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Abstract

This study investigated the relationship between clearly produced and plain citation form speech styles and motion of visible
articulators. Using state-of-the-art computer-vision and image processing techniques, we examined both front and side view videos of
speakers’ faces while they recited six English words (keyed, kid, cod, cud, cooed, could) containing various vowels differing in visible
articulatory features (e.g., lip spreading, lip rounding, jaw displacement), and extracted measurements corresponding to the lip and
jaw movements. We compared these measurements in clear and plain speech produced by 18 native English speakers. Based on statistical
analyses, we found significant effects of speech style as well as speaker gender and saliency of visual speech cues. Compared to plain
speech, we found in clear speech longer duration, greater vertical lip stretch and jaw displacement across vowels, greater horizontal
lip stretch for front unrounded vowels, and greater degree of lip rounding and protrusion for rounded vowels. Additionally, greater
plain-to-clear speech modifications were found for male speakers than female speakers. These articulatory movement data demonstrate
that speakers modify their speech productions in response to communicative needs in different speech contexts. These results also estab-
lish the feasibility of utilizing novel computerized facial detection techniques to measure articulatory movements.
! 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Previous research has established that the movements of
facial articulatory features contribute to the myriad of cues
generated during speech (Gagné et al., 2002; Mixdorff
et al., 2005; Smith and Burnham, 2012; Tasko and
Greilick, 2010). The current study explores how visual cues

generated by the visible articulatory movements of the lips
and facial muscles are deployed by speakers during produc-
tion of different speech styles (clearly produced and plain
citation form), by utilizing novel computerized facial detec-
tion techniques to measure differences in articulatory
movements during clear versus plain speech tokens of
English tense and lax vowels embedded in /kVd/ contexts.

1.1. Audio-visual speech perception

Research has demonstrated that bimodal (auditory and
visual, AV) perception is superior to auditory-only (AO)
perception of speech (Massaro, 1987; Sumby and Pollack,
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1954; Summerfield, 1979, 1992). This is presumably due to
the additional stream of linguistic information available to
the perceiver in the visible articulatory movements of the
speaker’s lips, teeth, and tongue as useful sources for seg-
mental perception (Kim and Davis, 2014b; Tasko and
Greilick, 2010; Traunmüller and Öhrström, 2007).
Additionally, visual cues from movements of facial features
including the eyebrows, neck, and head may contribute to
the perception of prosodic information such as lexical tone,
stress, and focus (Chen and Massaro, 2008; Cvejic et al.,
2012; Krahmer and Swerts, 2007; Smith and Burnham,
2012).

Further findings reveal that the weight granted to visual
cues depends on the relative availability and accessibility of
the visual (relative to auditory) information, which is
affected by factors such as the visual saliency of articula-
tory input, the quality of auditory input, and the condition
of perceivers. For example, perceivers are found to put
more weight on the visual input for rounded vowels than
for open vowels, as lip-rounding is more visually salient
to uniquely characterize rounded segments than the generic
mouth opening gesture (Traunmüller and Öhrström, 2007).
Likewise, perceivers are more accurate in identifying
speech contrasts with more visible articulatory gestures
(e.g., labial/labio-dental /p-f/) compared to those with less
visible ones (e.g., alveolar /l-ɹ/) (Hazan et al., 2006). More-
over, research has shown that visual information enhances
speech perception when auditory environment is degraded,
such as in a noisy environment (Bernstein et al., 2004;
Hazan et al., 2010; Sumby and Pollack, 1954;
Summerfield, 1979). Visual input has been found to partic-
ularly benefit special populations for whom the auditory
speech distinctiveness is challenging or unfamiliar, such
as hearing-impaired or non-native perceivers (Grant and
Seitz, 1998; Sekiyama and Tohkura, 1993; Smith and
Burnham, 2012; Wang et al., 2009, 2008). These findings
clearly demonstrate that visible articulatory information
can provide reliable cues to facilitate speech perception.

1.2. Clear speech

With the goal of increasing their intelligibility, speakers
may alter their speech productions in response to the com-
municative needs of perceivers (Hazan and Baker, 2011;
Kim et al., 2011; Smiljanić and Bradlow, 2009; Tasko
and Greilick, 2010), such as when speaking in the presence
of background noise (Sumby and Pollack, 1954), compet-
ing with other talkers (Lu and Cooke, 2008), or communi-
cating with the hearing-impaired or non-native perceivers
(Ferguson, 2012; Maniwa et al., 2009; Payton et al.,
1994; Picheny et al., 1986). Such accommodations typically
involve clear speech, a clarified, hyperarticulated speech
style, relative to the natural plain, conversational speech
style.

Acoustic measures show that plain-to-clear speech mod-
ifications of English vowels may involve increased dura-
tion, intensity, fundamental frequency value and range,

formant frequency range and distance, and expanded
vowel space (Bradlow et al., 1996; Ferguson, 2012;
Ferguson and Kewley-Port, 2007, 2002; Ferguson and
Quené, 2014; Hazan and Baker, 2011; Lam et al., 2012);
as well as more dynamic spectral and temporal changes
(Ferguson and Kewley-Port, 2007; Tasko and Greilick,
2010. The clear speech strategies found to be most effective
in contributing to intelligibility are the expansion of the
vowel space (and corresponding formant changes) and
increased duration of vowels (Bond and Moore, 1994;
Bradlow, 2002; Ferguson and Kewley-Port, 2007, 2002;
Picheny et al., 1986). More specifically, compared to con-
versational speech, clear speech involves lower second for-
mant for back vowels and higher second formant for front
vowels, as well as higher first formant for all vowels, which
presumably could be attributed to more extreme articula-
tory movements and longer articulatory excursions involv-
ing a higher degree of mouth opening and jaw lowering
(Ferguson and Kewley-Port, 2007, 2002).

