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Abstract

Inthispaper we providea progressreport of the LAAS-CNRSproject
of autonomous blimp robot development, in the context of field
robotics. Hardware devel opments aimed at designing a generic and
versatile experimental platform arefirst presented. On this base, the
flight control and terrain mapping issues, which constitute the main
thrust of the research work, are presented in two parts. The first
part, devoted to the automatic control study, is based on a rigor-
ous modeling of the airship dynamics. Considering the decoupling
of the lateral and longitudinal dynamics, several flight phases are
identified for which appropriate control strategiesare proposed. The
description focuses on the lateral steady navigation. In the second
part of the paper, we present work on terrain mapping with low-
altitude stereovision. A simultaneous localization and map building
approach based on an extended Kalman filter is depicted, with de-
tailsontheidentification of thevariouserrorsinvolvedinthe process.
Experimental results show that positioning in the three-dimensional
spacewith a centimeter accuracy can be achieved, thus allowing the
possibility to build high-resolution digital elevation maps.

The Autonomous Blimp
Project of LAAS-CNRS:
Achievements in

Flight Control and
Terrain Mapping

also on-line, during the mission execution. Aerial robots can
then provide the rovers with telecommunications support, as
well as with up-to-date information on the environment. They
can also localize the rovers as they evolve within this envi-
ronment, achieve by themselves some of the mission goals,
and even be implied in tight cooperation schemes with ground
rovers.

In this context, we initiated the development of an au-
tonomous blimp project. The ever on-going developmentsin a
wide spectrum of technologies, ranging from actuator, sensors
and computing devices to energy and materials will ensure
lighter than air machines a promising future. There is undoubt-
edly a resurgence of interest in this domain, as shown by the
recent industrial developments on heavy loads transportation
projects—such as the ATG Skycats (for up-to-date informa-
tion on this project, see http://www.airship.com), not to men-
tion various other prospective transportation projects—and
on stratospheric telecommunication platforms. As for small-
size unmanned radio-controlled models, the size of which
is of the order of a few tens of cubic meters, their domain

KEY WORDS—airship control, UAV, lighter than air model- of operation is currently essentially restrained to advertising

ing, vision-based SLAM

1. Introduction

or aerial photography. However, their properties make them
a very suitable support to develop heterogeneous air/ground
robotics systems: they are easy to operate, they can safely fly at
very low altitudes (down to a few meters), and especially their
dynamics is comparable with the ground rovers dynamics, as

Our long-term objectives in field robotics is to tackle the varthey can hover a long time over a particular area, while being
ious issues raised by the deployment of heterogeneous aile to fly at a few tens of kilometers per hour, still consuming
tonomous systems, in the context of exploration, surveillandigtle energy. Their main and sole enemy is the wind; see Elfes
and intervention missions. Within such contexts, aerial robots al. (1998) for a detailed and convincing review of the pros
will undoubtedly play a growing role in the near future, notand cons of small-size airships with regards to helicopters
only during the mission preparation phase (in which dronemd planes. Let us also note that some specific applications
can already gather environment information, for instance), bof unmanned blimps are more and more seriously considered
throughout the world, from planetary exploration to military
applications, as shown for instance by numerous contribu-
tions in the AIAA Lighter-Than-Air Conferences (e.g., AIAA
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2001) and European Airship Conventions (e.qg., Airship Ass@irspeed.html; the platform used in the Aurora project is an
ciation 2002). AS-800, a similar bigger model.) Criteria for this choice were
The first mention of the development of unmanned auhe size of the blimp (which we wanted to be rather small, for
tonomous blimps can be found in the literature of the latthe ease of deployment and storing), its available payload and
1980s, butitis only recently that various projects have reachéd possible operation modes. The main characteristics of the

effective achievements. One of the most advanced is Auroraaiship as delivered by Airspeed Airship are the following.

