
Agile Software Development
Approaches and Their History

Volkan Günal

August 3, 2012



2

ABSTRACT

Author: Günal, Volkan

Enterprise Software Engineering 2012: Agile Software Develop-
ment (Seminar)

With the constant development of information systems and
as the business has taken different forms over the years, a
number of the traditional methods have turned into highly
documentation-oriented, heavy ways of development and
such models strictly requiring and limiting developers to
follow and apply certain and irreversible processes.

As a counter-reaction to those problems the traditional
methods had brought, the understanding of:

- the significance of human factor,

- importance of collaboration and communication be-
tween the team and the customers,

- and the value of ability to respond to changes

has begun to arise in the software industry. This leaded the
new Agile Methods be formulated and applied over the last
two decades, in order to overcome the shortcomings of the
traditional methods.

This paper aims to analyze the concepts lying behind Agile
Software Development approaches, considering The Agile
Manifesto and its values as the base to follow.

Describing the values of The Agile Manifesto and focusing
on some of the most commonly used agile techniques, such
as eXtreme Programming, SCRUM et al.; provides a clear
view to see the key points and the advantages of Agile Soft-
ware Development and understand why it is used over the
traditional methods, due to its collaborative, communica-
tive, flexible, fast and efficient properties.



3

Chapter 1

Agile Software
Development
Approaches and Their
History

1.1 Introduction

Volkan Günal

Software plays a very crucial role in numerous number of
areas of technology and business world, as it is driven ex-
tensively both by the individuals and the companies either
as a single main application or as a part of an aggregate
project in order to ease the level of effort, raise functionality
and consistency of the work by computerizing procedures
and enabling services.

Due to the constant development of information systems,
the increasing demand in the field and as the business has
taken different forms over the years, different software de-
velopment methods and models have been invented and
used over the last five decades in order to facilitate the de-
velopment processes.



4 1 Agile Software Development Approaches and Their History

1.1.1 Realization

With the aforementioned qualities, some of the traditional
methods have turned into highly documentation-oriented
ways of development and such models strictly requiring
and limiting developers to follow and apply certain pro-
cesses. As a counter-reaction to those problems the tradi-
tional methods had brought, the understanding of the sig-
nificance of human factor, importance of collaboration and
communication between the team and the customers, and
the value of ability to respond to changes has begun to arise
in the software industry. This leaded the new Agile Meth-
ods be formulated and applied over the last two decades,
in order to overcome the shortcomings of the traditional
methods.

Having an initial look at Toyota’s manufacturing and pro-
duction philosophy considering these values helps us un-
derstand the concept of ”continuous change” and ”human
orientation” leading to success, before focusing on the Ag-
ile Software Development.

1.1.2 Overview of Toyota Way 2001

Toyota Motor is a global automotive corporation that has
a well-earned reputation for excellence in quality, cost re-
duction, and hitting the market with vehicles that sell.[14,
p. 3] Toyota is a good example of a company which applied
basics of agile principles in a production-oriented environ-
ment since 1980s.

In April 2001, Toyota adopted the Toyota Way 2001, an ex-
pression of the values and conduct guidelines that all em-
ployees should embrace in order to perform the guiding
principles of the corporation successfully.[1, p. 80] In fact,
its roots lie on the summer training of supervisor’s in 1987,
where the system was fully articulated by then, as was ba-
sic company philosophy, especially in such areas as quality
and human resources. [14, p. xvi] The philosophy behind
the Toyota Way 2001 is explained in two concepts as Con-
tinuous Improvement and Respect for People in the company’s



1.1 Introduction 5

Environmental and Social Report 2003, as seen in Figure 1.1 .

Figure 1.1: Key Principles of Toyota Way [1]

In 2004, Jeffrey Liker published his book ”The Toyota Way”,
in order to formulate the Toyota Way 2001 and provide a
guide to succeed in manufacturing based on the principles
he defined. Liker expresses the idea that Toyota Way is a sys-
tem designed to provide the tools for people to continually
improve their work, meaning more dependence on people.
[15, p.36]

Liker summarizes the principles of Toyota Way in four sep-
arate sections, namely as:

1. Long-Term Philosophy - as management decisions on a long-
term philosophy, even at the expense of short-term financial goals

2. The Right Process Will Produce the Right Results

3. Add Value to the Organization by Developing Your People

4. Continuously Solving Root Problems Drives [15, p. 37-40]



6 1 Agile Software Development Approaches and Their History

1.1.3 Structure and Research Topics

This paper aims to analyze the concepts lying behind Agile
Software Development approaches, considering The Agile
Manifesto and its values as the base to follow.