Moreover, there is evidence that clear speech vowel
characteristics may interact with vowel tensity, with more
expanded vowel space and longer duration for tense vowels
than for lax vowels in clear speech (Picheny et al., 1986;
Smiljanić and Bradlow, 2009). However, such evidence
either lacks statistical power (Picheny et al., 1986), or is
only restricted to the temporal domain (Smiljanić and
Bradlow, 2008). Additionally, despite the fact that both
tense and clear vowels bear similar acoustic correlates,
the two factors are not cumulative to further enhance intel-
ligibility (Ferguson and Quené, 2014). Further research is
needed to examine the extent to which such acoustic effects,
if any, are salient in articulation.

1.3. Articulatory features in clear speech

Given that acoustic variations in clear speech may be
triggered by alterations in articulatory features, it is con-
ceivable that such articulatory variations are measurable
and can be perceived to aid intelligibility. It has been
shown that the clear speech strategies that speakers adopt
when conversing with normal as well as hearing-impaired
persons in noisy settings may further enhance intelligibility
when presented in both auditory and visual modalities as
compared to audio-only presentation (Gagné et al., 2002;
Sumby and Pollack, 1954). Furthermore, research has
demonstrated that the benefits accrued from the availabil-
ity of both visual information and a clear speaking style are
complementary and not merely redundant sources of addi-
tional information in improving intelligibility over the
auditory-only conversational style condition (Helfer, 1997).

The few studies that have performed such kinematic
measurements showed positive correlations among articu-
lation, acoustics, and intelligibility measures in clear speech
effects (Kim and Davis, 2014a; Kim et al., 2014, 2011;
Tasko and Greilick, 2010). Kim et al. (2011) used an
Optotrak system to track the articulatory movements of
clear speech produced in the presence of background noise
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(Lombard speech) by measuring the motion of face mark-
ers as speakers produced English sentences either in quiet
or in noise. They also tested the audio-visual intelligibility
of Lombard speech embedded in noise. The tracking
results revealed a greater degree of articulatory movement
in speech in noise (clear speech) than in quiet (conversa-
tional speech), with the differences correlated with speech
acoustics. Moreover, they found a visual speech benefit,
where increased movement of the jaw and mouth (lip
rounding) during clear speech translated to increased intel-
ligibility. A follow-up study by Kim and Davis (2014a)
investigated whether properties of clear speech were more
distinct and less variable (i.e., more consistent across pro-
ductions) than conversational speech. Consistent with the
previous findings, this study also revealed that mouth
and jaw motion was larger for clear than conversational
speech, indicating that clear speech is more visually dis-
tinct. However, the degree of variability was comparable
for clear and conversational speech. Tasko and Greilick
(2010) used a midsagittal X-ray microbeam system to track
tongue and jaw movements in clear versus conversational
productions of the word-internal diphthong /aɪ/. The ton-
gue fleshpoint tracking results show that, in clear relative
to conversational speech, the tongue began in a lower posi-
tion at the onset of diphthong transition and ended in a
higher position at transition offset. This indicates that clear
speech results in significantly larger and longer movements
of the tongue and jaw, accompanied by the associated lar-
ger first and second formant changes.

1.4. Facial landmark detection

According to the survey of Çeliktutan et al. (2013),
methods for facial landmark detection date back to classic
methods known as Active Appearance models (AAMs)
(Cootes et al., 1995) and elastic graph matching (Wiskott
et al., 1997). Countless extensions followed, including
Göcke and Asthana (2008) and Milborrow and Nicolls
(2008). A recent research trend (Uricar et al., 2012; Zhu
and Ramanan, 2012) for improving the performance of
facial landmark detectors is to adopt a supervised
approach, where one employs training data (videos with
human-identified landmark annotations) to build a mathe-
matical model that would predict landmark locations in
new, unseen images (i.e. video frames not previously seen
by the learned model). Models learned from training data
have the advantage that they are trained to be less sensitive
to algorithm parameters and scene variations (e.g. photo-
graphic changes due to illumination differences, changes
in camera viewpoints, etc.). On the other hand, as learned
models are trained to be as generalizable as possible to new
unseen videos, they tend to compromise in terms of the pre-
cision of the detected landmark locations. Accordingly,
based on the conclusions from the comparative analysis
of Çeliktutan et al. (2013) and our own preliminary exper-
iments, we chose to employ the state-of-the-art face detec-
tor of Zhu and Ramanan (2012) to first localize the facial

landmarks and then develop image analysis processing
algorithms to refine the positions of the landmarks identi-
fied by this detector to further improve localization preci-
sion. Further details on our video-analysis approach will
be described in Section 2.

1.5. The present study

The findings from the earlier kinematic and acoustic
studies of clear speech motivate the present analysis of
the visual articulatory features of vowels in clear versus
plain citation form speech. Vowels have been well docu-
mented in acoustic studies, but there are few reports on
vowels in audio-visual analyses, especially concerning mea-
surements of vowels differing in visible articulatory move-
ments as a function of visual saliency. The previous
studies primarily focused on general visual clear speech
effects at the sentential level or specific effects in a single
vowel. Moreover, the kinematic measures involve placing
physical markers inside the oral cavity or on the speaker’s
face and head during optical motion capture or X-ray
recording, and thus may be physically intrusive to the
speaker as well as distracting to perceivers of the speech.

