
the tools and building blocks that design-
ers need to develop applications for spe-
cific computer systems. Package types
that are meant to be integrated into an
embedded application system (target
system) make up a basic part of that sys-
tem and contain the building blocks
whose functions are needed at run-time.
Examples include a database, or a sim-
ple network management protocol
(SNMP) agent.

OTP development environment
Many of the application programs for
the OTP are written in Erlang. Applica-
tion programmers will find that several
tools in the OTP development environ-
ment support the tasks of developing
and testing applications. For example,
the OTP development environment con-
tains:
– tools for translating into stub code the

interface specifications given in the
form of C header files, simple network
management protocol-management
information base (SNMP-MIB) defini-
tions, and abstract syntax notation
number one (ASN.1) definitions;

– an Erlang-to-Emacs mode that facili-
tates editing Erlang programs;

– the Erlang compiler and debugger for
testing modules;

– a test coverage tool, and a hot-spot
finder.

Some programs are written in other lan-
guages, including C, C++ and Java. In
such cases, the application programmer
uses the tools provided by the supplier of
the target system, or the tools that are
available in the development environ-
ment.

Target systems
An OTP that consists of a control system
with one or more processors may be con-
figured as a target system. If the system
comprises more than one processor,
then the processors must be able to com-
municate with one another through a log-
ical network. Some processors,
equipped with secondary storage and
various I/O units, supervise and control
the general system by means of func-
tions in the systems architecture support
libraries (SASL)—the OTP’s central com-
ponent.

A communication mechanism joins
each processor to the distributed system.
If desired – depending on requirements
for reliability – the processors and the

Ericsson Review No. 1, 199714

Open telecom platform
Seved Torstendahl

Box A
Abbreviations
API Application program interface
ASN.1 Abstract syntax notation number one
BOS Basic operating system
BSD Berkeley software distribution
DBMS Database management system
HTTP Hypertext transfer protocol
I/O Input/output
IP Internet protocol
JAM Joe’s abstract machine
MIB Management information base
MMU Memory management unit
OTP Open telecom platform
RCS Revision control system
RPC Remote procedure call
SASL Systems architecture support libraries
SNMP Simple network management protocol
TCP Transfer control protocol
UDP User datagram protocol

The open telecom platform (OTP)
described in this article is primarily
intended for new applications that com-
bine a need for reliable, high-performance
telecom characteristics with a need for
using externally sourced hardware and
software components. This includes ATM-
products for access networks and data
communications, such as Internet proto-
col-related traffic.

Multipurpose platform
The open telecom platform is a develop-
ment system platform for building, and a
control system platform for running,
telecommunications applications. How-
ever, the OTP is not a monolithic platform,
but is made up of sets of tools and build-
ing blocks, which include:
– Erlang – a programming language com-

plete with compiler, debugger, and
other development tools (as a rule, the
tools and building blocks that are
required for Erlang are already imple-
mented in the language, Box D);

– SASL – systems architecture support
libraries (SASL) contain functions for
building fault-tolerant distributed appli-
cations;

– Mnesia – a real-time fault-tolerant dis-
tributed database management sys-
tem (DBMS);
– the Erlang run-time system;
– sourced programs;
– standard, commercially available

operating systems;
– computer hardware.

Different packages of OTP-related com-
ponents have been defined to suit differ-
ent user needs. Applications develop-
ment packages, for example, contain all

The open telecom platform (OTP) is a development system platform for
building telecommunications applications, and a control system platform for
running them. The platform, whose aim is to reduce time to market,
enables designers to build – from standard, commercially available comput-
er platforms – a highly-productive development environment that is based
on the programming language Erlang.
The OTP also permits application designers who program in C, C++, Java
and other languages to take full advantage of sourced components. More-
over, the OTP allows designers to consider costs when matching computer
platforms with requirements for processing power and component availabili-
ty.
The author outlines the OTP system architecture, its tools and building
blocks, while describing the strengths of the open telecom platform as
either a development environment or as a target system.

Ericsson Review No. 1, 1997 15

communication mechanism may be dupli-
cated. The OTP handles all the basic
telecommunications requirements for
the control system (real-time, fault-toler-
ance, live software upgrades, distribu-
tion), thereby allowing application design-
ers to fully concentrate on the unique
aspects of their own work. Moreover, the
OTP can easily be ported to several dif-
ferent commercial operating systems.

System architecture
All application systems that are built on
the open telecom platform (OTP) adhere
to a basic architectural structure,
Figure 1.

Bottom layer
Commercial computer systems make up
the bottom layer. The system hardware in
this layer may also be designed in-house,
if the manufacturing cost and the volume
of delivery can be justified. This is mere-
ly an architectural view; in real systems,
the bottom layer contains many comput-
ers which may be of different types.