project held at the Information Technology Institute of Camp-
inas, Brazil, mainly devoted to flight control (de Paiva et al.
1999; Azinheira et al. 2001), but within which other issues
are also considered (Elfes et al. 1999; Elfes, Bergermann, and
Bueno 2001). Other projects are also under development at
the University of Virginia (Turner 2000), at the University

of Stuttgart (Kungl, Schlenker, and Krplin 2001; Wimmer
and Well 2001), and the University of Wales (Barnes, Sum-
mers, and Shaw 2000). More recently, a project of autonomous
blimp navigation has started at the CEMIF Laboratory of the
University of Evry, France. Their first results concern the sys-
tem modeling and the trajectory planning problem (Bestaoui
and Hima 2001). One of the interesting characteristics of sugh
projects is that they mix various innovative technological g
velopments and fundamental research.

Besides long-term developments related to the coordina-
tion and cooperation of heterogeneous air/ground robots, our
research work on autonomous blimps is currently twofold:
we concentrate on the navigation problem on the base of au-
tomatic control, and on environment modeling issues using
low-altitude imagery.

In this paper we present our current achievements in these
two areas. We begin with the presentation of Karma, the35m
airship within which our work will eventually be integrated.
Karma’s hardware and software architectures are briefly pre-
sented, and the paper is then splitin two parts. Part A presents
the developments related to flight control. The description of
the complete model is first presented, and the control strat-
egy based on the decoupling of the longitudinal and lateral

* Itis 8 mlong, with a 1.90 m maximum diameter, giving
a volume of about 15.0 fnand a fitness ratio of.25.

* The hull is made of welded mylar, and equipped with
four control rudders in a “X shape” configuration. A
ballonnet fed with air captured at the rear of the pro-
pellers maintains a constant hull pressure, and a radio-
controlled security valve, located on the top of the hull,
allows the release of helium in case of emergency.

» The available payload of the AS-500 is around 3.5 kg.

Specific modifications.In collaboration with Airspeed
ships, we specified the following modifications for our
purpose.

« Electric motors. To have a finer controllability, we pre-
ferred to opt for electric motors. These do not weigh
more than fuel engines nominally proposed for the AS-
500, but are less powerful, thus reducing the maximum
reachable speed and the possibility to fly in wind gusts.
However, the main drawback of this choice is the pay-
load loss due to the required batteries.

 Stern thruster. The rudder control surfaces require a
certain speed to allow changes in both the altitude and
orientation of the blimp. In order to have the possibility
to control the yaw angle while hovering, we chose to
add a stern thruster.

The various control parameters of the blimp are sketched

dynamics is then explained. The description focuses on tmeFigure 2. Note that, after a few flight tests, it appeared that

steady lateral dynamics which constitutes the central navi

e blimp yaw angle could be controlled thanks to the rudders

tion ph"?‘se- Part B is devoted to the terrain mapping ISsUg;q ¢ very low speeds; the stern thruster appeared to be
The various algorithms that allow terrain mapping on the b‘:féther useless (see Section 2.4)

sis of non-registered images are sketched, and the application

of a simultaneous localization and map building (SLAM) ap-

proach is presented in detail. Results are presented, whi%ﬁ'

Hardware Architecture

show the capacity of our approach to allow the building ofo transform the blimp from a radio-controlled machine to a
very high-resolution digital elevation maps of several thouobot, we equipped it with a set of proprioceptive and exte-

sands of square meters, integrating hundreds of images takgbeptive sensors, and with computing and communications
at an altitude of a few tens of meters. capabilities.

Stereovision.One of the advantage of blimps is that they can
carry a wide base stereo bench, thus having the possibility to
directly gather three-dimensional (3D) data on the overflown
ground. We adapted two high-resolution digital B&W cam-
grasona rigid 2.4 m carbon profile that traverses the gondola.

