few works in literature discuss human

visual model for binary images. The few existing data hiding works for binary images

are usually only applicable to a specific type of binary image, and the number of

bits that can be embedded is limited. We propose a novel algorithm to hide data

in a wide variety of binary images, including digitized signature, text document, and

drawings. The algorithm consists of several modules, addressing (1) how to identify

flippable pixels while maintaining visual quality, (2) how to use flippable pixels to

embed data, (3) how to handle uneven embedding capacity from region to region.

The proposed algorithm can be used to annotate and authenticate binary images,

which is demonstrated by three examples. The embedded data can be extracted not

only from a digital copy, but also from a printed hard copy. The conditions and the
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method to recover the original digital image after printing and scanning are discussed,

along with security issues and a few other practical considerations.

We have discussed in the fundamental part the tradeoff between robustness and

embedding capacity for a specific embedding mechanism. When designing a data

hiding system, considering a single tradeoff setting, which is common in practice,

may either overestimate or underestimate the actual distortions. We propose novel

multi-level embedding in Chapter 6 to allow the amount of extractable data to be

adaptive according to the actual noise condition. When the actual noise condition

is weak, many bits can be extracted from a watermarked image; when the noise is

strong, a small number of bits can still be extracted with very small probability of

error. Analysis is presented to support this idea. A multi-level data hiding system for

grayscale and color images is designed with experimental results being presented. The

design also uses a refined human visual model that is revised from a work in literature

with reduced artifacts and a reasonable amount of computation. We then extend the

work to hide a large amount of data in video. The design of hiding data in video

shows concrete examples of handling the uneven embedding capacity from region to

region within a frame and also from frame to frame. A small amount of side infor-

mation, so-called control bits, are crucial for handling uneven embedding capacity

and for combating frame jitter that may occur during transcoding or intentional at-

tacks. We shall explain how to convey these bits via various modulation/multiplexing

techniques.

We mentioned earlier that editing digital multimedia data is much easier than the

traditional analog version. In many occasions, determining whether a digital copy

has been tampered or not is very important. In Chapter 7, we discuss data hid-

ing algorithms for detecting tampering of grayscale and color images. Many general
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data hiding techniques, such as the embedding mechanism and shuffling, are used

in this specific application. In the mean time, issues that are unique to authenti-

cation need to be addressed, including what to authenticate, how to authenticate,

and security considerations. We present a framework for watermark-based authenti-

cation covering these aspects. Following this framework, we design a specific image

authentication system, aiming at signaling and locating tampering as well as at dis-

tinguishing non-content changes like moderate lossy compression from content tam-

pering. This distinguishment is important because many digital images and videos

are stored in lossy compressed format for efficient storage and transmission, and ex-

cessive fragility of an authentication system that is unable to tolerate the change

incurred by compression is undesirable. Our design uses a transform domain table

look-up embedding mechanism to embed a visually meaningful pattern and a set of

content features in pre-quantized DCT coefficients. The detection of tampering uti-

lizes both the semi-fragility of embedding mechanism and the meaning conveyed by

the embedded data. This provides adjustability in the degree of distinguishment for

content vs. non-content changes, hence is suitable to accommodate a variety of au-

thentication applications. Our experimental results also show that applying shuffling

helps to embed more data, enabling better distinguishment between non-content and

content changes while preserving visual quality. Extensions to color image and video

are discussed at the end of the chapter.

Besides the classic use in ownership protection, authentication, and copy/access

control, data hiding serves as a general tool to convey side information. In Chap-

ter 8, we propose novel applications of data hiding in video communication, where

the embedded side information helps to achieve additional functionalities or better

performance. We start with the problem of real-time transcoding, where a new video
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bitstream with lower bit rate is generated from an existing one to cope with the band-

width limitation. The reduction of spatial resolution can significantly reduce the bit

rate, but the processing, mostly used for motion estimation and motion compensa-

tion, is rather involved. We propose a fast compressed-domain approach to obtain

from an MPEG stream a new MPEG stream with half the spatial resolution. The key

idea to alleviating the bottleneck of motion estimation and motion compensation is

to directly use as much information as possible from the original full size video. Our

solution is supported by a novel standard-and-customized decoding framework based

on data hiding. That is, the transcoded bit stream still maintains standard compliant

appearance and can be decoded by standard decoder with reasonable visual quality;

in the mean time, better image quality will be obtained if a customized decoder that

can extract the embedded information is available. We present justifications regarding

the advantage of data hiding versus other methods for conveying the side informa-

tion. We then move onto the error concealment problem that is commonly used to

compensate the perceptual quality reduction caused by transmission errors. After

discussing the connections between error concealment and data hiding and reviewing

a few related works, we present an error concealment system that consists of a data

hiding module to protect P-frame motion vectors by embedding motion parity bits

in the DCT coefficients of I-frames.

1.2.3 Attacks and Countermeasures

Many applications of data hiding, like ownership protection, copy/access control,

and authentication, stay in rivalry environment where an adversary has incentives

to obliterate the embedded data. Testing the robustness and security of a data

hiding system via attacks is as important as the design process and can be viewed
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as its inseparable element in a broad sense. In Part III, we discuss a number of

attacks and countermeasures for data hiding systems, aiming at not only identifying

the weaknesses of existing design algorithms and suggesting improvement, but also

obtaining a better understanding of what data hiding can do and cannot do for the

above mentioned applications.

We begin our study with three specific types of watermarking schemes in Chap-

ter 9, to which analysts have full knowledge of the watermarking algorithms and are

able to perform attack experiments without much limitation. The novel block re-

placement attack in Section 9.1 targets on removing robust watermarks embedded

locally in an image. The attack has discovered an important weakness of block-based

embedding mechanism that has been neglected in literature. Possible causes of the

vulnerability against the proposed attack are analyzed, along with the discussion of

countermeasures. In Section 9.2, we shall present a countermeasure against geometric

attacks on robust image watermarks, which have been considered as a big challenge.

Our novel solution embeds and detects watermarks in a domain that is related to

special properties of Fourier transform and is resilient to rotation, scale, and transla-

tion. Many important implementation issues are discussed, followed by experimental

results on thousands of images. The chapter is concluded with a double capturing at-

tack for forging fragile watermarks in Section 9.3. This attack touches a fundamental

aspect of image authentication, i.e., the authenticity is always relative with respect

to a reference. Countermeasures of embedding additional data are proposed, aiming

at detecting multiple captures or non-natural captures.

Chapter 10 discusses attacks under a unique emulated rivalry environment, in

which analysts have no knowledge of the watermarking algorithms. This interesting

study and experimental results are based on our participation in the recent public
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challenge in the form of attacking four audio watermarking technologies organized

by the Secure Digital Music Initiative (SDMI). We begin our discussion with the

challenge setup, commenting on a few unrealistic aspects that made the challenge

much more difficult than a real-world scenario. General approaches for tackling the

attack problem are proposed. Following this general framework, we take two success-

ful attacks as examples to demonstrate our attack strategies, to describe the specific

implementation, and to present analysis in detail. For completeness, other success-

ful attacks are also briefly explained. While the challenge is designed to test robust

watermarks, we notice that an SDMI system may consist of both robust and fragile

watermarks. Having found that the fragile watermark serves a purpose of special

tamper detection and that its security is important to an SDMI system, we present a

potential attack on fragile watermarks and a countermeasure to conclude the chapter.
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Fundamental Issues
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Chapter 2

Preliminaries

2.1 Data Hiding Framework

A typical data hiding framework is illustrated in Fig. 2.1. Starting with an original

copy of digital media, or original media (I0) in short 1, an embedding module puts

in it a set of secondary data to be embedded (b), which is referred as embedded data.

The output of the embedding module is perceptually identical to the original but with

data hidden in. It is often referred as marked media (I1). The difference between

I1 and I0 is referred as embedding distortion, i.e., the distortion introduced by the

embedding process.

In most cases, the hidden data is a collection of bits, which, depending on the

application, may come from an encoded character string, from a pattern, from some

executable agents, or others. The bit-by-bit accuracy in extracting these hidden data

from the marked media is desirable in these cases and is the focus of this thesis. The

embedded data may form a perceptual source itself, such as the application of “image

in image” and “video in video” [69]. Some moderate decay of the hidden data is

tolerable in this case.

1I0 is also commonly referred as host media or cover media.

18
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The marked media may be subjected to various kinds of processing and attacks

before feeding into a detector. The input media to the detector is referred as test

media (I2), and the difference between I2 and I1 is referred as noise. The data ex-

tracted from I2 is referred as extracted data (b̂). In such applications as ownership

protection, fingerprinting 2 and access control, accurate decoding of hidden data from

distorted test media is preferred. They are commonly referred as robust data hiding /

watermarking. In other applications such as authentication and annotation, robust-

ness against processing and attacks are not a principal requirement in general. We

will discuss the specific design requirement in the later chapters.
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Figure 2.1: General framework of data hiding systems

2The fingerprinting here refers to the application where different labels are embedded in copies
of the same media content before distributing to multiple recipients and the hidden labels are used
for tracing each recipient. See also the discussion in Chapter 1.
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2.2 Key Elements and A Layered View

Data hiding can be viewed as a communication problem, in which the hidden data

is to be delivered and the media host serves as a carrier or as part of the channel.

Techniques such as matched filtering, spread spectrum communication, modulation,

and error correction coding are widely used in data hiding. In addition, a layered

structure helps to prioritize and compartmentalize various design issues.

The key elements in many data hiding systems include:

1. A perceptual model that ensures imperceptibility;

2. How to embed one bit;

3. How to embed multiple bits via modulation/multiplexing techniques;

4. How to embed in those parts of cover media which are difficult to embed, or

more generally, how to handle uneven embedding capacity;

5. How to enhance robustness and security;

6. What data to embed.

The elements can be viewed in layers, analogous to the layered structure in network

communication (Fig. 2.2). The “physical layer” of data hiding deals with how one or

multiple bits are embedded imperceptibly in the original media. This layer has three

key elements, namely, (1) the mechanism for embedding one bit, (2) the perceptual

model to ensure imperceptibility, and (3) the modulation/multiplexing techniques

for hiding multiples bits. Protocols for achieving additional functionalities are built

on top of this “physical layer”, for example, to handle uneven embedding capacity,

to enhance robustness and approach capacity via error correction coding, and to
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Figure 2.2: Layered structure of a data hiding system.

incorporate additional security measures. In the remaining chapters of Part I, we

shall use data hiding in images as an example to discuss several elements in detail.



Chapter 3

Classification and Capacity

of Embedding Mechanisms

In classic communication, the gap between the theoretical Shannon channel capacity

and the limitation in practice are filled by systematic and implementable studies

on such issues as modulation, coding/decoding, and equalization [5]. Because data

hiding problems have close connection with communication, filling the gap between

theoretical embedding capacity and practical limitations is important and is the focus

of the fundamental issue part (Part-I) of this thesis. More specifically, we follow the

classification described in our work [167] to study two major categories of embedding

mechanisms that are practically realizable. We shall begin with simplified models,

then gradually loosen the assumptions to consider practical situations. The capacity

achievable by the two types of schemes are compared, from which the conditions

under which each type of schemes is superior to the other one are identified. We

consider the following problems and propose solutions:

• Distortion during and after embedding : depending on applications, the allow-

able change introduced by embedding (a.k.a embedding distortion) may be

22
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smaller, sometimes, much smaller, than the distortion introduced to the water-

marked image (a.k.a noise). This is especially the case when the applications

preside in a rivalry environment. For example, when watermark is used for

ownership protection or access control, the quality of watermarked image/video

determines the commercial and artistic value of the digital art works hence the

embedding distortion should be well constrained to maintain superb impercep-

tibility. On the other hand, an adversary who wants to obliterate the watermark

may be willing to tolerate some quality degradation. Under this scenario, the

noise introduced by an adversary can be significantly larger than the embedding

distortion.

• Actual noise conditions : an embedding system is generally designed to survive

certain noise conditions. This single robustness-capacity tradeoff has limitation

in practical applications. First, for applications presiding in a rivalry environ-

ment, the actual noise condition may vary dramatically. Second, a watermarked

image/video may be compressed or transcoded to different bit rate in order to

be delivered through different kinds of communication channels. The desir-

able amount of information extracted from the image/video could be different

depending on the level of compression, as will be explained in Chapter 6. In

addition, the information to be embedded usually requires unequal error protec-

tion (UEP). Some bits, such as the ownership information and a small amount

of control information facilitating the decoding of a larger amount of payload

bits, are required to be embedded more robustly than others.

• Non-stationary property : due to the non-stationary nature of perceptual sources,

the amount of data that can be embedded varies significantly from region to

region. This uneven embedding capacity adds difficulty to high-rate embedding,
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especially in practical systems that need to accommodate diverse multimedia

content.

In this chapter, we study the robustness-capacity tradeoff for two major categories

of embedding mechanisms. The embedding capacity of simplified channel models for

these two kinds of embedding are compared. These studies serves as a guideline

for selecting an appropriate embedding algorithm given the design requirements of

an application, and as a foundation of multi-level data hiding (Chapter 6), a new

embedding framework/algorithm with improved performance. We also discuss in this

chapter a number of modulation/multiplexing techniques for embedding multiple bits,

quantitively comparing the advantages and disadvantages of various techniques. The

discussion of the uneven embedding capacity problem will be presented in the next

chapter.

3.1 Two Types of Data Embedding

The mechanism for embedding one bit in original media is the most basic element

in a data hiding system. Many embedding approaches have been proposed in the

literature and there are many ways to classify them. For example, some schemes

work with the multimedia signal samples while others work with transformed data.

We found it beneficial to study the existing embedding approaches under noise-free

conditions (i.e., directly passing a watermarked media to a detector) and to examine

whether knowledge of the original host media will enhance the detection performance,

regardless of whether a detector uses such knowledge or not [167]. Many existing

embedding approaches would then fall in one of the following two categories.
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Channel model of two types: 
fig:type1ch, fig:type2ch 
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Figure 3.1: Channel model of Type-I embedding.

In the first category (Type-I), the secondary data, possibly encoded, modulated,

and/or scaled, is added to the host signal, as illustrated in Fig. 3.1. The addition can

be performed in a specific domain or on specific features. Considering the embedding

of only one bit, the difference between marked signal I1 and the original host signal I0

is a function of b, the bit to be embedded, i.e., I1−I0 = f(b). Although it is possible

to detect b directly from I1 [53], I0 can be regarded as a major noise source in such

detection. Therefore, the knowledge of I0 will enhance detection performance by elim-

inating the interference. Additive spread spectrum watermarking is a representative

of this category [44, 46].

In the second category (Type-II), the signal space is partitioned into subsets which

are mapped by a function g(·) to the set of values taken by the secondary data (e.g.,

{0, 1} for binary hidden data), as illustrated in Fig. 3.2. The marked value I1 is

then chosen from the subset which maps to b, so that the relationship of b = g(I1) is

deterministically enforced. To minimize perceptual distortion, I1 should be as close to

I0 as possible, where the distance measure is chosen using perceptual models. Unlike

the first category, the detector for this type of scheme does not need the knowledge

of original value I0 because the information regarding b is solely carried in I1.
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(a)

Channel model of two types: 
fig:type1ch, fig:type2ch 
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(b)

Channel model for Type-II embedding. 
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(c)

Channel model for Type-II embedding. 
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Figure 3.2: Channel model and decision boundaries of Type-II embedding: (a) chan-
nel model; (b) single-sided detection decision for sign enforcement with “0” as thresh-
old; (c) detection decision for odd-even enforcement with two boundaries.

A simple example of Type-II is the so called odd-even embedding : we choose

an even number as I1 to embed a “0” and an odd number to embed a “1”. Data

hiding can also be achieved by enforcing a rather global relationship. For example,

one may change the sum of several source components to a nearby even number

to encode a “0”, and to an odd number to encode a “1”. This is equivalent to

reducing the bits allocated for representing the original vectors and to re-allocate

them for conveying side information. By moving from 1-D space to a space of higher

dimension, the magnitude of the introduced distortion per dimension is reduced.
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Also, there are more choices to select a new signal vector with desired bits embedded

in, which allows embedding to be performed in such a way that the human-visual-

model-weighted distortion is minimized. On the other hand, the embedding bit rate is

reduced, showing a tradeoff between embedding rate and invisibility 1. The odd-even

embedding can be viewed as a special case of the table-lookup embedding [78, 163],

which uses a lookup table to determine the mapping between the possible values of

a media component and the data to be embedded. There are many other possible

ways to partition the space and to enforce a desired relationship. One can enforce

the ordering of a pair of samples or coefficients v1 and v2. For example, we generate

marked coefficients v′1 and v′2 close to v1 and v2 such that v′1 > v′2 to embed a “1”

and v′1 ≤ v′2 to embed a “0” [63]. One can also enforce signs to embed a “1” or “0”, as

used in [64, 65]. Extending the basic ways of enforcement, more sophisticated schemes

can be designed and/or analyzed [96]. Many proposed schemes in the literature that

claimed to have the ability of non-coherent detection 2 belong to this category. It

is the deterministically enforced relationship on I1 that removes the need of using

original signal I0. For the convenience of discussion, we shall refer the collection of

image pixels or coefficients on which the relation is enforced as an embedding unit. If

the enforcement is performed on a quantity derived from the embedding unit (e.g.,

the sum of a few coefficients, the signs of a coefficient, etc.), we shall refer the quantity

as a feature.

1Equivalently, if the embedding distortion per dimension is fixed, the total distortion that can be
introduced increases when moving to higher dimensions. This aggregated energy enables embedding
more reliably via quantization, as will be discussed in Sec. 3.1.1.

2Non-coherent detection in data hiding refers to being able to detect the embedded data without
the use of the original unwatermarked copy. It is also called “blind detection”.
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3.1.1 Comparison

The two types of schemes reveal different characteristics in terms of robustness, ca-

pacity and distortion (introduced by embedding), as shown in Table 3.1. For Type-I

schemes, hypothesis testing is a tool for verifying what hidden data is present in

the test media. Spread spectrum embedding, a representative of Type-I, has been

demonstrated with excellent robustness and invisibility when the original host media

is available in detection [44, 46]. In non-coherent detection, the interference from host

signal exists even when there is no subsequent processing or intentional attack 3.

Table 3.1: Comparison of two types of embedding mechanisms

WM @ PV 12/00

Electrical Engineering Dept.
Princeton University

16

Exploring Fundamentals of EmbeddingExploring Fundamentals of Embedding

� Criterion of new classification
– knowing host signal helps improve detection?

� Two categories ~ different robustness-capacity tradeoff

Type-I
(Additive)

Type-II (Relation
Enforcement)

Capacity low
(host interference)

high

Robustness high
(rely on long seq.)

low
(rely on quantization
or tolerance zone)

Example spread-
spectrum
embedding

odd-even
embedding

We can analyze the detection performance via the following simplified additive

model is: 
H0 : Yi = −Si + Mi (i = 1, ..., n) if b = −1

H1 : Yi = +Si + Mi (i = 1, ..., n) if b = +1
(3.1)

where {Si} is a deterministic sequence (sometimes called watermark), b is one bit

to be embedded and is used to antipodally modulate Si, Mi is the noise, and n

3Recently, Cox et al. modeled the additive embedding as communication with side information
and proposed techniques of “informed embedding” to reduce (but not completely eliminate) the
negative impact from host interference [54, 55].
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is the number of samples/coefficients to carry the hidden information. We further

assume b is equally likely to be “-1” and “+1”. In coherent detection where the

original source is available, Mi comes from the processing and/or attack applied

to the marked copy; in non-coherent detection, Mi consists of noise from the host

media and processing/attack. For simplicity, Mi is usually modeled as i.i.d. gaussian

distribution N(0, σM
2), for which the optimal detector is a (normalized) correlator

with Si according to the classic detection theory [2]:

TN = Y T S/
√

σM
2 · ||S||2 (3.2)

where Y and S are column vectors. This test statistic is gaussian distributed with

unit variance and the following mean

E(TN) = b ·
√
||S||2/σM

2 (3.3)

= b ·
√

n · ( 1

n
||S||2)/σM

2 (3.4)

We then compare TN with zero, and decide H1 if it is positive and H0 otherwise. The

probability of error is Q(E(TN)), where Q(x) is the probability of P (X > x) of a

gaussian random variable X ∼ N(0, 1). Because Q(·) is monotonically decreasing,

one should raise the ratio of total watermark energy ||S||2 to noise power σM
2 to get a

lower probability of error. Given the same noise power, this can be achieved by adding

watermark to more elements, and/or by raising the watermark power (per element).

A watermark with higher power introduces more distortion on the host media. The

maximum watermark power is generally determined by perceptual models so that the

changes introduced by the watermark are below the just-noticeable-difference (JND).

Therefore, the remaining way to achieve robustness is to use large n, that is, to collect

energy from many weak components of a long signal and to use such a long signal to

represent one bit. A longer watermark vector in turn reduces the capacity (i.e., the
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number of secondary information bits that can be encoded and extracted with very

small probability of error).

 
 
Illustration of the distribution of detection statistics under two hypothesis (Type-I). 
Small mean value results in large probability of error. 
 
fig:type1errpdf  
 
 
 
 
 
 
 
 
 
 
 
 

0 
mean of TN under H1 mean of TN under H0 

TN 

Figure 3.3: Illustration of the distribution of detection statistics (Type-I). Small mean
value results in large probability of error.

It is worth mentioning that the hypothesis testing model in Eq. 3.1 is concerned

with embedding one bit of information using antipodal modulation on a signal S.

Another popular model considers the case of a watermark being present versus being

absent: 
H0 : Yi = Mi (i = 1, ..., n) if watermark is absent

H1 : Yi = Si + Mi (i = 1, ..., n) if watermark is present
(3.5)

The watermark signal S often represents ownership information [44, 46]. The de-

tection statistics of this hypothesis problem is the same as the previous antipodal

model. While the threshold can be set according to the Bayesian rule to minimize

the overall probability of error as in the previous case, the Neyman-Pearson criterion

is often adopted to minimize miss detection probability P ( choose H0|H1 is true)

while keeping the false alarm probability P ( choose H1|H0 is true) below a bound.

Unlike Type-I, the Type-II schemes are free from the interference from host media

and have the ability of coding one bit in only a small number of host components
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hence high capacity. Their robustness against processing and attacks generally comes

from quantization and/or tolerance zones. For schemes enforcing ordering or sign,

instead of making minimal changes to enforce v′1 > v′2, the embedding mechanism

may force v′1 > v′2 +δ, where δ is the size of a tolerance zone. As long as distortion is

smaller than δ, v′1 > v′2 can still be retained. For other enforcements, we may apply

quantization to obtain robustness [167] 4. For example, in the odd-even embedding,

we pre-quantize the host signal I0 by step Q, then enforce the quantized value to

be an even number to embed a ‘0’ and an odd number to embed a ‘1’. As shown

in Fig. 3.2(c), any further distortion within ( -Q/2, +Q/2 ) will not cause errors in

detection. The larger the Q is, the more tolerance we obtain, but also the larger

distortion an embedding process may introduce. This is because the mean squared

error introduced by embedding, as illustrated in Fig. 3.4, is

MSE =
1

2
· Q2

12
+

1

2
· [ 1

Q

∫ 0

−Q
2

(x + Q)2 dx +
1

Q

∫ Q
2

0
(x−Q)2 dx] (3.6)

=
1

3
Q2, (3.7)

where the host components within ±Q of kQ are assumed to follow uniform distribu-

tion, giving an overall MSE quadratic with respect to Q. The uniform distribution is

a good approximation when Q is small. After embedding, noise N is introduced to

marked components by processing/attack, then an inverse quantization is performed

by a watermark detector. If |N | < Q/2, no error will be introduced in detection. If

N is uniformly distributed between −M/2 and M/2 where M > Q, the probability

of error can be expressed on interval basis:

Pe =


1− (2k−1)Q

M
M ∈ [(4k − 3)Q, (4k − 1)Q]

2kQ
M

M ∈ [(4k − 1)Q, (4k + 1)Q]
(3.8)

4The enforcement with quantization is formulated in a slightly different way by Chen et al. [72]
and is referred as Quantization Index Modulation (QIM).
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where k is a positive integer. Here Pe fluctuates around 1/2 and converges to 1/2 as

k goes large. While a more sophisticated set partition may achieve a better tradeoff

between the perceptual distortion introduced by embedding and the tolerance against

certain processing or attacks, one can see that the tolerance is always limited and is

achieved by pre-distortion in the embedding step. By incorporating a proper human

visual model, Type-II schemes are suitable for high-rate data hiding applications that

do not have to survive severe noise.

Illustration of computing MSE of odd-even embedding: 
 
fig:oddevenMSE 
 
 
 

2kQ (2k+1)Q (2k-1)Q 

uniform distribution of 
unmarked elements over 
(-Q/2+2kQ, +Q/2+2kQ) 

embed “0” embed “1” embed “1” 

Figure 3.4: Computing MSE distortion by odd-even embedding

For both types of embedding, when the probability of detection error per embed-

ding unit (such as in one or a set of image pixels or coefficients) is non-zero, proper

channel coding like error correction codes (ECC) can be applied to achieve reliable

embedding under certain noise conditions. Properly constructed codes are ways to

approach the embedding capacity to be discussed in Section 3.2.

3.1.2 A Unified View on Two Types

A unified view of the two embedding types can be obtained in terms of set partition-

ing: both types partition signal space into several subsets, each of which represents
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a particular value of hidden data. We have already explained the set partitioning for

Type-II. Now considering Type-I, for example, the additive spread spectrum scheme,

we can see that the signal space for detection is also partitioned into two parts ac-

cording to the sign of test statistics TN which usually takes the form of correlation

or a variation of correlation: the positive part represents a ‘1’ and the negative part

represents a ‘0’. The difference is that for Type-I, enforcement is not done on the

marked media deterministically. The additive embedding alone still leaves non-zero

probability for marked components not to be enforced to the desired set in non-

coherent detection. Because the host media is a major noise source, we have to rely

on a statistical approach (e.g., spreading watermark signal to many components and

taking average) to suppress noise and to obtain detection result with small probability

of error. This effort is needed even when there is no noise coming from processing/

attack.

Most recently, attentions have been paid to Costa’s theoretical work in the early

1980s on the channel capacity under two additive gaussian noise sources with one

noise source being known to the sender [97]. Costa showed that the channel capacity

is equal to the capacity in the absence of the known noise source and that the optimal

transmitter adapts its signal to the state of the known noise source rather than

attempting to cancel it. Incorporating Costa’s work into the data hiding problem, as

suggested by Moulin et al. and Chen et al., provides an alternative unified view on

the two embedding types [93, 72].
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3.2 Quantified Capacity Study

The difference between the two types of schemes in terms of robustness-capacity

tradeoff can be quantified using an additive channel model. For simplicity, we as-

sume additive white gaussian noise (AWGN) for both types. Other additive noise

conditions such as additive white uniform noise (AWUN) and colored noise can be

studied similarly by applying whitening and/or re-computing the capacity based on

information theory. It is important to notice that the capacity is tied to a channel

model with specific noise distribution and watermark signal constraints. The capacity

would be different if the channel is modeled differently, and it is a function of the

parameters of the noise distribution and watermark constraints, such as the power of

the noise and of the watermark.

Capacity for Type-I Embedding

The channel model of Type-I schemes shown in Fig. 3.1 has continuous input

and continuous output (CICO). The additive noise consists of two parts, namely, the

interference from the host signal and the noise due to other processing/distortion.

For the moment, we assume that (1) the host signal is independent of the processing

noise, and (2) both are i.i.d. gaussian distributed. The embedding capacity under

the overall AWGN noise is achieved with gaussian distributed input and is equal to

C
CICO

=
1

2
log2(1 +

A2

σI
2 + σ2

). (3.9)

where σI
2 is the power of the original host signal, A2 is the power of the embedded

signal, and σ2 is the power of additive processing noise. In general, the interference

from host signal is much stronger than the processing noise, i.e., σI
2 >> σ2 .
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Capacity of Type-II Embedding

Binary Symmetric Channel with Flipping Probability of p 
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Figure 3.5: A binary symmetric channel (BSC) with a flipping probability of p.

The channel of Type-II schemes has discrete input with the decision boundary

being either single sided or double sided, as illustrated in Fig. 3.2. The single-sided

case generally corresponds to the embedding relying on sign enforcement, and the

double-sided case is common to denser enforcement such as odd-even and lookup

table embedding. We shall first study the single sided case, and extend the result to

the double-sided case later. Regarding the output of the channel, if a hard decision is

used, the channel will be the discrete-input discrete-output (DIDO) binary symmetric

channel (BSC) shown in Fig. 3.5. The capacity of this type of channel has been well

studied and is given by

C
DIDO

= 1− hp (3.10)

achieved by equiprobable input, where hp is the binary entropy

hp = p · log(
1

p
) + (1− p) · log(

1

1− p
). (3.11)

The probability of bit error p for AWGN and AWUN noise are

p
AWGN

= Q(
A

σ
) =

∫ +∞

A
σ

1√
2π

e−
t2

2 dt, (3.12)
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p
AWUN

=


1
2
− A

M
A < M/2

0 A ≥ M/2
, with σ = M/

√
12. (3.13)

where the AWUN noise is uniformly distributed between −M/2 and +M/2 (noise

variance σ2 = M2/12), If a soft decision is used, which offers a detector the knowledge

of how wrong the decision of a particular element would be, the channel will be

discrete-input continuous-output (DICO), having a capacity of

C
AWGN,DICO

= 1 +
A2

σ2
log2 e− E[log2(e

2AY
σ2 + 1)], (3.14)

where E[·] is the expectation with respect to Y , whose probability density function

is

f(y) =
1

2
√

2πσ2
e−

(y+A)2

2σ2 +
1

2
√

2πσ2
e−

(y−A)2

2σ2 . (3.15)

When the noise is AWUN between −M/2 and +M/2, we can show that:

C
AWUN,DICO

=


2A
M

A < M/2

1 A ≥ M/2
⇒ C

AWUN,DICO
=


A√
3σ

A
σ

<
√

3

1 A
σ
≥
√

3
(3.16)

The soft decision allows the watermark signal-to-noise ratio A/σ2 being 2 ∼ 5dB

lower for the same capacity than the hard decision under AWGN or AWUN noise, as

shown in Fig. 3.6. The derivations of C
AWGN,DICO

and C
AWUN,DICO

are included as an

appendix in Sec. 3.5.

Up to now, we have discussed a simple case with only two signal points −A and

+A conveying one bit information. Capacity of different channel models, namely,

DICO and DIDO, have been studied and compared. With a few small variations, we

can obtain the capacity of several typical Type-II schemes. For practical schemes that

enforces signs with a tolerance zone A, the signal are generally enforced to be greater

than +A or less than −A to encode one bit, rather than being enforced exactly to
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Capacity of DICO and DIDO Channel Under AWGN and AWUN Noise 
fig:didodico   (!!revised on 2/01 from 4/00 by thicken the curve) 
 
Capacity of Type-I (CICO channel) and Type-II (DIDO channel) Embedding Under AWGN noise 
fig:C1andC2  (!! Revised on 2/01 from 4/00 by thicken the curve and relabel x-axis. 
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Figure 3.6: Capacity of DICO and DIDO channels under AWGN and AWUN noise.

±A in our simplified model. This implies that the capacity should be higher than

that of our model. Regarding the odd-even embedding mentioned earlier, the error

regions are two-sided rather than single-sided (Fig. 3.2). We denote the quantization

step size as Q and consider the channel input X = kQ (i.e., the enforced values that

carry hidden information), error will be incurred when the output Y is in the regions

Y > (k + 1/2)Q or Y < (k − 1/2)Q. Thus for the model of DIDO channel with

AWGN noise, the bit error probability p is:

p
AWGN

= min {1/2, 2 ·
+∞∑
k=0

Q(
(4k + 1)Q

2σ
)−Q(

(4k + 3)Q

2σ
)}

= min {1/2, 2 ·
+∞∑
k=0

∫ (4k+3)Q
2σ

(4k+1)Q
2σ

1√
2π

e−
t2

2 dt}, (3.17)

For high watermark-to-noise ratio (Q
σ
), we may ignore the regions that are far away
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from kQ but map to the same bit value as kQ and approximate the probability with

a upper bound:

p
AWGN

≈ min{1/2, 2 · Q(
Q

2σ
)} = min{1/2, 2 ·

∫ +∞

Q
2σ

1√
2π

e−
t2

2 dt}, (3.18)

This approximation is based on the fast decay of the tails of gaussian distribution.

Plugging the result of p
AWGN

into Eq. 3.10 yields the channel capacity.

We have discussed DIDO and DICO channel models that reflect the practi-

cally implementable Type-II embedding. The channel model for Type-II embedding

can be further improved. Motivated by Costa’s techniques in proving the chan-

nel capacity [97], Chen et al. proposed to incorporate multiplicative scaling into

quantization-based enforcement embedding. The enforcement is then linearly com-

bined with the host signal to form a watermarked signal. The scaling factor is a

function of watermark-to-noise ratio and has the capability of enhancing the number

of bits that can be embedded. Interested readers may refer to [40, 72] for details.

Capacity Comparison for Type-I & Type-II

Fixing the mean squared error introduced by the embedding process as E2, we

compare the capacity of Type-I and Type-II schemes under AWGN noise with the

following simplification. For Type-I, we consider a CICO channel model and assume

that the AWGN noise consists of gaussian processing noise (with variance σ2) and

host interference (with standard deviation 10 times as much as that of the watermark

signal, i.e., σI = 10E). For Type-II, we consider a DIDO BSC channel with p derived

in Eq. 3.17 for odd-even embedding with such quantization step Q that the embedding

MSE distortion equals to E2, i.e., Q =
√

3E according to Eq. 3.7. The capacity is

thus obtained as:

CI =
1

2
log2(1 +

E2

(10E)2 + σ2
) (3.19)
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CII = 1− h
min{1/2, 2·

∑+∞
k=0

Q(
(4k+1)Q

2σ
)−Q(

(4k+3)Q
2σ

)} (3.20)

We plot capacity vs. different watermark-to-noise ratio E2/σ2 in Fig. 3.7. It shows

that the capacity of Type-II is much higher than that of Type-I until the watermark-

to-noise ratio (WNR) falls negative, confirming our previous analysis regarding the

host interference of Type-I and the pre-distortion nature of Type-II. The comparison

suggests that Type-II is useful under low noise condition while Type-I is suitable for

severe noise. The capacity of both Type-I and Type-II can be approached via channel

coding, such as RS / BCH codes used in [61, 167].Capacity of Type-I (CICO channel) and Type-II (DIDO channel) Embedding Under AWGN noise 
fig:C1andC2   
(!! Revised on 2/27/01 from 2/15/01 by using precise evaluation for type-II instead of approx.)  
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Figure 3.7: Capacity of Type-I (CICO channel) and Type-II (DIDO channel) embed-
ding under AWGN noise.

A Few Extensions

We have discussed the two possible channel models for Type-II embedding, namely,
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DICO and DIDO channels, and have compared them with the CICO channel model

for Type-I embedding. Throughout the above discussion, we assumed that the noise

is additive and white, and the watermark signal power is the same on all media com-

ponents. Generalization is possible on two aspects. First, We should consider the

so-called unembeddable components which have to be left untouched by the embed-

ding mechanism to meet imperceptibility requirement. As we shall see in Chapter 4,

these unembeddable components reduce the data hiding capacity. Second, we should

consider each media components might incur different host interference, be able to

watermarked with different strength, and/or sustain different noise. The channel

model can be modified into a parallel channel, with L bands per unit or channel use.