Therefore, in Section 1.2 the four main values of The Ag-
ile Manifesto are described with its ideological background,
also by reminding the twelve principles of being agile.

In Section 1.3 , focusing on some of the most commonly
used agile techniques, such as eXtreme Programming,
SCRUM, Adaptive Software Development, Crystal et al.,
provides a clear view to see the key points and the advan-
tages of Agile Software Development and understand why
it is used.

In Section 1.4 , a comparison is made between the Agile
Software Development and the traditional methods, such
as Waterfall approach, to see the differences and how Agile
Methods aims to overcome the shortcomings of the tradi-
tional methods.

1.2 Agile Software Development

1.2.1 Agility

To be able to fully understand the concept, it is helpful to
first describe the meaning of the term ”agility” from differ-
ent perspectives.

Back in 1995, the term agility was defined well in Agile Com-
petitors and Virtual Organizations, in fact for flexible man-
ufacturing, as ”Agility is dynamic, context-specific, aggres-
sively change-embracing, and growth-oriented. It is not about
improving efficiency, cutting costs, or battening down the busi-
ness hatches to ride out fearsome competitive ”storms.”It is about
succeeding and about winning: about succeeding in emerging
competitive arenas, and about winning profits, market share, and
customers in the very center of the competitive storms many com-



1.2 Agile Software Development 7

panies now fear.” [10], which is such a description that still
keeps its validity today.

According to Highsmith (2002), the most clearly focused
definition of agility is that it is the ability to both create and
respond to change with the purpose of profit in a turbulent
business environment. [12, p. 16]

Furthermore, one of The Agile Manifesto’s authors, namely
Alistair Cockburn (2001), emphasizes that the use of light-
but-sufficient rules of project behavior and the use of
human- and communication-oriented rules is core to agile
software development [7, p. 8], considering the agility on
software development.

1.2.2 The Agile Manifesto

In February of 2001, seventeen practitioners of several pro-
gramming methodologies came together at a summit in
Utah to discuss the problems of existing methodologies,
the ways to overcome those, and the values to support ag-
ile or lightweight software development at high level; then
they published The Agile Manifesto with the four main val-
ues that were agreed on as:

”Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan” [4]

With these four main values, The Agile Manifesto simply
and clearly states what is more important for a better soft-
ware development. The formulation of The Agile Manifesto
in more detail helps us comprehend and follow the fur-
ther elaboration of Agile Software Development, and dis-
tinguish the traditional methods from it.



8 1 Agile Software Development Approaches and Their History

Individuals and Interactions over Processes and Tools

This first asset of The Agile Manifesto aims to express that
the people are more significant than certain processes and
tools. Most of the traditional methods, such as Capabil-
ity Maturity Model (CMM), Waterfall approach et al., have
processes that are based on roles. And, this basically im-
plies that the humans are replaceable; which is yet mostly
an inconvenient case for developing a software where in-
dividuality is crucial. Hence, replacement and/or substitu-
tion of individuals is not easy in software development.

This value also points out the fact that individual interac-
tions are core to the discussions between people to obtain
new solutions, thus the quality of the interactions matter, as
Cockburn (2001) defends this idea by stating that he rather
prefers an undocumented process with good interactions
than a documented process with hostile interactions. [7, p.
178]

Working Software over Comprehensive Documentation

Documentation (of the requirements, designs, sequence
charts, flows et al.) is a useful part of a software devel-
opment process, since it helps us visualize concepts, spec-
ify and follow the requirements, gather information and
observe unreliable and/or reliable measurements. Conse-
quently, this value is not strictly opposed to documenta-
tion; yet it expresses that the documents should be used as
markers[7, p. 179] , in other words as a way to draw the
future of the project by hints. Hence, rather than a heavily
documentation oriented approaches like traditional meth-
ods, it is more important to focus on the working software
that clearly and ”honestly” points out the facts about the
progress and the success (or flaws) of the project and the
team.