Middle layer
Support for telecommunications require-
ments is provided by a robust real-time
distributed database management sys-
tem (DBMS); basic support for handling
software and reporting events; an exten-
sible SNMP agent; a Web server; and a
library of routines for interworking
between applications written in C and
Erlang.

Top layer
All applications have access to Mnesia
and SASL. The SNMP agent and the Web
server may also invoke functions that are
provided by the applications in this layer.

Interfaces
Three interfaces are provided: an inter-
face to OTP software; an interface to the
operating system; and an interface
between applications written in different
languages. In terms of logic, the third
interface applies to the application level,
but is implemented in the OTP and in the
operating system.

Application programs
The OTP includes a set of application pro-
gram interfaces (API), as well as rules and
guidelines for writing application pro-
grams. It also includes teaching materi-

als, documentation standards, and sam-
ple programs that show how application
programs are designed.

Most programs are written in Erlang.
However, application programs for time-
critical parts may be written in C.

Sourced programs
The OTP defines how sourced programs,
which include protocol stacks and man-
agement applications, may be incorpo-
rated into a system and made to inter-
work with programs that were developed
by application programmers.

SASL
The systems architecture support
libraries (SASL) contain basic software
that supports system start/restart, live
system software updates, and process
management. The basic operating sys-
tem (BOS)—a predecesor to SASL – was
used for several years in the Mobility Serv-
er and other systems.

Mnesia
A real-time fault-tolerant distributed
DBMS that supports fast transactions
for the telecommunications application,
and a query language, called
Mnemosyne, for handling complex
queries.

SNMP support
SNMP provides run-time support through
an extensible agent, and development
support by means of agent/sub-agent
design principles and an MIB compiler.

Web server
The Web server permits data that refers
to Erlang functions to be collected via
Web pages.

Erlang run-time system
The basic system that supports the exe-
cution of Erlang programs. The Erlang
run-time system includes the Erlang
abstract machine, which executes inter-
mediate code, the kernel, and standard
libraries.

Computer platforms
The operating system and computer hard-
ware consist of standard commercially
available systems. Testing environ-
ments, for example, use conventional
workstations.

OTP component packages are
defined to suit various purposes. Devel-

Applications
written in
C or other
languages

Applications
written in Erlang

Mne-
sia

DBMS
SASL SNMP

agent
Web

server

Erlang run-time system

Commercial operating system
and computer hardware

Figure 1
The OTP system architecture.

opment packages include software for
developing Erlang programs, as well as
libraries and applications. The user
organisation purchases the actual com-
puter platform, such as a Sun work-
station with the Solaris operating sys-
tem, a PC with a Windows operating
system, or some other computer sys-
tem for which an OTP development envi-
ronment is available.

Packages for embedded systems
include libraries and applications, but do
not contain the compiler and debugger.
These packages also include references
to agreements that have been reached
with vendors of computer systems. Under
the terms of these agreements, various
licensing fees are paid automatically
when specific brands of hardware are pro-
cured, or when specific versions of soft-
ware are copied.

Strengths of the open
telecom platform
The open telecom platform (OTP) runs on
many computer platforms, and caters to
applications that have been designed in
Erlang as well as in standard program-
ming languages. Moreover, the OTP is
designed to support typical telecommu-
nications requirements for robustness,
smooth software upgrades, distribution,
and real-time functionality.

Time to market
A major objective of the OTP is to pro-

vide a highly productive environment for
designing telecommunications applica-
tions. This objective is supported by:
– the Erlang programming language – a

high-level functional language that sup-
ports distribution, fault detection, and
recovery;

– building blocks
• robust, real-time distributed DBMS;
• support libraries for creating appli-

cations that can report errors,
restart themselves when errors
occur, and update themselves with
new versions of software when
ordered to do so;

• an extensible SNMP agent and a
Web server that is closely integrat-
ed with the database.

Multiple computer platforms; easy to
port; up-to-date computer technology
To accomodate different microprocessor
architectures and operating systems,

several versions of the OTP exist, see
Table 1.

The effort required to support many dif-
ferent operating systems is manageable,
mainly because most support for non-
Erlang languages is obtained directly from
the vendors of computer systems. Only a
minor part of the Erlang run-time support
is dependent on the computer platform.
Most Erlang run-time support, and all
parts of applications that are written in
Erlang, are independent of system hard-
ware and related operating systems.
Moreover, “Joe’s abstract machine”
(JAM) code is directly executable on any
platform provided that the Erlang code
does not explicitly make use of a specif-
ic feature of the operating system. Appli-
cations written entirely in Erlang are eas-
ily ported, and in most cases their load
modules (compiled code) are directly exe-
cutible on other computer systems.