2. The Blimp Karma

2.1. An Airspeed Airship AS-500

We acquired at the end of 2001 an “AS-500" radio-controlle
airship from the English company Airspeed Airship. (ThaéBlimp state observation.In order to allow automatic flight
company’s homepage is http://www.airship.demon.co.ukbntrol, we added the following sensors: a differential GPS
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Fig. 1. Karma during its maiden flight in November 2001 (left, no on-board instrument were installed at that time), and during

test flights in summer 2002 (right, the cameras and the Ethernet antenna are visible).

Pich control (rudders) Security valve

Stern thruster
aw control
at low speeds)

Main thrusters

Fig. 2. The various control parameters of Karma.
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receiver, a flux-gate compass, a two-axis inclinometer thbetween the various modules is not fixed; it is dynamically
provides the blimp pitch and roll angles, two solid-state gyeontrolled by the executive layer of the architecture, depend-
ros that provide the pitch and yaw rates, and a wind sensiog on the plans provided by the decisional level (Alami et al.
(sonar transducer technology), which measures the speed 4888).

orientation of the relative wind in the lateral plane. Figure 4 presents the set of modules that are to be integrated

. T . .__._on board Karma. Three modules manage the blimp motions
CPU. Since our objective is to achieve autonomous missio . . .
amely State monitor, Flight control, and Motion planner),

zs

that mclude environment perception and mapping, we Opt wahile the others achieve absolute positioning and terrain map-
fora Pentium Ill motherboard, endowed with all the necessary (namely Stereovision, Motion estimation, SLAM and
communication ports and a PC 104 slot, on which we add%7g y ' ’

four additional RS232 ports and a PCMCIA interface to hosulzsgpeg).i\l/)eerﬁlrllstr?en :I;(;tacl)??rrlléhrgs E;nﬂi?g?g; ttr?:sigi]t(i)c()jr;
a light 11 Mbit s Ethernet modem card. 9 paper. P

provided by the SLAM module is communicated to the State

Actuator control. The control surfaces and motor servosnonitor, to estimate the state with a minimal variance. Also,

of the blimp are usual PWM controlled modelist devicesthe future development of an Exploration planner will exploit

To ensure a precise and battery charge independent conttbé results of the Mapping module to determine goals for the

the thrusters are servoed on their speed thanks to a micMetion planner.

controller. For safety reasons, and to enable a mixed man-

ual/a'utomat'lc cpntrol (e.g., automatic Iatgral control, wh|I§.4. Current Status

the pilot maintains the altitude), we conceived and developed

a “switch” electronic module, that allows us to select betweeBeveral test flights have been performed on an airfield near

CPU or RC control for each actuator. Toulouse during summer 2002, using a preliminary hardware
The whole hardware architecture is sketched in Figure Bitegration of the cameras, compass/inclinometers and GPS,

The total equipment weight is just less than 2.0 kg, and rend all the actuators provided by Airspeed Airships. The ob-

quires 40 W of power. jectives of these tests were to obtain piloting skills, to eval-

Energy.Energy is a critical issue for any flying device mainlyuatfa the blimp endurance ar.1d ability to cope with wmd, and

i ' mainly to gather sensor data in order to evaluate the blimp per-

for safety considerations. In our case, the few available pa hrmances and to begin algorithm testing (Extensions 1.2).

loads strongly constrain the battery choices; we opted for Remotely piloting Karma appears to be extremely easy, as

lithium/ion batteries for the on-board instruments, as thel)éng as the mean wind speed does not exceed 10-krThe

provide a good power/weight ratio. However, the maximum . i . .
instantaneous power such batteries can deliver is not suf‘ficieerjders arevery effective, even atlow speed; the turning radius
is about 15 m at 10 km . We therefore decided to remove

for the thrusters, which are therefore fed by NiMh batterle§he stern thruster, which appeared not really necessary, and

Finally, the radio-control receiver and the various servos ar .
. Y v(\?hose control was rather difficult. Payload appears to be a
independently powered.