According to Cockburn (2001), ”Documents can be very use-
ful, but they should be used along with the words ”just enough”
and ”barely sufficient.” [7, p. 179], while the running code
and the working software solidly show what has been



1.2 Agile Software Development 9

made.

Customer Collaboration over Contract Negotiation

The meaning of collaboration is to work on the same task
together with active communication and by making deci-
sions jointly. Hence, unlike the traditional methods that
separate the development team from the customer as the
end-user, Agile Software Development aims to obtain a
close relationship between the team and the customer with
strong collaboration.

Cockburn (2001) states that there is no ”us” and ”them” in
Agile Software Development, there is only ”us”, while he
describes the concept as ”Collaboration deals with community,
amicability, joint decision making, rapidity of communication,
and connects to the interactions of individuals.”. [7, p. 179]

On the other hand, customers are expected to have suffi-
cient knowledge of the subject and to have the interest in
attending to software development phase.

According to Boehm (2002), ”Unless customer participants are
committed, knowledgeable, collaborative, representative, and em-
powered, the developed products generally do not transition into
use successfully, even though they may satisfy the customer. Ag-
ile methods work best when such customers operate in dedicated
mode with the development team, and when their tacit knowledge
is sufficient for the full span of the application.” [6, p. 66] Thus,
in such cases traditional methods with contracts are more
suitable.

Responding to Change over Following a Plan

This value supports the idea that the complete require-
ments for a software product cannot be known before it is
used, due to the constant change of requirements, the de-
velopment of information systems and the new business
forms. In other words, it defends that rather than following
a plan rigorously, it is better to flexibly respond to changes



10 1 Agile Software Development Approaches and Their History

according to customer’s needs and priorities with periodi-
cal breaks.

As Cockburn (2001) states, building a plan is useful, and
each of the agile methodologies such as SCRUM and Adap-
tive Software Development, has specific planning activities,
while also containing mechanisms for dealing with chang-
ing priorities. [7, p. 179]

1.2.3 Principles behind the Agile Manifesto

In 2002, along with the four main values Agile Alliance [5]
has published The Twelve Principles behind the Agile Manifesto
that further explicate what it is to be Agile. These principles
are as follows:

1) Our highest priority is to satisfy the customer through
early and continuous delivery of valuable software.

2) Welcome changing requirements, even late in develop-
ment. Agile processes harness change for the customer’s
competitive advantage.

3) Deliver working software frequently, from a couple of
weeks to a couple of months, with a preference to the
shorter timescale.

4) Business people and developers must work together
daily throughout the project.

5) Build projects around motivated individuals. Give them
the environment and support they need, and trust them to
get the job done.

6) The most efficient and effective method of conveying in-
formation to and within a development team is face-to-face
conversation.

7) Working software is the primary measure of progress.

8) Agile processes promote sustainable development. The
sponsors, developers, and users should be able to maintain



1.3 Different Styles of Agile Software Development 11

a constant pace indefinitely.

9) Continuous attention to technical excellence and good
design enhances agility.

10) Simplicity–the art of maximizing the amount of work
not done–is essential.

11) The best architectures, requirements, and designs
emerge from self-organizing teams.

12) At regular intervals, the team reflects on how to become
more effective, then tunes and adjusts its behavior accord-
ingly. [5]

These principles help us comprehend the properties of dif-
ferent Agile Development methods better and easier in the
following chapter.

1.3 Different Styles of Agile Software De-
velopment

There are several different approaches of Agile Software
Development that focus on different aspects of the projects.
In this chapter, four of the most common ones of these
styles, namely eXtreme Programming, SCRUM, Adaptive Soft-
ware Development, Crystal, are presented.

At the end of the chapter, a comparison is made between
the different Agile Styles, by also including other Agile
Methods and their key points, namely Dynamic System
Development Method (DSDM), Feature Driven Development
(FDD) and Pragmatic Programming (PP).

1.3.1 eXtreme Programming (XP)

Extreme programming was originally started to be formu-
lated in 1996 by Kent Beck as he states that extreme pro-
gramming was invented as a reaction to the problematic



12 1 Agile Software Development Approaches and Their History

issues of the traditional methods with long and heavy de-
velopment cycles. [3].