The ratio of watermark to interference-plus-noise is different for in each band, but

the total noise is assumed to be independent from band to band and is i.i.d. from

unit to unit (Fig. 3.8). The channel capacity per unit becomes:

C = max
P

X(L)

I(X(L); Y (L)), (3.21)

where

I(X(L); Y (L)) = I([X1, ..., XL]; [Y1, ..., YL]) = h(Y (L))− h(Y (L)|X(L))

= h(Y (L))− h(N1, ..., NL) = h(Y1, ..., YL)−
L∑

i=1

h(Ni)

≤
L∑

i=1

h(Yi)−
L∑

i=1

h(Ni) =
L∑

i=1

I(Xi; Yi). (3.22)

If {Xi} are independent of each other, the equality of Eq. 3.22 holds, indicating that

the total capacity is the sum of the capacity achieved by each individual band. The

capacity of an individual band can be determined by the noise power and the just-

noticeable-difference of the band, using the approach we discussed in the earlier part

of this section. Studying the capacity under correlated noise from unit to unit and/or

non-gaussian noise is more involved. It is a direction of future work.
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A noteworthy issue regarding the parallel channels is that in classic communication

literature, the capacity of L parallel AWGN channels follows a so-called Water-filling

Theorem, where a constraint on total power is imposed and the power needs to be

shared among all channels. The theorem suggests an optimum allocation of the power

among L parallel channels, which is analogous to water-filling. Though meaningful

in the cases of telecommunication, the constraint on the total power may not be

realistic in watermarking problems where the power constraint for each individual

channel (possibly in the form of a frequency band or a local region) is determined

by perceptual models such as those in [101, 36, 48]. Even though the perceptual

constraints may have dependency among several channels, it does not appear to fit

the simple constraints on the total power. How to better incorporate the dependency

among channels is another direction to be explored.

Parallel ch. model: 
fig:parallelch 

 
 
 

X1 Y1 

N1 
X2 Y2 

N2 

XL YL

NL

. .
 . 

1st  band

2nd band 

Lth band 

one unit of  
parallel channels 

Figure 3.8: Parallel Channel Model With L Bands. Noise in each band is independent
but with different variance.



CHAPTER 3. CLASSIFICATION & CAPACITY OF EMBEDDING 42

We shall also note from the above analysis that the discrete-input channel model

for Type-II has zero probability of detection error if the support of noise distribution

is within the decision boundary shown as shaded area in Fig. 3.2. Under the specific

model considered there, the channel is able to convey 1 bit per channel use with

no error. If we revise the channel model to allow freedom in choosing the input

alphabet, the channel capacity is determined by Shannon’s zero-error capacity [99, 7],

as suggested in [41]. The capacity may exceed 1 bit per channel use for a specific

noise distribution and specific power constraint on the watermark.

3.3 Bandwidth via Data Hiding

A specious argument about data hiding is that it could provide additional bandwidth

to convey secondary information. Actually the bandwidth for conveying secondary in-

formation is at an expense of either reducing the bandwidth for conveying host media

or increasing the total bandwidth of conveying the watermarked media, depending

on whether the quality of host media is reduced or not. Considering the simplest

case of embedding one bit in an image (Fig. 3.9), the entire image space S is always

partitioned into two disjoint subsets S1 and S2 with S = S1
⋃S2, regardless of the

specific embedding algorithm being used. When a detector sees an image belonging

to S1, it will output the embedded bit value as “0”; when it sees an image belonging

to S2, it will output the embedded bit value as “1”. Assuming the embedded bit

takes “0” and “1” equiprobably, the probability of an image falling into the first and

the second subset equals to 1/2, respectively. To code any image in the space, one

bit is spent on specifying to which subset the image belongs. In other words, one of

the bits used in coding an image is actually for conveying the embedded bit.
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Figure 3.9: Illustration of the bit re-allocation nature of data hiding.

For odd-even embedding in a single image element, the two subsets are obtained

by a partition according to the least significant bit (LSB); for an odd-even enforce-

ment applied to the sum of two components, the embedded bit is related to the LSB

of both components. For spread spectrum additive embedding, the boundary between

the two subsets is commonly determined by a correlator-type detector. If the total

number of bits for representing an image do not change during the embedding pro-

cess, one bit is logically reallocated from representing the image to representing the

embedded data, even though there may be more than one bits physically related to

the embedded data. In this case, the absolute quality of the image is reduced because

of the fewer bits effectively used in image representation (unless there is redundancy

in the previous representation). While this indicates that data hiding does not have

an advantage in terms of saving bit rate when compared with attaching the secondary

data separately to the host media, it does have quite a few advantages, including the

ability to associate the secondary data with the host media in a seamless way as

well as the standard compliant appearance and the low computation complexity in

practical applications. We will discuss this in Chapter 8.
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3.4 Modulation and Multiplexing Techniques for

Embedding Multiple Bits

An embedding scheme generally specifies a particular way to hide one-bit information

in multimedia source. Modulation/multiplexing techniques can be applied on top of

it to embed multiple bits. Evolving from classic communication [5], the following

strategies are commonly used:

• Amplitude modulo modulation (for Type-II embedding 5)

In general, B bits can be embedded in each embedding unit by enforcing a

feature derived from this unit into one of M subsets, where B = log2 M . A

straightforward example extended from odd-even embedding is to enforce the

relation via modulo-M operation to hide B bit per element. That is,

I1 = arg min
I s.t. I=kQ,k∈Z,mod(k,M)=m

|I − I0| (3.23)

where [·] represents the rounding operation, m ∈ {0, 1, ...,M−1} represents the

B-bit information to be embedded, I0 is the original image feature, I1 is the

watermarked feature, and Q is the quantization step size for obtaining robust-

ness. Assuming I0 follows uniform distribution in each quantization interval

(kQ− Q
2
, kQ + Q

2
) where k is an integer, we can show that the MSE distortion

introduced by embedding is Q2M2/12. This indicates that with the minimal

separation Q between the M subsets being fixed, larger embedding distortion

will be introduced by a larger M ; with fixed MSE embedding distortion, the

5The Type-I additive embedding formulated in Eq. 3.1 (the antipodal modulation) and Eq. 3.5
(the on-off modulation) can be viewed as amplitude modulation. For blind detection of additive
embedding that is subject to host interference, using amplitude modulation to convey more than
two constellation points are rare in practice. We therefore focus on the amplitude modulo modulation
that is applicable to Type-II embedding.
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enforced relation with a larger M has smaller separation hence tolerates less

distortion. The idea is easily extensible to table lookup embedding or other

enforcement scheme and the analysis can be done similarly.

• Orthogonal & Biorthogonal modulation

Mainly used with Type-I additive embedding, the orthogonal modulation uses

M orthogonal signals to represent B = log2 M bits by embedding one of the M

signals into the host media. A detector computes the correlation with respect

to all M signals. The signal that gives the largest correlation and exceeds

some threshold will be decided as the signal embedded by the sender and the

corresponding B-bit value will be determined accordingly. A variation, so-

called biorthogonal modulation, encodes log2 2M = (B + 1) bits by adding or

subtracting one of M signals. The computational complexity of detection is

exponential with respect to the number of bits being conveyed, therefore is

inefficient except for small M .

• “TDMA” type modulation

For data hiding in images, this type of modulation partitions an image into

non-overlapped regions and hides one or several bits in each region. For audio,

it means to partition an audio into time segments and to hide one or several

bits in each segment. A video can be partitioned into regions within each frame

and into time segments across frames. “TDMA” type modulation is a simple

way to realize orthogonal embedding for both Type-I and Type-II, i.e., the bits

embedded in different regions or segments do not interfere with each other.

However, it could suffer from the problem of uneven embedding capacity, which

will be explained in Section 4.
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• “CDMA” type modulation

For Type-I additive embedding, encoding B bits to a watermark signal w in the

following way provides more efficient detection than orthogonal modulation in

terms of the computational complexity:

w =
B∑

k=1

bk · uk, (3.24)

where bk = ±1. In general, the vectors {uk} are chosen to be orthogonal to

each other. The orthogonality implies that the total signal energy is the sum

of the energy allocated for each bit. If a fixed amount of energy is uniformly

allocated to each bit, the energy per bit will be reduced as B increases, imply-

ing a decrease in detection reliability and more generally, a limit on the total

number of bits that can be hidden for low error rate extraction. “TDMA” is

a special case with the supports of uk being non-overlapped with each other in

the sample domain (i.e., the pixel domain for image and the time domain for

audio). Alternatively, we can choose orthogonal but overlapped {uk}, similar to

CDMA in communication [6]. Uneven embedding capacity is no longer a con-

cern as we can choose {uk} such that each bit is spreaded all over the media.

But B orthogonal sequences have to be generated and shared with a detector,

which may be non-trivial for large B. The TDMA and CDMA approach can

be combined to encode multiple bits.

For Type-II embedding, multiple bits can be embedded by enforcing relations

deterministically along multiple directions that are orthogonal to each other.

Swanson et al. and Alghoniemy et al. proposed to embed multiple bits in an

image block by enforcing relations on the projections of a feature vector along

several orthogonal directions [66, 68]. The total modification introduced by
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embedding is the sum of the change along each direction, implying a tradeoff

among capacity, robustness, and imperceptibility.
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Figure 3.10: Comparison of distance between signal constellation points for orthog-
onal modulation (left) vs. TDMA/CDMA-type modulation (right) with total signal
energy being fixed at E .

The orthogonal modulation and TDMA/CDMA-type modulation can be com-

pared by studying the distance between signal constellation points that represent the

secondary data (Fig. 3.10). Considering the case of conveying B bits using total

energy E . The minimum distance between signal points is
√

2E for orthogonal modu-

lation, and is 2
√
E/B for TDMA/CDMA. When B > 2, orthogonal modulation gives

smaller probability of error at a cost of detection complexity.

Expanding a bit more, we summarizes the quantified comparison among the

modulation/multiplexing techniques discussed above 6 in Table 3.2. The modula-

tion/multiplexing is applied to one embedding unit of S elements. The quantity

6The modulo-M modulation extended from odd-even embedding is taken as a representative of
amplitude modulation.
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W = Y
X·Z2 measures the energy efficiency of embedding, where Y is the MSE distor-

tion per element introduced by embedding, and Z is the minimum separation between

the enforced constellation points hence reflects the robustness against noise. Because

W describes the MSE embedding distortion per bit per unit squared separation dis-

tance, a smaller value is more preferable. We can see that except for very small S and

B, biorthogonal techniques has the smallest W values, while the amplitude modulo

technique gives large W values as M goes larger – it equals to 1
3

for M = 2, and

to 2
3

for M = 4. TDMA and CDMA modulation, being applicable to both Type-I

and Type-II embedding under blind detection and having a constant W value of 1
4
,

show a good balance between energy efficiency and detection complexity, therefore are

suitable for many applications. Further, TDMA or CDMA can be combined with or-

thogonal or biorthogonal modulation to enhance the embedding rate while balancing

the detection complexity.

3.5 Appendix - Derivations of Type-II Embedding

Capacity

In this appendix section, we derive the capacity under DICO channel model for Type-

II embedding. We shall consider AWGN and AWUN noises, and show the capacity

under these channels follow Eq. 3.14 and Eq. 3.16, respectively.

According to information theory [7], the channel capacity is

C = max
p(x)

I(X; Y ) (3.25)

where I(X; Y ) is the mutual information between two random variables X and Y .
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Table 3.2: Comparison of Modulation/Multiplexing Techniques

(S elements per embedding unit, B ≤ S)

Amplitude Modulo TDMA / CDMA Orthogonal Biorthogonal

Type-I embed. v v v
Type-II embed. v v

X
# embedded bits log2 M

S
B
S

log2 B
S

log2 2B
S

per element
Y

MSE distortion Q2M2

12S
E
S

E
S

E
S

per element
Z

minimum Q 2
√

E
B

√
2E

√
2E

separation

W = Y
X·Z2

M2

12 log2 M
1
4

1
2 log2 B

1
2(1+log2 B)(

≥ 1
2 log2 S

) (
≥ 1

2(1+log2 S)

)

For a channel with continuous outputs, we have

I(X; Y ) = h(Y )− h(Y |X) = h(Y )− h(X + Z|X) = h(Y )− h(Z) (3.26)

where h(·) is the differential entropy of a continuous random variable, h(·|·) is the

conditional differential entropy, and Z is additive noise that is independent of the

channel input. Consider first the case of AWGN noise N(0, σ2), whose differential

entropy is known as 1
2
log(2πeσ2). We have

I(X; Y ) = E[− log f
Y
]− 1

2
log(2πeσ2) (3.27)

where the expectation E[·] is with respect to the random variable Y whose probability
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density function (p.d.f.) f
Y

is a bimodal gaussian (?), i.e.,

f
Y
(y) = P (X = −A) · 1√

2πσ2
e−

(y+A)2

2σ2 + P (X = +A) · 1√
2πσ2

e−
(y−A)2

2σ2 (3.28)

By symmetry, the capacity is achieved by equiprobably input, i.e., P (X = −A) =

P (X = +A) = 1/2. We now have

log f
Y
(y) = −log 2− 1

2
log(2πσ2)− A2

2σ2
log e− y2

2σ2
log e + log(e−B + eB) (3.29)

where B = yA/σ2. The term log(e−B + eB) can be simplified as

log(e−B + eB) = log
e2B + 1

eB
= log e

2yA

σ2 + 1− yA

σ2
log e (3.30)

We take expectation with respect to Y on every term in − log f
Y
(y) and obtain

h(Y ) = log 2 +
1

2
log(2πσ2) +

A2

2σ2
log e +

log e

2σ2
E(Y 2)− E[log e

2AY
σ2 + 1] (3.31)

where the term E[Y A
σ2 log e] vanishes because Y has zero mean. With E(Y 2) = σ2 and

some more rearrangement, we arrive at

C
AWGN,DICO

= log 2 +
A2

σ2
log e− E[log(e

2AY
σ2 + 1)]. (3.32)

Therefore, the channel capacity in unit of bit per channel use under AWGN noise is

C
AWGN,DICO

= 1 + A2

σ2 log2 e− E[log2(e
2AY
σ2 + 1)] (3.33)

For AWUN noise between −M/2 and +M/2 (noise variance σ2 = M2/12), the

differential entropy of noise is

h(Z) =
∫ M/2

−M/2

1

M
log M dz = log M (3.34)

The shape of the output Y ’s distribution depends on the relations between M and

A. We can show that

h(Y ) =


2A
M

h(p) + log M A < M/2

h(p) + log M A ≥ M/2
(3.35)
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where p is the probability of the channel input p = P (X = −A), and h(p) is the

binary entropy defined as h(p) = −p · log p − (1 − p) · log(1− p). By noticing h(p)

assumes its maximum at p = 1/2, we have

C
AWUN,DICO

=


2A
M

A < M/2

1 A ≥ M/2
(3.36)

where the capacity is achieved by equiprobable inputs.



Chapter 4

Handling Uneven Embedding Capacity

We have pointed out in previous chapters that the design of a data hiding system

involves several conflicting requirements, such as imperceptibility, robustness / se-

curity, and capacity. Depending on the specific applications, these requirements are

given different weights and in general a tradeoff has to be made. Compared with this

widely discussed tradeoff, another challenge, the so-called uneven embedding capacity,

has received little attention in literature. It is, however, an important and unavoid-

able problem that every data hiding system has to consider. This chapter discusses

and proposes a few ways to handle uneven embedding capacity.

The unevenly distributed embedding capacity for multimedia data hiding comes

from the non-stationary nature of perceptual sources. Taking an image as an example,

we can see that some regions of an image are smooth while others are busier with edges

and textures. Changes made in smooth areas are easier to be perceived than those

in texture areas; in terms of data hiding, fewer bits can be embedded in smoother

regions, yielding unevenly distributed embedding capacity from region to region. For

the convenience of discussion, we refer to a pixel or coefficient of the media source

as embeddable if it can be modified by more than a predetermined amount without

introducing perceptible distortion, where the predetermined amount of modification

52
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is usually determined by both robustness and imperceptibility requirements. For

example, a DCT coefficient whose magnitude is smaller than a threshold may be

considered as unembeddable. The uneven distribution of embeddable coefficients from

region to region is one reflection of the uneven embedding capacity.

While it is desirable to embed as many bits as possible in each region (i.e., using

a variable embedding rate), the side information regarding how many bits are actu-

ally embedded in each region has to be conveyed to a detector in order to achieve

accurate decoding. Under blind detection where a detector does not have the original

unwatermarked copy, accurately estimating how many bits are embedded in each re-

gion is not always easy, especially when the watermarked image may experience some

distortion. An error in this estimation may not only incur errors in determining the

data embedded in the associated region but also incur synchronization errors that

affect the data extracted from the following regions. Unless the number of bits that

can be embedded in each region is large, conveying side information is quite expen-

sive and sometimes even exceeds the number of bits that can be reliably embedded.

Embedding a fixed number of bits in each region, which is popular in the literature,

eliminates the need of sending much side information. But using a constant embed-

ding rate wastes embedding capabilities in regions that are capable of hiding more

bits. In addition, the size of each region has to be large enough to accommodate the

worst case (i.e., the smoothest regions). Large region size reduces the total number

of bits that can be embedded.

We propose a comprehensive solution to handling uneven embedding capacity.

More specifically, if the total number of bits that can be embedded is much larger

than the number of bits to convey how many bits are embedded, we propose to use

a variable embedding rate and to select appropriate multiplexing technique hide the
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side information as control bits to facilitate detection without introducing too much

overhead. If the two bit numbers are comparable, we propose constant rate embedding

with two approaches handling uneven embedding capacity, namely, backup embedding

and shuffling. The backup embedding may be viewed as a special case of shuffling.

We will show via analysis and experiments that shuffling is an efficient and effective

tool to equalize uneven embedding capacity. In later chapters, we will demonstrate

how the proposed solution is applied to specific design problems. Multi-level data

hiding for video (Chapter 6) shows our adaptive choice of embedding rate in each

video frame, while shuffling is adopted both within a video frame and in image data

hiding works (Chapter 5 and 7).

We start our discussion with a quantitive model of the uneven embedding capacity

in a natural image in Section 4.1. We then discuss constant and variable rate em-

bedding in Section 4.2 and Section 4.3, respectively. Three examples from the design

of later chapters are briefly outlined in Section 4.4 to demonstrate how the proposed

approaches can be used for designing practical data hiding systems.

4.1 Quantitive Model for Uneven Embedding Ca-

pacity

To quantitively illustrate the uneven embedding capacity and to facilitate the dis-

cussion later in the paper, we consider an image of size S = M1 ×M2 is block-DCT

transformed, and each transform coefficient is labeled as “embeddable” or “unembed-

dable”. The embeddability here is determined by a human visual model. The coeffi-

cients whose magnitude is smaller than a perceptual threshold are left unchanged to
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avoid artifacts [36, 163]. For simplicity, we also leave DC coefficients unchanged be-

cause the change, unless very small, is likely to introduce blocky artifacts (especially

in smooth regions). With these perceptual considerations, a smooth block may have

no embeddable coefficients at all because all AC coefficients are small. In a typical

natural image such as the one shown in Fig. 4.1, about 20% of the 8 × 8 blocks are

smooth and have no embeddable coefficients at all. This is illustrated in Fig. 4.2.

Figure 4.1: An original unmarked 640× 432 image Alexander Hall (stored in JPEG
format with a quality factor of 75%). Watermarking and related studies are performed
on its luminance components.

More abstractly, we assume that a fraction of p among a total of S coefficients

are embeddable, thus the total number of embeddable coefficients is n = p · S. Con-

catenating coefficients in all blocks into a single string of length S, we divide it into

segments of equal length q, obtaining a total of N = S/q segments. Let mr be the

number of segments having r embeddable coefficients, where r = 0, 1, 2, ..., q. Then

{mr

N
} forms a histogram with each bin representing the fraction of segments having
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Figure 4.2: Smooth blocks of Fig. 4.1 (shown in black)

i embeddable coefficients. For the image in Fig. 4.1 and block size q = 8 × 8 = 64,

we plot the histogram of mr

N
vs. r as the dash line in Fig. 4.3. It can be seen that

about 20% of the blocks have no embeddable coefficients at all, while a small number

of blocks have as many as 25 embeddable coefficients, showing large deviation in the

distribution of embeddable coefficients.

4.2 Constant Embedding Rate (CER)

In the introduction section, we have explained the dilemma in choosing an embedding

rate under uneven embedding capacity. On one hand, using a variable embedding rate

generally requires sending side information about the embedding rate, which could

be an expensive overhead; on the other hand, using a constant embedding rate may

waste embedding capabilities. In this section, we shall focus on a constant embedding
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Figure 4.3: Histogram of embeddable coefficients per block for the luminance com-
ponents of Fig. 4.1 before and after shuffling. (dash-dot line) - histogram before
shuffling. All others are after shuffling: (solid line) - mean of simulation; (dot lines)
- std of simulation; (circle) - mean from analytic study; (cross) - std from analytic
study.

rate and explore approaches that can improve the value of the constant embedding

rate.

The simplest case of constant embedding rate is to embed one bit in each segment

or block by either Type-I or Type-II mechanisms discussed in Chapter 3. Taking

an image as an example, the blocks are normally obtained by a regular partition on

an image, which retains the original geometric layout of the image. As illustrated

earlier in Fig. 4.3, unless the block size is large, blocks in a smooth area may have

no embeddable coefficients at all. Under a constant embedding rate, a large block

size reduces the total number of bits we can embed and wastes a large amount of

embedding capability. Hence approaches that can embed more data via a smaller

block size are more desirable. In the following, we will discuss two ways to achieve
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this, namely, backup embedding and shuffling.

4.2.1 Backup Embedding

The idea of backup embedding is to embed the same data in multiple locations. The

locations are identified deterministically by a rule known to both the embedder and

the detector. Illustrated in Fig. 4.4 is a special case where we not only embed one

bit in (i, j) block, but also put a backup copy in (i, j + H
2
) block that is half way

apart, where H is the number of blocks along the vertical direction. We shall call this

symmetric backup. Assuming a block consists of q components and the number of

locations holding the same information is L, the equivalent block size for embedding

one bit is Lq, implying that an increase in L will reduce the total number of bits being

embedded. The difference between backup embedding with L locations and simply

increasing the block size by L times is that the former one is more likely to allow

most bits being embedded. This is because if the multiple locations are sufficiently

further apart from each other, the probability of each location being smooth tends to

be independent of each other, therefore the probability that all of them are smooth is

greatly reduced, enabling to hide more data than the approach that simply enlarges

the block size 1. With a proper choice of the location patterns, the independence

condition is more likely to hold. The shuffling approach discussed next can be viewed

as a generalization of backup embedding where each block is reduced to contain only

one coefficient and the multiple locations are specified by a permutation function.

1Similar ideas to backup embedding has been used in data hiding systems that use the embedded
data to recover corrupted regions [41, 88].
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Figure 4.4: Symmetric backup embedding for handling smooth region. One bit is em-
bedded in a block and its companion block half image apart. The effective embedding
rate is two bits per 16× 16 macroblock which involves four blocks.

4.2.2 Equalizing Embedding Capacity Via Shuffling

The effectiveness of simple backup embedding like the symmetric backup shown in

Fig. 4.4 may still be dependent on the structure of the host image. For example, an

entire column or row of an image may be smooth and therefore data cannot be hidden

in that column or row. To achieve statistical independency with respect to the image

structure, we consider shuffling the coefficients, where the shuffle can be viewed as a

bijective mapping of the coefficient indexes f : {1, 2, ..., S} → {1, 2, ..., S}, where S is

the total number of image coefficients. As illustrated in Fig. 4.5, an original sequence

of coefficients is shuffled to obtain the second sequence. After the embedding process is

performed in the shuffled domain, the coefficients are inversely shuffled, which results

in the fourth sequence. The same shuffling needs to be performed at detection.

Shuffling can be considered as a general permutation covering the following cases:
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embed "1" embed "0" embed "0"

...

... ...

...

172 180 201 193 ... 130 25 128 ...-73 144 ...

block 1 block 2 block 3

...

...

Shuffling

Inverse
Shuffling

Embedding

171 180 201 192 ... 130 24 128 ...-74 144 ...

-74

Figure 4.5: Incorporate shuffling with an embedding mechanism

(1) random permutation, whose effectiveness can be studied analytically and is inde-

pendent of the specific distribution of embeddable elements; the permutation can be

performed among all elements (complete random permutation) or among elements in

the same frequency band (in-band random permutation), (2) non-random interleav-

ing or pairing, for example, to embed the i-th bit of a total of B bits to {kB + i}-th

coefficients, where k is a positive integer. We will present our analysis for the case

of complete random permutation, where all permutations are equiprobable hence

the probability of each permutation is 1/S!. The focus is on the distribution of

embeddable coefficients after a random permutation is performed on all block-DCT

coefficients.
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Analysis

As defined earlier, mr

N
is the fraction of segments having r embeddable coefficients.

Because computing the marginal distribution of P (mr) from the joint probability

distribution of the histogram {m0, m1, ...,m S
N
}may experience high complexity unless

q = S
N

is very small, we adopt moment approach [3] to study the mean and variance

of each normalized bin mr

N
of the histogram. For each bin mr with r = 0, ..., q, we

have obtained

E
[
mr

N

]
=

(
q
r

)(
S−q
n−r

)
(

S
n

) (4.1)

V ar
[
mr

N

]
=

1

N
·

(
q
r

)(
S−q
n−r

)
(

S
n

) +
(
1− 1

N

) (q
r

)(
q
r

)(
S−2q
n−2r

)
(

S
n

) −


(

q
r

)(
S−q
n−r

)
(

S
n

)
2

(4.2)

The detailed derivation and further analysis of these two quantities can be found

in Appendix 4.7. It can be seen that the distribution of embeddable coefficients

per segments after shuffling depends only on the global parameters p (percentage

of embeddable coefficients) and q (segment size taken after shuffling), and does not

depend on the detailed distribution before shuffling. Other variations besides random

shuffling may also be adopted, such as performing shuffling/ interleaving on smaller

groups, with a tradeoff between the effectiveness of equalization and such cost as

memory usage and delay.

Simulation and Verification

We use the Alexander Hall image in Fig. 4.1 as an example to illustrate the effec-

tiveness of shuffling. Among a total of S = 640 × 432 coefficients, p = 15.49% of all

coefficients are embeddable. The block size of q = 8 × 8 = 64 is used for the cases
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both with and without shuffling. By Eq. 4.1 and Eq. 4.2:

E
[
m0

N

]
≈ 0.002%, V ar

[
m0

N

]
≈ 4.85× 10−9

which indicates that the average fraction of segments with no embeddable coefficients

is reduced by 4 orders of magnitude, from the original 20% to 0.002%. The expected

number of blocks with no embeddable coefficient after shuffling is only 0.002%×N =

0.002%× 640× 432/64 ≈ 0.086. The very small value of V ar
[

m0

N

]
suggests that very

few shuffles among the S! possibilities will cause the histogram significantly deviate

from the mean.

To verify the analysis, we perform 1000 times of random permutation on the

image shown in Fig. 4.1, then compute the mean and variance of each bin of the

histogram {mr

N
}. The dashed line of Fig. 4.3 is the histogram of {mr

N
} before the

shuffling, showing that 20% of the blocks have no embeddable coefficients. The solid

line of Fig. 4.3 is the average fraction of blocks having a given number of embeddable

coefficients together, and the dotted line shows one standard deviation away from

the average. The simulation shows that after shuffling, most blocks have between 5

and 15 embeddable coefficients, and the number of blocks which have no embeddable

coefficients has been significantly reduced. The figure also shows that the result of

theoretical analysis and that of 1000-time simulation match each other very well. As

discussed as appendix in Section 4.7, the averaged histogram {E
(

mi

N

)
} is an arch-

shaped hypergeometric distribution function and can be approximated by binomial,

Poisson, and normal distributions with mean pq. Notice that q does not have to be

the same block size as that of the transform (8 × 8). It should be chosen to get

the desired mean, pq, of the histogram {E
(

mi

N

)
}, and to ensure the left tail of the

histogram is smaller than a desired bound. For images that contain a large fraction

of embeddable coefficients (i.e., large p), the segment size can be chosen to be small;
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while for images in which most regions are smooth, the segment size should be large

enough to ensure enough decay at the left tail.

Since shuffling significantly reduces the segments which have no embeddable co-

efficient at all, we can embed one bit in each shuffled segment. This enables us to

embed the bits which are intended to but are not able to be inserted in smooth re-

gions without shuffling. The capability achieved by shuffling to embed in smooth

region is in a logical sense. No bits are actually inserted into the smooth regions

since this is forbidden by the invisibility constraint. Embeddable coefficients from

complex regions are dynamically allocated to hold the data which are intended to be

put in smooth regions yet without the need of sending much side information. This

also indicates that as long as the criterion for identifying embeddable coefficients is

unchanged, adding shuffling step will not compromise the perceptual quality.

The equalization of embedding capacity via shuffling requires little additional side

information. The embedding and extraction processes need only agree on the segment

size and the shuffle table that can be generated from a key. This side information

also enhances security because the detection of the embedded data requires the knowl-

edge of the shuffle table or the key for generating the table. Using shuffling to add

uncertainty is a common practice in cryptographic and security systems.

4.2.3 Practical Considerations

In this section, we discuss a few practical considerations associated with shuffling.

Generating Shuffle Table A shuffling table can be generated from a key and

the generation is with linear complexity proportional to the number of entries. An

algorithm of this kind is discussed as appendix in Section 4.6.
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Handling Bad Shuffle While our analysis shows that the statistical effectiveness

of random shuffling assures very small probability for getting a bad random shuffle, it

is still possible that a particular shuffle is unable to efficiently equalize the embedding

capacity for a specific image. The problem of bad shuffles can be handled by the two

approaches.

The first approach addresses the problem that a specific instance of random shuf-

fle could be good for most images and bad for some images. Notice that an image-

independent shuffle is desirable for marking many images without the need of con-

veying much additional side information of the shuffling. We propose to generate

a set of candidate shuffles which are significantly different from each others, then

select and use the best shuffle when hiding data in a given image. The probability

that all shuffles are bad for the image shall decrease exponentially from the already

low probability in the single shuffle case. In practice, we may select two shuffles, a

primary one and a secondary one. We use the primary one most of the time, and

only switch to use the secondary one when the primary one is not suitable for a given

image. An important issue is how to let a detector know what shuffle is used for each

image. This is the additional side information to be conveyed to a detector. Because

of some similarities between this and the side information in variable rate embedding,

we postpone the discussion till Section 4.3.

The second approach targets at the case that even for good shuffles, there could

still be some blocks with no flippable pixel. The bits to be embedded in those blocks

can be treated by a detector as erasure bits. These erasure bits can be handled by

encoding the data via error correction coding [8] before embedding them in an image.

Because the number of blocks with no flippable pixel is very small (hence the small

number of erasure bits), a little error correction capability would be sufficient, while
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it has to be much larger if without shuffling.

Adaptive Block Size The block size q gives a measure of how many bits will be

embedded in an image and is determined by p, the percentage of embeddable pixels: if

p is small, the block size has to be large to ensure enough flippable pixels are included

in each shuffled block. Because the percentage of flippable pixels can be quite different

from image to image, it is desirable to choose the block size adaptively according to

the content and the type of each image. Similar to the handling of bad shuffles, a

key problem for using adaptive block size is how to convey such side information to

a detector. We will discuss this in Section 4.3.

4.2.4 Discussion

We would like to comment on a few issues related to shuffling. First, we mentioned

earlier that uneven embedding capacity occurs when multiple bits are embedded in

non-overlapped segments in the sample domain of a perceptual source. As discussed

in Section 3.4, this kind of insertion of secondary data is analogous to TDMA in

communication: multimedia source is partitioned into segments (spatially for image,

temporally for audio, etc) and one or more bits are embedded in each segment. An

alternative way is to embed multiple bits using the CDMA approach, possibly com-

bined with spread spectrum embedding. For example, we can insert into multimedia

source two or more random sequences with same support, each of which is modu-

lated by one bit from the secondary data. CDMA-type modulation requires that

both the embedder and the detector keep copies of all random sequences and that the

sequences are orthogonal or approximately orthogonal to each others. On the con-

trary, the orthogonality is much easily fulfilled by TDMA-type modulation with little

side information. The simplicity in implementation contributes to the wide adoption
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of TDMA-type modulation, especially for the high rate embedding via the Type-II

mechanisms discussed in Chapter 3. The shuffling approach proposed in this chapter

serves as a tool to equalize the uneven embedding capacity problem that is generally

suffered by TDMA-type modulation. In addition, TDMA-type modulation is more

suitable than CDMA for hiding data in sequential sources like audio and video.

Second, shuffling may increase the sensitivity against intentional attacks that tar-

get at rendering watermark undetectable. For example, a quite different sequence may

be obtained after shuffling if the image is shifted, rotated, or scaled, which implies the

bit error rate can be very high at detection. While this is a potential shortcoming for

some applications, it is not a real concern for applications in which users can benefit

from the hidden data and/or are not willing to make the hidden data undetectable,

such as using watermark to detect tampering or to convey bilingual audio tracks.

Furthermore, the robustness against sample dropping, warping, scaling, and other

distortion/ attack is a major challenge for robust data hiding [61, 62, 169], regardless

of whether the shuffling is performed or not.

4.3 Variable Embedding Rate (VER)

In this section, we explore issues associated with variable embedding rate. Compared

with CER, VER may enable embedding more data by better utilizing the embedding

capability. However, the side information regarding how many bits are embedded in

each segment must be conveyed. This indicates that the gain of VER over CER is

significant under the following two conditions: (1) the total number of bits that can

be hidden should exceed the amount of side information for almost all segments – this

ensures there is sufficient room to convey side information; (2) the average overhead
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for side information is relatively small compared with the average embedding capacity

per segment. A key issue is how to tell a detector the number of bits being embedded

in each segment. More generally, we would like to explore mechanisms to convey

additional side information to a detector so as to facilitate the extractions of the

embedded data payload. The side information could be the number of bits being

embedded in each segment, or could be an index signaling which shuffle and/or what

segment size is used in the constant-rate embedding discussed in Section 4.2.3. The

latter scenario also indicates a connection between CER and VER: while for a set

of segments such as all the blocks of an image, we may use CER for each segment,

the parameter settings like the segment size could vary for different sets of segments

(e.g., different images) due to the fact that the embedding capacity of different sets

of segments may vary significantly. On the set level, it is more suitable to apply VER

rather than CER because the two conditions described above are likely to hold.

4.3.1 Conveying Additional Side Information

The additional side information can be conveyed using either the same embedding

mechanism as that for the user payload or different embedding mechanisms. In both

cases, the side information consumes part of the energy by which the host image can

be changed imperceptibly. The difference lies only on the specific way to achieve

orthogonality, similar to the discussion of TDMA and CDMA multiplexing in Sec-

tion 3.4.