The present study aims at characterizing the differences
in visible articulatory features (e.g., lip spreading, lip
rounding, jaw position) of English vowels (/i, ɪ, ɑ, ʌ, u,
ʊ/) in /kVd/ word tokens produced in clear and plain
speech styles. This research uses advanced computerized
facial detection and image processing techniques to extract
the articulatory movement information from the speaker’s
face captured by video recordings. This video-analysis
based technique thus differs from the previous studies in
that no physical markers were placed on the speakers, a
decision that facilitates more natural speech production
as well as concurrent research on the perceptual correlates
of the articulatory measurements reported here. We
hypothesize that, compared to plain speech, vowels pro-
duced in clear speech involve greater motion of visible
articulators. In particular, we expect a greater degree of
lip spreading (for unrounded vowels such as /i/), lip round-
ing (for rounded vowels such as /u/), and jaw lowering (for
low vowels such as /ɑ/) (Kim and Davis, 2014a; Tasko and
Greilick, 2010). In addition, we expect the difference
between clear and plain speech to be greater for the visually
more salient tense vowels /i, ɑ, u/ than the less salient lax
vowels /ɪ, ʌ, ʊ/. To the best of our knowledge, the specific
articulatory contrasts for vowels in clear and plain speech
in terms of the degree and direction of articulatory move-
ments, as well as the more subtle distinctions between tense
and lax tokens and their effects on visual saliency have not
been explored in previous studies.

The present study employs the state-of-the-art face
detector of Zhu and Ramanan (2012) to first localize the
facial landmarks and then develop image analysis algo-
rithms that further refine the landmarks identified by this
detector to improve localization precision. To the best of
our knowledge, while lip-tracking and face-detection
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algorithms have been applied to various computer-vision
problems (Çeliktutan et al., 2013; Göcke and Asthana,
2008; Uricar et al., 2012), e.g. for the development of secu-
rity and intelligent car systems, the present study is the first
to apply them to speech production research.

2. Methods

2.1. Experimental setup and data acquisition

2.1.1. Participants
Eighteen native speakers of English (10 females, 8 males)

aged 17–30 were recruited as talkers for this study. All were
born and raised in Canada with Western Canadian English
as their native and dominant language. Since one of the
target vowels was /ɑ/, the speakers were further asked to
confirm that they pronounce the vowel in ‘‘cod” as /ɑ/ rather
than /ɔ/ (i.e., their dialects do not contain an /ɑ-ɔ/ split). The
speakers further reported no hearing, speech, or neurologi-
cal impairments, and had normal or corrected-to-normal
vision. As speakers’ facial activities were video-captured
for visual analysis of articulatory features, they were asked
to wear a non-collared shirt and the visibility of their facial
contours was ensured such that their eyebrows, jawline and
lips should be clearly visible.

2.1.2. Stimuli
Three English vowel pairs /i-ɪ/, /ɑ-ʌ/, /u-ʊ/ differing in

articulatory features (involving lip spreading, jaw lowering,
and lip rounding, respectively) were the target vowels for
examination in this study, with the tense vowels /i, ɑ, u/
having higher visual salience than the lax vowels /ɪ, ʌ, ʊ/.
These six vowels were embedded in monosyllabic /kVd/
contexts, resulting in the corresponding English words
‘‘keyed”, ‘‘kid”, ‘‘cod”, ‘‘cud”, ‘‘cooed”, and ‘‘could” for
the elicitation procedure.

2.1.3. Elicitation of clear and plain speech
The elicitation of clearly produced and plain citation

form speech followed the procedures developed by
Maniwa et al. (2009). Using MATLAB (The Mathworks,
R2013, Natick, MA, USA), a simulated interactive com-
puter software was developed for stimulus presentation that
seemingly attempted to perceive and recognize the tokens
produced by a speaker. The speaker was instructed by the
computer to read each token that was shown on the screen
naturally (to elicit plain style productions), after which the
program would show its ‘guess’ of the recited token. The
software would systematically make wrong guesses due to
‘perception errors’ that involved tensity (e.g., ‘‘keyed” vs.
‘‘kid”), mouth position/opening (e.g., ‘‘keyed” vs. ‘‘cod”),
lip-rounding (e.g., ‘‘keyed” vs. ‘‘cooed”) errors, or an open
error in which the participants were told that the computer
program did not understand what they said. In response,
the speaker was requested to repeat the token more clearly,
as if to help the software disambiguate the confused tokens
(to elicit clear style productions). The tokens were shown in

a fixed random order. In total, each speaker produced 90
plain productions [6 words ! 5 response types (1 correct
+ 4 error types) ! 3 repetitions] and 72 clear productions
(6 words ! 4 error types ! 3 repetitions). Prior to the elicita-
tion session, all speakers underwent a warm-up session
where they practiced producing the six words using the elic-
itation software and were familiarized with the on-screen
prompts and widgets.

2.1.4. Recording
All recordings were made in a sound-attenuated booth

in the Language and Brain Lab at Simon Fraser
University, where each speaker was recorded individually.
The stimuli for elicitation were displayed on a 15 in LCD
monitor three feet directly in front of the speaker at or
slightly above eye-level to facilitate the placement of a
front-view video camera immediately below the monitor
on a desktop tripod. Speakers were seated with their back
against a monochromatic green backdrop. High definition
front-view .mts (AVCHD) video recordings were made
with a Canon Vixia HF30 camera at a recording rate of
29 fps. A second standard-definition camera (Sony
Handycam) captured a left side view of the speaker’s face.
For interaction with the computer display, speakers were
instructed in the usage of an Xbox controller, which offered
a comfortable and quiet way to interact with the display
with minimal movement required from the speaker or
interference with the video and audio recordings. The alter-
native of a computer mouse and mousepad held on their
lap was also offered for those who preferred such. After
reading each word, speakers were instructed to return their
face to a neutral position and keep their mouth closed.
They were also asked to reset and hold their posture for
two seconds in case of a disruption to the recording, such
as after a cough or sneeze. Each of the productions was
evaluated by two phonetically-trained native speakers of
English to ensure that the speakers produced the intended
vowels. All the productions were judged as correct produc-
tions of the target vowels.