Hardware and software from external
suppliers
Sourced hardware and software play a
decisive role in reducing time to market.
Very often, software vendors can offer
special applications at prices far below
the cost of developing an in-house solu-
tion. Likewise, because computer sys-
tems change rapidly, rather than invest-
ing considerable resources to develop a
computer board, Ericsson can offer a
wide range of attractive solutions that are
based on existing, commercially available
systems. To this end, the Ericsson exter-
nal technology provisioning process is
used to enforce competitive terms for
external hardware and software, and to
forge ties with reliable vendors.

Software
Software from external vendors falls into
three categories:
– Applications – which include the upper

layers of protocol stacks.
– Operating system (OS) kernels.
– Software that is directly coupled to

hardware or to the OS kernel – for exam-
ple, device drivers and protocol stacks.

To handle support and maintenance,
sourced software should be imported as
object code. Because malfunctions can
cause a system to crash, operating sys-
tem software and software that is direct-
ly coupled to hardware or to the OS ker-
nel must be thoroughly tested and proven
reliable. Some protection may be provid-
ed for applications by running them as

Ericsson Review No. 1, 199716

Box C
Getting the most out of Erlang’s
easy-to-port functionality:
In any part of an application written in C, do not
include functions that relate to a specific operat-
ing system. Otherwise, gather these parts into a
cluster, or else mark them clearly.
Recommendation:
Use the C compiler that is used for the Erlang run-
time system.

Table 1
Operating systems and computer
platforms on which the OTP may
be run
Microprocessor
architecture Operating system

Intel Pentium Linux,
Solaris 2,
Windows 95,
Windows NT

Motorola 680X0 Vx Works

Sun SPARC Solaris 2

Box B
Reducing time to market
Shortening time to market entails much more than
simply reducing the time it takes to write program
code. The time spent on the other phases of a
project must also be reduced.
One way to do this is to have program designers
begin their work at the early stages, or at high lev-
els, of design – for example, starting with the func-
tional specification. Moreover, design phases can
be broken down into short incremental steps,
where each step is fully integrated into and test-
ed at the level where it will be implemented. The
initial step, for example, might consist of starting
all blocks. Next, critical parts can be added. Final-
ly, management functions and error handling can
be added. This way, problems can be detected
and corrected early on.

Ericsson Review No. 1, 1997 17

separate processes, preferably with
memory management unit (MMU) pro-
tection. Application software is best man-
aged through its source code, where soft-
ware management requirements can be
adapted.

Hardware
The OTP is designed to use different
microprocessor architectures and com-
puter boards. For example, standard
workstations or PCs are used for devel-
opment, and standard computer boards
are normally used for inclusion in embed-
ded (target) systems.

Computer technology is evolving very
rapidly. Every nine months, PC vendors
design a new generation of boards with
faster processors, more and faster mem-
ory, and new integrated I/O circuits. Com-
peting at this pace with in-house solu-
tions would be very costly for Ericsson.
However, by relying on external processor
hardware, Ericsson can transfer their
need for staying abreast of developments
to computer vendors. Other advantages
of using standard computer boards in the

OTP are that every new board, from low-
to high-end, can be made available, and
that development costs can be shared
with the rest of the market. Thus,
Ericsson draw on the expertise of exter-
nal vendors, while remaining focused on
their own core areas of business.

Erlang and other languages
Applications that use the OTP can be
implemented in Erlang or in any other pro-
gramming language. The choice of lan-
guage is governed by the characteristics
one hopes to derive.

Programming in Erlang shortens devel-
opment time and provides support for
designing robust distributed real-time
applications. Support is provided in the
form of
– libraries of ready-to-use components;
– guidelines for using the components;
– guidelines for designing the applica-

tions that provide desired characteris-
tics.

By means of careful system design, and
by applying the “90/10” rule (fine-tune
the 10% of Erlang code that occupies 90%

Background
When introducing new technology, real-time systems
often lag behind other systems. Indeed, many real-
time systems are written in the programming lan-
guage C. Some languages, however, have been
developed specifically for programming concurrent
real-time systems. Some of the best known exam-
ples are Ada, Modula2 and PLEX.
Today, declarative programming languages such as
Prolog or ML are used for a wide range of industrial
applications. These languages drastically reduce the
total volume of source code in applications, as well
as the efforts that are required to design and main-
tain them. However, declarative languages were not
primarily designed to be used in concurrent real-time
systems.
Erlang, which is a small but extremely powerful lan-
guage for programming concurrent real-time, fault-
tolerant distributed control applications, combines
important attributes of declarative languages with
constructs for supporting concurrency, distribution,
and error-detection. It is an expressive, high-level
functional programming language without pointers –
a feature that greatly simplifies design and testing.