One of another important developers of extreme program-
ming idea, namely Ron Jeffries, describes the method as
”Extreme Programming is a discipline of software development
with values of simplicity, communication, feedback and courage.
We focus on the roles of customer, manager, and programmer and
accord key rights and responsibilities to those in those roles.”.
[13, p. 9]

In contrast to the traditional methods, XP is based on small
releases that are produced periodically, while it places
much importance on customer satisfaction in parallel with
continuous feedback, and thus in XP adopting changes of
specifications is significant. Therefore, this naturally im-
plies that the testing to obtain satisfying working releases
plays a very crucial role in XP.

Jeffries summarizes the practices of XP as On-site Customer,
Small Releases, Planning Game, Metaphor, Simple Design,Pair
Programming, Collective Code Ownership, Continuous Integra-
tion, Coding Standard, Test-Driven Development, Refactoring
and 40-Hour Week. [13, p. 196]

These practices help us understand the principles of XP
more precisely.

On-site Customer

XP requires the customers to actively and collaboratively
participate to the project at all times. In this way, the team
gains the constant availability of the customer that can al-
ways quickly provide instructions and answers about the
requirements to the development team.

In XP, user stories written on cards that specify the require-
ments of the customers are used as core of the planning
stage and while working on them the communication with
the customer plays an important role, since the team wants
to drive the project as fast as possible and to build the best
that properly fits to what is required. [13, p. 31]

Small Releases



1.3 Different Styles of Agile Software Development 13

In XP, a project is developed by iteratively putting small-
but-tested and -working releases that are updated periodi-
cally. In this manner, these small releases lead to the early
benefit and/or use to the customer, thus to gain early feed-
back from the customer. [13, p. 65]

Planning Game

In XP, the scope of the next release is quickly determined ac-
cording to specifications and priorities. Unlike traditional
methods planning does not only depend on one plan deter-
mined at the beginning. About the rule of iteratively plan-
ning, Jeffries states that ”Inside each release, an Extreme team
plans just a few weeks at a time, with clear objectives and solid
estimates.”. [13, p. 79]

Furthermore, XP planning works continuously and itera-
tively considering the scheduling on the small releases and
the goals for the next releases, according to the customer.
Thus, this rule leads the customer to steer the development
team by choosing the ideal combination of stories within
the time and the funds available. [13, p. 59]

Metaphor

Metaphor rule aims to define and guide the development
with a simple common story to ensure each member of the
development team is completely aware of how the entire
product works.

Cockburn expresses that a good metaphor helps the associ-
ations created around it turn out to be more appropriate to
the development team. [7, p. 196]

Simple Design

XP developers stress implementing the simplest possible
solution always in all stages. [9, p. 33] Hence, XP avoids
the complexity and extra code. Hence, in XP the project is
designed in a way as simple as possible. Beck expresses this
idea as ”Developers are urged to keep design as simple as
possible, say everything once and only once. [3]

Pair Programming



14 1 Agile Software Development Approaches and Their History

Figure 1.2: Planning and Feedback Loop in eXtreme Pro-
gramming [21]

Pair programming is one of the most important rules of XP
with two developers of the XP team working at the same
computer.

Cockburn lists the advantages of pair programming as fol-
lows:

- Many mistakes get caught as they are being typed in
rather than in Quality Assurance test or in the field (con-
tinuous code reviews)
- The end defect content is statistically lower (continuous
code reviews)
- The designs are better and code length shorter
- The team solves problems faster
- The people learn significantly more, about the system and
about software development
- The project ends up with multiple people understanding
each piece of the system
- The people learn to work together and talk more often to-
gether, giving better information flow and team dynamics



1.3 Different Styles of Agile Software Development 15

[8]

Collective Code Ownership

In XP, the term collective ownership of a project means that
each part of the code belongs to the whole development
team. Thus, needed improvements on other programmers’
code can be made by any member of the team while this
also leads to a faster progress and cleaner code. [13, p. 145]

Coding Standard

In XP, a certain coding standard is used in order to have a
common understanding and ability to work on the devel-
opment. Jeffries supports this rule as ”Coding standard en-
sures that the code communicates as clearly as possible and sup-
ports our shared responsibility for quality everywhere.”. [13, p.
98]

Continuous Integration

”The longer we wait between integration and acceptance tests,
the worse things get. Wait twice as long and we’ll have four or
more times the hassle. The reason is that one bug written just
yesterday is pretty easy to find, while ten or a hundred written
weeks ago can become almost impossible.” [13, p. 97], Jeffries
emphasizes on the importance of continuous integration.