2.2. Video analysis

The raw videos were first semi-automatically processed
into annotated segments (at token-level) with MATLAB,
using the audio channel of the recorded videos. Next, facial
landmarks were extracted from each video frame of each
video token using a fully automatic procedure and image
analysis methods. Lastly, articulatory measurements were
computed based on the detected facial landmark positions,
including peak horizontal lip stretch, peak vertical lip
stretch, peak eccentricity of lip rounding, peak vertical
jaw displacement from the front-view analysis, as well as
degree of lip protrusion from the side-view analysis.

2.2.1. Video-segmentation
To segment the video sequence into individual word

tokens and trim out non-interest frames (e.g., when
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speakers were not speaking for the requested tokens), speak-
ers’ word productions were automatically detected based on
the audio signal using the algorithm of Giannakopoulos
et al. (2010). Briefly, this algorithm extracts two sets of audio
features (signal energy and spectral centroid) from the raw
audio signal and dynamically estimates appropriate thresh-
olds for defining when an audio frame contains human
speech. The onset and offset of spoken words were then
computed using the dynamically estimated thresholds. After
some parameter-tuning, we found this algorithm to be fairly
robust against ambient and other non-speech noises
(mouse-clicks, etc.). Nevertheless, it was sensitive to other
human-made sounds (e.g., coughs, dialog with the experi-
menters) and consequently, some of the generated detec-
tions had to be discarded through an operator-guided
verification process.1 Next, one-second onset and offset
times were appended to each detected token such that the
motions of the mouth made before and after the audio
would also be included in the subsequent video analysis step.
Lastly, each video segment was annotated with pairs of
labels that identify the prompting token (e.g. ‘cod’, ‘caught’,
etc.) and the nature of the token produced (i.e. ‘plain’ or
‘clear’, which identifies the token as being a response to a
first elicitation, or a second one, spoken in response to a
wrong guess, respectively). This annotation procedure was
done using a semi-automatic procedure.

2.2.2. Analysis of front-view video tokens
In summary, for the front-view video analysis, facial

landmark annotations of the segmented video tokens were
performed using the following four steps. First, we ran a
face detector for each frame in the segmented video to
localize landmark candidates. Second, the horizontal and
vertical scales of each subject’s head were estimated. Third,
we employed image analysis algorithms to examine the
local intensity profiles of the landmarks to refine the candi-
date positions to obtain more accurate position estimates.
Fourthly, the measurements of interest were computed
using the detected facial landmarks. Fig. 1 displays an
example front-view video frame and corresponding facial
landmarks. We now describe the details of each step.

First, for landmark estimation, we employed the state-
of-the-art face detector of Zhu and Ramanan (2012) over
each frame of each segmented video sequence. This
approach was employed as it was shown to be one of the
top-performing face detectors in a recent comparative anal-
ysis (Çeliktutan et al., 2013) that evaluated a total of seven
state-of-the-art methods for facial annotations using four
large-scale public datasets. This face detector leverages
machine learning techniques to build a mathematical
model that was trained on public annotated videos (i.e.,
manually created facial landmark annotations). As several
public video databases were employed, we found the

detector robust to the variations in subjects’ poses and
lighting conditions, as well as local photographic changes
(e.g., from shadows). Additionally, due to the ‘‘parts-
based” approach of (Zhu and Ramanan, 2012), it generally
detected the eye landmarks and nose tip in a robust and
accurate manner. However, it was sensitive to differences
in facial configurations (e.g., scale differences between
parts) and thus gave less accurate estimates of lip land-
marks, which thus motivated our refinement procedure as
explained in step 4 to be described below.

Second, to account for head-size differences across
subjects, we needed to estimate the scale factors needed
to normalize these scale variations. We do so by estimating
the horizontal and vertical scale factors of each speaker by
computing, respectively, the inter-pupillary distance (IPD)
and eye-to-nose-tip distance, which is defined as the dis-
tance from the nose-tip to its perpendicular projection on
the pupil-line. For brevity, we denote these distances sim-
ply as horizontal distance (HD) and vertical distance
(VD), respectively. More specifically, to calculate HD, we
approximated each pupil’s location as the mean of the four
detected eye landmarks and computed HD as the distance
between the approximated pupil locations. Similarly, we
computed VD by computing the distance between the
nose-tip and the point projected perpendicularly from the
nose-tip onto the pupil-line.

Third, for lip landmark refinement, having obtained the
lip landmarks estimated by the detector, we then computed
a box that enclosed all detected lip landmarks. Intensity
profiles at the middle of each side of the bounding box
for all four sides were then examined. In order to avoid
false detections due to shadows from the lips, the bounding
box was drawn to be within a margin of 0.05 ! IPD to the
closest lip landmarks. This strategy proved adequate in all
of our videos due to the well-controlled recording setup.
The final landmark positions were then computed as the
location where the maximal intensity change was detected.
Prior to drawing the intensity profiles, we converted each
color frame to the HSV color-space that transforms the
RGB color channel to 3 channels representing hue, satura-
tion, and value of a color. Following Zhang and Wang

Fig. 1. Example front-view video frame and corresponding facial land-
marks. A black bar has been superimposed to protect the speaker’s
privacy.

1 This procedure involved having an operator correcting the annotations
that were generated automatically based on the predefined order of the test
tokens.
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(2000), we discarded the hue and value channel, since hue
information is unreliable for regions with low color satura-
tion like the lips. Instead, we employed the saturation
channel in which the lip is most distinguishable from the
skin color. Further, we applied a low-pass spatial smooth-
ing filter to each frame to remove speckle noise produced
during data acquisition.