Built on experience
Erlang has been in use at Ericsson for more than five
years. To date, many hundreds of thousands of lines
of Erlang source code have been written, demon-

strating the language’s suitability for use in large pro-
jects. A key to achieving very high productivity, Erlang
has been used for some years in several Ericsson
products, including Mobility Server, ISO Ethernet, and
NETSIM.

Functions, modules and processes
Erlang programs are made up of functions that have
been grouped into modules and packaged as soft-
ware products. Functions spawn processes – the exe-
cuting elements of an Erlang system – that are very
lightweight and that enable fine-grained concurren-
cy.
Processes communicate by sending and receiving
messages. Communication with the external non-
Erlang world is conducted through ports (which
behave like processes). Processes may also be
linked to each other in order to detect software errors.

A built-in distribution mechanism enables designers
to create a system whose processes may run on dif-
ferent computers. Erlang allows fault detection and
recovery in a distributed system, and the OTP soft-
ware implements customisable schemes for recov-
ery after faults.

Reference:
"Concurrent Programming in Erlang" by Armstrong,
Virding, Wikström and Williams.

Very high-level functional/declarative language

Symbolic data representation

Support of massive lightweight concurrency
(parallelism)

Support of designing distributed,
non-homogeneous systems

Permits tailored-to-fit fault recovery schemes
in distributed systems

No pointers, no memory leaks

No fixed sizes or limits

Easy to interface other software and hardware

Permits software to be updated while running

Modular concept for structuring applications

Easy to create reusable libraries

Figure D
Characteristics of Erlang.

Box D
The Erlang programming language

of processing time), it is possible to
obtain good run-time performance from
Erlang.

Development in other programming lan-
guages (usually C) is sometimes neces-
sary for reducing execution time. Highly
optimised C code is very efficient, and
may be required in time-critical parts of
applications. The OTP offers different
ways of integrating applications written in
C into applications written in Erlang or in
mixed programming languages.

One reason for using C is that a mar-
ket already exists for applications or com-
ponents written in that language, includ-
ing applications for implementing
communication protocols. Obviously,
being able to use existing products is a
desirable feature. Thanks to a component
in the OTP and to an adaptation unit writ-
ten in C, these parts can be integrated
into the software management principles
used by the OTP.

There are several ways of creating inter-
faces between applications written in
Erlang and other programming languages:
– through the port mechanism;
– using the socket library;
– through the C/C++ interface generator;
– by enabling C programs to imitate an

Erlang node.

The port mechanism
According to the port mechanism, which
is the standard mechanism for interfac-
ing applications, Figure 2, a port on the
Erlang side of the interface is perceived
and behaves as an Erlang process. Here,
all communication consists of standard

Erlang messages. Software units written
in another language perceive these mes-
sages as communication lines to anoth-
er program. Ports may also be used for
accessing hardware or low-level features
directly.

The socket library
Delivered as part of the standard Erlang
distribution, the socket library is a low-
level mechanism that enables non-Erlang
processes to communicate with Erlang
processes by means of the transmission
control protocol/Internet protocol
(TCP/IP). The Erlang program is respon-
sible for understanding and complying
with the protocol that is used on top of
the TCP.

The C/C++ interface generator
Thanks to the C/C++ interface generator,
functions written in C and Erlang can eas-
ily communicate with one another. The
interface generator includes conversion
routines on both sides of the interface for
encoding and decoding transferred data.
This enables applications written in
Erlang to access and manipulate C data
structures. To use the conversion rou-
tines, some programming is required on
the C side of the interface. All underlying
communication is conducted using the
port mechanism, or the socket library.

C programs that imitate an Erlang node
Erlang data can be encoded to byte
sequences in a format known as the
Erlang external format. A library of useful
functions has been provided to enable
programs written in C to decode byte
sequences of this kind. The library has
been extended to facilitate communica-
tion with a distributed Erlang node using
the Erlang distribution protocol. Because
they behave like an Erlang node, C pro-
grams that decode byte sequences of
Erlang code are called C nodes. C nodes,
which have very limited functionality, are
not visible to Erlang, and are therefore
said to be hidden.