Each battery is managed by a electronic module whic%ritical point; the flight autonomy with the on-board batteries

allows both the “intelligent” charge of the battery and the dis> N9 longer than 12 min, and there is no payload left for

i ) . : . dditional batteries or equipment. A second version of Karma
patching of status information to the CPU via a multiplexe ; i .
N . . ) is therefore currently being developed; the new envelope will
serial link. The charging modules are linked to a single con- . . ) .
. . : ; e 3 nt bigger, allowing more payload; the gondola is totally
nector, on which a power source is plugged while the blimp is . -
! . ; .. - redesigned and the original motors are replaced by brushless
on the ground (which allows booting and debugging without

any power loss). This very flexible structure also allows thg]OtorS’ allowing more thrust power. As the altitude estimate

.~ provided by the GPS receiver is not precise enough to safely
future use of an alternate or backup power source on flig : ;
-~ . servo the takeoff and landing phases, we will add a downward
such as a Stirling engine of fuel cells.

oriented sonar telemetérand we are investigating for 3D

wind sensors.
2.3. Functional Architecture

To allow the integration of the various functionalities, while )

keeping development and control flexibility, all the fiight conPart A: Flight Control

trol and terrain mapping algorithms are nested within the func-

tional level of the LAAS three-layer architecture (Alamietal. This part of the paper presents the different flight phases
1998). This level is a network of “modules”. A module is anand gives an account of the associated control strategies from
active software entity that can encapsulate any kind of alge-

rithm; it is a server that manages all the communications with Fortunately, the main drawback of sonars in robofics, i.e., their wide per-
tion cone which makes their data interpretation so tedious, will turn into

i ired, apgh
the others moqme_& runs the algorithms when required, a advantage in our case, as there will be no need to mechanically stabilize
paces them using its own threads or processes. The data floatong the vertical.
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Fig. 3. The hardware architecture of Karma, showing the various formats of information exchanges between the instruments.
Note that the GPS reference corrections are transmitted via the radio Ethernet link.

takeoff to landing. The description mainly focuses on the < The state monitor, which allows us to determine the
lateral control phase which constitutes the essential part of  current estimated state of the system from the predicted
the steady-state navigation. The flight control architecture is  state and the measure of the sensory output. This anal-

shown in Figure 5. It involves the following three functional ysis is also used to detect abrupt variations of data that
modules. may result from perturbations such as wind gusts, ther-
« The motion planner, which contains the trajectory plan- mals, or model variations (fault detection).

ner and the control planner. For each flight phase,

the trajectory planner provides a reference path (ex-

pected position of the airship) or a reference trajectorg. Flight Control Strategy
(position, velocity, and acceleration). A corresponding

closed-loop control law is then provided by the controB.1. Complete Model

planner to regulate the airship’s motion along the refer- . .
ence solution. The reference trajectory and the contrd'ré€ frames are introduced to model the airship's dynam-

law are sent to the flight controller. |cs'(see Figure'7)Ro is a global frame fixed to the Eart.h,
while the body-fixed fram& (N, X, Y, Z) and the aeronautic

« The flight controller, which computes the control inputframeR, (N, X,, Y,, Z,) are two local frames attached to the
to be sent to the airship actuators on the basis of tlarship whose origin is at the nose of the hill The point
estimated state variables provided by the state mon¥ has been chosen as the origin of these local frames for the
toring module. These values are also sent to a virtuedllowing reasons: its position is precisely determined, does
airship (see Figure 6) from which a predicted state isot depend on parameter variations, and allows us to model
determined and sent to the state monitor function.  easily the airship rotations with respect to its center of gravity
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Fig. 5. Detailed architecture of the control modules.