Integration of the code is extremely difficult if it is done
once at the of the entire development, due to many lines
of code and the difficulty of identifying bugs. Thus, in XP
each completed task is integrated to the system right away,
then the application is built and tested daily several num-
ber of times. In this manner, the system always stays as
completely integrated.

Test-Driven Development

In XP, testing is continuous and applied to each of the new
releases frequently to ensure it works totally well with the
whole system. XP testing consists of the unit tests applied
by the development team and the acceptance tests made by
the customer.



16 1 Agile Software Development Approaches and Their History

The unit tests are kept in an automated test suite by the pro-
grammers; and whenever they change a section of code, the
test suite is run to observe immediately whether it caused
a problem on what had been working, while the customer
evaluates the new parts and give feedback right away. [7,
p. 61]

Refactoring

Refactoring is the process of improving the structure of the
code without changing its function. [13, p. 95] Thus, refac-
toring aims to keep the design of the code as simple and un-
derstandable as possible, to avoid duplication, and to add
flexibility to the code.

40-Hour Week

This rule is opposed to working overtime defending that
40-Hour week should be the maximum time for the pro-
grammers to spend on the development, due to an ideal ef-
ficiency and concentration. Moreover, it expresses that the
team should not work overtime two weeks in a row.

Jeffries supports the idea that heavy overtime is bad and
suggests the rule as ”Do not work more than one consecutive
week of overtime.”. [13, p. 101]

1.3.2 SCRUM

Ken Schwaber (1996), the pioneer of SCRUM, states that
the development is an unpredictable process, whereas
SCRUM produces breakthrough productivity, enabling
building the best systems possible in complex, unpre-
dictable environments.[17] Schwaber defines SCRUM as:
”Scrum is a method that aims to help teams to focus on their
objectives. It tries to minimize the amount of work people have to
spend tackling with less important concerns. Scrum is a response
to keep things simple in the highly complicated and intellectually
challenging software business environment.”[18, p. 35]

SCRUM consists of short, intensive, daily meetings of the
whole project team aiming to deliver as much quality soft-



1.3 Different Styles of Agile Software Development 17

ware as possible within a series of short timeboxes called
”sprints”, which last about a month[19] .

Figure 1.3: SCRUM Process Stages [20]

In SCRUM, each sprint has one certain goal determined by
the development team using the sprint backlogs, which are
obtained according to the product backlogs with require-
ments and priorities that the customer defined. Hence,
sprints avoid the changes in order to keep the focus on
the goal within the same task. The progress of the tasks
are daily tracked visually by the development team and at
end of each sprint the result is discussed and evaluated to-
gether.

In 1996 in his article Controlled Chaos: Living on the Edge,
Schwaber lists the key principles of SCRUM as follows:

- Small working teams that maximize communication, min-
imize overhead, and maximize sharing of tacit, informal
knowledge

- Adaptability to technical or marketplace (user/customer)
changes to ensure the best possible product is produced

- Frequent ”builds”, or construction of executable, that can
be inspected, adjusted, tested, documented, and built on

- Partitioning of work and team assignments into clean, low



18 1 Agile Software Development Approaches and Their History

coupling partitions, or packets

- Constant testing and documentation of a product - as it is
built

- Ability to declare a product ”done” whenever required
(because the competition just shipped,because the com-
pany needs the cash, because the user/customer needs the
functions, because that was when it was promised...) [17]

1.3.3 Adaptive Software Development (ASD)

In 1992, Jim Highsmith’s effort of working on a short-
interval, iterative, rapid application development process
evolved into Adaptive Software Development (ASD), then
in the mid- 1990s his interest in complex adaptive systems
began to add a conceptual background to the team aspects
of the practices. [12, p. 173]

ASD is an agile method that is based on the continuous
change, and is opposed to stable planning, such as Water-
fall approach’s planning stage. ASD’s change-oriented life
cycle consists of three main stages as Speculate, Collaborate
and Learn.