OTP support for high reliability
An Erlang system that is run as a task by
a host operating system is called an
Erlang node. In the OTP, processes in dif-
ferent nodes communicate as easily with
one another as processes within the
same node. Erlang processes may also
be linked together. Should one of the
processes die, due to an error, then a sig-

Ericsson Review No. 1, 199718

Box E
Reliability
A key requirement of the OTP is to provide a robust
environment for implementing fault-tolerant
telecommunications applications. By robust envi-
ronment is meant a system that provides speci-
fied services despite the presence of hardware
faults or software errors. The minimum require-
ments of a robust environment are error detec-
tion, damage assessment, and error correction.
Each of these aspects is necessary for meaning-
ful error-recovery at run time.
Other requirements of the control system are as
follows:
– The “outage” time (that is, the time during

which services are unavailable) must be short.
– While error recovery operations are under way,

only a minimum of services may be disrupted.
This implies that some kind of "hot" or "warm"
standby solution must be used.

Hardware considerations
Hardware is made fault-tolerant by duplicating
resources; for instance, by means of redundant
CPUs and dual communication paths. The provi-
sion of a redundant CPU structure is more impor-
tant than synchronous duplication of CPUs, since
identical CPUs executing in parallel do nothing to
guard against software errors – that is, given the
same error, both machines would fail at the same
time.

Software considerations
Reliable software systems are built by carefully
structuring the system so that an error in one part
of the system may not affect its other parts.

Any
application
(non-Erlang)

Port
for

comm.
with
other
appl.

Erlang
process

Erlang
messages

Port (linked-in driver)
for hardware access

Hardware

Figure 2
The port mechanism in Erlang.

Ericsson Review No. 1, 1997 19

nal is sent to each process that is linked
to it. Since error signals can be trapped
by supervisory processes, highly reliable
layered systems can be designed.

The Erlang programming technique of
dividing computations into “supervisory”
and “worker” roles can be employed to
build a robust system architecture. SASL
provide patterns that facilitate design
according to these rules.

The system structure consists of a crit-
ical "safe kernel" that must always be
correct, and an application area where
the requirement for correctness is some-
what less stringent. The safe kernel is
provided by SASL.

Erlang has a real-time garbage collec-
tor, very few operations with side effects,
and no pointers. Thus, when Erlang is
used, a large class of problems com-
monly associated with programming real-
time systems is eliminated.

Updating sourced software
Ordinarily, operating system software and
device drivers can only be replaced by
rebooting the processor. Thus, where
continuous operation is a requirement,
system software may only be updated in
systems that make use of multiple
processors. In a multiple-processor sys-
tem, the system software is replaced on
one processor while the other processor
continues to execute as usual.

By contrast, even in single-processor
systems, individual applications can usu-
ally be replaced while the system is run-
ning; however, the applications them-
selves must typically be terminated,
updated, and then restarted. Again, if this
method is not acceptable, then a multi-
ple-processor system may be necessary.

Tools in the OTP
In this context, tools are programs that
are used to develop software. A brief
description of the tools included in the
OTP follows below.

Application monitoring.
The appmon program has two main parts:
the node window, which shows an
overview of the applications on all known
nodes; and the application window, which
shows the process tree of each applica-
tion.

Because both windows run on one node
(called the server node), graphics need
only be installed on one node. The mon-

itoring programs then use small informa-
tion agents on each monitored node.

ASN.1 compiler
The ASN.1 standard, which is used for
describing data representations in com-
munication, defines unambiguously the
interpretation of transferred data units.
An ASN.1 compiler is provided for trans-
lating interface definitions in ASN.1 nota-
tion into stub code together with calls to
translation routines for packing and
unpacking transferred data.

C interface generator
This tool facilitates communication
between programs written in C and
Erlang. An interface specification
received in the form of a header file is
translated into stub code. The stub code
may then be used for calls between Erlang
and C to convert data representations.

Compiler
The Erlang compiler translates Erlang
source code (text files) into object code
that is independent of the CPU in use.
This means that the resulting code may
be loaded onto any computer platform

External
interface
definitions

Translators When
applicable

Stub
code

Specifications
Manual
creation

Source
code

Compiler

Errors

Missing
parts

Load
module

Debugger Target/test
environment

Development process

Figure 3
Applications may be developed from interface defi-
nitions (C header files, ASN.1 specifications,
CORBA/IDL interface definitions). After the source
code has been written, compiled and tested, it is
reiterated until satisfactory results are reached.

that supports Erlang without the code hav-
ing to be changed or recompiled.

Coverage tester
The coverage tester is used to ensure
that all code in a module has been exe-
cuted during a test.

Cross-reference tool
The exref tool is an incremental cross-ref-
erence server that builds a cross-refer-
ence graph for every module that is
loaded into it. A great deal of information,
including graphs and module dependen-
cies, may be derived from the cross-ref-
erence graph. The call graph is repre-
sented as a directed graph in text.