Considering first the embedding of side information via the same embeddding

mechanism as that for the user payload, we choose a strategy similar to the training

sequence in classic communication. That is, part of the embedded data (such as the
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first several bits) are pre-determined and/or be designed to be self-verifiable. The self-

verifiability can be obtained by hash function (message digest function), or certain

error detection/correction codes. For example, in order to let a detector know which

shuffle is used for each image, one may choose the first 15 bits of hidden data to be a

predetermined label, or a label plus its hash. The detector tries to decode the hidden

data using all candidate shuffles. The shuffle that accurately decodes the first 15 bits

is identified as the one used by the embedder. When we decode the embedded data

using a shuffle table that is significantly different from the one used by the embedder,

the decoded bits are approximately independent of each other and equiprobable to be

“1” or “0”. The probability of matching the pre-determined pattern or passing the

verification test decreases exponentially with the number of bits used for identifying

which shuffle is used. Similarly, to let decoder know what block size is used by the

embedding process, we can select a finite number of candidate block sizes, and choose

a suitable one to embed data. Again, part of the embedded data is per-determined

or self-verifiable. A detector will try out candidate block sizes and find the one that

successfully passes the verification. To limit the searching complexity, we may have

one primary block size which is suitable for a large number of images, and a couple

of secondary sizes that are larger or smaller than the primary one and are used for

handling special images.

For grayscale/color images and videos, it is possible to find some other domains

or mechanisms to hide the additional side information. These mechanisms are often

orthogonal to that for embedding the user payload to avoid interference. The popular

spread spectrum additive embedding is one feasible approach for this purpose because

their statistical properties make it easy to generate additional “watermarks” orthogo-

nal or approximately orthogonal to the watermarks for the user payload. In addition,
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spread spectrum embedding has been proven to be robust to a number of distortions.

The robustness is necessary since the accuracy in determining such information as

how many bits are embedded and what shuffle is used is crucial for correctly extract-

ing the user payload. The watermarks for conveying side information share part of

the total energy that can be allocated to all embedded data while preserving percep-

tual quality. Allocating more energy to the side information gives higher robustness

in extracting them but reduces the amount of user payload. It is desirable to both

limit the amount of side information and use energy efficient modulation techniques

to embed multiple bits of side information. Several commonly used energy-efficient

modulation techniques such as orthogonal and biorthogonal modulation have been

discussed and compared in Sec. 3.4.

4.4 Outline of Examples

Several design examples in the following chapters will be used to explain how the

approaches described in the previous sections are used in designing practical water-

marking algorithms. Experimental results are reported to demonstrate the effective-

ness of our proposed approaches. More specifically, the data hiding in binary images

( Chapter 5 ) and the watermark-based authentication for grayscale/color images (

Chapter 7 ) show the effectiveness of shuffling in equalizing uneven embedding ca-

pacity from region to region. The multi-level data hiding in video ( Chapter 6 )

is a prototype design incorporating almost all solutions we discussed in Part-I. It

adopts CER within a video frame and uses VER from frame to frame with adaptive

embedding rate.
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4.5 Chapter Summary

In summary, this chapter addresses the problem of unevenly distributed embedding

capacity and proposes a set of feasible solutions. Depending on the overhead relative

to the total embedding capacity, we choose between a constant embedding rate and

a variable embedding rate. For a constant embedding rate, shuffling is proposed

to dynamically equalize the distribution of embeddable coefficients, allowing for the

hiding of more data. We demonstrated, via analysis and experiments, that shuffling

is effective and is applicable to many data hiding schemes and applications. For

variable embedding rate, we discussed how to convey the additional side information

to a detector to ensure the correct detection of the embedded user payload. Three

design examples and experimental results will be presented in the following chapters

to illustrate the handling of uneven embedding capacity in practical data hiding

systems.

4.6 Appendix - Generating Shuffling Table From

A Key

The generation of shuffling table relies on random number generator. The secu-

rity strength of the generator determines that of the shuffling table. For efficient

implementation, we adopt pseudo random number generator with key(s) or seed(s)

determining its output sequence. A simple way of generating an N-entry shuffling ta-

ble is to sort N random numbers and to use the sorting index to construct the table.

This approach is used by Mathworks for its Matlab function “randperm” [24]. More

specifically, let {rk} denote the sequence of N random numbers (k = 1 ∼ N), and
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{r′k} denote the sorted sequence with r′k = rik and r′k1
≤ r′k2

for any k1, k2 ∈ {1, ..., N}

such that k1 < k2. The mapping T of the shuffling table is then obtained as T (k) = ik.

Since the best sorting we can get has the complexity of O(N log N), the complexity

of this algorithm for generating the shuffling table is O(N log N).

A better algorithm quantizes the random number with monotonically increasing

step sizes and makes use of carefully selected data structure, reducing the complexity

to O(N). The basic idea is as follows: we start with a set S1 = {1, ..., N}, and

generate one random number per step. At the kth step, we uniformly partition the

output range of random number generator into N − k + 1 non-overlapped segments;

if the random number generated at this step falls in the jth
k segment, we pick the jth

k

element in the set Sk, fill the value in the kth entry of shuffling table, and cross out

the element from the set, denoting the new set of N−k element as Sk−1. We continue

the process until the shuffling table is fully filled. To achieve linear complexity and

to allow in-place storage (i.e., no additional storage is needed for every new Sk), we

implement the set Sk based on hashing and swapping the elements in an array. The

detailed algorithm is summarized below:

(1) Initialization. Set up two N -element array T [i] and s[i] (i = 1 ∼ N) for storing

shuffling table and for keeping the above mentioned set Sk, respectively. Let

s[i] = i and the step index k = 1.

(2) Generate a random number rk, and denote jk as the index of the segment that

it falls in. More specifically, if the range of the random number is [L, U), then

jk =
⌊
rk − L

U − L
× (N − k + 1)

⌋
+ 1.

(3) T [k] = s[jk], then swap the content of s[N − k + 1] and s[jk].



CHAPTER 4. HANDLING UNEVEN EMBEDDING CAPACITY 72

(4) k = k + 1. If k ≥ N , let T [N ] = s[1], then stop; otherwise, go back to (2).

Notice that after the above process, T [k] = s[N−k+1], implying that s[·] contains

an inversely ordered version of T [·] hence even the array T [·] is not needed. The

following example further illustrates the algorithm, assuming the output of random

number generator is within [0, 1) and N = 10.

s[·] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

r1 = 0.46 → j1 = 5 → s[·] = [1, 2, 3, 4, 10, 6, 7, 8, 9, 5], T [1] = 5

r2 = 0.70 → j2 = 7 → s[·] = [1, 2, 3, 4, 10, 6, 9, 8, 7, 5], T [2] = 7

r3 = 0.51 → j3 = 5 → s[·] = [1, 2, 3, 4, 8, 6, 7, 10, 7, 5], T [3] = 10

... ...

4.7 Appendix - Analysis of Shuffling

The detailed analytic study of shuffling introduced in Section 4.2.2 is presented as

follows. For the simplicity of discussion, we formulated the problem of analyzing

the distribution of embeddable coefficients after shuffling in terms of a ball game

illustrated in Fig. 4.6. Consider we have a total of S balls, and a fraction p of them

or a total of n = pS balls are blue which represent the embeddable coefficients in our

data hiding problem. The balls are to be placed in S holes randomly with one ball for

each hole. Further, every q holes are grouped together to form a cluster, and the total

number of clusters is N = S/q. It is important to note that S is a very large number

and q << S. For simplicity, we assume n and N are integers. We are interested in

studying mr/N , the percentage of clusters each of which has exactly r blue balls, for

r = 0, ..., q. Since the blue balls are the center of focus, we can view the game as
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putting all blue balls in a bag, then take out one ball at a time and randomly throw

it to the unfilled holes. The ball has equal probability falling in each unfilled holes.

The game continues until all blue balls are thrown.

WM @ PV 12/00

Electrical Engineering Dept.
Princeton University

11

Analysis of ShufflingAnalysis of Shuffling

– Mean follows hypergeometric distribution
! fig:shuff_game

changeable pixel/coeff.

unchangeable pixel/coeff. S balls in total
n = pS blue balls

. . .
q balls N = S/q blocks

pick w/o replacement

m r ~ # of blocks each having r blue balls out of q balls

Figure 4.6: Illustration of random shuffling in terms of a ball game.

4.7.1 Joint Probability of Histogram

Traditionally, we start with the joint probability of the histogram {m0, m1, ...,mq},

which can be found as

P ([m0, ...mq] = [y0, ..., yq]) =

[(
q
0

)]y0

...
[(

q
q

)]yq × N !
y0!...yq !(

S
n

) (4.3)

The denominator
(

S
n

)
is the number of ways to throw n balls into S holes, while the

numerator indicates how many of them result in the same histogram of [y0, ..., yq].

While it is possible to sum up the distribution of histogram under the constraints
∑

k yk = N∑
k k · yk = n

(4.4)
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to get the marginal distribution of each bin P (mr), the computation may involve high

complexity unless q is very small. For this reason, we adopt the moment approach [3]

suggested by Kolchin et al. to study the mean and variance of each normalized bin

of the histogram {mr/N} 2.

4.7.2 Mean and Variance of Each Bin

Considering the bin of mr where r is an integer between 0 and q, we perform the

following decomposition

mr = θr,1 + θr,2 + ... + θr,N (4.5)

where θr,i is an indicator function defined as

θr,i =


1 if ith cluster has r balls

0 otherwise
(4.6)

Computing the mean of θr,i is equivalent to getting the probability that the ith cluster

has r balls, i.e.,

E[θr,i] = P [θr,i = 1] (4.7)

=

(
q
r

)(
S−q
n−r

)
(

S
n

) (4.8)

Since the mean of θi is independent of i, we have

E
[
mr

N

]
= E

[∑N
i=1 θr,i

N

]
= E(θr,1) =

(
q
r

)(
S−q
n−r

)
(

S
n

) (4.9)

This quantity indicates the average portion of clusters each having exactly r balls.

The variance is obtained by observing the following relationship:

θr,i
2 = θr,i (4.10)

2Interested readers may refer to [3] for the analysis strategies and results of several related random
allocation problems with simpler conditions.
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from which we obtain

mr
2 =

N∑
k=1

θr,k
2 +

∑
i6=j

θr,iθr,j =
N∑

k=1

θr,k +
∑
i6=j

θr,iθr,j = mr +
∑
i6=j

θr,iθr,j (4.11)

For i 6= j,

E[θr,iθr,j] = P (θr,i = θr,j = 1) (4.12)

=

(
q
r

)(
q
r

)(
S−2q
n−2r

)
(

S
n

) (4.13)

indicating that the expected value of θr,iθr,j is the probability that two different clus-

ters, the ith and the jth, each has r blue balls. Since this probability is independent

of i and j, we have

E[mr
2] = E[mr] + E[

∑
i6=j

θr,iθr,j] = E[mr] + N(N − 1)E[θr,1θr,2] (4.14)

Therefore,

V ar
[
mr

N

]
=

1

N2
E[mr

2]−
[
E
(

mr

N

)]2
(4.15)

=
1

N
E
[
mr

N

]
+
(
1− 1

N

)
E[θr,1θr,2]−

[
E
(

mr

N

)]2
(4.16)

=
1

N
·

(
q
r

)(
S−q
n−r

)
(

S
n

) +
(
1− 1

N

) (q
r

)(
q
r

)(
S−2q
n−2r

)
(

S
n

) −


(

q
r

)(
S−q
n−r

)
(

S
n

)
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(4.17)

In summary, the mean and variance of the rth bin is

E
[

mr

N

]
=

(q
r)(

S−q
n−r)

(S
n)

V ar
[
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N

]
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N
· (q

r)(
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n−r)
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n)

+
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1− 1

N

) (q
r)(
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r)(

S−2q
n−2r)

(S
n)

−
[
(q

r)(
S−q
n−r)

(S
n)

]2 (4.18)

We have presented the simulation result in the main text (Fig. 4.3), showing that the

analytic study and the simulation on the mean and variance match very well.
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4.7.3 More About E[mr

N ] - A Hypergeometric Distribution

The relation of E[mr

N
] with respect to r, which in our data hiding problem describes

the spread of embeddable coefficients after shuffling, is what we are mostly interested

in. We noted that the distribution P [θr,i = 1] (in Eq. 4.7) which the mean is equal to

is known as a hypergeometric distribution [1]. Given a population of S balls with n

of them are blue, a hypergeometric distribution H(r; S, n, q) describes the probability

of getting r blue balls among a sampling of q balls, where the sampling is performed

without replacement. Denoting a random variable following this distribution as Y ,

we have seen that its probability mass function takes the form of

P (Y = r) = H(r; S, n, q) =

(
q
r

)(
S−q
n−r

)
(

S
n

) (4.19)

for r = 0, ..., min(q, n). In our problem, r takes values from 0 to q as q << n. Noticing

the following relationship

q∑
r=0

(
q

r

)(
S − q

n− r

)
=

(
S

n

)
(4.20)

from
∑q

r=0 P (Y = r) = 1, we compute the mean of Y

E[Y ] =
1(
S
n

) q∑
r=1

r ·
(
q

r

)(
S − q

n− r

)
= q ·

(
S−1
n−1

)
(

S
n

) = p · q (4.21)

where p is the portion of blue balls in the population and p = n/S. Similarly, we

obtain the second moment of Y

E[Y 2] =
1(
S
n

) q∑
r=1

r2 ·
(
q

r

)(
S − q

n− r

)
(4.22)

=
1(
S
n

) [ q∑
r=2

r(r − 1) ·
(
q

r

)(
S − q

n− r

)
+

q∑
r=1

r ·
(
q

r

)(
S − q

n− r

)]
(4.23)

= q(q − 1) ·

(
S−2
n−2

)
(

S
n

) + E[Y ] (4.24)
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= p · q ·
[
(n− 1)(q − 1)

S − 1
+ 1

]
(4.25)

from which the variance of Y can be computed

V ar[Y ] = E[Y 2]− (E[Y ])2 = p · q · (S − q)(1− p)

S − 1
(4.26)

To study the relations of H(r; S, n, q) with respect to r, we simplify the notation

as Hr and study the ratio

Hr

Hr−1

=

(
q
r

)(
S−q
n−r

)
(

q
r−1

)(
S−q

n−r+1

) (4.27)

=
(q − r + 1) · (n− r + 1)

r · (S − q − n + r)
(4.28)

= 1 +
(q + 1)(n + 1)− r(S + 2)

r(S − q − n + r)
(4.29)

Defining r0 as

r0 =
(q + 1)(n + 1)

(S + 2)
= p · q + p +

(q + 1)(1− 2p)

S + 2
(4.30)

we have 
Hr > Hr−1 if r < r0

Hr < Hr−1 if r > r0

Hr = Hr−1 if r0 ∈ Z and r = r0

(4.31)

This indicates that with r varying from 0 to q, Hr first monotonically increases then

monotonically decreases, achieving its maximum value at r = br0c except that if

r0 is an integer, the maximum values is achieved at both r0 and (r0 − 1). Such a

relation has been confirmed by a numerical evaluation of Hr shown in Fig. 4.3 and

Fig. 4.7 with the parameter setting taken from the image in Fig. 4.7. In this case,

S = 640× 432, q = 64, p = 15.49%, so r0 = 10.0687, implying Hr reaches maximum

at r = 10. This is the same as what we have observed in the numerical evaluation.
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Figure 4.7: Various approximations to the hypergeometric distribution. Experiments
are performed on the Alexander Hall image (Fig. 4.1).

4.7.4 Approximations for Hypergeometric Distribution

In [1], Feller pointed out the close relations among the hypergeometric distribution,

the binomial distribution, the Poisson distribution, and the normal (gaussian) dis-

tribution. Their probability mass functions or probability density function (for the

normal distribution) are summarized as follows:

hypergeometric H(r; S, n, q) =
(q

r)(
S−q
n−r)

(S
n)

binomial b(r; q, p) =
(

q
r

)
pr(1− p)q−r

Poisson P (r; λ) = λr

r!
e−λ

normal f(x) = 1√
2πσ2

· e−
(x−µ)2

2σ2

(4.32)
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More specifically, as the population S goes to infinity, H(r; S, n, q) is approximated

by a binomial distribution b(r; q, p), as long as q is much smaller than S so that

limS→∞
q
S

= 0. This approximation is shown as follows:

H(r; S, n, q) =

(
q
r

)(
S−q
n−r

)
(

S
n

) (4.33)

=

(
q

r

)
r−1∏
j=0

(
n− j

S − j

)q−r−1∏
k=0

(
S − n− k

S − r − k

)
(4.34)

=

(
q

r

)
r−1∏
j=0

(
n
S
− j

S

1− j
S

)q−r−1∏
k=0

(
1− n

S
− k

S

1− r+k
S

)
(4.35)

≈
(
q

r

)
pr(1− p)q−r (4.36)

= b(r; q, p) (4.37)

Intuitively, this means that when taking a small number of samples from a large popu-

lation, the statistical outcomes of sampling without replacement is approximately the

same as that with replacement (or equivalently, from an infinite population). Since

the above-mentioned conditions hold in our data hiding problem, we have obtained a

very good binomial approximation to E[mr/N ], as shown in Fig. 4.7.

Because the behavior of binomial distribution is well studied [1], the binomial

approximation enables our making use of many existing results to understand the

behavior of random shuffling. For large q and small p, a binomial distribution b(r; q, p)

can be approximated by a Poisson distribution with mean λ = p · q. A binomial

distribution can also be approximated by a normal distribution (with mean p · q and

variance p(1− p)q) for large q and small r. While the q in our data hiding problem is

generally not very large, the Poisson approximation and the gaussian approximation

are still pretty good numerically. Fig. 4.7 shows the hypergeometric distribution

with the parameters taken according to the Alexander Hall image (Fig. 4.1) and the

corresponding binomial, Poisson, and normal approximations. In addition, the tail of
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a binomial distribution is known to be bounded by

∑r
k=0 b(k; q, p) ≤ p(q−r)

(pq−r)2
if r < pq

∑∞
k=r b(k; q, p) ≤ r(1−p)

(r−pq)2
if r > pq

(4.38)

4.7.5 More About V ar[mr

N ]

The joint probability P (θr,i = θr,j = 1) which is an important term for computing the

variance can also be approximated by sampling with replacement (or equivalently,

from an infinitely large population). That is,

P (θr,i = θr,j = 1) ≈ [b(r; q, p)]2 =

[(
q

r

)
pr(1− p)q−r

]2

(4.39)

Therefore,

V ar[
mr

N
] ≈ 1

N
b(r; q, p) +

(
1− 1

N

)
[b(r; q, p)]2 − [b(r; q, p)]2 (4.40)

=
1

N
· b(r; q, p) · [1− b(r; q, p)] (4.41)

This approximation takes the form of f(x) = C · x(1 − x) with x being replaced by

b(r; q, p) and C is a constant. The function f(x) describes an arch shaped curve in

an x-y Cartesian coordinate with the maximal value sits at x = 1/2. Because the

binomial distribution b(r; q, p) has small values over its support except for very small

q, b(r; q, p) is generally smaller than 1/2 for all r. Therefore, V ar[mr

N
] is monotonically

increasing with b(r; q, p) for all practical cases. This implies that the trend of V ar[mr

N
]

with respect to r is the same as that of b(r; q, p) which has an arch shape with the

maximum value around pq. Our numerical evaluation shown in Fig. 4.8 confirms

this analysis. Note that special care should be taken in the numerical evaluation

of V ar[mr

N
] because it involves taking the difference between two comparable terms

(Eq. 4.18).
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Figure 4.8: Comparison of analytic, approximated, and simulated variance of the
histogram of the embeddable coefficients after shuffling. Experiments are performed
on the Alexander Hall image (Fig. 4.1).
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Chapter 5

Data Hiding in Binary Images

5.1 Introduction and prior art

An increasingly large number of digital binary images have been used in everyday

life. Handwritten signatures captured by electronic signing pads are digitally stored

and are being used as the records for credit card payment by many department stores

in the U.S. and for parcel delivery by major courier services such as the United

Parcel Service (UPS). Word processing software like Microsoft Word allows a user to

store his/her signature in a binary image file for inclusion at specified locations of a

document. The documents signed in such a way can be sent directly to a fax machine

or be distributed across a network. The unauthorized use of a signature, such as

copying it onto an unauthorized payment, is becoming a big concern. In addition, a

variety of important documents, such as social security records, insurance information,

and financial documents, have also been digitized and stored. Because it is easy to

copy and edit digital images via software tools, the annotation and authentication

of binary images as well as the detection of tampering are very important. This

chapter discusses data hiding techniques for these purposes as an alternative to or in

conjunction with the cryptographic authentication approach. While we expect the

83
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embedded data to have some robustness against minor distortion and preferably to

withstand printing and scanning, the robustness of embedded data against intentional

removal or other obliteration is not a primary concern because there is little incentive

to do so in the targeted applications of annotation and authentication.

Most prior works on image data hiding are for color or grayscale images in which

the pixels may take on a wide range of values. For those images, changing pixel

values by a small amount is generally unnoticeable under normal viewing conditions.

This property of human visual system plays a key role in watermarking of perceptual

media data [44, 46]. For images in which the pixels take on only a limited number

of values, hiding data without causing visible artifacts becomes more difficult. In

particular, flipping white or black pixels that are not on the boundary is likely to

introduce visible artifacts in binary images. Before we present our solutions to the

challenging issues of hiding data in binary images, we shall give a brief review of the

prior art.

Several methods for hiding data in specific types of binary images have been

proposed in literature. Matsui et al [106] embedded information in dithered images

by manipulating the dithering patterns and in fax images by manipulating the run-

lengths. Maxemchuk et al [108] changed line spacing and character spacing to embed

information in textual images for bulk electronic publications. These approaches

cannot be easily extended to other binary images and the amount of data that can be

hidden is limited. In [107], Koch and Zhao proposed a data hiding algorithm which

enforces the ratio of black vs. white pixels in a block to be larger or smaller than

1. Although the algorithm aims at robustly hiding information in binary image, it is

not robust enough to tolerate many distortions/attacks, neither is it secure enough

to be directly applied for authentication or other fragile use. Only a limited number
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of bits can be embedded because the particular enforcing approach has difficulty in

dealing with blocks that have low or high percentage of black pixels. In spite of

these weaknesses, their idea of enforcing properties of a group of pixels via the local

manipulation of a small number of pixels can be extended as a general framework

of data embedding. Another approach of marking a binary document is proposed

in [110] by treating a binary image as a grayscale one and by manipulating the

luminance of dark pixels slightly so that the change is imperceptible to human eyes

yet detectable by scanners. This approach, targeted on intelligent copier systems, is

not applicable to bi-level images hence is beyond the scope of this paper. The bi-level

constraint also limits the extension of many approaches proposed for grayscale or color

images to binary images. For example, applying the spread spectrum embedding, a

transform-domain additive approach proposed by Cox et al [44], to binary image could

not only cause annoying noise on the black-white boundaries, but also have reduced

robustness hence limited embedding capacity due to the post-embedding binarization

that ensures the marked image is still a bi-level one [109]. For these Type-I additive

embeddings, hiding a large amount of data and detecting without the original binary

image is particularly difficult. In summary, these previously proposed approaches

either cannot be easily extended to other binary images, or can only embed a small

amount of data.

We propose a new approach that can hide a moderate amount of data in general

binary images, including scanned text, figures, and signatures. The hidden data can

be extracted without using the original unmarked image, and can also be extracted

after high quality printing and scanning with the help of a few registration marks.

The approach can be used to verify whether a binary document has been tampered

with or not, and to hide annotation labels or other side information.
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We shall discuss three key issues of hiding data in binary image in Section 5.2,

along with our proposed solutions. In Section 5.3, we demonstrate three applica-

tions and the experimental results of the proposed data hiding approach. A variety

of discussions are given in Section 5.4, including robustness analysis and security

considerations. Issues such as recovering hidden data from high quality printing-and-

scanning is also addressed.

5.2 Proposed Scheme

There are two basic ways to manipulate binary images for the purpose of data hiding,

namely, by changing the values of individual pixels and by changing a group of pixels.

The first approach flips a black pixel to white or vice versa. The second approach

modifies such features as the thickness of strokes, curvature, and relative positions,

which generally depends more on the types of images (e.g., text, sketches, signatures,

etc.). Since the number of parameters that can be changed by the second approach is

limited, especially under the requirements of blind detection (i.e., without using the

original image in detection) and invisibility, the amount of data that can be hidden

is usually limited except for special types of images.

We focus in this paper on using the first approach. An image is partitioned into

blocks and several bits are embedded in each block by changing some pixels in that

block. For simplicity, we shall show how to embed one bit in each block. Three issues

will be discussed below: (1) how to select pixels for modification so as to introduce as

little visual artifacts as possible, (2) specific means to embed data in each block using

these flippable pixels, and (3) why to embed the same number of bits in each block

and how to enhance the efficiency. The entire process of embedding and extraction
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is illustrated in Fig. 5.1.
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Figure 1    Block diagram of the embedding and extraction process. 
 
 
 
 
 
 

Figure 2   3x3 patterns whose center pixel has low and high scores when being flipped to white. 

 
 
 
 
 
 
 

Figure 3   A boundary pixel (pointed by an arrow) becomes a “non-flippable” one after 
embedding. 

 
 
 
 
 
 
 

Figure 4  Most high-priority flippable pixels (shown in black) are on non-smooth boundary. 
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Figure 5.1: Block diagram of the embedding and extraction process in binary images
for authentication and/or annotation.

5.2.1 Flippable Pixels

While a human visual model is a key element in data hiding systems, there is little

discussion on a human visual model for binary images. A simple criterion, proposed in

[107], is to flip boundary pixels for high contrast image such as text image and to only

create rather isolated pixels for dithered image. Our work takes the human perceptual

factor into account by studying the flippability of each pixel. More specifically, we

examine the pixel and its neighbors to establish a continuous score of how unnoticeable

such a change will be. The score is from 0 to 1 with 0 meaning absolutely no flipping.

Flipping pixels with higher scores generally introduces less artifacts than flipping a

lower one.

Manual score assignment, though possible, has two weaknesses. First, except for

small neighborhood such as 3× 3, storing the score of every pattern involves a non-

trivial amount of storage – storage on the order of mega bytes is needed for a 5 × 5

neighborhood and the storage increases exponentially as the neighborhood gets larger.
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Second, as a pure subjective process, the outcomes of manual score assignment could

vary significantly from person to person because different persons may emphasize

different visual artifacts. This is especially the case when the score is preferably

continuous or to involve many discrete levels.

To overcome the problems with manual score assignment, we look for causes that

make some flipping more visible to human eyes and measure them in a subjective way.

The continuous score can be obtained by applying a set of perceptual rules on these

raw measures. In our work, the score is hierarchically determined and is arrived at by

considering the change in smoothness and connectivity. The smoothness is measured

by the horizontal, vertical, and diagonal transitions in a local window (e.g., 3 × 3),

and the connectivity is measured by the number of the black and white clusters. For

example, the flipping of the center pixel in Fig. 5.2(b) is more noticeable than that

in Fig. 5.2(a) because the connectivity of (b) changes and human eyes are sensitive

to this change. In this manner, we obtain a list of all 3 × 3 patterns ordered in

terms of how unnoticeable the change of the center pixel will be. The list can be

implemented using a look-up table. We then look at a larger neighborhood like 5× 5

to refine the score. Special cases are also handled in such large neighborhood so as to

avoid introducing noise on special patterns such as sharp corners. The details of our

proposed score computation can be found in the appendix of this chapter (Sec. 5.6).

5.2.2 Mechanics of Embedding

When designing an embedding mechanism, it is important to consider how to ex-

tract the embedded data without the original image. Directly encoding the hidden

information in flippable pixels (e.g., set to black if to embed a “0” and to white if to

embed a “1”) may not work since the embedding process may change a flippable pixel
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Figure 2   3x3 patterns whose center pixel has low and high scores when being flipped to white. 

 
 
 
 
 
 
 

Figure 3   A boundary pixel (pointed by an arrow) becomes a “non-flippable” one after 
embedding. 

 
 
 
 
 
 
 

Figure 4  Most high-priority flippable pixels (shown in black) are on non-smooth boundary. 
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Figure 5.3: If assuming only black pixels that are directly adjacent to white pixels
are considered as “flippable”, the boundary pixel indicated by an arrow becomes a
“non-flippable” one after embedding. This simple example demonstrates that directly
encoding the hidden information in flippable pixels may not work since the embedding
process may change a flippable pixel in the original image to a pixel that may no longer
be considered as flippable.

in the original image to a pixel that may no longer be considered as flippable. As a

simple example, suppose only black pixels that are directly adjacent to white pixels

are considered as “flippable”, and the flippable pixel marked by thick boundary in

Fig. 5.3(a) is changed to white to carry a “1”. Fig. 5.3(b) shows that after embedding,

this pixel is no longer considered as flippable if using the same rule. In this case, it

is hard for detector to correctly identify which pixel carries what hidden information

without knowing the original image.

Instead of directly encoding the hidden information in flippable pixels, we apply

the Type-II embedding discussed in Chapter 3. That is, we embed the data by
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manipulating flippable pixels so that a certain relationship on features of a group of

pixels is enforced. One possible feature is the total number of black pixels. To embed

a “0” in a block, we may change some pixels so that the total number of black pixels

in that block is an even number. Similarly, to embed a “1”, the number of black pixels

is enforced to an odd number. An alternative approach is to choose a “quantization”

step size Q and to force the total number of black pixels in a block to be 2kQ (for some

integer k) in order to embed a “0”, and to be (2k+1)Q to embed a “1”. As discussed

in Chapter 3, larger Q gives higher robustness against noise because any perturbation

smaller than Q/2 will not affect the accuracy in decoding; however, as a tradeoff, the

changes introduced by the embedding process also increases and the image quality

may be reduced. The “odd-even” method can be viewed as a special case of the table

lookup approach which is similar to those in [78, 163] and in Chapter 7. These two

approaches are illustrated in Fig. 5.4, where each possible quantized number of black

pixels per block is mapped to 0 or 1. The marked image is generated by manipulating

pixels with high flippability score in such a way that the number of black pixels in

each block is enforced to match the bit to be embedded via a prescribed mapping.

That is,

v′i = arg min
x:T (x)=bi,x=kQ

|x− vi| (5.1)

where vi is the ith feature to be enforced (in the above case, the total number of

black pixels of the ith block), v′i is the feature value after embedding, bi is the bit to

be embedded in ith feature, and T (·) is a prescribed mapping from feature values to

hidden data values {0,1}, which may be represented in closed-form or by a lookup

table. Detection is done by checking the enforced relationship - for the above cases,

to examine the odd/even properties, or to perform a table lookup. That is,

b̂i = T (v′′i ) (5.2)
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where v′′i is the feature extracted from the ith block of a test image, and b̂i is the

estimated value of the embedded bit in the ith block. If one bit is repeatedly embedded

in more than one block, majority voting is performed to determine which bit has been

hidden. More sophisticated coding than simple repetition may be used to enhance

the performance.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7   (a) Original image, (b) a marked copy with 976-bit embedded in, (c) magnified 
original image, (d) difference between original and marked (shown in black),  (e) magnified 
marked image, (f) alteration done on the marked image, (g) 800-bit data patterns extracted 
after alteration is significantly different from the embedded “PUEE”. 

 
 
 
 
 
 
 
 
 

Figure 8   Odd-even embedding and one example of lookup table embedding 
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Figure 5.4: Illustration of odd-even mapping and table lookup mapping from the
quantized number of black pixels per block to the binary data to be embedded. One
bit can be embedded in a block by enforcing the number of black pixels to a value
that matches the bit to be embedded via a prescribed mapping. The enforcement
involves the change of flippable pixels in the block, if necessary.

While other relationship enforcing techniques are certainly possible, we shall in

this chapter, for simplicity of discussion, use the enforcing of odd or even number of

black pixels.

5.2.3 Uneven Embedding Capacity and Shuffling

As outlined earlier, we embed multiple bits by dividing an image into blocks and

hiding one bit in each block via the enforcement of the odd-even relationship. How-

ever, the distribution of flippable pixels may vary dramatically from block to block

in a binary image. No data can be embedded in the white or black uniform regions,

while regions with text, drawing, and dithered images may have quite a few flippable
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pixels, especially on the non-smooth boundary. This uneven embedding capacity can

be seen from Fig. 5.5 where the pixels with high flippability scores, indicated by black

dots, are on the rugged boundaries.

Figure 5.5: A binary image (top) and its pixels with high flippability scores (bottom,
shown in black).

General approaches to handling uneven embedding capacity have been discussed

in Chapter 4. Regarding the uneven embedding capacity in a binary image, using

variable embedding rate from block to block is not feasible because (1) a detector

has to know exactly how many bits are embedded in each block, and any mistake

in estimating the number of embedded bits is likely to cause errors in decoding the

hidden data for the current block and the error may propagate to the other blocks, and

(2) the overhead for conveying this side information via embedding is quite significant

and could be even larger than the actual number of bits that can be hidden. For these

reasons, we adopt constant embedding rate (i.e., to embed the same number of bits in

each region) and use shuffling to equalize the uneven embedding capacity from region

to region.

As shown in Fig. 5.6, the flippable pixels distribute more evenly after a random

permutation of all pixels. This is also illustrated in the histogram of the number of

flippable pixels in one 16×16-pixel block (Fig. 5.7). Before shuffling, the distribution
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Figure 5.6: Distributions of flippable pixels per 16x16-pixel block of the binary image
in Fig. 5.5, before shuffling (top) and after shuffling (bottom).
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in Fig. 5.5, before shuffling (solid line) and after shuffling (dotted-dash line).
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extends from 0 to 40 flippables per block and that about 20% of the blocks do not

have any flippable pixels. This implies that either we embed nothing in those blocks

or we have to introduce significant artifacts to hide data there. The distribution after

shuffling, shown as the dotted line, concentrates from 10 to 20, and ALL shuffled

blocks have flippable pixels. This equalization function of shuffling has been analyzed

in Chapter 4. Plugging into Eq. 4.1 and Eq. 4.2 the parameters of the binary signature

image of Fig. 5.5:

block size q = 16× 16

image size S = 288× 48

block number N = S/q = 18× 3

flippable percentage p = 5.45%

we compute the mean and the standard deviation of the histogram. The analytic

results are shown in Fig. 5.8, along with the simulation results from 1000 random

shuffles. Table 5.2.3 also shows the behavior of blocks with no or few flippables,

which are of most concern for data hiding problems. We can see that the analysis

and simulation conform with each other very well, and the percentage of blocks with

no or few flippables is extremely low. For the problem that we may encounter a small

number of blocks with no flippable pixel to carry hidden information, applying error

correction encoding with a little correction capability would be sufficient to handle

this. As can be seen from the block diagram in Fig. 5.1, the embedding of one bit

per block of fixed size described in Section 5.2.2 is performed in the shuffled domain,

and inverse shuffling is performed to get a marked image.

We have also discussed in Chapter 4 that shuffling does not produce more flippable

pixels. Instead, it dynamically assigns the flippable pixels around the active regions

and rugged boundaries to carry more data than the less active regions, yet without the
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Figure 5.8: Analysis and simulation of the statistical behavior of shuffling for the
binary image in Fig. 5.5.

Table 5.1: Analysis and simulation of the blocks with no or few flippable pixels before
and after shuffling for the binary image in Fig. 5.5.
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need of specifying side information that is image dependent. Shuffling also enhances

security since the shuffling table or a key for generating the table is needed to correctly

extract the hidden data.

5.3 Applications and Experimental Results

In this section, we present three applications of the proposed data hiding method for

binary images along with experimental results.

5.3.1 “Signature in Signature”

We mentioned before that unauthorized use is a potential concern for the increas-

ingly popular use of digitized signature. “Signature in Signature” has been proposed

as a tool for annotating the signer’s signature with the data that is related to the

signed documents, so that the unauthorized use of a signature can be detected [111].