Finally, with the automatically detected and refined
landmarks computed for all frames within each video
token, we computed the following four articulatory mea-
surements for the front-view video tokens:

" Peak of vertical lip stretch:
F1 = 1/VD quantile({11lipT # 11lipB, . . . , 1

f
lipT # lflipB,

. . . , 1n lipT # lnlipB}, 0.95),
where 1flipT and 1f lipB denote the top and bottom lip
landmarks, respectively; f is the frame index, n is the
video token length, and quantile denotes the quantile
function that computes the 95th quantile of the input
arguments;

" Peak of horizontal lip stretch:
F2 = 1/HD quantile({11lipR # 11lipL, . . . , 1

f
lipR # lflipL, . . . ,

1nlipR # lnlipL}, 0.95),
where 1flipL and 1flipR denote the left and right lip land-
mark, respectively;

" Peak of eccentricity of lip rounding:
F3 = quantile({r1, . . . , rf, . . . , rn}, 0.95),

where r f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1# b2=ða2 þ 1Þ

q
, with a and b being the

constants of the fitted ellipses (note that a low eccentric-
ity value indicates a greater extent of lip rounding);

" Peak of vertical jaw displacement:
F4 = 1/VD quantile({11jaw # 11+1

jaw , . . . , 1fjaw # 1f+1jaw,
. . . , 1n#1

jaw # 1njaw}, 0.95),
where 1fjaw is the landmark with the lowest y-coordinate
as determined by the face detector.

Note that these articulatory measurements are not
expressed in physical units but rather as normalized values,
thereby facilitating scale normalization across speakers.
For example, the vertical lip stretch and jaw displacement
are expressed in reference to distance from nose-tip to
pupil-line of each subject, while horizontal lip stretches
are expressed in reference to IPD.

2.2.3. Analysis of side-view video tokens
Another novel methodological contribution of the pre-

sent study is the way in which we examined the articulatory
features relating to lip protrusion, which we hypothesize to
be salient for ‘‘cooed” and ‘‘could” tokens that involved
the rounded /u/ and /ʊ/ vowels, respectively. For this pur-
pose, we also captured side-view videos of the speakers, in
addition to the front-view videos. As the side-view videos
show a limited set of facial features (nose tip, one eye,
one ear, and the shape of the lips), computer-aided analyses
of these videos required a different procedure. Specifically,
as only one eye is visible on the side, we could not employ

intraocular distances and mid-point-to-nose-tip distances
for spatial normalization to adjust for the scale changes
of the facial features across tokens. Accordingly, we
employed linear image registration to normalize the scale
changes in these videos. Below is a detailed description of
the side-view video analysis procedure, which at a high
level involved scale normalization and lip-protrusion
quantification.

To initialize, for each speaker, a video token was selected
as a reference video (VRef). Then, the first step involves scale
normalization. For each video token Vi, the following steps
were performed: (1) Using the ‘‘profile-face” detector of
MATLAB (The Mathworks, R2013, Natick, MA, USA),
a region belonging to the complete side-view of the face
was semi-automatically2 detected. (2) For each video frame,
the facial outlines were detected to generate a rough outline
of the face that would represent the contours of the face at
each time instance. This was achieved3 by using a Sobel edge
detector. Based on empirical experiments, we found the edge
detector robust against shadows, illumination changes, and
image noises, thanks to the homogeneity of the background
and the saliency of the face contour. (3) Next, a feature
image (FI) was computed that summarizes the face contours
across time for each video token. This was done by summing
the intensity values of corresponding pixels of all outline
images in a token and subsequently dividing each pixel by
token size (number of frames in each token). (4) To spatially
normalize the scale differences between video tokens, linear
image registration was performed to resolve the similarity
transform (i.e. 4 degrees of freedom: vertical and horizontal
translation, clockwise rotation, and scaling/resizing) that
would align each FI of Vi to the FI of the reference video
VRef. (5) Finally, the spatially normalized FIs were trimmed
so they all center around the lip region. Fig. 2 displays an
example output of steps in the above algorithm.

The second step was lip-protrusion quantification,
involving extracting some summary statistics about the
FIs that would quantify the visual differences between the
degree of lip protrusion involved in each token. These mea-
surements should be sensitive to capture the degree of lip
protrusion across time but remain insensitive to token
length. Accordingly, to quantify the relative difference
between the registered FIs and the FI of VRef, which is
mainly due to lip deformations, we computed an image
dissimilarity measure. The image dissimilarity measures
examined are: mean of absolute difference (MAD), mutual
information (MI) (Maes et al., 1997), and sum of condi-
tional variance (SCV) (Pickering et al., 2009). These are
standard image measures that examine how two images

2 The face region is manually redrawn when the detected region is
deemed incorrect as judged by the experimenter after quick visual
inspection.
3 We also explored the options of using a Canny or a Prewitt’s edge

detector. We found responses to the Sobel edge detector gave the right
amount of contour details even without parameter-tuning, as required by
the explored alternatives.
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differ. Specifically, MAD is a computationally efficient
measure that assumes that the intensity relationship is
preserved across the FIs compared, while the other two
measures are statistical measures that do not require this
assumption and thus may be more robust to illumination
changes, albeit slightly more computationally intensive to
calculate. Generally, we find the tokens with amplified lip
protrusions yielded higher dissimilarity between the com-
pared FIs, thus yielding higher values in the dissimilarity
measure. Fig. 3 illustrates the relative differences between
the registered FIs and the FI of VRef.

3. Results

The extracted measurements from the front and side
videos, including horizontal and vertical lip stretch, jaw
displacement, lip rounding and lip protrusion, as well as
duration, were submitted to statistical analyses. For con-
ciseness, only the significant effects and interactions involv-
ing style are reported.