Figure 1.4: Adaptive Software Development Change-
Oriented Life Cycle [11]

Speculate

Speculate stage of ASD’s life cycle is used for initiation and
cycle planning, as Highsmith explains it with the following
seven steps:



1.3 Different Styles of Agile Software Development 19

1. Conduct the project initiation phase.
2.Determine the project time-box.
3. Determine the optimal number of cycles and the time-box for
each.
4.Write an objective statement for each cycle.
5. Assign primary components to cycles.
6. Assign technology and support components to cycles.
7. Develop a project task list. [11, p. 26]

Collaborate

Working software is delivered by concurrent component
engineering in ASD where interaction of people and man-
agement of interdependencies are crucial for the develop-
ment as in XP’s pair programming and collective code own-
ership methods. [11, p. 27]

Learn

Learning is an iterative step in ASD applied at the end of
each development cycle, leading to a loop to adaptive plan-
ning for the next cycle and to quality assurance. Highsmith
expresses that result quality from both the customer’s per-
spective and a technical perspective are learned in this
stage, as well as the functioning of the delivery team and
the practices they are utilizing with project’s status. [11, p.
27]

As mentioned in The Agile Manifesto’s Working Software
over Comprehensive Documentation value, ASD life cycle
focuses on results which are identified as application fea-
tures (customer functionality) that is to be developed dur-
ing an iteration whereas the documentation is secondary.
[12, p. 175]

1.3.4 Crystal

Crystal is a family of human-oriented light-weight methods
with efficiency and agility purposes, developed by Alistair
Cockburn in early 1990s. Highsmith states that Crystal fo-
cuses on collaboration and cooperation using project size,



20 1 Agile Software Development Approaches and Their History

criticality, and objectives to craft appropriately configured
practices for each member of the Crystal family of method-
ologies. [12, p. xvi]

The design principles of Crystal can be summarized as:

The team can reduce intermediate work products as it produces
running code more frequently, as it uses richer communication
channels between people.

Every project is slightly different and evolves over time, so the
methodology, the set of conventions the team adopts, must be
tuned and evolve. [12, p. 144]

The figure The Family of Crystal Methods shown accord-
ing to the number of people in the development team to
the criticality by comfort, discretionary money, essentially
money and life aspects.

Figure 1.5: The Family of Crystal Methods [12, p. 146]

Crystal Clear is a member of Crystal family that is intended
to be used by small project teams.

Tables 1.1 and 1.2 compare the different styles of Agile Soft-
ware Development in terms of Key Points, Features, and
Identified Shortcomings.



1.4 Agile Software Development vs. Waterfall Model 21

1.4 Agile Software Development vs. Wa-
terfall Model

Using the knowledge covered and by reminding how the
traditional Waterfall Model works, it is beneficial to compare
the Agile Software Development to Waterfall approach in
order to see how Agile Software Development tries to over-
come shortcomings of traditional approaches. Table 1.3
shows the general differences between Agile Software De-
velopment and the traditional methods, at the end of this
chapter.

Waterfall life cycle development is a sequential traditional
model that has five separate main stages as Requirements,
Design, Implementation, Testing (Verification) and Mainte-
nance in order. In Waterfall approach, each step requires
the previous one to be done; in other words the output of
one step becomes the input for the next one. Furthermore,
separate teams are responsible for these levels, due to being
plan-driven and highly deadline-oriented.

In Waterfall approach, the linear progress of development
basically works as: Initially the requirements and priori-
ties are analyzed; then in the design stage the appropriate
technology is determined according to these business re-
quirements; coding the specified output of previous steps;
testing the implementation; the final evaluation to ensure
that the product works properly from top to bottom.

Flexibility for a Change

Since the Waterfall Approach is linearly stage dependent,
it is not allowed or possible to work on previous stages
that are already done. Thus, in Waterfall approach making
changes is difficult, inefficient and costly, since it requires
the system to be analyzed, designed and written from the
beginning.

In contrast, as mentioned in Responding to Change value of
The Agile Manifesto, Agile Software Development method



22 1 Agile Software Development Approaches and Their History

has the flexibility to adopt to change during each period of
the development process.

Working Releases

In Waterfall approach, a working final software can be ob-
tained, only after the last testing and evaluation phase on
the entire product. Thus, in case any problematic issues
occur, such as bugs, the whole software should be written
from the beginning to fix.