Here the second “signature” refers to the actual digital version of a person’s signa-

ture, while the first “signature” refers to a checksum related to the document content

or other annotation information. The data hiding method proposed in this paper

can be applied to annotating a signature in such applications as faxing signed doc-

uments and storing digitized signatures as transaction records. Compared with the

traditional cryptographic authentication approach [11] that has been used in secure

communication, the proposed data embedding based approach has the advantage of

being user-friendly, easily visualized, and integrating the authentication data with

the signature in a seamless way, hence is suitable for the general public.

An example is demonstrated in Fig. 5.9, in which up to 7 characters (approx-

imately 50 bits) can be embedded in a 287 × 61 signature of Fig. 5.9(top). The



CHAPTER 5. DATA HIDING IN BINARY IMAGES 97

embedding rate is 1 bit per block of 320 pixels. Fig. 5.9(middle), which has 7 letters

embedded, differs very little from the original one, as indicated by black pixels in

Fig. 5.9(bottom) 1.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.9: “Signature in Signature”. (top) the original image, (middle) a marked
copy with 7 letters (approximately 50 bits) embedded in, (bottom) the difference
between the original and the marked (shown in black).

1The gray areas in Fig. 5.9(bottom) and Fig. 5.11(d), visualizing the strokes and the background,
respectively, are for assisting viewers to associate the difference between the original and the marked
image with their precise location in the images. They don’t indicate the pixelwise differences that
are indicated by black pixels.
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5.3.2 Invisible Annotation for Line Drawings

In artistic applications, one would usually prefer to annotate the artwork with infor-

mation like the creation date and location in such a way that the annotation data

interfere with perceptual appreciation to the minimal extent. Our proposed approach

can be used to invisibly annotating artistic line drawings like the binary comic picture

(120×150) shown in Fig. 5.10. In this example, a character string of date information

“01/01/2000” is embedded in Fig. 5.10(middle). We can see that the annotation does

not interfere with perceptual appreciation in any perceivable way.

Figure 5.10: Invisible annotation for line drawings: (left) the original image, (middle)
a marked copy with 10-letter date information (70 bits) embedded in, (right) the
difference between the original and the marked (shown in black).

5.3.3 Tamper Detection for Binary Document

As we have mentioned, a large number of important documents have been digitized

and stored for records. Because it is easy to edit digital images, the authentication

of these digital documents as well as the detection of possible tampering is a very

important concern. The data hiding techniques proposed in this paper can be applied
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for such purposes, as an alternative to or in conjunction with the cryptographic

authentication approach.

The basic idea of authentication is the same as that for grayscale and color im-

age [163]. Data is embedded in an image in such a fragile way that it will be obliterated

if the image is altered and/or it no longer matches some properties of the image. The

hidden data may be an easily recognized pattern and/or some features/digest related

to the content of host image. Shown in Fig. 5.11(a) is a part of a U.S. Patent, con-

sisting of 1000 × 1000 pixels. This binary image contains a variety of patterns such

as texts, drawings, lines, and bar codes. Fig. 5.11(b) is a visually identical figure, but

with 976 bits embedded in it using the proposed techniques. In this particular exam-

ple, 800 bits of the embedded data forms a “PUEE” pattern shown in Fig. 5.11(g).

If the date “1998” on the top is changed to “1999”, the extracted data will be the

random pattern shown in Fig. 5.11(g) and significantly different from the originally

embedded one. This is an indication that alteration was made on the document.

5.4 Discussions

In this section, we will discuss the robustness and security issues of the proposed

scheme. Other considerations associated with shuffling, such as the methods for

handling bad shuffles and for adaptively choosing the block size, can be found in

Chapter 4.

5.4.1 Analysis and Enhancement of Robustness

In Section 5.2.2, we discussed possible ways of embedding secondary data via manip-

ulating pixel values to enforce certain relationships (i.e., Type-II embedding). The



CHAPTER 5. DATA HIDING IN BINARY IMAGES 100

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7   (a) Original image, (b) a marked copy with 976-bit embedded in, (c) magnified 
original image, (d) difference between original and marked (shown in black),  (e) magnified 
marked image, (f) alteration done on the marked image, (g) 800-bit data patterns extracted 
after alteration is significantly different from the embedded “PUEE”. 

 
 
 
 
 
 
 
 
 

Figure 8   Odd-even embedding and one example of lookup table embedding 
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Figure 5.11: Data hiding in binary document image. (a) Original copy, (b) a marked
copy with 976-bit embedded in, (c) magnified original image, (d) difference between
original and marked (shown in black), (e) magnified marked image, (f) a portion of
the image where alteration is done (on the marked image) by changing “1998” to
“1999”, (g) among the 976-bit hidden data, 800 bits forms a “PUEE” pattern; the
800-bit data patterns extracted after alteration is visually random and significantly
different from the embedded ”PUEE”.
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robustness against noise is quite limited, and generally depends on whether and how

much quantization or tolerance zone we applied. Let us consider the simple odd-even

case with no quantization, i.e., the total number of black pixels is enforced to an even

number to embed a “0”, and to an odd number to embed a “1”. When a single pixel

gets flipped due to noise, the bit embedded in the block to which the pixel belongs to

will be wrongly decoded. When several pixels in an embedding block are subject to

be changed, whether or not the bit can be decoded correctly depends on how many

pixels being flipped; if the change is independent from pixel to pixel and is with

probability p for each of n pixels where n ≥ 1, the probability of getting a wrongly

decoded bit is

Pe1 =
n∑

k=1,k odd

 n

k

 pk(1− p)n−k =
1− (1− 2p)n

2
. (5.3)

The error probability Pe1 is small for small p and small n. In this case, error correction

encoding can be applied to correct errors if accurate decoding of hidden data is

preferred. When p is close to 0.5, so is Pe1 , implying the difficulty in embedding

and extracting data reliably. Notice that because of shuffling, the assumption of

independent change is likely to hold even if the noise involves nearby pixels since

adjacent pixels in the original image will be distributed to several blocks. If the total

number of changed pixels in the whole image is small (no matter whether they are close

to each other in the original image or far away), it is likely that most of those pixels

are involved in different embedding blocks hence the extracted bits from those blocks

will be wrong; on the other hand, if many pixels have been changed, each embedding

block may include several of these pixels and the decoded bit from each block is wrong

with approximately 0.5 probability. This implies that the decoded data are rather

random, like what we have seen in Fig. 5.11(g). The case of incorporating quantization
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or tolerance zone can be analyzed similarly, combining the above strategies and those

in Chapter 3.

Besides the noise involving flipping of individual pixels, misalignment is another

cause of decoding errors. For this matter, using shuffling has the disadvantage of

increasing the sensitivity against geometric distortion such as translation. This is

due to the shift-variant property of the shuffling operation, i.e., the shuffling result

of a shifted image is very different from that of the non-shifted one. To alleviate

the sensitivity with respect of translation, we can hide secondary data in a cropped

part of the image, as shown in Fig. 5.12. Without loss of generality, we consider

the case of black foreground and white background. The upper-left point of the data

hiding region is determined by the uppermost and leftmost black pixel, and the lower-

right point is by the lowermost and rightmost black pixel. The data hiding region

therefore covers all black pixels. This approach can reduce the shifting sensitivity as

long as both embedding and detection system agree on the protocol and no cropping

or addition of the outermost black pixels is involved.

Figure 14   Achieving robustness of data hiding against small translation.  Here we use the outermost
black pixels to determine a data hiding region (indicated by a dash box) covering all black pixels.

original boundary
of the imagedata hiding region

Figure 5.12: Achieving robustness against small translation. Here we use the outer-
most black pixel to determine a data hiding region (indicated by a dash box) covering
all black pixels.
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In addition to the above approach, adding registration marks helps to survive high-

resolution printing and scanning. Recovering the image from printing and scanning

with precision as high as one pixel is a challenging task, because this D/A-A/D

process may result in small rotation, up-scaling of an unknown factor, and noisy

boundary. If one original pixel in the image corresponds to a very small number of

pixels in the scanned version (e.g., corresponding to one or less than one pixel), it

will be very difficult to combat the distortion introduced by the D/A-A/D process.

On the other hand, if significant oversampling is performed so that one original pixel

corresponds to a large number of pixels in the scanned version, it would be possible

to sample at the center of each “original” pixel, averaging out the noise introduced on

the boundary and/or by the rounding errors in de-skewing. The registration marks

help to identify the boundary and the size of the original image as well as to correct

skewing. We noted that while the size of one original pixel represented in the scanned

image may be estimated from a well-designed registration mark (e.g., we may estimate

that one original pixel corresponds to 8× 8 pixels in a scanned image), minor errors

in such estimation could be accumulated when determining the width and height of

the original image up to single pixel precision. For this reason, we impose constraints

on the width and height of original images, for example, to be multiples of 50. As

shown in Fig. 5.13(a), one possibility is to add cross-shape marks at four corners

and at four sides at an interval of 50 pixels horizontally and of 25 pixels vertically,

serving as a ruler. In our experiment, we printed out the signature image via the

Microsoft Word program (with default image importing resolution 72dpi) using a HP

2100TN laser printer, and scan back with 600dpi precision and 256 gray levels using a

Microtek 3600 scanner. The image is binarized using the mean of the maximum and

minimum of scanned luminance value. We use the registration marks to determine the
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image boundary, to perform de-skewing, and to compute the proper scaling factor.

The estimated centers of each original pixel on the scanned version are shown in

Fig. 5.13(b). Sampling at those pixels can recover the original digital image perfectly

from the scanned one hence allow the embedded data to be extracted correctly. In

the Appendix Section 5.7, we shall present more detailed discussion on the recovery

of binary image from printing and scanning.

(copied and revised from journal_binDH v1 fig word file) 
fig_A2D.pdf 
 
 

(a) 

(b) 

Figure 5.13: Recovering binary image from high quality printing and scanning. (a)
Cross-shape marks are added at four corners and at four sides at an interval of 50
pixels horizontally and of 25 pixels vertically, helping to determine the boundary, the
scale, and the skewing angle of a scanned image; in addition, the width and height
of original images are constrained to be multiples of 50; the image is imported to
Microsoft Word at 72dpi, printed out via a laser printer, and scanned in with 600dpi
and 256 grey levels; the size of the scanned image is 2028x444. (b) The estimated
centers of each original pixel are shown in light color; sampling at those centers can
recover the original binary image perfectly from a scanned one.
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5.4.2 Security Considerations

We have demonstrated how to embed data in a binary image and illustrated two

possible applications in Section 5.3. Drawing an analogy between data hiding and

communication, the embedding methods serve as physical communication layer, on

top of which other functionalities and features can be built. For instance, security

issues may be handled by top layers in authentication applications. Under this sce-

nario, the major objective of an adversary is to forge authentication data so that

an altered document can still pass the authentication test. One could use traditional

cryptography-based authentication to produce a cryptographical digital signature and

to embed it in the binary image. This traditional approach relies on a cryptographi-

cally strong hash function to produce a digest of the document to be signed as well as

on public-key encryption to enable verification without giving up the encryption keys,

hence only authorized person can produce a correctly encrypted signature [11]. By

using embedding, we not only save room that is needed for storing and/or displaying

the cryptographical data separately, but also obtain additional capability to associate

the authentication data with the media source in a seamless way.

Although a cryptographical signature can be adopted as (part of) the embedded

data, the embedding approach proposed in this paper has the potential of allowing

plain text to be embedded since secret information such as keys/seeds have already

been incorporated via shuffling and/or lookup table. However, envisioning potential

attacks [139], the following security issues have to be considered. More specifically,

for the application of authentication, it is important to study the following two prob-

lems, assuming that the attacker has no knowledge about any secret keys: (1) the

probability of making content alterations while preserving the m-bit embedded au-

thentication data, and (2) the possibility for an adversary to hide specific data in an
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image, assuming he/she has no knowledge about any secret keys.

For the first problem, we have discussed in Section 5.4.1 that an n-pixel alteration

on a marked image would change the decoded data. If n is small compared to the total

number of blocks m, there are approximately n bits in the decoded data that will be

different from the originally embedded one; if n is large, the probability of getting the

decoded data to be exactly the same as the originally embedded one is approximately

2−m, which is very small as long as m is reasonably large. Therefore, the threat of

making content alterations while preserving the m-bit embedded authentication data

is weak.

For the second problem, it depends on whether watermarked versions of the same

image with different data embedded are available to an adversary. For convenience,

we shall call these as “multiple copies”. When multiple copies are not available, it is

extremely hard for an adversary to embed specific data in an image, even if he/she

knows the algorithm. This is due to the secrecy in the shuffling table. However,

in applications such as “signature in signature”, an adversary may be able to obtain

multiple copies, for example, signatures with different signing date or payment amount

embedded. This is similar to the scenario of plaintext attack in cryptography [11].

We would like to know whether he/she can derive information regarding which pixels

carrying which bit by studying the difference between those copies hence create new

images with specific data embedded (e.g., specific date or payment amount). If the

embedding imposes the minimal necessary changes to enforce a desirable relationship

(for example, in the odd-even case, at most one pixel will be flipped in each embedding

block), the pixels that differ among the multiple copies are those used for embedding

hidden information. Assuming an adversary collects sufficiently many copies and

knows what data is embedded in each copy, he/she will be able to identify which pixels
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carrying which bit and to hide his/her desired data by manipulating the corresponding

pixels.

To prevent the above-mentioned attack, we have to introduce more uncertainty.

One approach is to use a different shuffling table, for example, choose one table from K

candidate ones, similar to the approach used for handling bad shuffles in Section 4.2.3.

Another approach is that instead of making minimal changes for hiding one bit in each

embedding block, we also flip, with probability of 0.5 in each block, an additional pair

of flippable pixels. More specifically, to embed a “0”, if the number of black pixels in a

shuffled block is already an even number, with probability of 0.5 we flip an additional

pair of pixels selected arbitrarily from 3 highly flippable pixels; if the number of black

pixels is an odd number, with probability of 0.5:0.5 we flip all 3 pixels or flip one

pixels selected arbitrarily from the 3 ones. When more than three highly flippable

pixels are available, we may make the above selection from a larger pool. Now if

we look at two image copies whose hidden data differ in just one bit, the difference

between the two images via minimal-change embedding is just at one pixel, while that

via the above-mentioned randomization involves many other pixels randomly. In the

latter case, if a total of N bits are embedded, on average there will be (4N + 1)/3

pixels being different. The computation is sketched as follows: we first consider the

embedding of the different bit between the two images, i.e., in one image, 0 or 2 pixels

are flipped while in the other image, 1 or 3 pixels are flipped. The four combinations

(0-1, 2-1, 0-3, 2-3) are equally likely, giving the average number of different pixels as a

result for embedding this bit as 5/3. Similarly, the average number of different pixels

for embedding the rest (N −1) identical bits is 4(N −1)/3, giving the overall average

(4N + 1)/3. When N is sufficiently large, it is difficult for an adversary to identify

which pixels are associated with which bits. As a tradeoff, the randomization requires
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three flippable pixels to be available for many shuffled blocks and introduces more

pixel changes at the embedding step. Note that both countermeasures assume that

for any given hidden data, only one copy of a marked image is available to an attacker,

otherwise he/she may be able to average out the randomization and to compromise

our solutions.

5.5 Chapter Summary

This chapter addresses the problem of data hiding for binary images. Technical

challenges in such embedding are discussed with solutions proposed. In particular,

we propose a new data hiding method for binary images. The method manipulates

“flippable” pixels to enforce a specific block-based relationship in order to embed a

significant amount of data without causing noticeable artifacts. Shuffling is applied

before embedding to equalize the uneven embedding capacity. The hidden data can

be extracted without using the original image, and with the help of a few registration

marks, they can also be accurately extracted after high quality printing and scanning.

The algorithm can be applied to detect unauthorized use of signatures in binary image

format and to detect alterations on documents.

In terms of future work, the flippability model can be refined for different types

of binary images such as texts, figures/drawings, and dithered images. The approach

for recovering binary image from high quality printing and scanning may be improved

by using the grayscale information from the scanned image. Comparative study of

various embedding mechanisms will also provide insights on the improvement of data

hiding in binary images.
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5.6 Appendix - Details of Determining Flippabil-

ity Scores

In this appendix section, we describe the details of a 5-step procedure for computing

flippability scores. For simplicity, we shall illustrate the evaluation method for non-

dithered binary image. The scores will be used to determine which pixel will be

flipped with high priority during the embedding process.

Step-1 Compute smoothness and connectivity of 3× 3 pattern.

The smoothness of the neighborhood around pixel (i, j) is measured by the total

number of horizontal, vertical, diagonal, and anti-diagonal transitions in the 3x3

window, respectively, using a differential operator along the corresponding directions:

horizontal Nh(i, j) =
1∑

k=−1

0∑
l=−1

I({pi+k,j+l 6= pi+k,j+l+1}), (5.4)

vertical Nv(i, j) =
1∑

k=−1

0∑
l=−1

I({pi+l,j+k 6= pi+l+1,j+k}), (5.5)

diagonal Nd1(i, j) =
∑

k,l∈{−1,0}
I({pi+k,j+l 6= pi+k+1,j+l+1}), (5.6)

anti-diagonal Nd2(i, j) =
∑

k∈{0,1},l∈{−1,0}
I({pi+k,j+l 6= pi+k−1,j+l+1}). (5.7)

where I(·) is the indicator function taking value from {0, 1}, and pi,j denotes the pixel

value of the ith row and jth column of the whole image. These computations are also
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illustrated in Fig. 5.14. Note that regular patterns such as straight lines, have zero

transition along at least one direction, as shown in Fig. 5.15.

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9   Illustration of transitions in four directions, namely, horizontal, vertical, diagonal, 
and anti-diagonal. 

 
 

 
 
 
 
 
 
Figure 10   Regular patterns such as straight lines have zero transition along at least one direction.   
 
 
 
 
 
 
 
 

Figure 11   Connectivity criterion between pixels.  The lightly shaded pixels are considered as 
connected with the center pixel by 90o, while those with stripes are connected with center pixel by 

45o. 
 
 
 
 
 
 
 
 
 
Figure 12   Graph representation of the connectivity for black pixels.  Showing here is an example of 

3x3 pattern with five black pixels forming two clusters. 
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Figure 5.14: Illustration of transitions in four directions, namely, horizontal, verti-
cal, diagonal, and anti-diagonal. The number of transitions is used to measure the
smoothness of the 3× 3 neighbourhood.
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Figure 5.15: Regular patterns such as straight lines have zero transition along at least
one direction. Showing here is part of a horizontal line with zero horizontal transition.

The connectivity is measured by the number of the black and white clusters. For

this purpose, the connectivity criterion between two pixels needs to be prescribed. A

commonly used criterion, illustrated in Fig. 5.16, considers the pixels that touch each

others by 90-degree (i.e., (i, j ± 1) or (i ± 1, j)) or by 45-degree (i.e., (i + 1, j ± 1)
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or (i − 1, j ± 1) ) and that have the same pixel value as connected 2 Depending

on the specific constraints of visual artifacts, 45-degree touching may not always be

considered as connected. Using the criterion, we can build a graph for black (or white)

pixels. In the graph, each vertex represents a black (or white) pixel, and there is an

edge between two vertices if and only if the two corresponding pixels are connected.

An example is shown in Fig. 5.17 with five black pixels forming two clusters and

four white pixels forming one cluster. The number of clusters can be automatically

identified by traversing the graph using depth-first search strategy. Here we present

a stack-based implementation of non-recursive depth-first search algorithm, adapted

from [4]. We assume that there are M pixels in total (counting both white and black),

and the final value of “counter” indicates the number of clusters.

(1) Initialization: let p[k] store the value of kth pixel and q be the pixel value of

interest (i.e., q is black if to find black clusters, and vice versa); set up an empty

stack and an M -element array label[·] for storing the index of the cluster that

each pixel belongs to; set label[k] = 0 for all k = 1, ...,M ; i = 1; counter = 0.

(2) If label[i] 6= 0 (i.e., it has already been visited) or p[i] 6= q, go to (7).

(3) counter = counter + 1; push node-i into the stack.

(4) If the stack is empty, go to (7).

(5) k = pop( ) from stack; label[k] = counter.

(6) Find all pixels directly connected with k. For each connected pixel j, if label[j] =

0 (i.e., it has not yet been visited or pushed into stack), assign label[j] = −1,

2In some references, 90-degree touching is known as four-connectivity, and 90-degree or 45-degree
touching is known as eight-connectivity [17].
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and push node-j into stack 3. Go back to (4).

(7) i = i + 1; if i > M , stop, otherwise go to (2).
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Figure 5.16: The pixels that touch each others by 90o (i.e., (i, j ± 1) or (i ± 1, j))
or by 45o (i.e., (i + 1, j ± 1) or (i − 1, j ± 1) ) and that have the same pixel value
as connected. The lightly shaded pixels in this figure are considered as touching the
center pixel by 90o, while those with stripes touch the center by 45o.
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Figure 5.17: Graph representation of the connectivity for black and white pixels.
Showing here is an example of 3x3 pattern with five black pixels forming two clusters
and with four white pixels forming one cluster. Only 90-degree touching is considered
as connected in this example.

Step-2 Compute flippability score.

The smoothness and connectivity measures are passed into a decision module to

come up with a flippability score. Main considerations when designing this module

3Note that by the definition of connected, p[j] = q.
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are: (1) whether the original pattern is a very smooth pattern, (2) whether flipping

will increase non-smoothness by a large amount, (3) whether flipping will cause the

change of connectivity. These changes or the artifacts on these patterns are generally

more significant. For each pixel, the followings are the major rules used in our decision

module:

(1) the lowest score (i.e., not flippable) is assigned to uniform white or black regions

as well as to the isolated single white or black pixels. These trivial cases are

handled first.

(2) if the number of transitions along horizontal or vertical direction is zero, i.e.,

the pattern is very smooth and regular, assign zero flippability as a final score

for the current pixel. Otherwise, assign to the pixel a base flippability score SB

and proceed to the next rule.

(3) if the number of transitions along diagonal or anti-diagonal direction is zero,

reduce the flippability. Otherwise, if the minimum transition point along any

one of the four directions is below a given threshold T1, which means the pat-

tern is rather smooth, reduce flippability by a small amount. Note that we

treat smooth horizontal/vertical patterns and diagonal/anti-diagonal patterns

differently because the artifacts along the horizontal/vertical patterns are likely

to attract more attention from viewers.

(4) if flipping the center pixel does not change the transition points, increase the

flippability. Otherwise, if flipping results in the increase of transition points

(i.e., reduces smoothness and makes the pattern noisy), decrease flippability.

(5) if flipping changes the number of black clusters or white clusters, reduce the

flippability.
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After going through these rules, a lookup table of all 3×3 patterns can be obtained

and ordered in terms of how unnoticeable the change of the center pixel will cause. For

small neighborhood such as 3×3, this table has a small number of entries (23×3 = 512)

hence can be off-line computed. The flippability score of every pattern in an image

can then be determined by looking up the stored table. When larger neighborhood

is involved, for example, 5 × 5 neighborhood, the table size increases exponentially

(25×5 = 225 ≈ 32mega), possibly exceeding the available memory size for particular

applications. This problem can be solved by online computing the flippability for

each pattern. More efficiently, we may adopt hierarchical approach, namely, obtaining

preliminary flippability measure based on a small neighborhood (e.g., 3× 3) by table

lookup, then if necessary, refining the measure by on-line computing based on a larger

neighborhood.

Step-3 Handle special cases.

We handle some special cases that involve larger neighborhood. For example,

we detect particular patterns such as sharp corners to avoid introducing annoying

artifacts on them.

Step-4 Impose minimum distance constraint between two flippable pixels.

Up to now, the flippability evaluation is done independently for the pattern re-

vealed in a moving window centered at each pixel, assuming that any pixels other

than the center one will not be flipped. Pixels that are close to each others may

be considered flippable by this independent study, but simultaneously flipping them

could cause artifacts. We handle this problem by imposing constraints on the mini-

mum distance of two pixels that can be flipped and pruning the pixels with relatively

low flippability in its neighborhood.
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Step-5 Assign a predetermined score to the remaining boundary points

(optional).

Edge pixels that have not yet been assigned non-zero flippability will be given a

small flippability value. These pixels serve as a bottom line for hiding a particular

bit when there is no pixel with higher flippability available to carry the hidden data.

Adding this step helps to achieve a high embedding rate while keeping visual quality

reasonably good for the extreme cases.

The above procedures can be further refined by studying a larger neighborhood

and by using more extensive analysis, especially for Step-2. Shown in Fig. 5.18 is one

possible lookup table for 3 × 3 patterns, excluding the symmetric cases of rotation,

mirroring, and complement. Here we set the threshold T1 = 3, the base flippability

score SB = 0.5, and the flippability adjustments in Step-2 are multiples of 0.125.

For dithered image, some criterions and parameters need to be revised, for example,

a pixel is given high flippability if its flipping does not cause larger relative change

in local intensity, and the connectivity is given less consideration. The techniques in

lossy bi-level image compression like those in JBIG2 activities [20] may provide further

insights to data hiding, and the methods used in data hiding may also contribute to

compression.

5.7 Appendix - Details on Recovering Binary Im-

ages After Printing and Scanning

In Section 5.4.1, we described adding cross-shape marks at four corners and at four

sides to serve as a ruler for registration purpose. Identifying the cross points of these
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Figure 13   One possible flippability lookup table for 3x3 pattern, excluding symmetric cases of 
rotation, mirroring, and complement.  Larger value indicates the change of  center pixel is less 

noticeable hence is more likely to be made for hiding information. 
 
 
 

Figure 5.18: One possible flippability lookup table for 3× 3 pattern, excluding sym-
metric cases of rotation, mirroring, and complement. Larger value indicates that the
change of center pixel is less noticeable hence the change is more likely to be made
for hiding information.

marks in a scanned image is the first step in recovering binary image from high qual-

ity printing and scanning. Here we propose a projection based approach under the

assumption that the approximate region of the mark to be recovered has already

been specified. For white background, the range should include the entire mark and

preferably no other black pixels. A white outer layer of fixed width is added to the

source image to facilitate the identification of the mark regions, as shown in Fig. 5.19.

The approximate region containing the mark can be either manually specified via an

interactive interface or automatically determined via pattern matching. For simplic-

ity, the manual approach is used in our experiment, and reasonable effort is made
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during scanning so that the skewing of each mark is negligible.

Figure 16   Illustration of registration marks

white margin with
fixed width for
easy identification
of the mark region

registration mark

boundary defined by
registration marks

original image
boundary

Figure 5.19: Illustration of registration marks. A white outer layer of fixed width is
added to facilitate the identification of the approximate region of each mark during
print-and-scan.

To determine the cross point of a mark, we perform horizontal and vertical pro-

jections and get two profiles each of which has a unique “plateau” corresponding to

the horizontal and vertical stroke, respectively. As illustrated in Fig. 5.20, the centers

of the two plateaus determine the y- and x- coordinates of the cross point.

Using the identified cross points of registration marks, we can determine the skew-

ing angle α of the entire scanned image, as illustrated in Fig. 5.21. The scaling factors

can be estimated as follows: assuming the original image size has been determined

as Nw × Nh and the scanned image size is W × H, all measured in pixels 4. We

further assume the coordinate of the upper-left pixel in both the scanned image and

4Recall that we have impose constraints that the width and height of original binary image has
to be multiples of 50. The actual multiplication factor can be determined by registration marks that
serve as a ruler. Alternatively, the multiplication factor can be determined by estimating from the
width of registration marks how many pixels in the scanned image correspond to one pixel in the
original. Any additions such as the white outer layer in Fig. 5.19 need also be counted.
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Modified 3/25/01 from the figure of journal_binDH_v1  
( => corrected the label for horizontal and vertical projection, which was incorrectly swapped in the 
original research\bin_wmk\registerMark.fig but correct in the black background version registerMark1.fig 
… some labeling may get messed up.  The registerMark.fig has been corrected as of 3/25/01)  
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Figure 5.20: Determining the cross point of a registration mark by performing hor-
izontal and vertical projection. The centers of the two projection plateaus are used
as y- and x- coordinates of the cross point.
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the original image is (0, 0). Considering a pixel (x′, y′) in the original image, we would

like to find the center of this pixel in the scanned version. We first perform a scaling

operation:

 x1

y1

 =

 W−1
Nw−1

0

0 H−1
Nh−1


 x′

y′

 =


(W−1)x′

Nw−1

(H−1)y′

Nh−1

 . (5.8)

where (W − 1), (H − 1), (Nw − 1) and (Nh − 1) are used because the coordinate of

the first pixel starts from (0, 0). We then perform rotation of −α degree and get the

coordinate (x, y) of the estimated pixel center: x

y

 =

 cos α − sin α

sin α cos α


 x1

y1

 . (5.9)

If the estimation is well centered in the pixel and the scanning resolution is suffi-

ciently high so that one original pixel corresponds to many scanned pixels (like those

shown in Fig. 5.13), sampling at the estimated centers will recover the original im-

age. Improvement may be done by considering the surrounding pixels as well as the

grayscale information obtained from scanning, especially when a printed image has

noisy boundaries and/or slightly blurred.
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Figure 18   Using coordinate conversion to perform scaling and de-skewing. 
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Figure 5.21: Using coordinate conversion to perform scaling and de-skewing. Coor-
dinate x-y is for the scanned image, and Coordinate x’-y’ is for the original image.
Skewing angle between the two coordinates is represented by α; the lightly dotted
squares represent original pixels, and the round dots are the corresponding centers.



Chapter 6

Multilevel Data Hiding for Image & Video

6.1 Introduction and Prior Art

We have mentioned that imperceptibility, robustness against moderate compression

and processing, and the ability to hide many bits are the basic but rather conflict-

ing requirements for many data hiding applications. The traditional way to handle

this is to target at a specific capacity-robustness pair. Some approaches choose to

robustly embed just one or a few bits [44, 46], while others choose to embed a lot

of bits but to tolerate little or no distortion. However, a single robustness threshold

generally overestimates the noise condition in some situations and/or underestimates

in some other situations. It is desirable to design a data hiding system that is able

to convey secondary data in high rate when noise is not severe and can also convey

some data reliably under severe processing. This chapter proposes multi-level data

hiding, which can achieve the above goal by combining multiple levels of embedding,

each associated with different robustness-capacity tradeoff. The proposed scheme is

motivated by a two-category classification of embedding schemes that have been dis-

cussed in Chapter3 and by a study on the performance of non-coherent detection of

the popular spread spectrum watermarking to be presented in Sec. 6.2.1.

121
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The work presented in this chapter can be used for such applications as robust

annotation, content-based authentication, access/copy control, and fingerprinting.

The design objective of this work is to survive common processing in transcoding

and scalable/progressive transmission, such as compression with different ratio and

frame rate conversion in the case of video. Malicious attack of making the watermark

undetectable is not a major concern either because there is no incentive to do so in

applications like annotation and authentication, or the threat can be alleviated by

other means such as a well-determined business model.

6.2 Multi-level Embedding

An embedding scheme with a specific parameter setting generally target at a specific

pair of [robustness, capacity]. The relation between the watermark-to-noise ratio

(WNR) x and the maximum number of bits C that can be embedded is illustrated

by solid lines in Fig. 6.1(a). Focusing on the two types of embedding mechanisms

discussed in Sec. 3, the curve C(x) is essentially a profile of the capacity curves for

Type-I and Type-II in Fig. 3.7. For a watermarking algorithm targeting at surviving

a specific level of noise (i.e., a specific watermark-to-noise ratio x1), the maximum

number of bits we can extract with very small probability of error under different

actual noise conditions is indicated by the solid line in Fig. 6.1(b), which forms a step

function with the jump occurring when the actual watermark-to-noise ratio (WNR)

is x1. By varying the targeted WNR, we get different curves for the amount of

extractable data. These curves imply that targeting at surviving weak noise has the

weakness of having no extractable data when the actual noise is strong, while targeting

at surviving strong noise wastes the capability of conveying more data when the actual
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noise is weak. We would like to explore the possibility of choosing two WNR [x1, x2]

as our target where x1 < x2. More specifically, we apply the embedding strategy for

surviving x1 on a fraction α1 of the total number of media components and apply the

embedding strategy for surviving x2 on the remaining portion α2 with α1 + α2 = 1.

The maximum number of extractable bit versus the actual noise conditions of this

combined embedding follows a 2-step curve CII(x) in Fig. 6.1(c). The combined

approach allows more bits to be extractable than both CI,1(x) (with targeted WNR

as x1) when x ≥ x2, and CI,2(x) (with targeted WNR as x2) when x < x2.
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Figure 6.1: a|b
c|d Amount of extractable data by single-level & multi-level embedding:

(a) embedding capacity versus watermark-to-noise ratio, (b)-(d) the number of ex-
tractable bits by single embedding level, by two embedding levels, and by infinitely
many embedding levels.
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More generally, for a combined embedding with targeted WNR as [x1, x2, ..., xM
]

and the associated fraction as [α1, α2, ..., αM ] where x1 < x2 < ... < x
M

and
∑M

i=1 αi =

1, the maximum number of extractable bits CM(x) is:

CM(x) =



∑M
i=1 αiCI,i(xi) if x > x

M
;∑k

i=1 αiCI,i(xi) if xk < x < xk+1, k = 1, ...,M − 1;

0 if x < x1.

(6.1)

If the amount of media components allocated for each embedding level xk is αi = 1
M

,

the above equation becomes

CM(x) =



1
M

∑M
i=1 CI,i(xi) if x > x

M
;

1
M

∑k
i=1 CI,i(xi) if xk < x < xk+1, k = 1, ...,M − 1;

0 if x < x1.

(6.2)

To study the case of large M , let x
L

= x1, x
U

= x
M

, and xi+1−xi = (xU−xL)/(M−1).

We further assume that the lower and upper bounds xL and xU are kept constant

and the profile C(x) is Riemann integrable. Then as M going to infinity, we have

C∞(x) =



1
x

U
−x

L

∫ x
U

x
L

C(t)dt if x > x
U
;

1
x

U
−x

L

∫ x
x

L
C(t)dt if x

L
≤ x ≤ x

U
;

0 if x < x
L
.

(6.3)

This is illustrated in Fig. 6.1(d). We can see that combining many embedding levels

gives a smoothly decayed amount of extractable information as the actual noise gets

strong. We shall call this multi-level embedding. In practice, both the fractions, {αi},

and the targeted WNRs, {xi}, can be non-uniform to allow different emphasis toward

different noise conditions.

The graceful change of the amount of extractable information is desirable in many

applications. The information to be embedded usually requires unequal error protec-

tion (UEP). Some bits, such as the ownership information and a small amount of
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control information facilitating the decoding of a larger amount of payload bits, are

required to be embedded more robustly than others. For applications in which ac-

cess or copy control policies, often in the form of a non-trivial number of bits, are

embedded in the audio or video source, the policy cannot be enforced until it is de-

coded. Because lightly compressed audio/video has higher perceptual quality hence

higher value than strongly compressed one, it is desirable to put the policy in effect

much sooner to protect the rights of copyright holders. This implies that for a wa-

termarked audio/video which could be later transcoded to various rates, the amount

the extractable information should be adaptive with respect to the actual noise con-

dition. Although there are a few works in literature proposing to perform multiple

watermarking with different robustness (e.g., add a robust ownership watermark and

a multiple-bit tracking label), the amount of the information conveyed by one or both

levels is often no more than a few bits. Their applications are mainly for the control

information versus user payload, which will be discussed in Sec. 6.4.2. In this chapter,

we shall study the multi-level embedding problem in a more general sense, aiming at

conveying several sets of data with different robustness, each set having a non-trivial

number of bits.