3.1. Front-view analysis

For each of the front-view measurements, a series of
2 ! 2 ! 2 repeated measures analysis of variance
(ANOVAs) was conducted with Style, Gender, and Tensity
as factors. The ANOVAs show significant differences for
the main effects of Style, Gender, and Tensity for the var-
ious measurements. Since no significant interactions of
Style and Tensity were observed, subsequent style compar-
isons pooled data across Tensity for each vowel pair.
Firstly, as hypothesized, there is a significant main effect

of Style: in horizontal [F(1,765) = 21.5, p < .001] and verti-
cal [F(1,765) = 51.0, p < .001] stretches for ‘‘keyed/kid”, in
vertical stretch [F(1,765) = 24.2, p < .001] and jaw dis-
placement [F(1,765) = 8.6, p = .003] for ‘‘cod/cud”, and
in rounding [F(1,655) = 4.8, p = .028], vertical stretch
[F(1,655) = 21.7, p < .001] and jaw displacement [F
(1,655) = 6.6, p = .010] for ‘‘cooed/could”. Fig. 4(a)–(d)
displays the measurement comparisons between plain and
clear speech styles for each of the three word pairs (the
measurements per word, style and gender are displayed in
Table A1). As shown in the figure, for each of these signif-
icant differences in style, the extent of movement in clear
speech is greater than in plain speech. Additionally, for
each word pair, the duration in clear speech was longer
than in plain speech, as expected (p < .05). For the main
effect of Tensity, tense vowels show longer duration and
a greater degree of displacement than lax vowels, involving
greater horizontal lip stretches for ‘‘keyed” than ‘‘kid”,
greater vertical lip stretches for ‘‘cod” than ‘‘cud”, and
greater lip stretches in both directions for ‘‘cooed” than
‘‘could” (p < .05). Moreover, a significant main effect of
Gender was observed in the horizontal and vertical stretch
for ‘‘keyed/kid”, and in all of the measurements of
‘‘cod/cud” and ‘‘cooed/could”, with overall greater extent
of movement in male than female productions (p < .05).

The statistically significant interactions mostly involved
Style and Gender. Post-hoc analyses were further con-
ducted to examine the effects of Style per Gender group
for each pair of words using a series of one-way ANOVAs.
As shown in Fig. 4, for keyed/kid, the vertical lip stretch is
greater in clear (M = 1.35) than plain speech (M = 1.17)
[F(1,352) = 36.5, p < .001] in males. To a lesser degree, in

Detected face Outline image Trimmed FI
(after step 1) (after step 2) (after step 5) 

Fig. 2. Example side-view video frame (left) and corresponding edge features (middle) which are used to compute the feature image of an entire video
token (right). A grey bar has been superimposed to protect the speaker’s privacy.

Fig. 3. (a) Feature image (FI) of reference video token; (b) FI of another token; (c) intensity difference between these FIs; (d) intensity difference between
the registered FI pair. Visual inspection of (d) is a common and effective way to examine the quality of spatial alignment of images (Tang et al., 2008; Tang
and Hamarneh, 2013).
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females, the vertical lip stretch is also greater in clear
speech (M = 1.05) than plain speech (M = 0.98)
[F(1,410) = 15.1, p < .001]. Horizontal lip stretch is also
greater in clear speech (M = 0.99) than in plain
(M = 0.93) [F(1,352) = 19.7, p < .001] for males, but the
difference is not significant for females (M = 0.84 vs.
M = 0.82) [F(1,410) = 3.7, p = .055]. For cod/cud, the ver-
tical lip stretch is greater in clear (M = 1.36) than plain
speech (M = 1.23) [F(1,360) = 15.5, p < .001] in males.
To a lesser degree, in females, the vertical lip stretch is also
greater in clear speech (M = 1.10) than plain speech
(M = 1.05) [F(1,402) = 8.4, p = .004]. In addition, for

males, the jaw movement was greater in clear than in plain
speech (M = 0.20 vs. M = 0.16) [F(1,360) = 9.2, p = .003],
but no such difference was observed in females. For
cooed/could, the vertical lip stretch is greater in clear
(M = 1.21) than in plain speech (M = 1.10) [F(1,298)
= 13.7, p < .001] in males. To a lesser degree, in females,
the vertical lip stretch is also greater in clear (M = 1.00)
than in plain speech (M = 0.94) [F(1,354) = 7.5,
p = .007]. Additionally, males employed greater jaw move-
ment in clear than in plain speech (M = 0.14 vs. M = 0.12)
[F(1,298) = 7.2, p < .001], but no such difference was
observed in females.

Fig. 4. Comparisons between plain and clear speech styles for each pair of vowels by male (n = 8) and female (n = 10) speakers, as well as the same speech
style comparisons with gender-weighted mean values across all speakers (All). The values are the mean peak of (a) vertical lip stretch, (b) horizontal lip
stretch, (c) eccentricity of lip rounding, and (d) jaw displacement. Error bars indicate ±1 standard deviation. These measurements are not expressed in
physical units but as a fraction of the speaker’s head to facilitate scale normalization across speakers. Note that while a larger value generally indicates
greater displacement, a low eccentricity value indicates a greater extent of lip rounding. ‘‘*” indicates statistically significant style effects (p < .05).
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3.2. Side-view analysis

To test the hypothesis that differences in style can be
observed in terms of lip protrusion for the rounded vowels
‘‘cooed” and ‘‘could”, a 3-way ANOVA was performed on
the extracted side-view measurements with Style, Gender,
and Tensity as factors. The results show a significant main
effect of Style [F(1,847) = 52.5, p < .001], with the extent of
lip protrusion being greater in clear speech (M = 0.08) than
in plain speech (M = 0.07). Additionally, a significant main
effect of Gender was observed, with male speakers
(M = 0.10) showing greater lip protrusion than female
speakers (M = 0.06) [F(1,847) = 291.5, p < .001]. Although
there was no significant interaction of Style and Tensity or
of Style, Tensity, and Gender, a significant Style and
Gender interaction was observed [F(1,847) = 4.4,
p = .036]. Subsequent one-way ANOVAs for each gender
with Style as the within-subject factor revealed that for
males, the extent of lip protrusion was greater in clear
speech (M = 0.11) than in plain speech (M = 0.08)
[F(1,309) = 40.6, p < .001]. To a lesser degree, a greater
degree of lip protrusion for clear (M = 0.07) versus plain
style (M = 0.05) in the female speakers was also observed
[F(1,402) = 26.2, p < 0.001]. Fig. 5 displays the lip protru-
sion comparisons between plain and clear speech styles for
the word pair cooed/could containing rounded vowels.