In Agile Software Development, testing is made and the re-
sult is fixed after each step of the development process, then
a second check is done on the related stage in order to ob-
tain a running software constantly.

In the common sense, in Waterfall approach crucial prob-
lems may cause huge delays for the project that displeases
the customer. Yet, in the Agile method there is an running
software that exists for all the time, in order to appropri-
ately develop the entire product in the targeted way.

Change of Customer’s Needs

The Agile Software Development provides a flexible envi-
ronment for the change of customer expectations during
the development. Hence, the specifications of the project
are possibly subject to change without difficulty, whereas
the Waterfall approach requires the change of the entire
project from the start due to being heavily documentation-
oriented and passive customer communication.

1.5 Conclusion and Outlook

Rapidly changing technological and business environment
played a role in resulting the traditional methods to be-
come heavyweight and inefficient for most of the produc-
tion based projects.



1.5 Conclusion and Outlook 23

The Agile Manifesto is considered as a milestone for the de-
velopment of new agile methodologies, since it provided
a general base with its four values pointing out the most
crucial facts of a software development process.

The process or role oriented traditional methods have dif-
ficulties, since individuals are not, in fact, replaceable; es-
pecially where the individuality is important as in software
development. Furthermore, rather than focusing on strict
and long-term plans, Agile Software Development focuses
on responding to changes and on the working software
with less documentation.

In conclusion to all, according to your author’s opinion,
Agile Software Development methods are more realistic,
”sincere” and exciting due to the team work and contin-
uous communication with clear minds, to develop projects
.



24 1 Agile Software Development Approaches and Their History

Table 1.1: Comparison between Agile Software Development Styles [16, p. 89]

Method Name Key Points Special Features Identified Short-
comings

XP Customer driven
development,
small teams,
daily builds

Refactoring - the
ongoing redesign
of the system to
improve its per-
formance and re-
sponsiveness too
change

While individ-
ual practices
are suitable for
many situations,
overall view
and manage-
ment practices
are given less
attention

SCRUM Independent,
small,self-
organizing
development
teams, 30-day
release cycles.

Enforce a
paradigm shift
from the defined
and repeatable to
the new product
development
view of Scrum

While Scrum
details in specific
how to manage
the 30-day re-
lease cycle, the
integration and
acceptance tests
are not detailed

ASD Adaptive culture,
collaboration,
mission-driven
component based
iterative develop-
ment

Organizations
are seen as adap-
tive systems.
Creating an
emergent order
out of a web of
interconnected
individuals

ASD is more
about concepts
and culture than
the software
practice

Crystal Family of meth-
ods. Each has the
same underly-
ing core values
and principles.
Techniques,
roles, tools and
standards vary.

Method design
principles. Abil-
ity to select the
most suitable
method based on
project size and
criticality.

Too early to esti-
mate: Only two
of four suggested
methods exist.



1.5 Conclusion and Outlook 25

Table 1.2: Comparison between other Agile Software Development Styles [16, p.
90]

Method Name Key Points Special Features Identified Short-
comings

FDD Five-step process,
object-oriented
component (i.e.
feature) based
development.

Method sim-
plicity, design
and implement
the system by
features, object
modeling

FDD focuses
only on design
and implemen-
tation. Needs
other supporting
approaches.

DSDM Application of
controls to RAD,
use of timeboxing
and empowered
DSDM teams.

First truly ag-
ile software
development
method, use
of prototyping,
several user roles
: ”ambassador”,
”visionary”and
”advisor”

While the
method is avail-
able,only consor-
tium members
have access to
white papers
dealing with the
actual use of the
method

PP Emphasis on
pragmatism,
theory of pro-
gramming is of
less importance,
high level of
automation in
all aspects of
programming.

Concrete and
empirically val-
idated tips and
hints

PP focuses on
important indi-
vidual practices.
However, it is
not a method
through which
a system can be
developed.