G. Furthermore, aerodynamic torques are usually expressedu is the angle of incidence within th¥ Z plane, while

at this point and more generally, external torques acting ghis the skid angle within in th&Y plane. To describe the
the airship can easily be expressed with respect to this poiatrship’s orientation with respect t#,, the three orientation
The X ,-axis of R, is directed along the airship’s aerodynamiangles are the yaw, the pitchd, and the rolkp. The current
velocityV, = V —V,,, whereV andV,, represent respectively configuration is then deduced from three elementary rotations
the airship’s velocity and the wind’s velocity with respect tqsee Hygounenc, Souéres, and Lacroix 2001). The following
Ry (note that in case of no wind, = V). notations are usea: = [, n.]" represents the configuration
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of R with respect taR,, wheren, = [Xo, Yo, Zo]" andn, =

(North)

6,68, ¥]". v = [v1, 1,]" describes the velocity screw of the

blimp expressed in the local franig wherev; = [u, v, w]"
andv, = [p, q,r]".

The dynamic modeling is deduced from the Newton laws of
mechanics (Bamberger 1981), while the aerodynamic model
(Bonnet 2003) is derived from the Kirshoff laws (Munk 1922)
completed with the theory of Bryson (1954). The modeling is

based on the following hypotheses.

» The equivalent density of the airship being close to the
density of air, the time-varying phenomenon of added
fluid induces a variation of inertia and mass that can-
not be neglected. (This variation is proportional to the
volume of air displaced by the hull.)

« In order to apply the mechanical theory of a rigid body,
aeroelastic phenomena are neglected; the hull is con-
sidered as a solid.

RO

Z0 (Down)

The mass of the airship and its volume are considered
as constant. This strong hypothesis neglects the varia-
tion of mass induced by the inflation of air ballonets,
inside the hull, which are consecutive to a variation of
temperature or pressure. To reduce this error, the nom-
inal mass is determined for an average temperature of
15°C and a 50% inflation of air ballonets.

The aerodynamic effects which are due to gravity (mod-
eled by the Froude number) can be decoupled from the
dynamics.

The phenomenon of internal added fluid, which is
caused by the motion of molecules of helium inside
the hull, is also neglected.

The center of buoyancy is supposed to be the hull's
center of volume.

The volume of ballonets is supposed to be insufficient
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to modify significantly the position of the center of
buoyancy.

As the Mach number is low for an airship, the fluid’s
viscosity, which depends on the temperature, can be
considered constant. As a consequence the Prandtl
number (which is dependent on the coupling dynam-

 g(n) is the torque of weight and buoyancy.

* T, is the torque of the vectored thrust which is pro-
duced by two synchronized propellers fixed on a rota-
tional axis. The norm and the directignof this thrust
are adjustable within the longitudinal plane. This actu-
ator is used as a upwards lift during takeoff and as an

ics/thermics) is neglected, and the density of air is not
locally modified by the airship’s motion (low Mach
Poo = P)-

Following the analysis presented in Hygounenc, Souéres Inthe nominal case, when the external wind is weak or null,
and Lacroix (2001) and Lewis, Lipscombe, and Thomassdh€ following approximation holds), = vy, thatisv, = v.
(1984), the model can be described by two equations. The fitdpder this condition, the dynamical model can be written
characterizes the system dynamics with resped,twhile M+ COYW +T,0) +g(m) =T
the second represents the kinematic link between the frames ‘ !

horizontal thruster during the lateral steady flight.

» J(n) is the transition matrix fronR to R,.

R andR,: whereM = M, + A is the matrix of inertia due to both the
. mass of the airship and the added mass of a\f,axpressed
M+ Cyy+T,(va) +8m) =T, 1 inr
n=Jmv. 2)

3.2. Decoupled Model for Control

Here: Although the system described by egs. (1) and (2) models

« The 6x 6 symmetric matrixZ, includes the parameters rather precisely the complete blimp’s dynamics, it is hardly
of mass, inertiawith respectdand the coupling terms  tractable for control. As the dynamics of the state parameters

rotation). weakly dependent, the 12 state variables can be split into two

subsystems in the following way:

* v = [vy, 1y] is the time derivative of the airship’s ve- ]
locity expressed in framg. * Mg = [Xo, Zo, 01" andv,,, = [u, w, q]" to describe
the dynamics within the longitudinal plane;

« T, = C(v)v is the torque of centrifugal and Coriolis .
terms,C(v) being a skew-symmetric matrix. * N = [Yo, ¢, ¥1" andv,,, = [v, p, r]" to describe the
dynamics within the lateral plane.

o T,(vy) = Avy + Di(vp)v,s + Ty, (v?) is the torque of

aerodynamic forces and moments, where REMARKGS.