In sum, plain-to-clear speech modifications involve
longer duration, greater vertical lip stretch and jaw move-
ment in all three pairs of words, as well as a greater degree
of lip rounding and lip protrusion for the words involving
rounded vowels. Additionally, relative to female speakers,
male speakers exhibited greater speech style differences,
particularly greater degrees of horizontal lip stretch (for
keyed/kid) and jaw movement (for cod/cud, cooed/could)
in clear than plain speech.

4. Discussion

This study makes use of dual-view video sequences to
examine articulatory features between clearly produced

and plain citation form speech, involving a representative
set of vowels embedded in English monosyllabic words.
The overall results support our hypothesis of greater artic-
ulatory movements for clear relative to plain speech.
Specifically, the finding of longer durations in clear than
plain speech across vowels agrees with both the acoustic
and articulatory data in previous research (Ferguson and
Kewley-Port, 2002; Kim and Davis, 2014a; Lu and
Cooke, 2008; Picheny et al., 1986). The articulatory motion
results are consistent with previous findings of the acoustic
features of vowels in clear speech (e.g., Bond and Moore,
1994; Bradlow et al., 1996; Ferguson and Kewley-Port,
2007, 2002) in that expanded acoustic vowel space and
more peripheral formant frequencies in clear speech may
be attributed to more extreme and greater extent of articu-
latory movements, in terms of vertical lip movement, jaw
lowering, horizontal lip stretches, and lip protrusion.

In particular, the present finding of clear speech effects
attributable to greater vertical lip and jaw movements
across words is consistent with the previous acoustic
studies showing an increase in first formant values across
vowels in clear speech as compared to plain speech
(Ferguson and Kewley-Port, 2002; Ferguson and Quené,
2014; Kim and Davis, 2014a; Lu and Cooke, 2008).
Additionally, clear speech typically involves increased
vocal effort (consequently, increased intensity), which also
requires a larger jaw opening (Huber et al., 1999; Kim
and Davis, 2014a; Schulman, 1989). In terms of articula-
tion, these findings are also in line with the claim that the
jaw and lower lip, which give rise to vertical displacement,
are more relevant to active speech articulation and can be
better tracked than the upper lip (as a passive articulator
in this process) (Yehia et al., 2002). Moreover, the horizon-
tal lip movement also shows clear speech effects in the pro-
duction of the front vowels (/i-ɪ/ in keyed/kid) that involve
horizontal lip spreading. Acoustically, it has been found
that the second formant of these front vowels generally
increases in clear speech relative to plain speech
(Ferguson and Kewley-Port, 2002; Ferguson and Quené,
2014; Lu and Cooke, 2008). Thus, the increase in the sec-
ond formant is conceivably due (in part) to the shortening
of the vocal tract resulting from lip-spreading. Finally,
both the front- and side-view videos captured the (slightly
but significantly) greater degree of lip-rounding and lip-
protrusion for the rounded vowels /u-ʊ/ in cooed/could
in clear versus plain speech. The observation that the sec-
ond formant of these rounded vowels is lower in clear than
in plain speech (Ferguson and Kewley-Port, 2002) is con-
sistent with the present articulatory finding that speakers
lengthen their vocal tract by rounding and protruding their
lips to a greater degree in clear speech. Previous research
has shown that perceivers rely more on the visual feature
of lip rounding than the auditory information to perceive
rounded vowels (Traunmüller and Öhrström, 2007).
However, no articulatory kinematic research has examined
the visible articulatory features of lip rounding and lip pro-
trusion in clear versus plain speech. The present finding

Fig. 5. Comparisons of degree of lip protrusion between plain and clear
speech styles for the word pair cooed/could containing rounded vowels
produced by male (n = 8) and female (n = 10) speakers, as well as the same
speech style comparisons with gender-weighted mean values across all
speakers (All). Error bars indicate ±1 standard deviation. ‘‘*” indicates
statistically significant style effects (p < .05).
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thus offers new evidence of clear speech effects in the
articulation of rounded vowels, and opens the door to
the investigation of additional rounded segments (such as
/w/ and /ɹ/).

The current study revealed an overall greater and longer
articulatory movement for tense vowels compared to lax
vowels, consistent with previous acoustic findings
(Ferguson and Quené, 2014; Hillenbrand et al., 1995).
However, the results show no interaction between vowel
tensity and speech style, contrary to the predictions of
greater clear speech effects for tense than lax vowels. The
lack of greater plain-to-clear speech modifications in
articulation for tense vowels may be due to articulatory
constraints. The productions of tense vowels and clear-
speech vowels both involve longer articulatory excursions,
such as greater lip-spreading, jaw displacement, and lip-
rounding. These extreme articulatory features that are
intrinsic to tense vowels may have limited the room for fur-
ther modifications that are more ‘‘deliberate” such as in
clear speech (cf. Hazan and Markham, 2004). Acoustically,
there has been supporting evidence showing that the spec-
tral distance between tense and lax vowels is smaller in
clear speech as compared to that in plain speech, indicating
constraints to variability in speech style for tense vowels
involving more peripheral formant frequencies (e.g., /i/)
(Granlund et al., 2012).

The results reveal an unexpected gender effect in that
male speakers often show greater clear speech effects than
female speakers, particularly involving greater degrees of
horizontal lip stretch and jaw movement. These patterns
are not consistent with some of the previous findings
showing no or less clear-cut gender effects on clear speech
production both from acoustic and articulatory measures
(Hazan and Markham, 2004; Kim and Davis, 2014a;
Tasko and Greilick, 2010; Traunmüller and Öhrström,
2007). The observed gender differences may be due to
anatomical factors. Past research has indicated that the size
of the vocal tract and articulators may be positively corre-
lated with movement displacement (Kuehn and Moll, 1976;
Perkell et al., 2002). It may thus be speculated that the cur-
rent male speakers’ greater articulatory movements in clear
speech could be attributed to their larger-size articulators
relative to females’, which allow more room for variability
and more extreme speech articulation. However, it is not
clear whether such differences are idiosyncratic in nature
or can serve as effective cues to perception. Future research
is needed to evaluate if these gender differences can be cap-
tured in perception to affect the intelligibility of clear versus
plain speech.