While the two types of embedding discussed in Chapter 3 can be used to realize

multi-level data hiding, a key issue is to determine what part of the host signal

to be used for each capacity-robustness level. We have performed an analysis on

the performance of non-coherent detection of spread spectrum approach which has

good tradeoff between robustness and imperceptibility but has limited data hiding

capacity under non-coherent detection. This analysis, summarized as follows, provides

a guideline to the partitioning of host signal spectrum for multi-level data hiding.
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6.2.1 Justification of Spectrum Partition

In Chapter 3, we have discussed the hypothesis testing formulation of Type-I additive

watermarking: 
H0 : Yi = −Si + Mi (i = 1, ..., n) if b = −1

H1 : Yi = +Si + Mi (i = 1, ..., n) if b = +1
(6.4)

where {Si} is a deterministic known sequence (i.e., the watermark), b is one bit of data

to be embedded and is used to antipodally modulate Si and is equally likely to take

“+1” and “-1” values, Mi is the noise, and n is the number of samples/coefficients to

carry the hidden information. In literature, Mi is usually modeled as i.i.d. gaussian

distribution N(0, σM
2) for simplicity. The optimal detection statistics under this

assumption is a (normalized) correlator with Si:

TN = Y T S/
√

σM
2 · ||S||2 (6.5)

This test statistics is gaussian distributed with unit variance and the mean

E(TN) = b ·
√

n · ( 1

n
||S||2)/σM

2 (6.6)

According to Bayesian rule, setting the threshold to zero gives the minimum probabil-

ity of error. That is, we compare TN with zero, and decide on H1 if it is positive and

on H0 otherwise. The probability of error is Q(E(TN)), where Q(x) is the probability

of P (X > x) of a gaussian random variable X ∼ N(0, 1).

In non-coherent detection, Mi consists of the interference from host media and

the noise processing/attack. The high power of host media causes a large value in

σM
2, reducing E(TN) and increasing the probability of detection error. Because the

host media serves as a major noise source in non-coherent detection, researchers have

been studying ways to reduce the interference from host signal. One proposal, based
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on the observation that the low band coefficients of the host media generally have

much higher power than the mid-band, suggests marking only mid-band coefficients

to reduce the interference [62]. The watermark detector there is the commonly used

correlator. The “mark mid-band only” proposal conflicts with the common under-

standing in detection theory that under gaussian noise, the detection performance

should be enhanced with more independent observations. The confliction comes from

the noise model. While the i.i.d. gaussian distribution is the noise condition that

leads to the minimum Euclidean distance or maximum correlation being the opti-

mal detection [2], this noise model is not always the case in practical applications,

for example, different bands of block DCT coefficients have different variance. The

observation that low-band coefficients have higher power than the mid-band in the

above-mentioned prior work is a reflection of this fact. A more realistic model as-

sumes the noise being independent gaussian distributed but with different variance

from band to band. For this kind of noise, the simple correlator is no longer an optimal

detector. Instead, we should first normalize the observations by the corresponding

standard deviation to make the noise distribution i.i.d, then take the correlation.

That is,

T ′
N =

N∑
i=1

Yi · Si

σ
Mi

2
/

√√√√ N∑
i=1

Si
2

σ
Mi

2
(6.7)

This optimal detector can be understood as a weighted correlator with more weight

given to the less noisy components.

There are two implications associated with the weighted correlator. On one hand,

leaving any band out in embedding will reduce the magnitude of the detection statis-

tics hence enhance the probability of error. This result is different from what was

claimed in literature because the detector there, though simple and very popularly

used, is not optimal for non-i.i.d gaussian noise. On the other hand, the contribution
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from the noisy bands is little, as they have been scaled by the inverse of the noise

variance. The noisy bands include the low bands which have strong interference from

original host signal. Leaving them out in spread-spectrum embedding will not cause

significant performance degradation in detection. For a more general gaussian noise

model in which the components of the host media and/or the noise may be depen-

dent, whitening and normalization should be performed before applying the minimum

Euclidean distance detector or maximum correlation detector [2].

This analysis has been confirmed by our experimental study on 114 natural photo

images. We implemented the block-DCT domain spread spectrum algorithm proposed

by Podichuk-Zeng [46] and use the q-statistics proposed by Zeng-Liu [53] in detection.

The q-statistics is a correlation statistics with variance being normalized to 1. We

shall denote q′ and q as the detection statistics with and without weighting according

to an estimation of the total noise conditions:

q = MZ√
VZ/n

(6.8)

where Zi = Yi · Si, MZ =
1

n

n∑
i=1

Zi, VZ =
1

n− 1

n∑
i=1

(Zi −MZ)2;

q′ = MZ′√
VZ′/n

(6.9)

where Z ′
i = Yi · Si/ci, MZ′ =

1

n

n∑
i=1

Z ′
i, VZ′ =

1

n− 1

n∑
i=1

(Z ′
i −MZ′)

2
.

The weight {ci} reflects the impact of the noise variance term in Eq. 6.7. The noise

variance is not easy to be estimated accurately because (1) the precise power of the

cover signal is unknown, and (2) the variance of processing noise varies dramatically

depending on what kind of distortion/attack is applied to the media. For the first

problem, one may make an estimation based on the statistics of the current test

media; for the second problem, a set of known signal may be added to predetermined

locations of the cover signal, serving as a training sequence to facilitate the noise
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estimation [38]. In our experiment, we choose {ci} based on the variance of host

signal and potential processing noise of the frequency band which Yi is in. They are

empirically determined via a statistical study on a number of natural images.

Using both q and q′ as detection statistics, we studied the above-mentioned 114

natural images, each of which was tested using 3 different watermarks. We vary the

frequency band from which watermark begins to be put in and this change is in a

zigzag order shown in Fig. 6.2. The q and q′ values are computed under several

distortion conditions including zero distortion, JPEG with different quality factors,

and low pass filtering 1. The average normalized q and q′ are shown in Fig. 6.3.

It can be seen that the q value assumes maximum when the band from which the

embedding starts is around 6to10 (i.e., the third diagonal lines of AC coefficients),

and q decreases when either more or less frequency bands are involved. As predicted

by our analysis, q′ gives larger value hence smaller probability of error than q. In

addition, q′ is monotonically decreasing when fewer bands are used in embedding,

but the decrease when leaving the lowest 5 bands out is insignificant.    
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Figure 5   a | b  Average detection statistics of correlator and weighted correlator (both normalized) 
from 114 natural images. (a) detection statistics of non-weighted and weighted correlator (q and q’) 
under zero distortion.  (b) detection statistics of weighted correlator q’ under different distortions. 
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choose the block size large enough to ensure that it contains some complex contents which will allow secondary data to be 
embedded without causing perceptible artifacts.  Such large block size will reduce the total number of bits that can be put in.  
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Figure 6.2: Zig-zag ordering of DCT coefficients in an 8× 8 block.

1For each image, we also normalize q and q′ with respect to the number of embeddable coefficients
that can be watermarked without introducing perceptual distortion so that the detection values for
smoother images and for more complex images are comparable.
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Figure 6.3: a|b Comparison of average detection statistics for the correlator and the
weighted correlator from 114 natural images, both are normalized: (a) detection
statistics of non-weighted and weighted correlator q and q′ under zero distortion,
with x-axis indicates the frequency band from which watermark starts to be put in
using a zigzag order; (b) detection statistics of weighted correlator q′ under different
distortions.

6.3 Multi-level Image Data Hiding

With the analysis in previous section on non-coherent detection of spread spectrum

watermarking and the two-category classification of embedding mechanisms in Chap-

ter 3, the answer regarding which part of the host signal should be used for each

embedding level becomes clear. The multi-level data hiding shall take advantage of

the “sweet points” of both types of schemes: we apply Type-I spread spectrum em-

bedding to mid-band coefficients to reach high robustness at a cost of capacity, and

apply Type-II to low-band to reach high capacity with moderate robustness. With

such multi-level embedding, we can hide many bits and decode them successfully

when image experiences little or moderate distortion, and can convey a few bits very

robustly even when image is distorted significantly.
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1. Illustratation of Two-level Data Hiding in Block-DCT Domain 
2. Block Diagram of Two-level Data Hiding in Block-DCT Domain. (a) embedding, (b) extraction 
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Figure 6.4: Illustration of Two-level Data Hiding in Block-DCT Domain.

A two-level image data hiding in block-DCT domain (Fig. 6.4) is demonstrated

here in detail, while it is possible to extend the idea to more than two levels. The

first level uses odd-even embedding, an example of Type-II to embed the first set

of data in low band, though it is straightforward to replace it with other schemes.

Based on the justification regarding the spectrum partition, we take the first two

diagonal lines of AC coefficients as low band, i.e., the first 5 AC coefficients, shaded

in Fig. 6.4. In addition, we perform the embedding with quantization to enhance

robustness, as discussed in Chapter 3. The quantization step sizes we have used are

equivalent to JPEG compression with quality factor 50%. During this process, the

just-noticeable-difference (JND) is computed and any embedding which may result in

noticeable difference is withheld. The second level uses spread spectrum embedding

to hide the second set of data in mid-band. Antipodal modulation is used here,

i.e., to add or subtract a spread spectrum signal to denote one bit (Eq. 6.4). The

watermark strength is also adjusted by JND. Both sets of data may be error correction

encoded, and each bit is embedded in a region that is not overlap with those for other
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bits. Shuffling is performed on this TDMA type of embedding to handle the uneven

embedding capacity from region to region, as discussed in Sec. 3.4 and Sec. 4.

The block diagram in Fig. 6.5 summarizes the overall system. Before we present

the experimental result, we shall discuss briefly a human visual model refined from

those available in literature. The model has been used in our system for computing

the JND.

    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1  Block diagram of multi-level image data hiding. (a) embedding process, (b) extraction processing 
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Figure 6.5: Block diagram of multi-level data hiding for images: (a) embedding
process, (b) extraction process.
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6.3.1 Refined Human Visual Model

Almost all watermarking algorithms on grayscale and color images utilize human

visual model to ensure imperceptibility, either implicitly or explicitly. In a classic

work of spread spectrum watermarking, Cox et al. [44] pointed out the importance to

embed watermark in perceptually significant components to achieve robustness and

made use of the perceptual tolerance of minor changes to embed watermark in those

significant components. In their implementation, the watermark is embedded in the

DCT domain of the image and a simplified scaling model is used to set the watermark

power about a magnitude lower than that of the cover image. By explicitly utilizing

human visual models known as frequency-domain masking, the works by Podichuck-

Zeng [46] and Swanson et al. [48] embed the watermark in block-DCT domain and

use the masking model to tune the watermark strength in each block. Swanson et al.

also incorporated spatial-domain masking in their work.

The block DCT domain is a popular embedding domain in literature. It is compat-

ible with the commonly used image and video compression techniques such as JPEG,

MPEG, and H.26x, making it possible to perform compressed domain embedding and

to make use of various techniques already developed for that domain (such as human

visual model for JPEG compression [100, 101]). The block-based domain also has

the advantage of fine-tuning watermark strength for each local region to achieve a

good tradeoff between imperceptibility and robustness against distortion. However,

this popular domain has a few major weaknesses both on imperceptibility and on ro-

bustness. We shall focus on the perceptual problem in this section and postpone the

discussion regarding robustness till Chapter 9. The perceptual problem with block

DCT domain embedding is the ringing artifacts introduced on edges. The previously

proposed frequency-masking model has not taken this issue into account [46]. The
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only way for those models to reduce artifacts is to attenuate the whole watermark

signal, which leads to less robustness and data hiding capacity. Tao et al. proposed

to apply block classification to reduce artifacts by classifying image blocks into six

categories (i.e., edge, uniform with moderate luminance, uniform with either high or

low luminance, moderately busy, busy, and very busy), and adjusting the watermark

strength differently for each category [50]. The classification, involving enumerations

of many possibilities, could be computationally expensive. We propose a refined hu-

man visual model with less computational complexity than [50] while introducing

fewer artifacts than [46].

Before presenting the details of our refinement, we shall explain a bit more about

the frequency domain masking model used in [46], on top of which our refinement

is applied. The masking model is based on the following observations of human

visual system: first, different frequency bands have different just-noticeable levels,

and generally the just-noticeable-difference (JND) in high frequency bands is higher

than that in low bands; second, in a specific frequency band, a stronger signal can be

modified by a larger amount than a weak signal without introducing artifacts. Because

the blocks with edges and textures have larger coefficient values (in magnitude) than

the smooth blocks, the JND of the non-smooth blocks obtained by this model is

generally larger than the smooth ones. The model reflects little difference between

the two non-smooth cases, namely, edge block and texture block. These two cases,

however, have significant visual difference: with modification of the same strength in

block DCT domain, the artifacts is more likely to be revealed in an edge block than in

a texture one. The possible reason lies on two aspects: (1) the modification in block-

DCT domain is equivalent to add or subtract the corresponding 2-D DCT basis images

shown in Fig. 6.6, and (2) busy non-structural pattern on or near a structural feature
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such as an edge is quite obvious to human eyes, while many textures themselves

involve more or less random patterns hence the add-on busy artifacts get swamped

and undistinguishable to eyes. Our refinement tries to distinguish edge and texture

blocks so that we can adjust the preliminary JND computed by the simple masking

model to achieve better invisibility. In other words, we try to protect the edge block

from over-modified. Furthermore, we observed that compared with the edges between

two non-smooth regions, the boundary block between a smooth region and another

region (either smooth or not) should be protected more, even though the edge in that

block may be soft and weak.

Figure 6.6: 2-D DCT basis images of 8 × 8 blocks. The upper-left corner is the DC
basis image.

The refined HVS model, illustrated by the block diagrams in Fig. 6.7, includes
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Figure 6.7: Block diagram of the refined 3-step HVS model: (top) basic modules,
(bottom) detailed procedures.

the following three steps:

Step-1: Frequency domain masking

The first step of our perceptual analysis makes use of block-DCT domain masking

result and computes preliminary embeddability and just-noticeable-difference (JND)

for each coefficient, which determine whether a coefficient can be modified and if so,

by how much amount it can be changed. As mentioned above, this step is similar to

what has been proposed in [46] and forms a basis for further adjustment.
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Step-2: Edge-block detection

The algorithm we use for determining which block contains edges has two sub-

steps. First, we use edge detection algorithm (e.g., Haar filtering) to produce an edge

map. Second, we compute the standard deviation (STD) of pixel values in each block

(i.e., we obtain one value for each block, measuring its activeness), then compute the

standard deviation of these standard deviations in a neighborhood (e.g., 3 blocks by

3 blocks). The second sub-step helps to eliminate many unwanted edges obtained in

the first sub-step, such as those in texture regions.

The reasoning for such double STD measure is that in a texture region, although

the STD of each block is large, the STDs of adjacent blocks in the same texture

region are similar hence does not have large deviation when computing the second

round STD. On the other hand, the STD of a edge block is likely to be very different

from the majority of its neighbor blocks. Double STD computation can be easily

implemented.

At the end of this step, we combine the edge map with the double STD result

and output an edge measure that indicates whether there is an edge across the block

and if so, how strong the edge is. The edge measure is then used to adjust the

just-noticeable-difference. The adjusted JND will ultimately be used to control the

watermark strength so that weaker watermark will be applied to edge blocks than to

texture ones.

Step-3: Identifying blocks adjacent to smooth region

As we mentioned, artifacts by block-DCT domain embedding are more visible in

blocks that are adjacent to smooth region than in other blocks, even if the block

contains such weak edges that the watermark may not be attenuated sufficiently by

Step-2. A relatively stronger watermark can be added if an edge block is not adjacent



CHAPTER 6. MULTILEVEL DATA HIDING FOR IMAGE & VIDEO 138

to smooth region than the contrary case. To protect the blocks adjacent to smooth

region from artifacts, we attenuate the JND of a block that is adjacent to smooth

block so that the watermark applied there will be weaker. The smoothness of a block

is determined by the magnitudes of its AC coefficients.

Fig. 6.8 demonstrates the difference between applying step-1 only (similar to

HVS model in [46], and denote as “HVSpz”) and our new 3-step model (denoted

as “HVSedge”), for both Lenna image (containing lots of smooth region and sharp

edges) and Baboon image (containing lots of textures and also a dark border at bot-

tom). The image quality and detection statistics of single additive spread-spectrum

watermark are summarized in Table 6.1. Note that other parameters such as scaling

factor for watermark strength are kept same in this experiment so that the only dif-

ference is the HVS model. From the image details shown in Fig. 6.8, we can see that

the proposed 3-step HVS model has fewer artifacts, yet the detection statistics is still

high enough to encode multiple bits. 
Results of refined HVS:  (tab_3stepHVS_compare) 
 
 

Image HVS type Detection 
statistics 

PSNR 
(dB) 

Subjective image 
quality 

HVS edge 25.50 42.51 good img quality 
 

 
Lenna 

(512x512) HVS pz 35.96 40.76 artifacts along edges 
(e.g., shoulder) 

HVS edge 58.49 33.59 good img quality 
 

 
Baboon 

(512x512) HVS pz 62.81 33.10 obvious artifacts along 
bottom dark border 

 
 

Table 6.1: Comparison of the proposed HVS model (“HVSedge”) and a model used
by Podichuk-Zeng (“HVSpz”).
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refined HVS examples (fig_3stepHVS_eg) 

 
 
 
 
 
      
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 

 
 
 
 
 

(e) marked baboon 
using HVSedge 

(f) marked baboon 
using HVSpz 

(a) original lenna  image (b) marked lenna 
using HVSedge 

(c) marked lenna  
using HVSpz 

(d) original baboon 
image  

Figure 6.8: Examples of images watermarked by the proposed HVS model
(“HVSedge”) and a model used by Podichuk-Zeng (“HVSpz”). The artifacts by
HVSpz model are indicated by gray arrows.
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6.3.2 Experimental Results

The two-level data hiding scheme has been applied to 512×512 Lenna image (Fig. 6.9).

With respect to the original unmarked image, the PSNR of the image with hidden

data is 42.5dB. Incorporating error correction codes and shuffling, we embed a 32×

32 binary pattern of PINTL-Matsusita logo in low band and it can be extracted

correctly even when the image experiences JPEG compression of quality factor 45%.

We also use spread spectrum approach to embed the ASCII code of a character string

“PINTL” in mid band, which can be extracted without error even when the image

is JPEG compressed with quality factor 20% or blurred. The embedding rate can be

higher for images which contain more complex contents and/or which are larger than

Lenna images, and can be lower otherwise. For example, we can embed a longer string

of “Panasonic Tech.” and 32× 32 pattern in baboon image 2, as shown in Fig. 6.10.

With the help of the refined human visual model discussed in the previous section,

the marked image has no visible artifacts and has a PSNR of 33.6dB with respect

to the original image. The lower PSNR of the baboon image than the Lenna image

is another indication that stronger watermarks can be embedded invisibly in images

with more textures.

6.4 Multi-level Video Data Hiding

Video has been the center of interests in the world of multimedia. If a picture is

considered better than 1000 words, a video or a sequence of image frames can convey

even more information. Content providers such as movie industry and news agencies

2The embedding rate of baboon image in Type-II level can be higher than Lenna image. For the
ease of visualizing the hidden data, our experiment hid the same PINTL-Matsusita pattern of 1024
bits in both images.
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Multi-level data hiding for Lenna image (512x512). (a) original image. (b) image with hidden data. (c) 
enlarged difference between (b) and (a) (black means zero difference). (d) extracted PINTL-Matsusita 
pattern embedded via relationship enforcement (up scaled). 
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a | b 
c | d 

Figure 6.9: a|b
c|d Multi-level data hiding for Lenna image (512x512). (a) original image;

(b) image with hidden data; (c) enlarged difference between (b) and (a) with black
denoting zero difference; (d) extracted 32x32 PINTL-Matsusita pattern embedded
via high-capacity embedding level.
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Figure 8    a | b | c   Multi-level data hiding for Baboon image (512x512). (a) original image. (b) 
image with hidden data. (c) enlarged difference between (b) and (a) (black means zero difference).  
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4. CONCLUSION AND FUTURE WORK 
 
In this paper, we proposed a multi-level data hiding scheme which is able to convey secondary data in high rate when noise is 
not severe and can also convey some data reliably under severe processing.  The proposed scheme is based on a new 
classification of embedding schemes and a study on detection performance of spread spectrum embedding.  The effectiveness 
of multi-level data hiding is demonstrated by our experiments.  
 
The spread spectrum embedding and odd-even embedding we used in the experiments are typical approaches of each 
category, namely, insertional and relationship enforcement.  There are many other candidate schemes in each category, 
especially for relationship enforcement type.  Future work includes a more detailed study and comparison of the schemes in 
each category so that we can select an optimal one for each level of embedding.  We shall also pursue the possibility of 
applying multi-level data hiding to digital audio and other types of media. 
 

                                                           
4   The embedding rate of baboon image via relationship enforcement approach can be higher than lenna image.  For the ease 
of visualizing the hidden data, we hide the same PINTL-Matsusita pattern of 1024 bits in both images. 
5   Q refers to the quality factor of JPEG, ranging from 0% to 100%.  Q=100% gives the highest quality. 

Figure 6.10: a|b|c Multi-level data hiding for Lenna image (512x512). (a) original
image; (b) image with hidden data; (c) enlarged difference between (b) and (a) with
black denoting zero difference.

have imposed high demand of the ownership protection, alteration detection, access

control, and source tracking (fingerprinting) on digital video. Embedding many bits

in high-quality digital video achieving both imperceptibility and robustness can be

used for these purposes. Besides the large data volume and high computation com-

plexity involved in processing video, we shall discuss in this section other challenges

of video watermarking and propose solutions. Specifically, extending the multi-level

data hiding from image to video, we need to address several issues, including the

embedding domain and the uneven embedding capacity. A summary of our system

design is shown in Fig. 6.11. The details of the modules that perform data embed-

ding/extraction to/from each frame are similar to the multi-level image data hiding.

6.4.1 Embedding Domain

Because consecutive video frames look similar (except at scene change and fast mo-

tion) and each frame can be viewed as a standalone unit, it is possible to add or drop
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“fig:video_blkdiag ”, “tab:video_result” 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1   Block Diagram of Proposed Video Data Hiding System  
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Figure 6.11: Block diagram of the proposed video data hiding system.

some frames, or switch the order of adjacent frames without causing noticeable differ-

ence. These manipulations are potential attacks that have to be considered in robust

data hiding systems. Adding redundancy and/or searching for frame-jitter invariant

domain are common ways to handle these attacks. We focused on the redundancy

approach due to its effectiveness and computational simplicity.

In particular, we adopt two methods to handle frame jittering, as illustrated in

Fig. 6.12. The first one is to partition a video into segments, each of which consists of

similar consecutive frames, then to hide the same data in every frame of one segment.

This approach allows us to tolerate frame dropping which involves a small number of

isolated frames. Repetition also helps to combat noise from processing/attacks so as

to achieve higher detection accuracy. Extraction can be done via weighted majority

voting, giving larger weights to the frames experiencing less distortion.

For combating frame reordering, frame addition, and frame dropping of larger

units, the first method alone is not sufficient. Our second method addresses these

issues by embedding a shortened version of segment index in each frame. This in-

formation is called frame synch and is part of the control bits that will be discussed
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next. The frame synch information can assist us in detecting and locating frame jit-

tering. When used with redundancy approaches such as repeatedly embedding data

in separate parts of a video, this method can enhance the robustness against attacks

of frame reordering and dropping.

In short, we apply image data hiding approach to each video frame and hide the

same user data as well as frame synch index in every frame of the same segments to

combat frame jittering.

WM @ PV 12/00

Electrical Engineering Dept.
Princeton University
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Figure 6.12: Methods for handling frame jittering by the proposed video data hiding
system.

6.4.2 User Data vs. Control Data

In practice, there are two layers of data we would like the video to carry. Layer-1

is the actual information (possibly error correction encoded) for the purpose of copy

protection (e.g., a copyright label of “(c) Panasonic 2000”), access control, authenti-

cation, annotation, and other applications. We shall refer to the data for this layer

as user data. Layer-2 is the other information that needs to be conveyed to facilitate

extraction, for example, the information regarding synchronization and the number

of bits embedded in each frame. This layer’s data is referred as control data.

To achieve the multiple tradeoff levels between robustness and capacity, we use
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multi-level embedding for user data and adopt TDMA approach with shuffling to hide

them. For control data, we use the robust spread spectrum embedding because in

general the total number of control bits is not large but their accuracy is critical for

extracting user data. The random vectors for hiding each control bits are orthogonal

to each other and are also orthogonal to those used for embedding user data.

Typical control data include the total number of embedded bits of user data,

frame synch information, and a constant watermark vector that can be used for image

registration. We shall take frame synch as an example to demonstrate the embedding

of control data. Frame synch, as introduced before, is a shortened video segment index

to help combating frame jittering attack. The range of frame synch index is from 0

to K − 1, and the i-th segment is labeled with an index mod(i, K). A tradeoff has to

be made here: on one hand, the larger the K is, the more accurately the segments’

ordering information can be obtained, hence the higher tolerance with respect to

frame jittering; on the other hand, the control data is considered as overhead hence

its amount should be limited, which implies that a small K is desirable. Considering

these factors, we choose K = 8. That is, we index video segments in a round-robin

fashion from 0 to 7 and each index is represented by 3 bits (23 = 8). For these 3 bits,

the orthogonal modulation discussed in Sec. 3.4 is used due to its energy efficiency: if

the synch index is j, we embed the j-th sequence of K pre-selected orthogonal random

sequences. As long as K is not too large, we can find sufficiently many orthogonal

sequences and keep a reasonable detection computational complexity.

6.4.3 Variable vs. Constant Embedding Rate (VER vs. CER)

We have mentioned that one issue to be addressed when extending the multi-level

data hiding idea from image to video is the uneven embedding capacity both from
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region to region within a frame and from frame to frame. Because of the potentially

large overhead by using VER, we alleviate the intra-frame unevenness via CER and

the shuffling techniques as explained in Part-I. Regarding inter-frame unevenness, we

adopt VER approach by embedding additional side information because the over-

head can be made relatively small compared to the total number of bits that can be

embedded in most frames. The details of VER implementation are explained below.

It has been observed that the number of bits that can be embedded in each frame

generally varies quite significantly, from very few bits for smooth/uniform frames to

dozens or even hundreds bits for frames containing lots of contents and textures.

Representing the side information of how many bits being embedded would need

many bits on average. Denoting the number of bits embeddable in a given frame as

C, it is desirable to (1) assign a shorter representation or code to smaller values of C

to reduce the relative overhead, (2) reduce the average code length for representing C.

We adaptively determine the embedding rate according to the relationship between

the estimated capacity Ĉ of the current frame and two thresholds T1 and T2 where

T1 < T2, and convey this side information using spread spectrum embedding that is

orthogonal to other embedded data. The estimation Ĉ is obtained from the energy

of DCT coefficients, the number of embeddable DCT coefficients, and the detection

statistics of an embedding trial that hides a single spread spectrum watermark in

the video frame. As shown in Table 6.2, we do not embed any user data when the

Ĉ is small, and embed a predetermined small number of bits when Ĉ is moderate.

The overhead for conveying these two cases is well constrained by two orthogonal

spread spectrum sequences +s1 and +s2. When Ĉ is large, we switch to a full VER

mode signaled by a spread spectrum sequence −s1, and use orthogonal modulation

via several other spread spectrum sequences to convey the number of bits embedded
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in the frame to ensure correct decoding of user payload data. To reduce the overhead

for conveying and detecting this side information, we require that the number of bits

embedded can only be chosen from a pre-determined finite set, for example, {0, 1,

4, 8, 16, 40, 75, 100, 150, 200 bits}. Little embedding capacity will be wasted if the

finite set is wisely chosen.

Table 6.2: Adaptive embedding rate for video.

estimated capacity Ĉ user data control data

Ĉ ≤ T1 not to hide any bits add s2
T1 < Ĉ < T2 CER - constant rate add +s1

(hide a predefined number of bits)
VER - variable rate add −s1 and

Ĉ ≥ T2 (the number of embedded bits is # bits embedded
determined by Ĉ)

6.4.4 Experimental Results

We tested the proposed algorithm on luminance components of digital video. A

same character string denoting access information (without error correction coding)

is hidden in two embedding levels. For simplicity, we use equal-length segments,

each containing 6 consecutive frames. One test video is the first 60 frames of “flower

garden” raw sequence, which has a frame size of 352 x 240 and a frame rate of 30

frames per second. After data hiding, the video is encoded using MPEG-2 compres-

sion. 18 characters can be extracted accurately under 1.5Mbps compression with a

GOP structure of IBBPBBI. For less strong compression such as 4.5Mbps encoding,

a longer string of 91 characters can be successfully extracted. This indicates that

the system is able to extract the whole string from only a small number of frames

when the video goes through light compression hence with high quality, while also
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being able to extract it when the video goes through heavy compression, though the

processing of more frames is needed in the latter case. Fig. 6.13 shows the 1st and

30th frames of original and watermarked frames as well as their enlarged difference.

11
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Figure 6.13: Multi-level data hiding for flower garden video sequence: (a)-(c) the
original 1st frame, the watermarked version, and their difference, respectively; (d)-(f)
the original 30th frame, the watermarked version, and their difference, respectively.
Both videos are compressed using MPEG-2 4.5Mbps, and the differences are enlarged
with gray denoting zero difference and black/white denoting large difference.

We also tested a longer and more diverse sequence with 660 frames. It is a concate-

nated version of “flower garden”, “football”, and “table tennis” sequences. A total

of 3032 bits are embedded via high capacity level and 1266 bits via high robustness

level. All 4298 bits can be extracted accurately after 4.5Mbps MPEG-2 compression.

When the video is compressed at 1.5Mbps, the 1266 bits at high robustness level can

still be correctly extracted, though the detector shows low detection confidence on
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3 bits (0.2%) under such severe distortion. In practice, error correction codes such

as BCH/RS codes or Turbo codes can be incorporated to correct a small percentage

of errors, if any. The experimental results of both image and video data hiding are

summarized in Table 6.3.

Table 6.3: Summary of experimental results for the proposed multi-level image and
video data hiding system

“fig:video_blkdiag ”, “tab:multiDH_result” 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1   Block Diagram of Proposed Video Data Hiding System  
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Chapter 7

Data Hiding for Image Authentication

7.1 Introduction

For years, audio, image, and video have played important role in journalism, archiv-

ing, and litigation. A coincidentally captured video of the well-known 1993 Rodney

King incident played an important role in prosecution, a secretly recorded conver-

sation between Monica Lewinsky and Linda Tripp touched off the 1998 presidential

impeachment, just to name a few. Keeping our focus on still pictures, we have no

difficulty in realizing that the validity of the old saying “Picture never lies” has been

challenged in the digital world of multimedia. Compared with the traditional analog

media, making seamless alteration is much easier on digital media by software editing

tools. With the popularity of consumer-level scanner, printer, digital camera, and

digital camcorder, detecting tampering becomes an important concern. In this chap-

ter, we discuss using digital watermarking techniques to partially solve this problem

by embedding authentication data invisibly into digital images.

In general, authenticity is a relative concept: whether an item is authentic or

not is relative to a reference or certain type of representation that is regarded as

150
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authentic. Authentication is usually done by checking whether certain rules and re-

lationship which are supposed to be found for an authentic copy are still hold in the

test material. In traditional digital network communication, a sophisticated check-

sum, usually known as hash or message digest, is used to authenticate whether the

content has been altered or not. The checksum is encrypted using such cryptographic

techniques as public-key encryption to ensure that the checksum cannot be generated

or manipulated by unauthorized persons. This is known as digital signature in cryp-

tography [11]. For traditional type of source data such as text or executable codes,

the checksum is stored or transmitted separately since even minor changes on this

kind of data may lead to different meaning. Perceptual data such as digital image,

audio and video are different from the traditional digital data in that perceptual data

can be slightly changed without introducing noticeable difference, which offers new

room for authenticating perceptual data. For example, we can imperceptibly modify

an image so that the least significant bit of the representation of each pixel is always

the checksum of other bits. In other words, the checksum is embedded into the image

instead of having to be stored separately as for traditional data. Such embedding

approach falls in the category of digital watermarking / data-hiding. For example,

fragile watermarking [26] can be used to insert into an image some special data which

will be altered when the host image is manipulated.

Many general techniques of data hiding can be applied to this specific applica-

tions, such as the general approaches discussed in Part I and the image data hiding

approaches presented in Chapter 6. But the algorithm design has to be aware of a few

unique issues associated with authentication, including the choice of what to embed

and the security considerations to prevent forgery or manipulation of embedded data.

The following features are desirable to construct an effective authentication scheme:
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1. to be able to determine whether an image has been altered or not;

2. to be able to integrate authentication data with host image rather than as a

separate data file;

3. the embedded authentication data be invisible under normal viewing conditions;

4. to be able to locate alteration made on the image;

5. to allow the watermarked image be stored in lossy-compression format, or more

generally, to distinguish moderate distortion that does not change the high-level

content vs. content tampering.

This chapter presents a general framework of watermarking for authentication and

proposes a new authentication scheme by embedding a visually meaningful watermark

and a set of features in the transform domain of an image via table look-up. The

embedding is a Type-II embedding according to Chapter 3. Making use of the pre-

distortion nature of Type-II embedding, our proposed approach can be applied to

compressed image using JPEG or other compression techniques, and the watermarked

image can be kept in the compressed format. The proposed approach therefore allows

distinguishing moderate distortion that does not change the high-level content versus

content tampering. The alteration made on the marked image can be also localized.

These features make the proposed scheme suitable for building a “trustworthy” digital

camera. We also demonstrate the use of shuffling (Chapter 4) in this specific problem

to equalize uneven embedding capacity and to enhance both embedding rate and

security.
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7.2 Previous Work

The existing works on image authentication can be classified into several categories:

digital signature based, pixel-domain embedding, and transform-domain embedding.

The latter two categories are invisible fragile or semi-fragile watermarking.

Digital signature schemes are built on the ideas of hash (or called message digest)

and public key encryption that were originally developed for verifying the authen-

ticity of text data in network communication. Friedman [74] extended it to digital

image as follows. A signature computed from the image data is stored separately

for future verification. This image signature can be regarded as a special encrypted

checksum. It is unlikely that two different natural images have same signature, and

even if a single bit of image data changes, the signature may be totally different.

Furthermore, public-key encryption makes it very difficult to forge signature, en-

suring a high security level. After his work, Schneider et al. [75] and Storck [79]

proposed content-based signature. They produce signatures from low-level content

features, such as block mean intensity, to protect image content instead of the ex-

act representation. Another content-signature approach by Lin et al. developed the

signature based on a relation between coefficient pairs that is invariant before and

after compression [41, 76]. Strictly speaking, these signature schemes do not belong

to watermarking since the signature is stored separately instead of embedding into

images.

Several pixel-domain embedding approaches have been proposed. In Yeung et

al.’s work, a meaningful binary pattern is embedded by enforcing certain relationship

according to a look-up table. Their work allows the tampering that is confined in

some local areas to be located [78]. Walton proposed an approach by embedding data

via enforcing relationship between sets of pixels [77]. Another pixel-domain scheme
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was proposed by Wong [80]. This scheme divides an image into blocks, then copies the

cryptographic digital signature of each block in the least significant bits of the pixels

for future verification. However, images marked with these pixel-domain Invisible-

Fragile Watermarking schemes cannot be stored in lossily compressed format like

JPEG compression, which is commonly used in commercial digital camera.