— Alis the 6x 6 symmetric matrix of added masses,  « Although the state variabl&, andu are common to

inertia atV, and coupling terms of the fluid;

Vi = [v., v2]7, wherev, = v, — v, is the vector
of aerod_ynamic translational velocity, with =
J1(n2)7tV, the velocity of wind with respect to
R, expressed iR (note thatv, is not constant);

T,. = D,(v,)v, isthe torque of added centrifugal,
Coriolis and damping terms of the fluid, where
D1 (v,) is a matrix which is only dependent on the
rotational velocity rotation,;

T...(v?) is the torque of stationary forces and mo-
ments atV, which is proportional to the square of
the aerodynamic velocity (Thwaites 1960). This
torque contains the forces and moments produced
by the control surface. Each pair of diagonally op-
posed control surfaces is simultaneously actuated.
The resulting force increases linearly with the de-
flection angle. They give rise to a rotational mo-
ment within the longitudinal or the lateral plane.

both planes, they do not appear explicitly in the lateral
dynamic as, according to the proposed control strategy,
they are supposed to be stabilized to a steady value
during the lateral flight.

 The rolling dynamics does not appear in the proposed

control submodels. The reason for this choice is that the
corresponding mode is structurally stable and not con-
trollable. Indeed, as explained in the description above,
the pair of opposed control surfaces being simultane-
ously actuated cannot induce a rolling torque. Such a
torque can neither be produced by the vectored thrust,
which always provides the same power to both pro-
peller. The simulation results presented in the last sec-
tion (which have been done by considering the com-
plete model) show that an effective rolling motion oc-
curs during lateral navigation but that the correspond-
ing dynamics is stable, sufficiently fast, and quite well
damped.

Downloaded from ijr.sagepub.com at PENNSYLVANIA STATE UNIV on May 11, 2016


http://ijr.sagepub.com/

Hygounenc et al. / The Autonomous Blimp Project of LAAS-CNRS 481

Fig. 8. Scale model of Karma in a wind tunnel.

LONGITUDINAL VERTICAL

TAKE OFF

TRANSITION PHASE

LONGITUDINAL _ LATERAL
TRANSITION PHASE
NAVIGATION NAVIGATION

TRANSITION PHASE

LANDING

Fig. 9. The different flight phases.

The proposed navigation strategy consist of a separate lan-the same way as a plane, while the second involves first
gitudinal and lateral control on the basis of the submodel de-vertical motion. In both cases, as the lateral motion is not
scribed above. During each phase, a part of the state variabtesitrolled during this phase, the airship must be directed so
needs to be stabilized to a nominal value while the remaims to face the wind.
ing part is controlled. This requires us to consider transitio,
phases between each nominal phase.

The different flight phases and the transition between the

Eongitudinal takeoff. Inthis approach the vectored thrusteris
initially directed horizontally and the motors are supplied with

X : . . _Maximum power. Initially maintained at a non-zero altitude,
are defined accordlng_to the scheme of Fl_gur_e 9. Fou_r ﬂ'g e actiongfelevator beé/omes rapidly efficient to produce the
phases are to .be conS|der9d, takeat, longitudinal naV'gat'orﬂtching torque which is necessary to takeoff. A simultaneous
lateral navigation and landing. control of speed and altitude is then performed to control the
rising motion.