The current results from video image analyses also
extend the previous articulatory findings based on kine-
matic measures reporting increased movement of the ton-
gue, jaw, and mouth during clear speech (Kim and
Davis, 2014a; Kim et al., 2011; Perkell et al., 2002; Tasko
and Greilick, 2010). In line with Kim and Davis’ (2014)
findings of greater vertical jaw movements and mouth
opening in clear versus plain speech, the current study

additionally shows clear speech modifications in terms of
vertical and horizontal lip movements as well as lip round-
ing and protrusion. Moreover, most of the vowel kinematic
studies focus on one vowel (e.g., a single diphthong, Tasko
and Greilick, 2010; or a single vowel embedded in different
consonantal contexts, Perkell et al., 2002), or conduct artic-
ulatory analyses based on measurements across vowels in
an utterance (e.g., Kim and Davis, 2014a). The present
study systematically examined a representative set of vow-
els with specific predictions on the basis of their articula-
tory and acoustic features, demonstrating that subtle
visible articulatory movements in vowel productions can
be captured in dual-view video recording and extracted
using advanced video image processing techniques, without
the need for placing physical markers on the speakers. This
method not only allows more natural speech production,
but also enables concurrent speech intelligibility research
on the perceptual correlates of the articulatory measure-
ments. The current research thus points to promising direc-
tions to apply computerized lip-tracking and face-detection
algorithms (Göcke and Asthana, 2008) to the study of
speech production, acoustics, and perception.

5. Concluding remarks

Using image processing analysis techniques with data
collected from video captured from two complementary
views, this study revealed a positive relationship between
speech style and motion of visible articulators, indicating
that clear speech relative to plain speech involves greater
lip and jaw movements. These findings demonstrate that
the novel computer-assisted face annotations and tracking
techniques can precisely quantify and characterize the differ-
ences in articulatory features of speech segments produced
in clear and plain speech style. Future video image analyses
may involve real-time tracking to capture the dynamic fea-
tures of vowels (including those that have been examined
using kinematic measures, e.g., movement velocity, Perkell
et al., 2002). Additionally, the side-view data acquired from
the second camera points to the promising potential of using
multiple cameras simultaneously, as well as the potential of
reconstructing a multi-dimensional surface of the face and
extracting more elaborate shape descriptors.

The present articulatory results contribute to a three-
pronged approach to encompass articulatory, acoustic,
and intelligibility analyses of clear and plain speech to
explore the extent to which the measured articulatory dif-
ferences correlate to differences in acoustic features
between clear and plain speech, and the extent to which
the differences in articulatory features are perceptible such
that these observed clear speech features can enhance
speech intelligibility.
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Table A1
Comparisons between plain and clear speech styles for each word by male and female speakers. The values are the mean amount of vertical lip stretch, horizontal lip stretch, eccentricity of lip rounding
and jaw displacement (with standard deviations in parentheses).

Vertical lip stretch Horizontal lip stretch Eccentricity of lip rounding Jaw displacement

Male Female Male Female Male Female Male Female

Keyed Plain 1.186 0.978 0.933 0.836 0.745 0.752 0.127 0.101
(0.194) (0.157) (0.100) (0.083) (0.101) (0.102) (0.074) (0.064)

Clear 1.355 1.055 0.994 0.854 0.748 0.770 0.129 0.109
(0.317) (0.225) (0.119) (0.087) (0.102) (0.080) (0.087) (0.079)

Kid Plain 1.156 0.979 0.937 0.805 0.773 0.739 0.133 0.103
(0.186) (0.181) (0.098) (0.094) (0.091) (0.096) (0.084) (0.068)

Clear 1.330 1.049 0.975 0.820 0.765 0.747 0.178 0.170
(0.340) (0.197) (0.112) (0.081) (0.088) (0.096) (0.079) (0.561)

Cod Plain 1.278 1.075 0.893 0.802 0.770 0.742 0.159 0.123
(0.328) (0.174) (0.083) (0.073) (0.060) (0.080) (0.095) (0.077)

Clear 1.402 1.129 0.878 0.790 0.774 0.757 0.187 0.128
(0.376) (0.191) (0.078) (0.059) (0.061) (0.058) (0.108) (0.076)

Cud Plain 1.171 1.010 0.896 0.809 0.768 0.751 0.158 0.129
(0.209) (0.170) (0.090) (0.094) (0.078) (0.081) (0.080) (0.068)

Clear 1.309 1.057 0.906 0.807 0.766 0.751 0.207 0.130
(0.271) (0.158) (0.087) (0.071) (0.065) (0.072) (0.101) (0.067)

Cooed Plain 1.072 0.915 0.893 0.805 0.748 0.780 0.111 0.091
(0.186) (0.158) (0.089) (0.083) (0.089) (0.088) (0.072) (0.050)

Clear 1.151 0.960 0.883 0.810 0.715 0.768 0.137 0.090
(0.257) (0.191) (0.076) (0.086) (0.090) (0.090) (0.095) (0.056)

Could Plain 1.132 0.970 0.880 0.783 0.756 0.742 0.130 0.093
(0.236) (0.177) (0.103) (0.065) (0.071) (0.087) (0.073) (0.050)

Clear 1.264 1.031 0.873 0.795 0.734 0.747 0.145 0.100
(0.289) (0.195) (0.078) (0.063) (0.071) (0.074) (0.080) (0.067)
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