Debugger
The Erlang debugger provides mecha-
nisms for visualising what happens when
code is executed in specified modules,
or when processes crash. Because it
allows breakpoints to be set, and
because it performs sophisticated trac-
ing, the debugger interferes with the
behaviour of the system being debugged.

The debugger is mainly used to locate
errors in code (bugs). However, design-
ers may also use it to learn about, or to
better understand, applications that were
written by other designers.

Because Erlang is a distributed con-
current language, conventional debug-
ging techniques do not apply. Thus, the
Erlang debugger provides mechanisms
for attaching to, and interacting with, sev-
eral processes simultaneously, includ-
ing local processes and processes locat-
ed in other Erlang systems in a network
of Erlang systems. Every process that
runs code in debugged modules is mon-
itored, and continuous information on
the status of any given process may be
displayed.

Erlang mode for Emacs
Emacs is a widely-used text editor whose
behaviour can be customised. A defini-
tion file is distributed with the OTP that
allows the Emacs editor to recognise
Erlang syntax, and that helps designers
to write well-formatted, syntactically cor-
rect code. The Emacs editor is not
included, but may be obtained free of
charge from many sources on the Inter-
net.

Graphics interface for Erlang
The graphics system is a general graph-

ics interface for Erlang. The interface is
easy to learn, and may be ported to many
different platforms. If future applications
in Erlang are written to the same graph-
ics API, then it will be possible to run each
supported platform without having to
change a single line of the application
code.

Profiler
The profiler is used to determine which
parts of code, "hot spots", occupy the
most CPU time. This tool is useful for opti-
mising programs.

SASL
The systems architecture support
libraries (SASL), which are used as build-
ing blocks by applications that are run-
ning, provide usage rules for designing
robust applications that may be started,
stopped, and restarted, and that can
report errors or events.

SNMP MIB compiler and instrumentation
The OTP provides support for using the
simple network management protocol
(SNMP) for operating and maintaining
applications on the platform. SNMP sup-
port consists of
– run-time support – in the form of an

extensible agent;
– development support – in the form of a

management information base (MIB)
compiler and a programming model for
implementing MIBs.

The extensible agent uses two mecha-
nisms – dynamic MIB loading and sub-
agent handling – that provide an envi-
ronment where MIB modules can be
loaded/unloaded in an efficient plug-and-
play fashion. The sub-agent concept also
supports distributed applications; that
is, different MIBs can be implemented at
different nodes. If necessary, the trans-
action mechanism for SNMP set
requests may be customised.

The MIB compiler may be used to gen-
erate the prototype instrumentation of
MIBs automatically. The results may then
be incrementally refined and tuned. This
feature enables designers to start devel-
oping manager applications at the early
stages of a project.

Support is also provided for using the
Mnesia DBMS together with the SNMP
tool kit. This means that Mnesia tables
can be read and manipulated with
SNMP, and that an SNMP table can be
implemented as a Mnesia table. The

Ericsson Review No. 1, 199720

GS

Source system building blocks

SNMP
EA

SASL Mnesia Web
server

GSSNMP
EASASL Mnesia

ERTS

Tools

GSSNMP
EASASL Mnesia

ERTS

Force computer board
(SPARC and Solaris 2)

Application systems

Development environments

Figure 4
After building blocks of the OTP are compiled, a
selection of generated load modules are combined
to form a platform – for example, to form a develop-
ment environment to be used on a Sun SPARC with
Solaris 2, or to form an application system that
includes the computer platform. Likewise, a project
may define its own OTP application system.

Ericsson Review No. 1, 1997 21

SNMP tool kit provides an API for imple-
menting application-specific MIB mod-
ules, including a mechanism for send-
ing traps.

Trace tool
The debugger-tracer has a graphical front-
end. When used in a running system, it
causes little disturbance to the system.
Trace tool supports distributed debug-
ging, which means it may be used to
debug Erlang processes running on the
same system as well as processes that
are running on several remote systems.
The remote systems may each run on dif-
ferent operating systems and CPUs. Also
included is a simple line-oriented inter-
face to the trace functions.

xerl
A complete integrated Erlang environ-
ment, xerl is an X Window-based interface
to the standard Erlang shell. The inter-
face may be used to compile, edit, debug
and run Erlang. Moreover, because xerl
is sensitive to Erlang syntax, it checks
and formats code as it is written.

yecc parser generator
A parser generator for Erlang that is sim-
ilar to yacc. From a grammar definition
(input), the generator produces Erlang
code for a parser.

Other tools
At present, tools for managing different
versions of software are not delivered as
a part of the OTP. Nonetheless, a man-
agement tool, such as the revision con-
trol system (RCS) or ClearCase, is highly
recommended.