In addition to pixel-domain approaches, several block DCT-domain schemes may

be used for authentication purpose. Swanson et al. [66] round coefficients to multiples

of just-noticeable difference or mask value, then add or subtract a quarter to embed

one bit in an 8× 8 block. Koch et al [63] embed one bit by forcing relationships on a

coefficient pair or triplet in mid-band. The two approaches achieve limited robustness

via pre-distortion, and the embedding is likely to introduce artifacts in smooth regions.

Similar problem exists in other approaches, including a DCT-domain quantization

approach by Lin et al. [41], and a Wavelet-domain quantization approach by Kundur

et al. [82], both of which embed a signature in transform domain by rounding the

quantized coefficients to an odd or even number. Additional data can be embedded to

recover some tampered or corrupted regions, such as the self-recovery watermarking

proposed by Fridrich et al. in [88] and by Lin et al. in [41].

Recalling the desirable requirement for image authentication presented in the pre-

vious section, we find that many existing approaches in literature cannot satisfy all

requirements. The digital signature proposed in[74], as well as the content based

signature reported in [75] and [79] do not satisfy the requirements 2 and 4. The

pixel-domain scheme [78, 77, 80] can not be stored in lossy compression format. In

addition, transform-domain schemes [41, 82, 63, 66] do not handle the uneven embed-

ding capacity problem raised in Chapter 4, therefore may either introduce artifacts

in smooth region or embed fewer authentication bits than our proposed approach.
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7.3 Framework for Authentication Watermark

We proposed a general framework including the following elements for authentication

watermark:

1. what to authenticate

2. what data to be embedded for authentication purpose

3. how to embed data into an image

4. how to handle uneven embedding capacity

5. security considerations

The first element is fundamental and affects the other elements. We have to

decide whether to authenticate the exact representation of an image, or to have some

tolerance toward certain processing such as compression, cropping and scaling. In

addition, we need to determine other functionalities we would like to achieve, such

as locating alteration. The next two elements, namely, what and how to embed, are

designed based on the answer to the first element. More specifically, we can either

mainly rely on the fragility of the embedding mechanism to detect tampering (e.g.,

to put zeros in the least significant bits of all pixel values and later to check whether

such properties still hold or not on test images), or rely on the embedded data (e.g.,

to robustly embed a 64-bit check sum of the image features such as the block mean

intensity or image edge map, and later to check whether the extracted check sum

matches the one computed from the test image), or use both. For local embedding

schemes such as the TDMA type modulation discussed in Chapter 4, special handling

with smooth region, or in general, the uneven embedding capacity is necessary to

achieve high embedding rate and to locate alteration. Besides an appropriate design
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of what and how to embed, the detailed implementation must take security issues

into account in order to meet the demands in practical applications, for example, to

make it difficult for an attacker to forge valid authentication watermark in a tampered

image.

Following the above framework, we discuss our proposed authentication water-

marking approach based both on the fragility of embedding mechanism and on match-

ing the embedded features with the features extracted from a test image. The detec-

tion of tampering relies on both the embedding mechanism and the embedded data.

The alteration can also be located unless there is global tampering or the tampering

involves large areas. We shall present our approach in the context of grayscale images

with JPEG compression. The extension to images compressed using other means

such as Wavelet and to color images will be briefly discussed in Section 7.7. A block

diagram of the embedding process is given in Fig. 7.1 which, aside from the block

labeled “embed”, is identical to that of the JPEG compression [18]. Watermarks are

inserted into the quantized DCT coefficients via a look-up table. Explained below

are two aspects of watermark-based authentication, namely, to embed what data and

how to embed them.

Marked
Coeff.

Embed
Bit Stream of block

DCT Quant.
Coding

Entropy  Original
Image

Lookup Table

Marked Image

Data to
be embedded

Figure 7.1: Block diagram of embedding process for authentication watermarking.
The “Quant.” module stands for the quantization step.
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7.4 Transform-domain Table Lookup Embedding

The data for authentication purpose is generally embedded using a Type-II approach

discussed in Chapter 3 for its high embedding capacity and fragility, both of which

are useful in authentication. Here we present a Type-II embedding using a look-up

table in transformed domain. This transform domain look-up table embedding is an

extension of the pixel-domain scheme proposed by Yeung et al. [78]. The embedding

is performed on the quantized coefficients with a set of pre-selected quantization

step sizes, which are known to the detector because the extraction of hidden data

must be performed in the same quantized domain. As discussed in Chapter 3, this

quantization is a pre-distortion step to obtain limited robustness against compression

and other distortion.

A proprietary look-up table (LUT) is generated beforehand by the owner of the

image or the digital camera manufacturers. The table maps every possible value of

JPEG coefficient randomly to “1” or “0” with a constraint that the runs of “1” and

“0” are limited in length. To embed a “1” in a coefficient, the coefficient is unchanged

if the entry of the table corresponding to that coefficient is also a “1”. If the entry

of the table is a “0”, then the coefficient is changed to its nearest neighboring values

for which the entry is “1”. The embedding of a “0” is similar. This process can be

abstracted into the following formula where vi is the original coefficient, vi
′ is the

marked one, bi is the bit to be embedded in, Q(·) is the quantization operation 1, and

1For a uniform quantizer with quantization step size q, the quantization operation Q(x) is to
round x to the nearest integer multiples of q.
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LUT [·] is the mapping by a look-up table:

vi
′ =


Q(vi) if LUT [Q(vi)] = bi

vi + δ if LUT [Q(vi)] 6= bi, and

δ = min|d|{d = Q(x)− vi s.t. LUT [Q(x)] = bi}

(7.1)

The extraction of the signature is simply by looking up the table. That is,

b̂i = LUT [Q(vi
′)] (7.2)

where b̂i is the extracted bit.

The basic idea of the embedding process is also illustrated by the example in

Fig. 7.2. Here, zeros are to be embedded in two quantized AC coefficients with values

“-73” and “-24” of an 8× 8 image block. The entry in the table for coefficient value

“-73” is “1”. In order to embed a “0”, we have to change it to its closest neighbor for

which the entry is “0”. In this example, “-73” is changed to “-74”. Since the entry

for coefficient value “24” is already “0”, it is unchanged.

As mentioned earlier, the detection of tampering is based on both the embedding

mechanism and the embedded data. The clues provided by the embedding mechanism

is as follows: when a small part of a watermarked image is tampered without the

knowledge of the look-up table, the extracted bit from each tampered coefficient

becomes random, i.e.,

P (b̂i = 0) = P (b̂i = 1) =
1

2

implying that it is equally likely to be the same as or be different from the bit bi

originally embedded. For the moment, we assume that detector has knowledge of

the originally embedded data {bi} and the justification of this assumption will be

presented later. From a single coefficient, it is not reliable to determine whether

tampering occurs or not because there is a 50/50 chance that the extracted data
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Figure 7.2: Frequency-domain Embedding Via Table Lookup: zeros are embedded to
two quantized DCT coefficients “-73” and “24” by enforcing relationship according
to a look-up table. After embedding, the coefficients in the watermarked image are
“-74” and “24”.

matches the originally embedded one, i.e., b̂i = bi. However, if the tampering affects

several coefficients in a block and/or coefficients in several blocks, the chances of

miss detection (i.e., all decoded data of altered region happen to match the originally

embedded ones) are reduced exponentially:

P ([b̂1, ..., b̂n] = [b1, ..., bn]) = 2−n

where n is the number of coefficients affected by tampering. For example, miss

detection probability is around 0.00098 when n is equal to 10.

According to Chapter 3, the table lookup embedding, being an example of Type-II

embedding, relies on deterministic relationship enforcement. From set partition point

of view, all possible values of a quantized coefficient are divided into two subsets each

of which conveys special meaning and the partition rule is set by the table. One
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subset contains values which map to “1” according to the lookup table, and the other

subset contains those that map to “0”. The embedding process introduces minimal

necessary changes to force a quantized coefficient to take value from the subset that

maps to the binary data to be embedded.

7.4.1 Considerations for Imperceptibility & Security

Several steps are taken to ensure that the embedding is invisible:

• The run of “1” and “0” entries in the LUT is constrained to avoid excessive

modification on the coefficients;

• The DC coefficient in each block is not changed to avoid blocky effect unless

the quantization step is very small 2;

• Small valued coefficients (mostly in high frequency bands) are not modified to

avoid large relative distortion.

Coefficients that are allowed to be changed according to these constraints are

called embeddable or changeable. The number embeddable coefficients vary signifi-

cantly, which has been referred as “uneven embedding capacity” in Chapter 4. Also,

extraction error may occur due to image format conversion, rounding, and other

causes involving no content changes. As discussed in Chapter 4, we apply shuffling

to equalize the unevenly distributed embedding capacity. A proper block size is first

determined according to the overall embedding capacity measured by the total num-

ber of changeable coefficients. The side information regarding the block size can be

2This constraint may be loosened to allow the DC coefficients in texture regions to be modified,
as the change there is likely to be invisible.
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conveyed using the approaches discussed in Chapter 4 and 6, for example, using ad-

ditive spread spectrum embedding. Then, one bit is embedded in each shuffled block

by repeatedly embedding the same bit to all embeddable coefficients in the shuffled

block. The bit is extracted by a detector in the same shuffled domain via majority

voting. The repetition may be replaced by more sophisticated coding techniques for

better performance.

The algorithm shown in Table 7.1 is for generating an L-entry look-up table T [·]

with maximum allowed run of r and positive index i ∈ {1, ..., L}.

Table 7.1: An Algorithm for Generating Look-up Table with Limited Runs

Step-1: i = 1.
Step-2: If i > r and T [i− 1] = T [i− 2] = ... = T [i− r], then T [i] = 1− T [i− 1].

Otherwise, generate a random number from {0, 1} with a probability
0.5 : 0.5 and set T [i] to this value.

Step-3: Increase i by 1. If i > L, stop. Otherwise go back to Step-2.

To analyze the minimum secure value of r, we start with the case of r = 1, which

has only two possibilities:

T [i + 1] = 1− T [i], T [0] ∈ {0, 1}, i ∈ N

or equivalently,

T [i] =


0 (i is even)

1 (i is odd)
or T [i] =


1 (i is even)

0 (i is odd)

This implies that the odd-even embedding discussed in Chapter 3 is a special case of

table-lookup embedding. Since there is very little uncertainty in the table, it is easy

for unauthorized persons to manipulate the embedded data, and/or to change the

coefficient values while retaining the embedded data unchanged. Therefore, r = 1 is
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not a proper choice if no other security measure such as a careful design of what data

to embed is taken.

When r is increased to 2, the transition of the LUT entries has Markovian property,

as shown in Fig. 7.3. It is easy to show that starting from “0” or “1”, the number of

possible LUTs with i elements long, Fi, forms a Fibonacci series :

Fi = Fi−1 + Fi−2, F0 = 1, F1 = 1. (7.3)

The total number of possible sequences with length L = 256 is on the order of

1053. Although this number is smaller than the number of possible sequences without

run length constraint, which is 2256, or the order of 1077, the table still has enough

uncertainty, and the probability of obtaining table by guessing is very, very small.

Thus from embedding mechanism point of view, the minimum secure choice for r is

2.
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Figure 7.3: (left) Markov property of restricted LUT generation with maximum run
of 2, where “wp” stands for “with probability”; (right) Expansion graph illustrating
the generation of restricted LUTs with i elements.

The mean squared error incurred by table-lookup embedding with r = 2 is com-

puted as follows. First, we consider the error incurred purely by quantization, i.e.,
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rounding the input coefficient in the range of [(k − 1/2)Q, (k + 1/2)Q) to kQ:

MSE( quantize to kQ ) =
Q2

12
(7.4)

This is the case if the entry corresponding to the original quantized coefficient in the

table happens to be the same as the bit to be embedded. We then consider the case

of having to shift the coefficient to (k − 1)Q in order to embed the desired bit:

MSE( shift to (k − 1)Q ) =
∫ (k+ 1

2
)Q

(k− 1
2
)Q

[x− (k − 1)Q]2 × 1

Q
dx

=

let y = x− (k − 1)Q

1

Q
×
∫ 3

2
Q

Q
2

y2dy =
13

12
Q2 (7.5)

By symmetry, the MSE for shifting to (k + 1)Q is same as above. Hence the overall

MSE is:

overall MSE =
MSE( to kQ )

2
+

MSE( to (k-1)Q ) + MSE( to (k+1)Q )

4

=
1

2
× Q2

12
+ 2× 1

4
× 13

12
Q2 =

7

12
Q2 (7.6)

This is achievable since look-up table with r = 2 allows at most one-Q-step modi-

fication away from kQ. The MSE is a little larger than the case of r = 1 (i.e., the

odd-even embedding in Chapter 3), which gives an MSE of Q2/3 and is equivalent to

double the quantization size as far as the distortion is concerned.

7.4.2 More on Determining Embedded Data & Coefficient

Changes

Earlier when explaining the extraction of embedded data, we have assumed that a

detector has the knowledge of the originally embedded data {bi}. In practice, this
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knowledge is not a necessity, especially with the incorporation of majority voting,

error correction coding and shuffling.

Assuming that the tampering is restricted to a small portion of an image, the

changed coefficients tend to occur in small clusters and the number of them is not

large. After shuffling, these coefficients will be diffused to many blocks in shuffled

domain. Because each shuffled block is unlikely to receive many too many changed

coefficients by the nature of shuffling 3, the few changed coefficients in each shuffled

block will not affect {b̂i}, which is the bit ultimately extracted from that block via

table lookup detection and error correction coding. This implies that the extracted

data, {b̂i}, can be regarded as a good estimate of {bi}, the originally embedded data.

Using {b̂i} as “ground truth”, we can determine what bit value is supposed to be

embedded into each embeddable coefficients by an embedding system. By comparing

the supposedly embedded data with the data actually extracted from each coefficients

of a test image, we are able to identify the changed coefficients.

The change identification by this two-step process relies on the fragility of embed-

ding, namely, the tampering may change the originally embedded data. In the next

section, we shall see a second way to detect tampering, which relies on the meaning

and the value of embedded data. By then, we will get a more complete picture of the

authentication framework introduced in Section 7.3.

7.5 Design of Embedded Data

We mentioned earlier that the embedded data can be used to detect tampering. The

authentication data we propose to embed consists of a visually meaningful binary

3This is supported by the same analysis on shuffling in Section 4.7, with the percentage of blue
balls (the balls of interest), p, being very small.
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pattern and content features. As we shall see, the combination of these two types

data is suitable for applications such as image authentication for “trustworthy” digital

cameras.

7.5.1 Visually Meaningful Pattern

The visually meaningful pattern, such as letters and logos, serves as a quick check

for signaling and locating tampering. Shown in Fig. 7.4 is a binary pattern “PUEE”.

The decision on whether an image is altered or not can be made by (automatically)

comparing the extracted pattern with the original one, if available, or by human

(e.g., jury in court) based on visualizing the extracted pattern. The latter case uses

a reasonable assumption that human can distinguish a “meaningful” pattern from a

random one. It is also possible to make such decision automatically, e.g., computing

a randomness measure.

Figure 7.4: A binary pattern as part of the embedded data

7.5.2 Content-based Features

Content features offer additional security to combat forgery attack and help distin-

guish content tampering vs. minor, non-content change. Due to the limited embed-

ding bit rate, content features have to be represented using very few number of bits.
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An example of content features is the most significant bit of macroblock mean inten-

sity. Another example is the sign of intensity difference between a pair of blocks or

macroblocks. These features bring dependence on images to the data to be embedded,

so it is effective against forgery attacks that rely on the independence [139]. Other

features, such as the edge map and luminance/color histogram, can also be used. A

general formulation of local features of the block (i, j) is

bi,j = f(vi−k1,j−k2
, ..., vi−1,j, vi,j, vi+1,j, ..., vi+k3,j+k4

)

where k1, k2, k3, k4 ∈ N, vi,j represents a collection of all the coefficients in the block

(i, j), and f(·) is a deterministic function which is known to both the embedder and

the detector. The detector compares the features computed from the test image and

the ones extracted by table look-up (i.e., the features embedded by the embedder). A

mis-match between the two sets of features is an indication that the image has been

tampered.

Content features are especially useful in authenticating smooth regions. As dis-

cussed in Section 7.4.1, no data can be embedded in smooth regions without intro-

ducing visible artifacts, hence it is impossible to rely on the embedding mechanism to

signal the tampering of these regions, i.e., it is impossible to embed data with certain

regularity and later check the alteration of such regularity at detector. The tamper-

ing associated with smooth regions includes the case of altering a smooth block to

another smooth one (e.g., changing luminance or color) and the case of altering a

complex block to a smooth one. Changing smooth block to complex block is easy to

detect because when the detector sees the complex block, it assumes some data have

been embedded, but the extracted data from these altered block will be random as

an attacker has no knowledge of the secrets used in embedding. Although there are

limited meaningful changes that can be applied by changing original blocks (either
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smooth or complex) to smooth ones, we believe that authentication schemes should

take smooth region authentication into account instead of risking miss detection of

possible meaningful alterations. Since the embedded data can be used to detect tam-

pering, alterations in smooth regions can be detected by relying on the embedded

data, i.e., we embed features derived from smooth regions in the embeddable regions

and later check the match between the features computed from a test image and

those extracted by the watermark detection module. In addition, the features based

on block mean intensity are useful in detecting intentional alterations such as the

possible meaningful tampering by only changing some DC coefficients, because the

embedding scheme preferably leaves DC coefficient untouched to avoid blocky effect.

7.6 Experimental Results

We first present the results of an earlier design that does not use shuffling and embeds

less data than the shuffling approach. A JPEG compressed image of size 640 × 432

is shown in Fig. 7.5. Fig. 7.6(a) is the same image but with a 40× 27 binary pattern

“PUEE” of Fig. 7.6(b) and the MSB of macroblock mean intensity embedded in.

This image is visually indistinguishable from the original. In terms of PSNR with

respect to original uncompressed image, the watermarked one is only 1dB inferior to

the image with JPEG compression. The smooth regions of the image are mainly in

the sky area. For these blocks, backup embedding is used, namely, the data associated

with the i-th block are embedded in both the i-th block and a companion block (see

Fig. 4.4).

The marked image is modified by changing “Princeton University” to “Alexander

Hall” and “(c) Copyright 1997” to “January 1998”, shown in Fig. 7.7(a). This image
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Figure 7.5: An original unmarked 640× 432 image Alexander Hall (stored in JPEG
format with a quality factor of 75%). Watermarking is performed on its luminance
components.

Figure 7.6: [a|b] Authentication result with watermark embedded without shuffling:
(a) watermarked image; (b) embedded binary pattern.
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Figure 7.7: [ a
b|c ] Authentication result with watermark embedded without shuffling:

(a) an altered version of the watermarked image (stored in 75% JPEG); (b) extracted
binary pattern from edited image; (c) feature matching result.

is again stored in the JPEG format. For the ease of visualizing embedded pattern,

we shall denote the block that embeds “0” as a black dot, the block that embeds “1”

as a white dot, and the block with no obvious majority being found in detection as

a gray dot. Similarly, to visualize the feature matching result, we use a black dot

for the unmatched block, a white for the matched one, and a gray for the block with

which we do not found the obvious majority in detection hence have low confidence in

determining a match or unmatch. With these notations, Fig. 7.7(b) and (c) show the

extracted binary pattern and content feature matching result of the tampered image.
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The random pattern corresponding to the tampered blocks are clearly identifiable.

We can see that using the backup embedding, there are very few unembeddable bits at

an expense of the reduced embedding rate. Also notice that the round-off error may

occur during the verification and tampering, which contributes to the few unexpected

dots out of the altered regions.

Figure 7.8: An image with authentication watermark embedded using shuffling.

As discussed in Chapter 4, shuffling equalizes the uneven embedding capacity and

allows embedding more data. The example shown in Fig. 7.8 has a BCH encoded ver-

sion of the “PUEE” pattern and multiple content features embedded in its luminance

components. There is no visual difference between this watermarked image and the

original unwatermarked copy in Fig. 7.5. The embedded content features include the

most significant bit of the average macroblock intensity and the smoothness of each

macroblock. The combined result of pattern comparison and feature matching pro-

vides information regarding both content tampering and minor non-content changes
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(a)

(b)

Figure 7.9: Authentication result with watermark embedded using shuffling: (a) an
altered version stored in 75% JPEG format of Fig. 7.8; (b) authentication result with
whiter dot denoting higher likelihood of content manipulation for the corresponding
area in (a).
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such as those introduced by rounding or recompression. Fig. 7.9(a) shows various con-

tent alterations made to the watermarked image. A comprehensive report combining

both pattern comparison and feature matching result is shown in Fig. 7.9(b), with

whiter pixel indicates higher likelihood of content changes. We can see that the im-

proved authentication system using shuffling is able to identify content changes with

little false alarm. The quantization domain used by the embedding step is the same as

JPEG with quality factor 75%, implying the system is able to tolerate compressions

and other distortions that are comparable or less severe than JPEG 75%.

7.7 Extensions

Multi-level Data Embedding and Unequal Error Protection

We mentioned in Section 7.5 that two sets of data, namely, a meaningful visual

pattern and a set of low-level content features, are embedded in the image for authen-

tication purpose. More generally, the idea of multilevel data hiding in Chapter 6 can

be incorporated to embed several sets of data with different levels of error protection

and using embedding mechanisms with different robustness. The embedded data sets

could be image features at different resolutions: the coarser the level is, the more it

is protected. The multi-resolution features with unequal error protection can help us

authenticate an image in a hierarchical way.

Other Compression Format

Besides JPEG compressed image, we also performed some simple tests in Wavelet

compression and found our approach effective in detecting tampering. In addition to

the advantage in efficient coding, Wavelet domain offers convenience to implement the

above-mentioned hierarchical authentication. Since wavelet is selected as the core of
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the new JPEG2000 compression standard, a complete authentication system design

targeted at JPEG2000 is a promising new direction.

Color Images

For color images, we currently work in YCrCb coordinates and use the proposed

approach to mark luminance components while leaving chrominance components un-

changed. A better way is to apply the approach to chrominance components as well

to embed more data and to detect potential tampering of colors. We may also work in

other color coordinates, such as RGB. However in practice, due to the limited compu-

tation precision, we are likely to find a few pixels whose YCrCb or RGB values may

change after one or more rounds of color coordinate conversion [152]. This is similar

to the rounding and truncating errors incurred by going to and forth between pixel

domain and transform domain. Pre-distortion via quantization and error correction

codes are ways to combat these errors.

Videos

A system for authenticating MPEG compressed digital video can be designed

by marking I-frames of video streams using our proposed scheme. In addition, I-

frame serial number can be used as part of embedded data to detect modification

such as frame reordering and frame dropping. Alternatively, these frame jitters can

be detected via a spread-spectrum watermark in each frame, which is embedded

using the same approach as the embedding of frame synch index in Section 6.4.

P- and B-frames can be similarly watermarked but with larger quantization step

size and more error protection in embedding to survive motion compensation during

moderate compression. This practical consideration is similar our implementation of

multilevel data hiding for video in Section 6.4. Compressed domain embedding in
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these predicted P- and B- frames are also possible by manipulating the residues of

motion compensation.



Chapter 8

Data Hiding for Video Communication

Motivated by the traditional watermarks in paper, ownership verification and tamper-

ing detection are the initial purposes of embedding digital watermarks in multimedia

source. Examples of these watermark systems are shown in Chapter 5–7. In general,

data hiding provides a way to convey side information that can also be used for many

other purposes. For example, Silverstein et al. proposed to embed into an image a

map indicating the regions for which an enhancement scheme effectively improves the

perceptual quality and later to use this embedded information to direct the selective

enhancement only in these regions [126, 127]; Song et al. used embedding in motion

vectors to facilitate key distribution and key updating in secure multimedia multi-

cast [42, 129]. In this chapter, we discuss the applications of data hiding in video

communication, where the side information helps to achieve additional functionalities

or better performance.

Delivery of digital video through network and wireless channels is becoming in-

creasingly more common. Limited bandwidth and channel errors are two major chal-

lenges in video communication. Transcoding a video to a lower rate helps to cope

with the bandwidth limitation by gracefully degrading visual quality, while concealing

corrupted regions of an image/video is commonly used to compensate the perceptual

175
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quality reduction caused by transmission errors. In the followings, we will explain

how to apply data hiding to these problems to enhance performance.

8.1 Transcoding by Downsizing Using Data Hiding

A number of bit rate reduction techniques have been proposed for transcoding, in-

cluding frame dropping, suppressing color, discarding high order DCT coefficients

and re-quantizing DCT [154]. The reduction of spatial resolution can significantly

reduce the bit rate [153], but the processing is rather involved. More specifically,

most videos are stored in compressed domain involving DCT transform and motion

compensation. As many applications require real-time transcoding, it is desirable

to carry out the transcoding in the compressed domain and the approach should

aim at reducing the computational complexity while achieving a reasonable visual

quality. Typically, motion estimation consumes 60% of encoding time [153], while

motion compensation consumes 11%. In order to transcode with low delay, we need

to concentrate on reducing the complexity in these two steps.

8.1.1 Overview of Proposed Approach

We propose a fast approach to obtain from an MPEG stream a new MPEG stream

with half the spatial resolution. That is, each macroblock (16 × 16) in the original

video becomes one block (8× 8) in the reduced-resolution video. We work directly in

the compressed domain to avoid the computationally expensive steps of converting

to the pixel domain. Two problems need to be addressed in order to generate a

standard-compliant bit stream for the reduced-resolution video: (1)For the I-frames,

how to produce an 8× 8 DCT block for the reduced-size video from four 8× 8 DCT
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blocks of the original video? (2)For P- and B-frames, how to produce a motion vector

and residues for the new 16× 16 macroblock from four 16× 16 macroblocks? For the

first problem, several computationally efficient solutions have been proposed in [155].

For the second problem, we need to compute one motion vector from four motion

vectors and to produce the DCT of the residues for one macroblock in the reduced-

resolution video given the DCT of the residues for four macroblocks in the original

video. In [153], an algorithm was proposed to estimate the motion vector of the

reduced-resolution video by using a weighted mean of the original motion vectors.

The DCT of the residues is computed by reconstructing the P- and B-frames for both

the original and the reduced resolution, and by using the estimated motion vectors.

The computation of this closed-loop DCT domain approach is still rather costly.

We will focus in this thesis on the P-frames; B-frames can be treated similarly.

We first propose an adaptive motion estimation scheme to approximate the motion

vectors of the reduced-resolution video using the motion information from the cor-

responding blocks in the original full-resolution video as well as their neighboring

blocks. This idea is similar to the overlapped block motion compensation in [156].

We then propose a transform domain open-loop approach to produce the DCT of

the residue, thus eliminating the need to reconstruct the frames as in [153]. After

downsizing the original four-block residues to one-block, we use subblock motion in-

formation to improve the image quality. As the subblock motion information is not

compatible with MPEG-like standards, it is sent as side information using data hid-

ing so as to be compliant with video encoding standard. The transcoded bit stream

can be decoded by standard decoder with reasonable visual quality. Better image

quality can be obtained, however, with a customized decoder after extracting the

hidden information. Because the residue is computed in an open-loop manner, there
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is a tendency of error accumulation, particularly when there is considerable motion

and/or large GOP. To overcome this, the GOP structure is modified to reduce the

number of frames between two successive I-frames.

In the following, we shall elaborate the use of data hiding for conveying subblock

motion information.

8.1.2 Embedding Subblock Motion Information

When the motion vectors are changed, obtaining accurate residue information usually

requires reconstructing the entire frames. Directly downsizing residues saves compu-

tation in frame reconstruction, but since it is different from the accurate residue,

motion compensation may not produce good result if only a single motion vector is

used (as shown in Figure 8.1(b)). If all four motion vectors can be used, as shown in

Figure 8.1(c), the resulting motion compensation would be better and image quality

can be significantly improved. This is similar to the use of subblock motion com-

pensation in [157]. For our current problem, we would like to send u, as well as

the differences u − ui where i = 1 . . . 4. However, the syntax of MPEG does not

allow subblock motion information to be included. To maintain compatibility with

MPEG-like standards, the subblock motion information can be sent in the user data

part of the stream. This would maintain image quality but at the expense of increas-

ing the bit rate. A standard decoder would give reasonable visual quality, while a

customized decoder would be able to extract the side information and to produce

improved images.

We propose to send the subblock motion information as side information using

data hiding. Specifically, we embed the subblock information in the DCT residues.
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Figure 8.1: Relationship among motion vectors of an original picture and its down-
sized version

Since modifications of high frequency DCT coefficients tend to produce less notice-

able artifacts, we can embed the side information in these coefficients, keeping DC

coefficients and low order AC coefficients unchanged. One way to send the difference

between u and ui is to encode it in the highest frequency coefficient of the ith subblock

DCT residue whose quantized value is non-zero, i.e., we replace the coefficient with

the motion vector difference. This embedding preserves the efficiency in run-length

coding, hence introduces little overhead in terms of the bit rate of the video. The

horizontal and vertical motion components are encoded separately by spliting the

coefficients of a block into two parts and encode one motion component in one part.

8.1.3 Advantages of Data Hiding

We mentioned above two ways of conveying side information, namely, attaching it

separately such as in user data field, and embedding in the media source. In Chap-

ter 3, we discussed the bit reallocation nature of data hiding and explained that
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embedding does not offer “free” bandwidth. Instead, the most obvious advantage of

data hiding is that the hidden data is carried with the source in a seamless way. This

close association enables conveying of side information while maintaining compliant

appearance when no user data field is available. It also enhances security since the

existence and/or the location of the hidden data can be made difficult to identify.

Thus, for robust data hiding, an unauthorized person has to distort the host media

by a significant amount to remove the hidden data.

The efficiency in encoding side information is another advantage of data hiding.

It is possible to embed the secondary data for a particular region A in A or another

region that has deterministic relation with A. Such association can help us save

overhead in encoding the region index if the secondary data is sparsely distributed

and separately encoded. In addition, when the side information is directly put in user

data field (if available), the total number of bits will increase (Fig. 8.2-top). To keep

the total number of bits almost identical to the original one, the media source has to

be transcoded into a lower rate (Fig. 8.2-middle). Such transcoding is not a trivial

task because sophisticated rate control may have to be involved for a good tradeoff

between bit rate and visual quality. As illustrated in Fig. 8.2 (bottom), hiding side

information in the media source via a properly selected embedding mechanism is a

more convenient way to preserve the total bit rate due to its bit re-allocation nature.

8.1.4 Experimental Results

Our implementation is performed on MPEG-1, while the extension to other DCT

based hybrid video coding is straightforward. We tested our approach using the two

well-known sequences “football” and “table tennis” with a 15-frame GOP. The picture

size is 352 × 224 for the original sequences and 176 × 112 for the reduced-resolution
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Figure 8.2: Comparison of sending side information via data hiding vs. attaching to
user data field.

sequences. The quantization scaling factor for I-frames is 8, for P-frames 10, and for

B-frames 25. We compare three schemes listed in Table 8.1, where AMVR is proposed

in [153] and the rest are our proposals.

Fig. 8.3(a) shows the average PSNR for the prior art AMVR, our approach decoded

by standard MPEG decoder (AMES) and by a customized MPEG decoder (AMEC).

AMEC has a PSNR gain up to 2 dB over AMES due to the use of embedded subblock

motion vectors extracted from DCT residues. However, when compared with the

more complex AMVR, AMEC loses up to 2 dB. This not only shows a tradeoff

among quality, complexity and bit rate, but also demonstrates the limitation of using

the open-loop method to compute the DCT residues. However, when the original

video is encoded at a high bit rate and is of high quality, the gap of PSNR between

using AMVR and AMEC would be much smaller. In either case, no obvious visual

difference is observed between AMEC and AMVR, as shown in Fig. 8.3(b). The figure

also shows that some artifacts may appear in the video decoded by a standard decoder

(the AMES case) due to the motion compensation residue not matching the motion
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Table 8.1: List of three schemes for experimental comparison
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Experimental Results

Our implementation is performed on MPEG-1, while the extension to other DCT based video

coding is straightforward. We tested our approach using the two well-known sequences “football”

and “table tennis” with a 15-frame GOP. The picture size is 352 × 224 for the original sequences

and 176 × 112 for the reduced-resolution sequences. The quantization scaling factor for I-frames

is 8, for P-frames 10, and for B-frames 25. We compare three schemes listed in Table 4, where

AMVR is proposed in [106] and the rest are our proposals.

full name use what motion vectors use what residues decoder

AMVR adaptive motion weighted average of accurate residue standard compliant

vector resampling 4 original motion by reconstructing

vectors P/B frames

AMEC adaptive motion weighted average of downsized residues customized, using

with embedding & 4 original motion from 4 orig. blocks embedded info. to

customized decoder vectors and neighbours with embedded motion reconstruct frames

AMES adaptive motion weighted average of downsized residues standard compliant

with embedding & 4 original motion from 4 orig. blocks without using

standard decoder vectors and neighbours with embedded motion embedded info.

Table 4: List of three schemes for experimental comparison

Fig. 30(a) shows the average PSNR for the prior art AMVR, our approach decoded by standard

MPEG decoder (AMES) and by a customized MPEG decoder (AMEC). AMEC has a PSNR gain

up to 2 dB over AMES due to the use of embedded subblock motion vectors extracted from DCT

residues. However, when compared with the more complex AMVR, AMEC loses up to 2 dB. This

vector. This is expected since the core idea of the proposed scheme is not to optimize

the quality obtained by a standard decoder. Despite of the artifacts, the overall visual

quality by a standard decoder is reasonable with about 30% computation being saved

over the prior art AMVR. In addition, the quality is improvable when a customized

decoder is available.

8.2 Error Concealment and Data Hiding

We mentioned earlier that error resilience is important when transmitting image and

video over unreliable networks such as the Internet and the wireless channels. The

corrupted regions usually take the form of blocks or strips due to the block coding

nature of the popular image/video codecs. Techniques for combating transmission er-

rors have been classified into three categories [159, 160]: (1) sender-side techniques to

make the encoded bit stream resilient to potential errors, (2) receiver-side techniques

to conceal or alleviate the negative effects incurred by errors, and (3) interactive
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techniques involving both sender and receiver. Among the receiver-side techniques,

temporal and spatial interpolations are principal tools to conceal small corrupted re-

gions based on the inherent temporal and spatial correlation within the multimedia

sources. Various interpolation approaches for the purpose of concealment have been

proposed, each with different tradeoff between complexity and recovered perceptual

quality. In the case of spatial interpolation, namely, to conceal the corrupted blocks

from the surrounding uncorrupted blocks, the simple bilinear or bicubic interpolation

has such problems as blocky artifacts and blurring edges. Edge directed interpolation

proposed in [144, 145] improves the perceptual quality of recovered images/videos

by estimating the major edges in the corrupted blocks and by avoiding interpolation

across edges. This basic idea is illustrated in Fig. 8.4, and an example of conceal-

ing lost blocks in Lenna image is shown in Fig. 8.5. Note that the improvement in

visual quality is at an expense of computation complexity. About 30% computation

in the error concealment algorithm of [145] is for estimating edge information from

surrounding blocks [130].