3.3. Global Control Strategy ) .

) . . . Vertical takeoff. Another way to perform the takeoff phase is
In this section we present a short description Qf the dlffgre% apply the following three-step procedure. First, the thrust
control phases. The steady lateral control which constitutes yaintained almost vertically until the blimp has reached
the main part of the navigation process is then detailed I0 \oference altitude and longitudinal position. An adaptive

Section 4. nonlinear backstepping-based controller is used to this end.
Secondly, a trajectory tracking involving a similar controller
3.3.1. Takeoff is used to drive longitudinally the airship up to a threshold ve-

Two control strategies are proposed to perform the taked€icity. Finally, the velocity and the altitude are simultaneously
phase. The first aims at controlling the airship longitudinallgontrolled to perform the rising motion.
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Takeot (D 4. Steady Lateral Navigation

/ \ In order to elaborate a complete autonomous navigation strat-

egy, the first objective is to guarantee the stability of the
Lateral control steady-state motion within the lateral plane, and the robust-

(path-following) ness of the controller with respect to wind perturbations. The

Velocity control closed-loop velocity regulation and the path-following pro-
(Power regulation) |+ cess, which are to be performed in parallel during this phase,
@ Longitudinal contral are detailed in the next section. Simulation results are given

(altitude regulation in the last part.

\ / 4.1. Velocity Regulation
Landing (4)

Once the reference altitude has been reached the airship’s
velocity is stabilized in order to start the lateral steady

Fig. 10. The flight control diagram. navigation.

4.1.1. Embedded Control Structure

o o The velocity regulation is obtained by means of the embedded
3.3.2. Longitudinal and Lateral Navigation control structure described in Figure 11. The system input is

. . . the reference value, of the longitudinal component of the
According to the previous description, the last step of the take: ‘ 9 P

. S .. dirship’s velocity, i.e., the component of the velocity along
off phase allows us to drive the airship to a reference altitu R .
. o - . e X-axis of frameR. Indeed, once the vectored thrust angle
and velocity. Stabilizing the longitudinal dynamics to a stead

. o : is set to zero, the sole component of the velocity which is
value constitutes a necessary condition for starting the latefal . L
controllable isu. As the remaining two componentsandw

control. Once this equilibrium has been reached, the naViggr'e very small with respect t, the airship velocity can be
tion is driven by two parallel regulations. A first control IOOpapproximated by its longitudinal component= V. From

Irsesusee(i Eg trﬁguéztr?hthi?] \é?(ljzcr'% (ralzglfg tiéncglr%?élerigzri\:(w;qshe difference between the current and the expected value of
b . ' . u_the first control block is a velocity controller which deter-
sociated with the mobile surfaces stationary. Another loop Is.

used to control either the lateral motion by means of a pat ines the reference thrustto be provided by the propellers.
. - . )n this base, a converter computes the corresponding power
following procedure (block 3a in Figure 10), or the altitude ! v by ponaing pow

on the base of a backstepping regulation of the elevators anV\fmch has to be sent to the motors. A Pl controller is then used

e ; .
(Hygounenc and Souéres 2002). While the velocity regulation servo the motor. Flna!ly, t.h(,a curren_t V"?"”e of the longitudi-
\ o . S nal component of the airship’s velocity is deduced from the
is maintained during the whole steady navigation, the trans

tion between lateral and longitudinal control is determineg_ifferential GPS measures and sent to the velocity controller,
) 9 i, vyhile the aerodynamic velocity measured by the anemometer
by the motion planner. A necessary condition for the contrg

. o . iS sent to the converter. The successive blocks are presented
?tlz\;ltt)%?zgodbe possible is that the corresponding subsystem il?]emore detail in the following.