Building blocks in the OTP
When the OTP is used to create an embed-
ded system, some of its components are
retained by the delivered system. OTP run-
time applications are also available as
building blocks in the development envi-
ronment (Figures 3 and 4).

Erlang virtual machine
The Erlang virtual machine runs on top of
a host operating system. The Erlang run-
time system frequently runs as a single
process in the host operating system. The
Erlang virtual machine provides the fol-
lowing support for Erlang programs:
– Consistent operating system interface

on all platforms.

– Memory allocation and real-time
garbage collection, which effectively
eliminates memory leaks.

– Lightweight concurrency and support of
thousands of simultaneous tasks.

– Transparent cooperation between all
computers in the system.

– Location and encapsulation of run-time
errors.

– Supervision of run-time code as it loads
or is replaced, and while it is linked.

The structure of the Erlang virtual
machine allows it to be easily incorpo-
rated into new operating systems. The
Erlang virtual machine is the only build-
ing block that was not written in Erlang.

Kernel
The kernel is always the first application
to be started. In a minimal OTP system,
the kernel is one of only two applications.
The kernel application contains the fol-
lowing services:
– application_controller
– auth
– code
– error_logger
– file
– global_name_server
– net_kernel
– rpc
– user

Box F
Components of supporting design of robust applications
Component Description

Standard libraries The standard libraries contain Erlang modules, such as lists, “ordsets”, and “dict”. An
important property of these libraries is that the code they contain is free of side effects.
Thus, calls to functions in these modules work the same in every environment.

Behaviour In this context, behaviour is a formalised pattern of design that can be reused to build
new applications. Behaviour is implemented in the form of call-back modules: a call-
back module must export a specific set of functions that are called by the system to
evoke a particular pattern of behaviour. Examples of behaviour are:
- gen_server – a behaviour that implements a generic client-server machine;
- gen_event – a behaviour that implements a generic event-handling machine;
- supervisor – a behaviour that implements a specific style of supervisor-worker pro-

gramming which allows supervision trees to be constructed dynamically.

Applications Applications are named collections of objects that are used for encapsulating system
components. The basic properties of an application are that it can be named, loaded
and unloaded, as well as started and stopped. The aim of an application is to provide
a mechanism that enables users to divorce themselves from the internal details of the
application, and to think instead about the relationships between applications.

The kernel application also includes stan-
dard error_logger event handlers.

Mnemosyne – the query language
The Mnesia DBMS is organised as a basic
layer that takes first-order predicate logic
with Erlang data types as values. Recur-
sion, negation, and a simple constraint
system are also supported. The evalua-
tion is set-oriented. In practice, users
have a choice of several query shells in
which to type their queries and receive
their answers.

Views of data are displayed according
to the rules defined in the modules. Each
module corresponds to a file and is com-
piled and stored in the database itself.
The modules and rules are declared in a
schema. In some instances, even when
the table is used in the module, the
schema may be changed by simply recom-
piling the module.

Mnesia real-time DBMS
In most applications some data must (a)
be stored safely and (b) remain easy to
access. Requirements vary a great deal;
for example, the amount of data may
range from a lot to very little. On the one
hand, the loss of data from a system
crash may be acceptable, whereas in
other instances, data must survive prac-
tically any kind of system failure. Simi-
larly, some applications require near-
instantaneous access time – perhaps
only fractions of a millisecond – whereas
in other instances a longer access time
may be acceptable. Moreover, some
applications require a valid prediction of
the access time – real-time access.

In short, despite a broad spectrum of
requirements, it must be easy to update
data without introducing inconsistencies,
especially when several corresponding
changes are made. Also, for operations
and maintenance purposes, operators
must sometimes be able to access data
by means of complicated and non-stan-
dard queries.

In response to these requirements, the
Mnesia DBMS was developed with the fol-
lowing basic properties:
– Data is accessed in two basic ways:

• through an API for programs;
• using a query language, called

Mnemosyne, for humans
– Read and write access is protected by

means of transactions. This method
gives each user (program or person) the
impression that he is alone in the sys-

tem. It also bars inconsistencies from
being introduced into the data (status
control) when several corresponding
changes are made.

– Data may be distributed transparently
over several Erlang nodes. Important
data is copied to several nodes; less
important data may reside at only one
location. The distribution of data over
nodes cuts access time drastically.

– Data is declared to reside in RAM, on
secondary storage, or both.

– If a hardware or software node crash-
es, the data that it contained may be
reconstructed from redundant copies
of the data stored at other nodes, or
from logged updates. Assuming that
the data at a particular node is repli-
cated at other live nodes, then the addi-
tion or removal of that node will not be
observed by users in the system.

– Data is organised in tables. This pro-
vides a sound theoretical basis, and a
broad range of well-known, proven
methods for modelling the data.