Figure 1    Block Concealment by Edge-directed Interpolation

Figure 2     Proposed Attack on Robust Watermark via Iterative Block Replacement

Figure 3    Watermarked Images and Distorted Versions by JPEG and Proposed Attack

Figure 4    Proposed Attack on Authentication Watermark via Double Capturing

(b)  JPEG Q=10%(a) marked original (c) after proposed attack
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Figure 8.4: Illustration of edge directed interpolation for concealing lost blocks

8.2.1 Related Works

One of the first associations between error concealment and data hiding is found

in [36], where data hiding is used to store a score in each block when encoding an
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Figure 8.5: An example of edge directed interpolation for concealing lost blocks using
the techniques in [145].

image/video to a standard compliant bitstream. The score indicates the effectiveness

that the associated block can be concealed using the surrounding information. When

real-time transcoding (or dynamic rate shaping) to a lower bit rate is needed, the

blocks with high embedded scores are dropped with high priority. Smooth blocks and

blocks with simple edges that are inferable from surrounding blocks are assigned high

priority because they can easily be concealed from surrounding blocks at the receiver

side. The score can be embedded in DCT coefficients using simple Type-II approaches

like the odd-even enforcement, as there is no much requirement on robustness. While

the priority could be analyzed on the fly, embedding into the image/video the resulting

scores from a pre-analysis saves computation in real-time transcoding and maintains

the decodability of the image/video by a standard decoder.



CHAPTER 8. DATA HIDING FOR VIDEO COMMUNICATION 186

The idea of balancing computation became the motivation in a recent error con-

cealment work [130]. As can be seen from the earlier discussion, a potential hurdle

against adopting sophisticated error concealment scheme in practical systems is their

computational complexity since the computation power and the computation time

available at a decoder are usually quite limited in many applications. It is desirable

to shift some computation from the receiver side to the transmitter side. In [130], the

edge information of an image/video block is proposed to be embedded in a compan-

ion block before transmitting the image over a lossy channel. The embedded edge

information can be extracted on the receiver side and be used to recover corrupted

blocks without the need of estimating the edges from the neighbors. This significantly

reduces a decoder’s burden in inferring the edge information from neighboring blocks

for the purpose of concealment. Furthermore, the embedded edge is more accurate

than the estimation by a concealment module. This is because the embedded edge is

generated by the sender who has the knowledge of all blocks, while the receiver has

to estimate the edge information of a lost block using the surrounding blocks only.

8.2.2 Proposed Techniques

Two novel uses of data hiding associated with error concealment are discussed in

this thesis. One is for studying the robustness of data hiding algorithms via attack,

namely, to use block concealment as a tool to remove the embedded watermark. For

consistency in organization, we postpone the discussion to Part III, where the attacks

and the countermeasures are addressed in detail. Another use of data hiding is to

embed parity bits to recover a small number of bit errors in motion vectors. We

summarize below the basic idea of this motion vector protection, which is one of the

modules in an error concealment system for transmitting video over Internet. The
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detailed design and experimental results of the system can be found in [172].

As we know, motion estimation and compensation are used in most video coding

standards to reduce the temporal redundancy between video frames. A key to this

redundancy reduction is to estimate and to encode motion vectors, which indicate the

displacement between blocks in the current frame and their best matching blocks in a

reference frame. During video transmission, the accuracy of motion vectors is critical

in ensuring the high quality of the received pictures [160]. Song et al. proposed to

insert parity bits across Group of Macroblocks (GOBs) in one frame [42, 128], which

does not provide sufficient protection for channels with packet loss. Considering

channels that are subject to bursty errors, we propose to generate frame-wise parity

bits from motion vectors of P-frames and to embed them in the successive I frames for

the purpose of recovering some errors in the received motion vectors. More specifically,

we take MPEG-1 as an example, in which the encoded motion vectors are differentially

Huffman coded [19]. Because a video is transmitted in packets over networks, the lost

of or the errors in motion vectors can be identified by lower layer protocols and we

shall focus on correcting as many errors as possible. The error correction is achieved

via parity bits in our work. To compute the parity bits, we first arrange the coded

bits of the motion vectors of each P frame row by row, and pad zeros to each row

to make them equally long. For the convenience of discussion, we denote the i-th bit

of the motion vector in the j-th row of the k-th P-frame within a group-of-picture

(GOP) as V
(k)
j (i). The parity bits of the motion vectors in a GOP are computed as:

pj(i) = V
(1)
j (i)⊕ V

(2)
j (i)⊕ ...⊕ V

(NP )
j (i) (8.1)

where ⊕ is the modulo-2 sum, and pj(i) is the i-th parity bit of the j-th row for

a total of NP P-frames. The modulo-2 sum enables us to correct a single bit error

among NP bits after locating the error. We choose to convey the parity bits to
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decoder by embedding them in the DCT coefficients of the successive I-frame. As

have been discussed in Section 8.1.3, using data hiding to convey the parity bits

avoids the increase of video bit rate (hence the increase of the network load) and

avoids computationally expensive rate control.

Due to the congestion and other dynamic change of channel conditions during

the transmission of video over the Internet and the wireless channels, the packet loss

tends to occur in burst. In addition to protecting motion vectors, we also make use

of interleaving during packetization to reduce the occurrence that adjacent blocks get

corrupted simultaneously. More specifically, we take N -block by M -block as a unit,

and pack these blocks into N packets in such a way that the blocks in consecutive

packets are not side by side with each others. The packetization satisfying this con-

dition enables us isolating lost blocks when several consecutive packets get corrupted

or dropped, therefore allows a better recovery via interpolation using the information

from surrounding blocks. The edge-directed interpolation reviewed at the beginning

of this section is used in our concealment system [172].

8.3 Chapter Summary

In this chapter, we discussed the use of data hiding beyond traditional applications.

We use two specific examples, namely, transcoding via downsizing and error conceal-

ment to demonstrate the idea of using data hiding to send side information. The

side information helps to achieve better performance by a customized decoder and in

the mean time retains the decodability with reasonably good quality by a standard-

compliant decoder.
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Quite a few business models can be supported by the customized decoding frame-

work. For example, the embedded data may consist of both access control policies

and electronic coupons. The embedded coupons aim at encouraging and reward-

ing customers to follow the access control policies. Data hiding can also be used,

possibly with encryption or scrambling like those in [161, 162], for various access con-

trol purposes. This is a promising direction to be explored for the “Digital Rights

Management (DRM)” of multimedia contents.
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Chapter 9

Attacks and Countermeasures

on Known Data Hiding Algorithms

An attack on a watermarking system is to obliterate the watermark so that the

original goal of embedding watermarks cannot be achieved. In general, the attacks

test the robustness and security of the entire data hiding system, from the embedding

mechanism to the system architecture. For robust watermarking, this means the

detector is unable to detect the existence of watermark or there is ambiguity in making

a definite decision. An effective attack does not have to remove the watermark. One

simple example is to cause miss synchronization via jitter [137].

It is important to understand that the attacks are meaningful mainly for applica-

tions in rivalry environment where there are incentives to obliterate the watermarks.

This includes: (1) ownership protection where an adversary is a pirate, (2) tamper-

ing detection where an attacker would like an authentication system to regard an

unauthorized multimedia source or a tampered one as authentic, and (3) copy/access

control where an adversary would like to copy or access a protected multimedia source

in such a way that is not compliant with the specified policies. Applications in a non-

rivalry environment such as annotation and enhancing communication performance

191
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(Chapter 8) usually are not subject to attacks, although there may be specific ro-

bustness requirements such as surviving certain lossy compression. For applications

in rivalry environment, finding effective attacks and analyzing them play an impor-

tant role in identifying the weaknesses and limitations of watermarking schemes, as

well as in suggesting directions for further improvement. More importantly, it helps

us to reach a realistic understanding regarding what data hiding can do and cannot

do for the purposes of ownership protection, tampering detection, and copy/access

control.

A number of attacks as well as some countermeasures have been reported in the

literature. Most of the previous attacks and the attacks presented in this chapter

target at specific types of watermarking schemes, for which analysts have full knowl-

edge of the watermarking algorithms. The analysts are able to perform experiments

with many non-watermarked, watermarked, and attacked samples, and to observe

the results in real time. In the next chapter, we will discuss attacks under an emu-

lated rivalry environment in which analysts have no knowledge of the watermarking

algorithms.

Three attacks and countermeasures are discussed in this chapter. The block re-

placement attack in Section 9.1 targets on removing robust watermarks embedded

locally in an image. Geometric attacks on robust image watermarks have been con-

sidered as a big challenge in literature. In Section 9.2, we present a countermeasure

by embedding and detecting watermarks in a domain that is resilient to rotation,

scale, and translation. The double capturing attack in Section 9.3 outlines a general

attack for forging fragile watermarks.
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9.1 Block Replacement Attack on Robust Water-

mark

Claiming to “provide legal protection that the international copyright community

deemed critical to the safe and efficient exploitation of works on digital networks”,

the Digital Millennium Copyright Act (DMCA) [25], signed into law on October

28, 1998, prohibits “circumvention of technological measures used to protect copy-

righted works”, and prohibits “tampering with the integrity of copyright management

information” 1. While the technologies emphasized on by the DMCA Act are crypto-

graphic approaches such as encryption, deliberately designing tools to circumventing

data hiding based copy/access control mechanisms is also a potentially illegal be-

havior. However, legitimate tools may be exploited by adversaries to build powerful

attacks. This section will discuss such an attack via block concealment techniques

originally designed for error resilient image/video transmission. Before we discuss the

details of the attack, we shall give a brief review of the attacks on robust watermarks

proposed in literature.

9.1.1 Existing Attacks on Robust Watermarks

Several attacks as well as some countermeasures have been reported in the literature.

Forging a fake “original” image for multiple ownership claims [132] can be thwarted

by imposing invertibility requirement on watermarks [132] and/or exploiting more

than one detection scheme including blind detection (i.e., without the use of original

unmarked image) [52]. Collusion attack involves the averaging of multiple copies

of the same original but having different (independent) markings [135]. When the

1The DMCA act states a number of exceptions including good faith research that is “necessary
to identify and analyze flaws and vulnerabilities” of the encryption technologies.
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detector is in the public domain, it is possible to systematically learn about the

watermarks from the input-output relationship of a detector using many manipulated

versions of a watermarked image [136]. Watermarks can also be attacked by geometric

distortion, including rotation, scale, translation, warping, line dropping/adding, or in

conjunction with moderate lowpass filtering and interpolation [137, 138], but may not

be always effective when the original image is available to perform registration.

9.1.2 Attack via Block Replacement

We proposed a new method that can remove robust invisible watermarks that are

locally inserted. Unlike the existing work in literature, our attack does not require

multiple copies of marked images or other restrictions in detection. The idea is to

replace image blocks by an interpolated version using neighbors. As we have seen in

Chapter 8, the replacement algorithm was originally proposed for error concealment

(i.e., to recover lost or corrupted blocks) [144, 145] and for low bit rate coding [36].

Blocks surrounding the lost block are used to infer edge information and then to

give an edge-directed interpolation of the missing block, as illustrated in Fig. 9.1. In

the proposed attack, we keep all blocks at the border of an image untouched, but

replace all other blocks by their interpolated version using the method in [145]. The

replacement is performed on block basis. As illustrated in Fig. 9.2, we first divide an

image into 4× 4 or 8× 8 blocks. For each block except the one on the image border,

an interpolated version is obtained from the neighboring blocks. The original block

is then replaced by its interpolated version. The replacement can be done selectively,

for example, the original block will be retained if the interpolated version has too

many artifacts. We can see that such block-by-block replacement essentially removes

the watermarks originally embedded into each block.
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Figure 1    Block Concealment by Edge-directed Interpolation

Figure 2     Proposed Attack on Robust Watermark via Iterative Block Replacement

Figure 3    Watermarked Images and Distorted Versions by JPEG and Proposed Attack

Figure 4    Proposed Attack on Authentication Watermark via Double Capturing
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Figure 9.1: Illustration of edge directed interpolation for concealing lost blocks
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Figure 9.2: Block diagram of the proposed block replacement attack

Shown in Fig. 9.3(a) is a watermarked Lenna image using the block-DCT domain

additive spread-spectrum method of [47] resulting in a PSNR of 42.1 dB with refer-

ence to the unmarked original. The detection statistics is 138.5 if the original is used,

and is 19.3 if the original is not used. The detection threshold is generally set between

3 and 6 for a maximal detection probability with a false alarm probability of 10−3 to

10−10. The marked image Fig. 9.3(a) is then compressed using JPEG with quality

factor 10%. The result, shown in Fig. 9.3(b), has a PSNR of 29.40 dB. The two

detection statistics are reduced to 34.96 and 12.40 respectively, both still well above

the threshold in spite of the severe visual distortion. This confirms the claim that
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the spread spectrum watermark algorithm survives well under severe JPEG compres-

sion [47]. The proposed attack is then applied to the marked image, and the result,

shown in Fig. 9.3(c), has a PSNR of 29.58 dB. Aside from the softer appearance, few

artifacts are observed and the image is much more pleasing than Fig. 9.3(b). However,

the two detection statistics have been reduced to 6.30 and 4.52, much below those

from Fig. 9.3(b) and comparable with the threshold. The results are summarized in

Table 9.1.

Figure 1    Block Concealment by Edge-directed Interpolation

Figure 2     Proposed Attack on Robust Watermark via Iterative Block Replacement

Figure 3    Watermarked Images and Distorted Versions by JPEG and Proposed Attack

Figure 4    Proposed Attack on Authentication Watermark via Double Capturing
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Figure 9.3: Watermarked images and distorted versions by JPEG and proposed block
replacement attack: (a) watermarked Lenna image by Podilchuk-Zeng scheme; (b)
watermarked Lenna after JPEG Q = 10% compression, image is extremely blocky
and with poor quality; (c) watermarked Lenna after proposed attack (with block size
4× 4), image is slightly blurred but with acceptable quality.

9.1.3 Analysis and Countermeasures

The proposed attack can be viewed as a non-linear low pass filtering. It makes use

of the fact that images, as with other perceptual sources, is highly correlated in pixel

domain and can tolerate distortions within the just-noticeable-difference. This makes

it possible to make good inference from surrounding samples when small parts of
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Table 9.1: Experimental results of block-replacement attack on block-DCT based
spread-spectrum watermarking. Normal detection threshold for presence of a water-
mark is 3 ∼ 6.

Fig. 9.3(a) Fig. 9.3(b) Fig. 9.3(c)
w/o distort. JPEG 10% attacked

PSNR 42.12 dB 29.40 dB 29.58 dB
w.r.t. unmarked

detection statistics 138.51 34.96 6.30
with orig. avail.

detection statistics 19.32 12.40 4.52
without orig. avail.

an image are lost. The information embedded in a local region will be lost with

the removal of pixels in that region even if the embedding is not done in the pixel

domain (e.g., block DCT domain embedding). The proposed attack can be extended

to multi-resolution based watermarking schemes.

There are several ways to reduce the effectiveness of the proposed attack. Our

block replacement based attack assumes that local information can be inferred from

neighbors. This is true for smooth regions and for regions with edges extending across

several blocks. However, small features that fall in a single block cannot be so inferred.

This suggests the use of larger blocks for local embedding to combat the proposed

attack. Embedding watermark in 16× 16 block DCT coefficients, for example, would

be much more difficult to attack than embedding in 8 × 8 block DCT coefficients.

Also, the proposed attacks are not very effective for low-resolution images in which

many key features are small. In this connection, it should be noted that the block

replacement algorithms in [144, 145] is more effective for edge blocks than texture

ones. Algorithms such as [146] may be used for blocks that are highly textured.

Our experiments have shown that the proposed attack is not effective for spread
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Table 9.2: Effectiveness comparison of block replacement attack on global and local
spread-spectrum watermarking.

embedding domain block-DCT whole-DCT

PSNR 29.58 dB 29.36 dB
wrt unmarked

detection statistics 6.30 24.74
with orig. avail.

spectrum embedding in the DCT transform domain of the entire image such as the one

proposed by Cox et al. in [44]. To distinguish from the block-DCT based embedding,

we shall call this whole-DCT embedding. Although the detection statistics of an

image marked by whole-DCT approach decreases after the proposed attack, it is still

well above threshold, as shown in Table 9.2. We can interpret the ineffectiveness

of the proposed attack against whole-DCT embedding in a couple of ways. From

pixel domain point of view, the watermark embedded in whole DCT domain has

been spreaded throughout the image in pixel domain, implying that the watermark

information in each block is correlated with that in other blocks. Therefore, a large

part of the watermark information can still be recovered from the neighborhood during

interpolation. From frequency domain point of view, while both block-DCT and

whole-DCT embedding hides watermark in the low frequency DCT coefficients, the

equivalent frequency range are different. A 1-D illustration of this issue is shown

in Fig. 9.4. The DC coefficients after block-DCT transform correspond to not only

the DC but also the low frequency bands of the entire image. The frequency bands

represented by the lowest AC coefficients in each block are at higher frequency than

those by the block DCs, implying that the “low-band” after block-DCT transform is

not very low. Cox et al. have pointed out the importance of embedding watermark in
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perceptually significant spectrum (mostly low and middle frequency bands) to achieve

robustness against distortion [44]. Embedding watermark in higher frequency, such

as the block-DCT embedding, reduces the robustness against low-pass filtering. In

fact, the poorer performance of the block-DCT embedding against linear low-pass

filtering than the whole-DCT has been reported in [36], and Liang et al. recently

proposed to watermark the DC image formed by the DC coefficient of each block [51].

The experiments associated with our proposed attack indicate that the block-DCT

embedding is also much more vulnerable to non-linear low-pass filtering than the

whole-DCT embedding because of the higher embedding spectrum. In summary,

while the transform domain embedding with small block size such as 8× 8 has been

considered superior to the whole image transform domain due to the ease of applying

human visual system to finely tune watermark locally (see Section 6.3.1), our first

countermeasure suggests the opposite, namely, the block size should not be too small.

Motivated by the robustness of whole-DCT embedding, another countermeasure

can be devised by adding redundancy to the watermarks. For example, the same

watermark can be embedded in a group of four blocks. Thus, the lost watermark

could be partially recovered from neighbors, producing a higher detection statistic.

However, the watermark or hidden data embedded via Type-II approach, namely, via

deterministic relationship enforcement, may still not be recoverable.

More Effective Attacks

Various improvements can be done from attacker point of view. For example,

an attacker can choose not to replace a block with the concealed version if the block

involves key perceptual features such as eyes and/or the concealed version significantly

differs from the original block. In addition, better interpolation methods for textured

regions would also further improve the perceptual quality of the attack.
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Figure 9.4: Spectrum analysis of block based transform: the block DCT transform is
equivalent to bandpass filtering followed by downsampling.
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9.2 Countermeasures Against Geometric Attacks

via RST Resilient Watermarking

In non-coherent detection where the original unwatermarked image is not available,

the spread-spectrum robust image watermarks generally suffer from geometric distor-

tion such as rotation, scaling, and translation (RST). A main reason for this is that

some mis-alignment between the embedded watermark and the reference watermark

presented to a detector is introduced by the RST attacks. Because spread spectrum

watermarks generally have low autocorrelation at non-zero shift and taking correla-

tion is the popular way to detect these watermarks, the mis-alignment will be likely

to render low detection statistics from the popular correlator-type detectors. Among

the three basic geometric distortions, namely, rotation, scaling, and translation, the

resilience against translation is the easiest. Fourier magnitude is known to be invari-

ant with respect to the shift in time or spatial domain, so embedding in this domain

will be resilient against small shifts 2. On the other hand, combating rotation and

scaling is less straightforward. To illustrate the idea, we have implemented a spread

spectrum embedding similar to the one in [44] but embedded the watermark in the

magnitude of Discrete Fourier Transform (DFT) coefficients rather than the DCT

coefficients. The results on 512 × 512 Lenna image are shown in Table 9.3, with

the PSNR of watermarked image with respect to the original unwatermarked one

being 42.88 dB. We can see that minor rotation and scaling are powerful enough to

render the watermark undetectable, even though the watermark can survive strong

compression and translation with detection statistics well above the threshold 3.

2Larger shifts are likely to incur cropping, which may reduce the detection statistics. We will
discuss this in the experimental result section.

3The threshold is usually set between 3 and 6, corresponding to a false alarm probability of 10−3

to 10−10.
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Table 9.3: Detection statistics of spread spectrum watermarking on 512× 512 Lenna
image in DFT magnitude domain under various distortions.

Test condition Detection statistics Test condition Detection statistics
w/ no distortion 13.54 w/ no wmk 1.31

right shift 5 pixels 13.23 rotate 1-degree 1.09
JPEG Q=70% 12.35 scale down by 5% 0.58
JPEG Q=30% 8.30

Restricting ourselves to non-coherent detection in which the original unwater-

marked image is not available to a watermark detector to perform registration with

the test image (possibly rotated, scaled, and/or translated), it is difficult to estimate

the parameters of the RST distortion and to undo the distortion. One way to combat

RST attacks is to embed an invisible registration pattern [58, 59] which is known to

detectors and helps to estimate the RST parameters. The weakness of this solution

is that in a rivalry environment, an adversary may estimate this pattern by averaging

multiple watermarked images that have the same registration pattern embedded in.

He/She can then remove this pattern and apply geometric distortion.

We proposed a new alternative by embedding and detecting spread spectrum

watermarks in a RST resilient domain. This resilient domain is motivated by special

properties of Fourier transform and is closely related to Fourier-Mellin transform.

9.2.1 Basic Idea of RST Resilient Watermarking

We consider an image i(x, y) and its RST version i′(x, y) with

i′(x, y) = i(σ(x cos α + y sin α)− x0, σ(−x sin α + y cos α)− y0) (9.1)

where the rotation, scaling, and translation parameters are α, σ, and (x0, y0), respec-

tively. The magnitudes of the Fourier transform of these two images, |I(fx, fy)| and
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|I ′(fx, fy)|, have the following relations

|I ′(fx, fy)| = σ−2|I(σ−1(fx cos α + fy sin α), σ−1(−fx sin α + fy cos α))| (9.2)

This tells us that (1) the Fourier magnitude is invariant to translation, (2) the Fourier

transform of a rotated image is the rotation of Fourier transform of the image by the

same angle, (3) the scaling in spatial domain gives the inverse scaling in Fourier

domain [14]. If we rewrite Eq. 9.2 using log-polar coordinates, the image scaling

results in a translational shift along the log radius axis and the image rotation results

in a cyclical shift along the angle axis. That is,

|I ′(fx, fy)| = σ−2|I(σ−1eρ cos(θ − α), σ−1eρ sin(θ − α))| (9.3)

or

|I ′(ρ, θ)| = σ−2|I(ρ− log σ, θ − α)| (9.4)

where the coordinate transform is
fx = eρ cos θ

fy = eρ sin θ
(9.5)

We define g(θ) to be a 1-D projection of |I(ρ, θ)| such that

g(θ) =
∑
ρ

log(|I(ρ, θ)|) (9.6)

where a summation is used instead of an integration due to the discrete nature of ρ

for the DFT of an digital image. We find it beneficial to add the two halves of g(θ)

together, obtaining

g1(θ
′) = g(θ′) + g(θ′ + 90o) (9.7)

where θ′ ∈ [0o, ..., 90o). The reason will be explained in Section 9.2.3.
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Clearly, g1(θ) is invariant to translation and to scaling except a multiplicative

factor which does not affect correlator-type detection. Rotation results in a circular

shift, which can be handled by an exhaustive search if the angle θ is quantized to

finite number of degrees.

9.2.2 Embedding and Detection Algorithms

The basic idea presented above outlines a RST resilient watermark detector. The de-

tector first extracts the 1-D signal g1(θ) from a test image, then performs correlation-

type detection between this 1-D signal and an input watermark 4. The basic algorithm

for watermark detection is summarized as follows:

1. Compute a discrete log-polar Fourier transform of the input image. This can be

thought of as an array of K rows by N columns, in which each row corresponds

to a value of ρ, and each column corresponds to a value of θ.

2. Sum up the logs of all the values in each column, and add the result of the

column j to the result of the column j + N/2 (j = 0, · · · , (N
2
− 1)) to obtain an

invariant descriptor v, in which

vj = g1(θj) (9.8)

where θj is the angle that corresponds to the column j in the discrete log-polar

Fourier transform matrix.

4More sophisticated detection corresponding to a more realistic modeling of noise can be adopted
to achieve higher detection performance. Here for proof of concept, we use correlation detector in
our experiments.
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3. Compute the correlation coefficient D between v and the input watermark vec-

tor w, as

D =
w · v√

(w · w)(v · v)
(9.9)

4. If D is greater than a threshold T , it indicates that the watermark is present.

Otherwise, the watermark is absent.

Corresponding to the watermark detection method, we can construct a watermark

embedding algorithm according to the methodology described in [54]. In that paper,

watermarking is cast as a case of communications with side information at the trans-

mitter, which is a configuration studied by Shannon [98]. The side information in

watermarking is the original unwatermarked image that is known to the embedder.

In our problem, the embedder need to manipulate the Fourier coefficients in Cartesian

coordinate to embed a selected watermark into the 1-D signal g1(θ). In particular,

we change the image coefficients in an iterative way such that the 1-D signal of the

watermarked image will have high correlation with the watermark to be embedded.

The detailed embedding follows the three steps in [54]:

1. Apply the same signal-extraction process to the unwatermarked image as will

be applied by the detector, thus obtaining an extracted vector, v. In our case,

this means computing g1(θ).

2. Use a mixing function, s = f(v, w), to obtain a mixture between v and the

desired watermark vector, w. At present, our mixing function simply computes

a weighted average of w and v, which is a convenient but sub-optimal approach.

More sophisticated mixing methods, for example, those examined in [55], may

be used.
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3. Modify the original image so that, when the signal-extraction process is applied

to it, the result will be s instead of v. This process is implemented as follows:

(a) Modify all the values in column j of the log-polar Fourier transform so

that their logs sum to sj instead of vj. This could be done, for example,

by adding (sj − vj)/K to each of the K values in column j. Care must be

taken to preserve the symmetry of DFT coefficients.

(b) Invert the log-polar resampling of the Fourier magnitudes, thus obtaining

a modified, Cartesian Fourier magnitude.

(c) The complex terms of the original Fourier transform are scaled to have the

new magnitudes found in the modified Fourier transform.

(d) The inverse Fourier transform is applied to obtain the watermarked image.

Unfortunately, there is inherent instability in inverting the log-polar resampling

of the Fourier magnitude (Step 3b). We therefore approximate this step with an

iterative method in which a local inversion of the interpolation function is used for

the resampling [169].

9.2.3 Implementation Issues

A number problems arise during the implementation of the watermarking algorithms

proposed in last section. We summarize the handling of a few issues below. More

detailed discussion can be found in [169].

DFT, Rotation, and Interpolation

In Section 9.2.1, we present the basic ideas of RST resilient watermarking in

terms of continuous Fourier transform. In practice, we have to deal with discrete
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samples both in spatial domain and in frequency domain. We would also like to take

advantage of fast algorithms for computing the DFT. Conceptually, the DFT of an

image is obtained by taking a 2-D Discrete Time Fourier Transform (DTFT) of a

tiled version of the image, as shown in Fig. 9.5(a). Stone et al. [149] have noted that

the tiling has an inherent problem for any algorithm that relies on the rotational

properties of the Fourier transform. This is because when the image is rotated, the

rectilinear tiling grid is not rotated along with it. Thus, the DFT of a rotated image is

not the rotated DFT of the image. The problem is illustrated in Fig. 9.5(b) and (c).

While more sophisticated approaches are possible, such as directly computing the

log-polar Fourier transform without using Cartesian DFT as an intermediate step,

the computational complexity is generally high. In our work, we approximate the

Fourier transform of an image in log-polar coordinate by resampling the image DFT

in Cartesian coordinate using a log-polar grid.

In general, interpolation has to be performed on Fourier coefficients during both

embedding and detection. The interpolation is needed not only when obtaining log-

polar sampling points from the Cartesian sampling points, but also when obtain-

ing Cartesian sampling points from the log-polar sampling points in the embedding

step 3b. To obtain dense sampling grids that would allow inexpensive interpolation

such as bilinear interpolation, we pad the image with zeros before performing DFT.

Zero-padding also adds larger separation between the implicit tiles in the spatial

domain, alleviating the distortions shown in Fig. 9.5.

Cross Artifacts in Spectrum

The rectangular boundary of an image is known to have cross artifacts in the

image’s Fourier spectrum (Fig. 9.6). The coefficients along the cross have much larger

magnitude than the others. This is partly due to the dominant horizontal and vertical
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Rotate after tiling

Rotate before tiling

Figure 9.5: Rectilinear tiling and image rotation

     

 

 

 

 

 

Figure 9.6: An image and the magnitude of its 2-D Discrete Fourier Transform. Coef-
ficients near the DC and low frequency band along horizontal and vertical directions
exhibit large magnitude, which is refered as “cross artifacts”.
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Figure 9.7: A rotated image with zero padding and the magnitude of its 2-D DFT.
The “cross artifacts” also rotates by the same degree in this example.

image features, as well as to the discontinuity at horizontal and vertical edges of an

image by the implicit tiling. When zero padding is used for obtaining finely sampling

grids and/or for image rotation without cropping, the cross artifacts, possibly rotated,

are more significant (Fig. 9.7). The artifacts may also be asymmetric if an image has

much larger energy in some directions than in other directions. For example, images

with significant vertical structures like trees and buildings yields more energy in the

horizontal frequency, while images with strong horizontal structures like seascape

yields more energy in vertical frequencies (Fig. 9.8). Our current solution to this

problem is to simply ignore the bumps in the extracted 1-D signal by dropping a

neighborhood around each of the two highest-valued elements. We also divide the

extracted signal g(θ) into two halves and add then together (i.e., to use g1(θ) in Eq. 9.7

instead of g(θ) in Eq. 9.6) to deal with the asymmetry. Alternative solutions include

blurring of the image edges [150] or more generally, applying windowing operation.

These solutions require modification to the watermark embedder to include both
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forward and inverse operations, and have been left for future work.

       

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

 

 

Figure 9.8: a|b
c|d Images with dominant structures and their 2-D DFTs. An image with

dominant vertical structure (a) yields strong magnitude along horizontal frequencies
(b). An image with dominant horizontal structure (c) yields strong magnitude along
vertical frequencies (d).

Coefficient Dynamic Range and Extreme Frequencies

Because of the large dynamic range of the magnitude of the DFT coefficients, the

low frequency coefficients can be overwhelming. Furthermore, the lowest frequencies

and highest frequencies are usually not reliable for watermarking because of the strong

host interference for low frequencies and the vulnerability under distortion and attacks
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for high frequencies. Our current solution is to neglect the extreme frequency bands

and not to embed watermark there. A better solution is to embed watermark in

all frequencies and weigh different bands differently according to the reliability, as

discussed in Section 6.2.1. We also use the log of magnitude rather than the magnitude

to obtain the 1-D function g(θ) (Eq. 9.6).

Whitening Before Detection

For natural images, g1(θ) is likely to vary smoothly as a function of θ. This in-

dicates that the noise term in blind watermark detection is highly correlated and a

simple correlation detection is not optimal for such noise. Assuming that the noise

is colored gaussian, the optimal detection according to the detection theory should

whiten the noise first, then perform correlation detection. This idea has been dis-

cussed in [56], showing improvement in the watermark detection. Thus, in the de-

tection stage of our work, we apply a whitening filter to both the extracted signal

and the watermark being tested before computing the correlation coefficients. The

whitening filter was designed to decorrelate the elements of the 1-D signals extracted

from natural images and was derived from 10,000 images in [151]. These training

images were not used in the subsequent experiments.

9.2.4 Experimental Results

The following results were obtained by extracting a vector g1(θ) of length 90 from an

image and neglecting the 16 samples surrounding the peak that corresponds to the

DFT cross artifacts. This leaves a 1-D descriptor of 74 samples long. The detection

process involves comparing the watermark with all 90 cyclic shifts of the extracted

descriptor. In this section we examine the fidelity, the false alarm (also called false
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positive) behavior, and the robustness against RST distortions and JPEG compres-

sion.

Fidelity

The tradeoff between fidelity and robustness is controlled by adjusting the relative

weighting used in the mixing of the watermark signal and the signal extracted from

the original image (see Section 9.2.2). As the relative weight assigned to the water-

mark signal is increased, the strength of the embedded watermark is increased at the

expense of lower fidelity. We have chosen the weights empirically, yielding an average

signal-to-noise ratio of about 40dB 5. For simplicity, the same weights are used for

different images in our experiments. Fig. 9.9 shows a histogram of the signal-to-noise

ratio obtained from watermarking 2000 images. Fig. 9.10 shows an original image,

the watermarked version, and their difference.
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Figure 9.9: SNR histogram of watermarked images

We notice that due to the embedding in a whole image transform domain, the

5Here the “signal” is the image, and the “noise” is the watermark.
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watermark strength cannot be tuned for each local region. Thus, if the image con-

tains homogeneous texture, the watermark can be well hidden. However, if an image

is highly non-homogeneous containing widely varying textures and smooth regions,

the mark could become visible in some places unless the weighting is significantly

attenuated. Improving image quality in non-homogeneous images requires modifying

the algorithm to shape the watermark according to local textures and in the mean

time preserving the RST resilience. This has been left for future work.

False Alarm

We performed a study of false alarm probabilities under different thresholds using

10,000 images. A false alarm or false positive occurs when the detector incorrectly

concludes that an unwatermarked image contains a given watermark. The probability

of false alarm is defined as

Pfp = P {Dmax > T} = P {(D0 > T ) or (D1 > T ) or . . . (D89 > T )} (9.10)

where T is the detection threshold, Dmax is the maximum detection value from all 90

cyclic shifts examined (D0, ..., D89) when running the detector on a randomly selected,

unwatermarked image. This probability is first estimated experimentally by applying

the detector to 10,000 unwatermarked images from [151], each image being tested by

10 different spread spectrum watermarks. The experimental false alarm probability

is plotted in solid lines in Fig. 9.11 with each trace corresponding to one of the 10

watermarks. We also apply a theoretical model in [57] to estimate the false alarm

probability, especially for the threshold T greater than 0.55 because we obtain no

detection values above 0.55 in the experiment. This theoretical estimate is indicated

by dotted lines in Fig. 9.11.
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Figure 9.10: Image watermarked by the proposed RST resilient watermarking algo-
rithm: (a) original image, (b) watermarked image, (c) the enlarged difference between
original and watermarked, with gray indicating no difference and white/black indi-
cating large difference.
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Figure 9.11: [a|b] Detection results for 10 watermarks in 10,000 unwatermarked im-
ages: (a) distribution of detection statistics Dmax; and (b) false alarm probability.
Each solid trace corresponds to the result of one of the 10 watermarks, and the dotted
line in (b) represents theoretical estimates.

(a)

(e)

(d)(c)(b)

(g) (i)(h)(f )

Figure 9.12: Geometric attacks tested in our experiments: (e) and (a) are the original
and padded original respectively; (b)-(d) rotation, upscale, and translation without
cropping, and (f)-(i) rotation, upscale, downscale, and translation with cropping.
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Robustness

Robustness tests against geometric distortions as well as JPEG compression have

been performed on 2000 images. Seven geometric distortions illustrated in Fig. 9.12

are examined: rotation with and without cropping ( f and b ), scaling up with and

without cropping ( g and c ), scaling down ( h ), and translation with and without

cropping ( i and d ). In order to isolate the RST distortion from cropping, the images

have been padded with gray (shown in Fig. 9.12(a)) so that none of the RST testing

shown in Fig. 9.12(b)-(d) causes the image data to be cropped. The embedder has

been applied to these expanded images and then the padding in the watermarked

image is replaced with unwatermarked gray padding prior to the distortion and de-

tection.