26 1 Agile Software Development Approaches and Their History

Table 1.3: Comparison between Agile and Traditional Methods [2, p. 35]

Agile Methods Heavy Methods
Approach Adaptive Predictive

Success Measurement Business Value Conformation to
plan

Project size Small Large

Management Style Decentralized Autocratic

Perspective to Change Change Adapt-
ability

Change Sustain-
ability

Culture Leadership-
Collaboration

Command-
Control

Documentation Low Heavy

Emphasis People-Oriented Process-Oriented

Cycles Numerous Limited

Domain Unpredictable,
Exploratory

Predictable

Upfront Planning Minimal Comprehensive
Return on Investment Early in Project End of Project
Team Size Small/Creative Large



27

Bibliography

[1] Environmental & social report. Technical report, Toy-
ota Motor, 2003.

[2] M. A. Awad. A comparison between agile and tradi-
tional software development methodologies. Master’s
thesis, The University of Western Australia, 2005.

[3] K. Beck. Embracing change with extreme program-
ming. Computer, 32(10):70–77, Oct. 1999.

[4] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn,
W. Cunningham, M. Fowler, J. Grenning, J. Highsmith,
A. Hunt, R. Jeffries, J. Kern, B. Marick, R. C. Martin,
S. Mellor, K. Schwaber, J. Sutherland, and D. Thomas.
Manifesto for agile software development, 2001.

[5] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn,
W. Cunningham, M. Fowler, J. Grenning, J. Highsmith,
A. Hunt, R. Jeffries, J. Kern, B. Marick, R. C. Martin,
S. Mellor, K. Schwaber, J. Sutherland, and D. Thomas.
The twelve principles of agile software, 2001.

[6] B. Boehm. Get ready for agile methods, with care.
Computer, 35(1):64–69, Jan. 2002.

[7] A. Cockburn. Agile Software Development. Addison-
Wesley Professional, 2001.

[8] A. Cockburn and L. Williams. The costs and benefits
of pair programming. In In eXtreme Programming and
Flexible Processes in Software Engineering XP2000, pages
223–247. Addison-Wesley, 2000.



28 Bibliography

[9] M. L. David Cohen and P. Costa. Agile software devel-
opment. Technical report, Data and Analysis Center
for Software, 2003.

[10] S. L. Goldman, K. Preiss, and R. N. Nagel. Agile Com-
petitors and Virtual Organizations. Van Nostrand Rein-
hold, 1995.

[11] J. Highsmith. Retiring lifecycle dinosaurs. Software
Testing & Quality Engineering (STQE), pages 22–28,
2000.

[12] J. Highsmith. Agile Software Development Ecosystems.
Addison-Wesley Professional, 2002.

[13] R. E. Jeffries, A. Anderson, and C. Hendrickson. Ex-
treme Programming Installed. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2000.

[14] J. Liker and D. Meier. The toyota way fieldbook. 2005.

[15] J. K. Liker. The Toyota way : 14 management principles
from the world’s greatest manufacturer / Jeffrey K. Liker.
McGraw-Hill, New York :, 2004.

[16] J. R. J. W. Pekka Abrahamsson, Outi Salo. Agile soft-
ware development methods. VTT PUBLICATIONS
478, 2002.

[17] K. Schwaber. Controlled chaos: Living on the edge.
American Programmer 9, 5:10–16, 1996.

[18] K. Schwaber. Against a sea of troubles: Scrum soft-
ware development. Cutter, 13:34–39, 2000.

[19] J. Sutherland. Agile can scale: Inventing and reinvent-
ing scrum in five companies. Cutter IT Journal, 14:5–11,
2001.

[20] SYSART. Scrum diagram, http://www.sysart.fi.

[21] D. Wells. Extreme programming,
http://www.xprogramming.com, 2000.



Typeset August 20, 2012


	Agile Software Development Approaches and Their History
	Introduction
	Realization
	Overview of Toyota Way 2001
	Structure and Research Topics

	Agile Software Development
	Agility
	The Agile Manifesto
	Individuals and Interactions over Processes and Tools
	Working Software over Comprehensive Documentation
	Customer Collaboration over Contract Negotiation
	Responding to Change over Following a Plan

	Principles behind the Agile Manifesto

	Different Styles of Agile Software Development
	eXtreme Programming (XP)
	SCRUM
	Adaptive Software Development (ASD)
	Crystal

	Agile Software Development vs. Waterfall Model
	Flexibility for a Change
	Working Releases
	Change of Customer's Needs


	Conclusion and Outlook

	Bibliography