– The tables, their organisation, location,
storage type, and other aspects are
declared in a schema. Views of data are
supported from the API and from the
query language.

– An optimising query-language compiler
and evaluator is available for use by
operators and in the API.

OS monitoring
The OS monitoring application defines
the following services:
– disksup – which checks the available

disk space and sends an event if a stat-
ed threshold has been passed;

– memsup – which checks the available
primary memory and sends an event if
a stated threshold has been passed.

Read, write and search from the API
From the basic API, a program – with or
without a transaction – can read and write
table entries or merely search a table.
Multiple, related accesses that involve
writing without a transaction are strongly
discouraged, since they can severely
damage data. Nonetheless, this option
has been provided to give immediate
access to experienced programmers who
need to perform concurrency control
themselves. Each time the data is read
without a transaction a snapshot is
taken.

A query language has been provided to
facilitate complicated queries, such as

Ericsson Review No. 1, 199722

Ericsson Review No. 1, 1997 23

when data from many tables needs to be
combined. The query language, which is
mainly based on first-order logic, is
accessed through list comprehension. A
list comprehension is a functional lan-
guage construction that is well-suited to
the Erlang programming language.

SASL
The systems architecture support
libraries (SASL) are designed for building
embedded real-time Erlang applications,
and include a set of standard design tem-
plates that can be used to solve common
programming problems on application
start, restart and supervision.

SNMP extensible agent
The OTP facilitates use of the SNMP for
operating and maintaining applications
on the OTP. SNMP support consists of
run-time support in the form of an exten-
sible agent, and development support in
the form of an MIB compiler and a pro-
gramming model for implementing MIBs.

The extensible agent uses two mecha-
nisms that provide an environment where
MIB modules can be loaded/unloaded in
an efficient plug-and-play fashion. These
mechanisms include dynamic MIB load-
ing and sub-agent handling.

Sockets
Sockets are the Berkeley software distri-
bution (BSD) UNIX interface to communi-
cation protocols. Various protocols may
be accessed through sockets. The sock-
et module provides an interface to the
BSD UNIX sockets. The udp module sup-
ports user datagram protocol/Internet
protocol (UDP/IP) sockets.

Standard modules and libraries
The Erlang programming environment
contains several standard reusable soft-
ware modules. The functional program
paradigm on which Erlang is based great-
ly facilitates reusing software.

Many standard modules are specially
adapted to the needs of concurrent dis-
tributed systems. The remote procedure
call (RPC) module, for example, allows

designers to program a remote procedure
call in one line of source code. Examples
of standard modules are lists, “ordsets”,
“gen_server” and “gen_event”.

Web server
The Web server is a hypertext transfer pro-
tocol (HTTP) daemon implemented in
Erlang. Access to the server looks up a
requested Web page and sends it to the
browser. The page may fetch data from a
database table or from a function call.
Integration is very efficient.

Conclusion
The open telecom platform (OTP) enables
designers to build and run telecommuni-
cations applications on a broad range of
standard, commercially available hard-
ware and software platforms. The OTP
also allows designers who program in C,
C++, Java and other languages to inte-
grate sourced components – protocol
stacks, APIs, I/O units and drivers – into
their applications.

The OTP comes with an exhaustive col-
lection of tools and building blocks, such
as the programming language Erlang, sys-
tems architecture support libraries
(SASL), a real-time database manage-
ment system (DBMS), an extensible
SNMP agent, and a Web server.

As a design environment, the main
strengths of the OTP are: time to mar-
ket; compatibility with many different
computer platforms and sourced com-
ponents; up-to-date hardware and soft-
ware technology; and reliability. What is
more, the OTP permits designers to con-
sider costs when they match computer
platforms with requirements for pro-
cessing power and component avail-
ability.

As a target enviroment, the OTP meets
all basic telecommunications require-
ments. It has a real-time distributed con-
trol system that is fault-tolerant, and that
can handle software upgrades while it is
running. In addition, the OTP can easily
be ported to several different commercial
operating systems.

Box G
Sockets
A socket is a duplex communications channel
between two UNIX processes, either over a net-
work to a remote machine, or locally between
processes running on the same machine. A sock-
et connects two parties, the initiator and the con-
nector. The initiator is the UNIX process that first
opens the socket. It issues a series of system
calls to set up the socket and then waits for anoth-
er process to create a connection to the socket.
When the connector makes its connections, it
also issues a series of system calls to set up the
socket. Each process then continues running. The
communications channel is bound to a file
descriptor that each process uses for reading and
writing.

References
1 Däcker, B.; Erlang – A new program-

ming language. Ericsson Review 70
(1993:2), pp. 51-57.