For each of the seven geometric attacks, we plot a set of histograms of the detec-

tion statistics and ROC curves 6 for several distortion parameters in Fig. 9.13–9.16.

The detection performance prior to attack (i.e., no distortion) is shown in dashed lines

for comparison. These results demonstrate that when no cropping is involved, the

proposed watermarking algorithm exhibits very good resilience to rotation, scale, and

translation with only small decrease of detection statistics compared with the case

without distortion (see Fig. 9.13(a)(b), Fig. 9.14(a)(b), Fig. 9.15, and Fig. 9.16(a)(b));

when RST distortion is accompanied with cropping, the detection performance de-

grades: the larger the cropping is, the more negative impact on performance there is

(see Fig. 9.13(c)(d), Fig. 9.14(c)(d), and Fig. 9.16(c)(d)). This is expected because

our algorithm has not been explicitly designed to withstand cropping. More detailed

description of the experiment setup can be found in [169].

We also test the robustness of the proposed algorithm against JPEG compression,

6A receiver operating characteristic (ROC) curve describes the probability of correct detection
versus the probability of false alarm [2].



CHAPTER 9. ATTACKS ON KNOWN DATA HIDING ALGORITHMS 217

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

F
re

qu
en

cy
 o

f o
cc

ur
an

ce

Detection value (max of 90 correlations)
10

−15
10

−10
10

−5
10

0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y 

of
 tr

ue
 d

et
ec

tio
n

Probability of false detection

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.02

0.04

0.06

0.08

0.1

0.12

F
re

qu
en

cy
 o

f o
cc

ur
an

ce

Detection value (max of 90 correlations)
10

−15
10

−10
10

−5
10

0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y 

of
 tr

ue
 d

et
ec

tio
n

Probability of false detection

4 degrees 

8 degrees 

Figure 9.13: a|b
c|d Detection results after rotation 4◦, 8◦, 30◦, and 45◦. Showing here are

the histogram of detection statistics (a) and detection ROC (b) for rotation without
cropping, and the histogram (c) and the ROC (d) for rotation with cropping. Dashed
lines represent the detection prior to attack.

as surviving common image processing besides geometric distortions is important in

practical applications. We tested JPEG compression at quality factor (QF) of 90,

80, and 70, and the results are shown in Fig. 9.17. We can see that the likelihood

of detection decreases with the amount of compression noise introduced and that the

amount of this decrease is dependent on the false alarm probability Pfp. For relatively

high Pfp = 10−3, the current method is extremely robust to JPEG compression

at the qualities tested. At more restrictive false alarm probabilities, for example,

Pfp = 10−8, the moderate JPEG compression at quality factor 70 still yields an

acceptable detection probability of 88%.
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Figure 9.14: a|b
c|d Detection results after upscaling 5%, 10%, 15%, and 20%. Showing

here are the histogram of detection statistics (a) and detection ROC (b) for upscaling
without cropping, and the histogram (c) and the ROC (d) for upscaling with cropping.
Dashed lines represent the detection prior to attack.
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Figure 9.15: [a|b] Detection results after down scaling 5%, 10%, 15%, and 20%.
Showing here are the histogram of detection statistics (a) and detection ROC (b).
Dashed lines represent the detection prior to attack.
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Figure 9.16: a|b
c|d Detection results after translation of 5%, 10%, and 15% of the image

size. Showing here are the histogram of detection statistics (a) and detection ROC
(b) for translation without cropping, and the histogram (c) and the ROC (d) for
translation with cropping. Dashed lines represent the detection prior to attack.
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Figure 9.17: [a|b] Detection results after JPEG compression with quality factor 90,
80, and 70. Showing here are the histogram of detection statistics (a) and detection
ROC (b). Dashed lines represent the detection prior to attack.
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In summary, we proposed a solution to the common robustness problem against

rotation, scale, and translation. While the solution is related to earlier proposals

in the pattern recognition literature regarding the invariants of the Fourier-Mellin

transform, we do not explicitly create a truly RST invariant signal, which has many

implementation difficulties [61]. Instead, we create a 1-D signal that changes in a triv-

ial manner under rotation, scale, and translation, and handle a number of important

implementation issues. Our experiments have shown that the proposed watermark-

ing algorithm is robust to rotation, scale, and translation. It also survives moderate

JPEG compression, although the resilience is lower than non-RST resilient water-

marking that embeds a watermark directly in Fourier or DCT coefficients. This is

partly because the human visual models in Fourier, DCT, and blockwise transform

domain are much better studied than our RST resilient domain, which enables hid-

ing stronger watermark in those domain without introducing artifacts. Quite a few

simplifications have been made in our design, and they can be improved in future

research.

9.3 Double Capturing Attack on Authentication

Watermark

In Chapter 7, we discussed using watermark, usually fragile or semi-fragile against

distortion, to detect tampering. These authentication watermarks are inserted either

in the pixel domain [78], or in the transform domain [66, 82, 163]. An effective attack

on authentication watermark attempts to build an altered or unauthorized image

for which the detector will still regard it as an untampered or authorized image.

These attacks are quite different from those for robust watermarks. Holliman et al.
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studied these attacks in [139]. The main idea of the attacks proposed there is to

replace each media component (such as a block, a pixel, or a coefficient) with one

of the candidates collected from many watermarked images so that the replacement

contains a valid watermark indicating authenticity and in the mean time is able to

make meaningful semantic changes. These attacks are effective if the watermark is

independent of the image content (e.g., the same watermark is embedded in each

image) and/or independent of the locations in which it is inserted (e.g., the same

watermark is embedded in each block). Carefully designing what data to embed and

introducing dependency with cover image are effective countermeasures against this

attack, as discussed in Section 7.5. In this section, we shall propose a new attack that

does not require the use of multiple marked images.

9.3.1 Proposed Attack

Consider the scenario that an image containing an authentication watermark has been

tampered. The modified marked image is then captured either by scanning or by a

digital camera, and a new fragile watermark inserted by the watermark module in the

capturing device. Since the capturing process can destroy almost all original fragile

watermarks, the new image will only bear the new fragile watermark, hence will be

regarded as the authentic. The general approach is therefore “ fragile-watermarking

→ editing → fragile-watermarking ... ” (Fig. 9.18), which in some sense is analogous

to the multiple ownership claims in robust watermarking [132]. We shall call this

type of attacks double capturing attack.

Double capturing attack touches a fundamental aspect of image authentication,

i.e., the authenticity is always relative with respect to a reference. More specifically,

fragile watermarking can only detect alteration after the embedding, but can tell
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Figure 1    Block Concealment by Edge-directed Interpolation

Figure 2     Proposed Attack on Robust Watermark via Iterative Block Replacement

Figure 3    Watermarked Images and Distorted Versions by JPEG and Proposed Attack

Figure 4    Proposed Attack on Authentication Watermark via Double Capturing

(b)  JPEG Q=10%(a) marked original (c) after proposed attack
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Figure 9.18: Attack on authentication watermarking via double capturing

nothing about the authenticity before embedding.

9.3.2 Countermeasures Against Proposed Attack

For specific application such as the digital camera case, we may use additional fea-

tures, such as the distance between the lens and the center target object, as part

of the embedded data to combat the proposed attack since the focus length when

capturing a real scene are different from those when capturing a tampered image

from a printed copy or computer monitors. The focus length may be readily obtained

from a camera’s focusing mechanism. However, with the progress of visualization

tools including the development of high quality digital projectors and huge display

wall [147], such a solution will eventually have a limitation.

Another countermeasure is to insert both fragile and robust watermarks in an

image, as shown in Fig. 9.19. This double watermarking can not only protect both

the integrity and ownership of an image [163], but also partially solve the above

problem since the double captured image contains two robust watermarks while the

single captured image contains only one. In practice, if every watermarking system

for authentication purpose (such as those in digital cameras) also embeds one robust

watermark which is randomly selected from M orthogonal candidates in each cap-

tured image, we can determine whether multiple capturing occurs by checking how
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Figure 9.19: Countermeasure against the proposed double capture attack by embed-
ding both robust and authentication (fragile) watermarks.

many robust watermarks are in the test image. The probability of not being able

to find multiple robust watermarks after double capturing (i.e., the two robust wa-

termarks inserted by two captures are identical) is 1/M , i.e., inversely proportional

to the number of candidate watermarks, hence it is small for large M . This ap-

proach have been implemented as double watermarking in [163] 7, which combines

the transform-domain authentication scheme in Chapter 7 with a robust spread spec-

trum watermarking scheme by embedding the robust watermark first, followed by

the authentication watermark. The countermeasure can also be implemented via the

multi-level data hiding in Chapter 6.
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Chapter 10

Attacks on Unknown

Data Hiding Algorithms

In last section, we discussed watermark attacks with the embedding and detection

algorithms known to analysts, which is the case for most attacks studied in litera-

ture. The recent public challenge organized by the Secure Digital Music Initiative

(SDMI) provided a research opportunity to study attacks under an emulated rivalry

environment. We have proposed successful attacks on all four watermarking schemes

currently under SDMI’s consideration, pointing out the weaknesses and proposing

some directions of improvements. We have also found a few general approaches that

would be used by an attacker in a real rivalry environment and demonstrated a frame-

work for studying the robustness and security of data hiding systems.

10.1 Introduction

Secure Digital Music Initiative (SDMI) is an international consortium that is devel-

oping open technology specifications aiming at protecting the playing, storing, and

distributing of digital music [140]. Imperceptible digital watermarking has been pro-

posed to be key elements in the SDMI systems. Upon detection, the watermarks

224
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may direct certain actions to be taken, for example, to permit or to deny recording.

An SDMI system may incorporate a combination of robust and fragile watermarks.

Robust watermarks can survive common signal processing and attacks and are cru-

cial for ensuring the proper functioning of the entire system. The fragile watermarks

may be used to indicate whether the audio has experienced certain processing such as

lossy compression [141]. The SDMI watermarks are considered as public watermarks,

meaning that (1) the detection does not use the original unwatermarked copy (i.e.,

blind detection), and (2) a single or a set of secret keys for detecting the watermarks

are usually encapsulated in all publicly available detection devices. In early Septem-

ber 2000, SDMI announced a three-week public challenge for its Phase-II screening,

inviting the public to evaluate the attack resistance for four watermark technologies

(A, B, C, F) and two other technologies (D, E). In the following, we summarize the

attacks and analysis on four watermark technologies.

10.1.1 SDMI Attack Setup

In this challenge, the watermark embedding and detection algorithms are not known

to the public. Limited information is available only through the oracle submission.

After each submission, the detection is performed by the SDMI staff and the result is

sent back with a response time of about 4 ∼ 12 hours. For each of the four challenges,

SDMI provided three audio samples, as illustrated in Fig. 10.1. They are:

• samp1?.wav (original audio with no watermark)

• samp2?.wav (samp1?.wav watermarked by Technology-?)

• samp3?.wav (a different audio watermarked by Technology-?)
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Figure 10.1: Illustration of SDMI attack problem. For each of the four watermark
challenges, Samples 1 ∼ 3 are provided by SDMI. Sample 4 is generated by partici-
pants in the challenge and submitted to SDMI oracle for testing.

where the substitution symbol “?” stands for one of the four challenges: “a”, “b”,

“c”, or “f”. All audio samples are 2-minute long, sampled at 44.1 kHz with 16-

bit precision. The audio contents are mostly popular music. Sample-1 for all four

technologies are identical, while sample-3 are all different.

A participant of this challenge generates an attacked audio file sample-4 from

sample-3, then uploads it to SDMI’s oracle for testing. The detection response is bi-

nary, i.e., either “possibly successful” or “unsuccessful”. According to SDMI’s emails,

a “possibly successful” attack must render the detector unable to find the watermark,

while retaining the auditory quality comparable to the original one (sample-3 ). This

indicates that a successful attack should sits in the region IV of Fig. 10.2. Interest-

ingly, in the unsuccessful case, there is no indication whether the detector can still
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find watermark (region II of Fig. 10.2) or the detector can no longer find watermark

but the auditory quality is considered unsatisfactory (region III of Fig. 10.2). For

convenience, we shall denote the four pieces of audio as S1, S2, S3, and S4.
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Figure 10.2: Illustration of watermark detectability and perceptual quality .

10.1.2 Comments on Attack Setup

The SDMI public challenge presents an emulated rivalry environment, providing at-

tackers with a limited amount of information and restricted access to watermark

detectors in a very short time frame. The task is more difficult than the one in real

world. First, in real world, a watermark detector encapsulated in a compliant device

will be available to an attacker for unlimited uses, and the detector’s response time

will be instantaneous rather than hours. Second, a user of the real system will be

able to distinguish whether or not a detector is able to find watermarks, regardless
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of the audio quality. These two aspects would enable an attacker polling the de-

tector with different input and obtaining the corresponding output, which in turn

provides a large amount of useful information for attacks. Furthermore, the SDMI

business model allows a user to pass a piece of non-SDMI music that does not have

watermark embedded through an SDMI admission device to make it SDMI-compliant

thus has watermark embedded in. This implies that a non-trivial number of original-

watermarked audio pairs rather than a single pair are likely to be available to an

attacker in real world. As can be seen in the next section, these pairs provide valu-

able information regarding how watermarks are embedded and the information can

be exploited in attacks. One should also note that the perceptual quality imposed on

embedding and on attacks are different in reality. The quality criterion for embedding

is much higher because part of the commercial value of a piece of audio is determined

by the sound quality and in many situations it has to meet the most critical demand

among a highly diversified audience (from easy listening by the general public to the

professional listening by the experts). On the other hand, the sound quality criterion

for attacks only need to satisfy a less demanding audience who are willing to tolerate

slightly poor quality if for no-fee listening.

The setup also suggests that the SDMI challenge emphasized on evaluating the

effectiveness of robust watermark in each technology and did not take much consid-

eration on the fragile watermark. Referring to SDMI’s business model, to enforce

a copy control policy that allows no MP3 compression on a piece of music prior to

the admission to an SDMI compliant device, the robust watermark embedded in the

music would convey to the device this policy while the fragile watermark will be used

to detect whether the music experiences compression or not. If the bits in the fragile

watermark are designed to be a pre-determined secret pattern and are independent
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of the host audio, an attacker may obliterate the above policy by restoring a fragile

watermark after performing MP3 compression. This attack is likely to introduce less

perceptual distortion than removing a robust watermark, therefore, should be given

sufficient consideration. The fragile watermarking can be formulated as an authen-

tication problem, for which the attacks and counter-attacks can be studied similar

to the material in Chapter 7 and Chapter 9. In the following, we first report our

attacks and analysis on the robust watermark in SDMI challenge, then briefly discuss

issues related to the fragile watermark.

10.2 Proposed Attacks and Analysis on SDMI Ro-

bust Watermarks

In this section, we first explain a general framework for tackling the attack prob-

lem. We then take two different successful attacks on Watermark C as examples

to demonstrate our attack strategies, to describe the specific implementation, and to

present analysis in detail. For completeness, the attacks for the other three watermark

techniques A, B, and F are also briefly explained.

10.2.1 General Approaches to Attacks

An attacker may take one of three general approaches to tackle the problem: (Type-

1) exploiting the design weakness via blind attack, (Type-2) exploring the embed-

ding mechanism from {S1, S2}, the known original-watermarked pairs, or from the

watermarked signal {S3} alone, (Type-3) a combination of the two.

Type-1 attacks are said to be blind in the sense that they do not rely on any un-

derstanding of embedding mechanism or the special properties held by watermarked
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signals. This approach includes commonly used robustness tests, such as compression,

time-domain jittering, pitch change, resampling at different rate, D/A-A/D conver-

sion, and noise addition [142]. The counter-attack strategy for such blind attacks is

to find as many weaknesses as possible and to correct them. A good design, therefore,

should at least have covered most of the typical robustness tests and their combina-

tions. One of our attacks for Watermark-C and our attack for Watermark-F are blind

attacks.

Type-2 attacks are designed using the knowledge about the embedding mechanism.

Such knowledge, even if not available at the start, can be obtained by studying the

input-output response of the embedding system. For example, if we find the difference

between S1 and S2 is a small signal around certain frequency, we may design an

attack to distort S3 over the corresponding frequency range. Quite a few of our

attacks belong to this category. This type of attack is analogous to the plaintext

attack or ciphertext attack in cryptanalysis 1 [11]. The differences are: (1) signal

processing analysis replaces the cryptanalytic tools in creating watermark attacks,

and (2) the goal of watermark attacks is to render detector unable to detect the

watermarks, instead of “cracking codes”. The useful signal processing tools include

the time-domain and frequency-domain differences, the frequency response, the auto-

and cross-correlation, and the cepstrum analysis [12]. We also note that the original

and watermarked signals are not easily available simultaneously to the public in some

watermarking or data hiding applications, e.g., watermarked-based authentication

or DVD video watermarking system. Hence, Type-2 attacks may not be a major

concern in those cases. But in SDMI applications where an unwatermarked music

1Plaintext attack refers to deducing the encryption key or decrypting new cipher texts encrypted
with the same key, based on the cipher text of several messages and their corresponding plaintext.
Ciphertext attack only uses the knowledge of the cipher text of several messages.
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may be “admitted” into SDMI domain by embedding a watermark, any successful

watermarking design has to take Type-2 attacks into consideration. One possible

counter-attack strategy is to intentionally wipe off the otherwise distinct “signature”

of a particular embedding. Some obscuring processes may reduce the robustness

against blind attacks if the obscuring distorts the embedded watermarks, showing a

tradeoff among robustness against various attacks.

Because it is not always possible to find clear clues about embedding from a lim-

ited number of original-watermarked pairs, especially when the “wipe-off” is applied,

attacks can be designed by combining the above two.

10.2.2 Attacks on Watermark-C

We have proposed two different attacks on Watermark-C. Attack-C1 explores the

weakness of Watermark-C under pitch change. Attack-C2 is based on observing

the difference between original and watermarked signal {S1, S2}. Both attacks were

confirmed as successful by SDMI oracle.

Observations from Samples of Watermark-C

By taking the difference of samp1c.wav and samp2c.wav, bursts of narrow band

signal are observed, as shown in Fig. 10.3. These bursts appear to be around 1350

Hz.

Attack-C1

Attack-C1 accelerates audio samples by a small amount, which in turn changes

the pitch. Blind attacks of 3% pitch increase have been applied to all four watermark

proposals, and SDMI detectors indicated that they are effective to Watermark C.

The relations between the input and output time index of this speed-up is illustrated
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Figure 10.3: Technology-C: (a) the waveform of the difference between sample-1c and
sample-2c exhibits tone bursts, and (b) the short-time DFT of one tone burst. The
samples observed here occur around 0.34-th second.
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in Fig. 10.4, along with several other time-domain jittering/warping that we have

encountered during the challenge. 
Warping illustrations for SDMI attacks: 
( fig:audio_warpIO ) 
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Figure 10.4: Relations between the input and output time index of a few time-domain
jittering/warping, including uniform speed-up, uniform slow-down, sinusoid warping,
and triangular warping.

One implementation we used is to upsample the audio by M times followed by

lowpass filtering and downsampling by N times, giving an overall resampling rate

of M/N . The original sampling frequency of Fs is changed to M/N · Fs. The re-

sampled audio is then played or stored with the same sampling rate as before, i.e.,

Fs. The entire process changes the pitch by a fraction of (N − M)/M . A precise

spectrum interpretation of this can be obtained based on multi-rate signal processing

theory [13]. For sampling rate conversion with M/N > 1, the spectrum is squeezed

along frequency axis by a factor of N/M , leaving the frequency band of ( N
M

π, π] with

zero; for the case of 0 < M/N < 1, the frequency band [0, M
N

π] of the original spec-

trum is stretched to cover the whole new spectrum, dropping the high frequency band
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(M
N

π, π] of the original spectrum. At the end of this rate conversion, the magnitude

of the new spectrum is scaled by M/N , the sampling frequency 2π radian per sample

corresponds to M
N

Fs Hz, and the pitch has not changed. When the signal is played

at Fs samples per second, the spectrum with frequency unit of radian per sample

is unchanged, but the frequency of 2π radian per sample is now mapped to Fs Hz,

effectively changing the pitch by a fraction of (N −M)/M . Attack-C1 can also be

implemented using commercial audio editing software. For example, the Effects →

Pitch menu of GoldWave v4.19 [148] were used as an alternative way to perform pitch

shift attacks (Fig. 10.5).

The ability to detect pitch change varies from individual to individual and de-

pends on whether a reference is available. While most people can discriminate pitch

difference as low as 0.6% [102], it is nevertheless rather difficult for a person to iden-

tify small pitch changes if he/she has never heard the original before. The standard

pitch itself also changed significantly in music history [103, 104]. The pitch of pi-

ano’s A major, for example, changed steadily from as low as 420Hz in the early 18th

century to as high as 457Hz in late 19th century before settling down at the current

international standard of 440Hz. Our attack with 3% pitch increase (about a quarter

tone) has passed SDMI’s strict 2nd round quality testing performed by “golden ears”

after the challenge.

As described previously, we observed that the embedding mechanism adds a nar-

row band signal to the audio at around 1350Hz. Pitch change can be an effective

attack because it stretches or squeezes the spectrum, causing misalignment, which in

turn reduces the detector response from the popular matched-filter-type detection.

One way to enhance the robustness against Attack-C1 is to estimate and undo the

stretching, which is likely to be computationally expensive. Another way is to embed
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Figure 10.5: Graphics user interface of GoldWave audio editing shareware.

and/or detect watermark in a domain that is resilient to stretching/squeezing.

Attack-C2 Our second attack belongs to Type-2, attempting to jam the frequency

band around 1350Hz where it was observed that a narrow band signal had been

added by the embedding mechanism. This narrow band watermark signal has some

randomness, making jamming difficult. The anti-jamming capability has been seen

with the spread spectrum watermark. This commonly used noise-like watermark has

good statistical property so that the power of uncorrelated additive noise has to be
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large enough to effectively jam the watermark [44]. However, to preserve auditory

quality, the noise power has to be kept low. Our successful attack is to apply notch

filtering to the audio signal at selected frequencies. The filtering introduces significant

changes in magnitude and phase around the notch (shown in Fig. 10.6) [12], effectively

damaging the embedded watermark. Specifically, we used the Effects → Filters →

Bandpass/stop menu of the audio editor GoldWave to perform notch filtering, with

a stop band of 1250-1450Hz and steepness of 5 (i.e., 10th order).
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Figure 10.6: A 2nd order notch filter: (from left to right) zero-pole plot and frequency
response (magnitude and phase).

Attack-C2 has passed SDMI’s 2nd round quality testing performed by “golden

ears”. For signals with sufficiently rich spectrum, the magnitude and phase changes

caused by notch filtering may not be detectable by a person because of frequency

masking and other human auditory phenomena. In the next section, we will see

that the embedding process of Watermark-B has a step of notch filtering, suggesting

that Watermark-B is a potential attack on Watermark-C. It also suggests that the

distortion on audio signal imposed by our Attack-C2 is comparable with that by the

embedding process of Watermark-B.
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10.2.3 Attacks on Watermark A, B & F

Watermark A Our attack on Watermark-A, referred as copier attack, is a Type-2

attack. By analyzing the short-time FFT of the samples, we observed regular patterns

of phase difference. The observation leads to a time varying model describing the

phase difference between sample-1a and sample-2a. Based on the model, our attack

“copies” the phase change between sample-1a and sample-2a to sample-3a, aiming at

recovering the phase modification done by embedding process. We also introduced

some randomness in middle frequency bands during phase manipulation. A variation

of this attack incorporating magnitude manipulation was also submitted. Both were

confirmed by SDMI oracle as successful.

Watermark B Our attack on Watermark-B is also a Type-2 attack. A spectrum

notch is observed around 2800Hz for some parts of the audio and around 3500Hz for

some other parts. In addition, the phase difference between original and watermarked

audio signals exhibits unique butterfly shape, indicating that notch filtering is involved

in embedding. Our attack fills in those notches with random but bounded coefficient

values. We also submitted a variation of this attack involving different parameters for

notch description. Both were confirmed by SDMI oracle as successful. Interestingly,

an embedding technique similar to our observations from Technology-B was found in

US Patent 4, 876, 617 “Signal Identification” [112] after the challenge. This once again

indicates that relying on the secrecy of the embedding algorithm is not a long-term

solution to protecting public watermark system.

Watermark F Our attack on Watermark-F explores the weakness of this water-

marking approach under time varying warping in time domain, thus is a Type-1 at-

tack. In particular, we warped the time axis by inserting a periodically varying delay.
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Figure 10.7: Technology-A: FFT magnitude of original and watermarked signals, and
phase difference between the two signals for a 1000-sample segment. The two figures
are for signals around 3.22-th second and 4.33-th second, respectively.
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Figure 10.8: Technology-B: FFT magnitudes of sample-1b and sample-2b and their
difference for 1000 samples at 98.67 sec.

The delay function comes from our study on Watermark-A, therefore the perceptual

quality of our attacked audio is expected to be better than or comparable to that of

the audio watermarked by Technology-A. We also submitted variations of this attack

involving different warping parameters and different delay function. The warping we

performed follows a sinusoid or a triangle function, as illustrated in Fig. 10.4. The

attacks were confirmed by SDMI oracle as successful.

Recently, Boeufl and Stern presented their analysis and successful attack on Wa-

termark F in [143]. An autocorrelation analysis was applied to the difference signal

between the original and watermarked audio, and a periodicity of 1470 samples ( 1
30

second) was observed. Further study in their report suggested that the difference is a

periodic spread spectrum signal with a period of 1470 samples, and the watermark is

scaled with different scaling factor for every 147 samples. The scaling factor appears

to be a function of the average power of the host audio signal in a local window.

The watermark can be detected non-coherently (without using the original audio) by
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taking a correlation over a long window to suppress the strong interference from the

host signal. This detection strategy has been analyzed in Chapter 3 of this thesis.

Having found that the same spread spectrum signal is embedded in both sample-1 and

sample-3, Boeufl et al. designed an algorithm to first search for the initial offset from

which the watermark starts to be put into sample-3 and to successfully remove the

watermark by subtraction. Their work provides a foundation to explain the effective-

ness of our blind attack. Without purposely performing registration/synchronization

or without embedding in a resilient domain, spread spectrum embedding is vulnerable

against jittering 2.

10.2.4 Summary and Remarks

We presented a general framework for analyzing the robustness and security of audio

watermark systems. The framework was demonstrated by our successful attacks in

the SDMI public challenge. We pointed out that (1) the weaknesses in the water-

marking design are very likely to be explored by an adversary as effective attacks,

prompting the need of thorough testing by watermark designers; (2) a large amount

of information regarding the embedding mechanism, derived from pairs of original

and watermarked signals, can be used to build powerful attacks, prompting the need

of obscuring distinct traces between original and watermarked signals. The second

point, though not having received much attention in the literature, is crucial for SDMI

applications and has a tradeoff with respect to the robustness against other attacks.

Due to various limitations of the challenge including the very short time frame,

we adopted practical strategies to increase our chance in finding successful attack(s)

2The counterpart of audio (1-D) warping/jittering attacks in image (2-D) is the geometric dis-
tortions. We have discussed the attacks and countermeasures for image watermarks under rotation,
scale, and translation in Chapter 9.
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and in understanding all four watermark technologies. For example, we did not

incorporate sophisticated human auditory system (HAS) models that can further

improve the perceptual quality. Instead, we focused on finding attacks that render

miss detection by a watermark detector without significantly degrading perceptual

quality. As illustrated in Fig. 10.2, instead of starting from highly noisy audio around

the point A, we look for attacks (such as those around the point B) that is as close

to high perceptual quality region as possible and in the mean time as far away from

detectability threshold as possible. These are crucial start points from which many

optimizations, improvement, and fine-tuning can be feasibly made to proceed to the

ideal attack region (region IV in Fig. 10.2).

10.3 Proposed Attacks and Analysis on SDMI Frag-

ile Watermarks

We have mentioned earlier that an SDMI system may use both robust and fragile

watermarks. In addition to rendering the robust watermarks undetectable, an adver-

sary may forge a fragile watermark to obliterate the access/copy control mechanism.

In the example that a policy does not allow lossy compression on audio files, adver-

saries may first compress an audio file. The lossy compression, which allows the easy

exchange of audio files over network, is likely to destroy the fragile watermark but

still retain the robust watermark. Before admitting the audio to an SDMI-compliant

device, an adversary decompresses the file and forges a fragile watermark. Examining

the existence and the content of the robust and fragile watermarks in an audio file, a

device draws a false conclusion that the audio has not been compressed and that the

user has not violated the access control policy.
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More abstractly, the fragile watermark in an SDMI system serves the purpose

of tampering detection, which is a major application of fragile watermarks. Issues

regarding the designs, the attacks, and the countermeasures of watermark-based au-

thentication have been discussed in Chapter 7, where the basic idea is to keep a

reference and to compare with it later. It is desirable to keep the data volume of the

reference small so that the overhead in storage or transmission of the entire data is

small. The location of the reference does not have to be secret, but the reference must

(1) be unambiguous in the sense that two sets of meaningful data are unlikely to have

the same signature, and (2) be difficult to tamper without trace. For perceptual

source like digital audio, the reference can be combined with the perceptual source in a

more seamless way via watermarking. For example, one can embed a prescribed data

pattern or some features of the host audio signal into the audio, and later when the

authenticity of an audio is in question, one can verify the integrity of these embedded

data to decide on the authenticity of the audio signal. The watermark-based authen-

tication relies on either (1) the embedded data, or (2) the fragility and secrecy of the

embedding mechanism, or (3) both. Compared with non-embedding approaches that

only make use of the first element (e.g., attaching a cryptographic digital signature

to the audio), the watermark-based approach may be able to offer additional security

if designed properly. A poorly designed watermark algorithm, however, may leave

holes for adversaries to forge a valid authentication watermark.

One potential flaw regarding fragile watermark in SDMI-like application is to rely

too much on the secrecy of embedding mechanism. In [175], Technology A is taken

as an example to demonstrate how the embedding mechanism of a fragile watermark

can be explored. Weak echoes have been observed in high frequency bands around

8-16K Hz. The polarity and delay of echoes vary about every 1/50 second, and



CHAPTER 10. ATTACKS ON UNKNOWN DATA HIDING ALGORITHMS 243

they are very likely to be used to encode some authentication information. The data

embedded in such high frequency bands are likely to be distorted by lossy compression

(such as MP3) and low-pass filtering. If the authentication data (i.e., the data to

be embedded) is not wisely chosen, an adversary can explore the inner workings of

embedding mechanism and use this knowledge to recover the authentication data after

performing unallowed processing/distortion on the audio signal. A trivial choice, for

example, to embed the same pattern fragilely for different audio files, could leave

holes for adversaries who may repair the authentication data by using the knowledge

of the embedding mechanism. Holliman et al. discussed a few cases of counterfeiting

watermarks in images [139] and pointed out the weaknesses of embedding data that

are independent of the host media. If the fragile watermark in an SDMI system

were designed to be independent of the host media, it would be vulnerable to forgery

attack, implying the perceptual quality of attacked signal could be very good. This

is because an attacker does not need to destroy the robust watermark (which could

introduce some perceptual distortion, depending on the design and the attack); what

he/she needs to do is just to recover the fragile watermark that generally has lower

energy and is perceptually transparent.

A countermeasure against forging fragile watermark is to introduce dependency,

which has been discussed in Section 9.3. That is, we embed some data, or called

“features”, that are derived from the host audio signal. Denoting the features derived

from an audio signal S1 as d1 = f(S1), and those derived from an altered signal S2

as d2 = f(S2) (e.g., S2 could be an MP3 compressed version of S1), we would like

to choose a function f(·) such that d1 and d2 are sufficiently different. Encryption

and/or cryptographic digest may be used in designing f(·) and the keys associated

with f(·) should be kept secret. Readers may notice a potential problem that the
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features derived from an audio signal could be different from those derived from

its watermarked version, i.e., f(S1) 6= f(E(S1, d1)) where E(·, ·) is an embedding

function. This problem can be easily fixed by embedding the data derived from the

ith segment of an watermarked audio in the (i + 1)th segment of the unwatermarked

audio to obtain (i + 1)th watermarked segment, and so on so forth.

In summary, the fragile watermarks in SDMI-like system should be carefully de-

signed to eliminate weaknesses against counterfeiting attacks and other security holes.
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Chapter 11

Conclusions and Perspectives

This thesis presents multiple aspects of data hiding with both analytic study and ex-

perimental results. We have shown that multimedia data hiding can be used for var-

ious applications, including ownership protection, alteration detection, access/copy

control, annotation, and conveying other side information. In addition to the design

issues, we discussed attacks on watermarking algorithms with a goal of identifying

weaknesses and limitations of existing design/framework as well as proposing im-

provements.

While we have discussed many advantages of data hiding and enumerated a num-

ber of possible applications, it is necessary in practice to justify case by case the need

of data hiding versus the alternatives such as putting side information in the user

data field. We feel it important to understand that in spite of the interesting intellec-

tual challenge and the current popularity of data hiding in the research community,

engineering practice would always favor simplicity, efficiency, and effectiveness than

simply following a new fashion. On the other hand, currently identified challenges,

weaknesses, as well as limitations are not yet sufficient in drawing conclusion on the

usefulness of digital watermarking and multimedia data hiding. The field is still

young and involves various disciplines such as signal processing, computer security,

245
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psychology and economics/business. Paradigms and underlying theories are either

just being set or to be set. Therefore, objective and multi-disciplinary approaches

would continue to be necessities for studying various aspects of multimedia data hid-

ing.

Despite of the differences, data hiding (stegnography) and cryptography are tightly

connected. Many ideas of cryptography have found to be very useful in such existing

data hiding works as tampering detection. As for the future research, it would be

fruitful to undertake a more general investigation regarding what new value can be

offered by combining stegnography and cryptography, and how to make use of this

combination to complement the weaknesses or limitations of each one individually.

This study would lead to a basis for designing practical media security systems, and

to solutions of the Digital Rights Management (DRM) for digital multimedia data.

In addition, regarding the gap between the highly simplified channel models and

the real-world scenarios in today’s data hiding research, a rigorous analysis of the ca-

pacity versus robustness of data hiding in a realistic setting and incorporating percep-

tual models (rather than using a simplified assumption such as Gaussian distribution)

is worthwhile to pursue. Without neglecting the intellectual contribution by capacity

study toward the understanding of data hiding, it is expected that any fundamen-

tal study regarding embedding capacity could ultimately throw light to designing or

improving practical data hiding systems for a variety of applications.

Besides the classic use in ownership protection and copy/access control, we have

demonstrated that data hiding can be a useful tool to send side information in video

communication. This direction is rather new and can be further explored for appli-

cations other than those discussed in this thesis. Along with this pursuit, research

need to be performed toward the integration of error resilience, transcoding, network
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condition measurement, dynamic resource allocation, and admission control in a mul-

timedia communication system, aiming at studying the relations and the interplay

of various modules that were generally addressed individually. This interdisciplinary

study with theories and practice in network communication, signal processing, neu-

ral network, optimization and control systems can lead to better understanding and

deployment of multimedia communication.
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