4.1.2. Velocity Controller

3.3.3. Landing
By considering only the tangential effort from the previous

As for the takeoff, the blimp needs to face the wind during thenodel, making the hypotheses that the aeronautic angles are
landing procedure. The reason for this constraint is that thenall and that the propulsion is horizontal & 0), the dy-
landing procedure aims at regulating the longitudinal dynanmamics of the longitudinal velocity component- 0 can be

ics only. Using the longitudinal controller 3b, the altitude isexpressed by the following differential equation:

reduced down to a security value, while the airship is driven to

atarget position. The last step is performed either by stopping mt = —Fru> + T 3
the engine or even reversing the thrust direction for a while to
stop the velocity. wherem, is the inertia due to both the blimp’s mass and

This paper focuses on the steady lateral navigation. Thiee added mass of air along tieaxis, Fyu? is the normal-
description of the controllers that allow us to perform thiszed drag force, and is the propeller thrust which is consid-
flight is detailed in the next section. ered here as the input. Introducing the notatios; F;/m,,
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Pl H MOTOR }»% Sensors

Fig. 11. The embedded velocity controller.

b = 1/m,, the following simpler expression of system 3 isper second (rpsX2 is the propeller’s rotation velocity, and

considered: V, is the advance speed at the propeller, which is equal to the
) , airship’s aerodynamics velocity. The thrust coeffici€ptand
u=—au”+bT. the power coefficienC,, which depend on the advance pa-

. ) ) rameter, can be written under the following form (see Fossen
Denoting bye = u — u, the velocity error, the following 1996):

strictly positive storage function is introduced:

1 Cr = oy +oorJ (6)
V = Ze2
26

L . L Cp = J J2. 7
As the reference velocity, is constant, the time derivative of P = Oap T Qapd e 0

Vis Karma’s propellers have been chosen on the basis of a col-
laboration with the Laboratory of Aerodynamics and Propul-
sion of the Ecole Nationale Superieure de I'Aéronautique etde
'Espace (ENSAE), Toulouse France (http://www.supaero.fr).
hey are made of plastic and the type is 28 “Master
Airscrew”. The curves represented in Figure 13 describe ex-
perimental tests of traction and absorbed power, for various
T =b*(—ce + ad). values of the motor’s rotation velocity, and for different values
of the airship’s velocity. The model equations (4) and (5) have
Figure 12 represents a result of simulation of this coreen identified thanks to relations (6) and (7), on the basis of
troller. The control objective was to stabilize the system t@ polynomial approximation of these curves:
the cruising speed of 5 nts Despite the simulation of a

V = e(—au®+ bT).

In order to obtain a definite negative expression of the for
V = —cz?, the following choice is made for the controller
(Kokotovic, Krstic, and Kanellakopoulos 1995):

strong frontal wind gust (3 m8), only a slight variation of T =Tin* + TnV, (8)

the velocity occurs, showing the robustness of the controller

to external perturbation. P = Pin® + Pin?V, + PanV2. (9)
4.1.3. Thrust Converter As the propeller thrust cannot be directly observed, this

) _ _ guantity has to be converted into another one directly mea-
The propeller is characterized by its advance numhehe g rapie. Two output functions can be measured to this end:
thrust coefficienCr, and the power coefficiet, . TYVO €quUa- the rotation velocity of the motors and the power delivered
tions are usually used to describe the propeller's model. T e patteries. For practical reasons, the successful solution
first expresses the thrugt, while the second describes they 5 1o servo the motor on the basis of the power delivered by
absorbed poweP: the batteries. From the desired thr@sprovided by the ve-
4 2 locity controller, the reference poweris determined by the
T'=pDCr(J)n nz0 ) con\Yerter as follows. The exper(J:ted rotation veloaityg f)i/rst
computed from eq. (8) by replacirigandV, by their current
P = pD°C,(J)n’. (5) Vvalues, andP is then deduced from eq. (9). This value must
then be augmented in order to compensate the power dissi-
In these relationy = V—D p is the air densityD is the pated by the system which has been experimentally evaluated
diameter of the propellen, = % is the number of rotations to 40%.
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Fig. 12. Velocity stabilization with frontal gust.
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Fig. 13. Thrustl and absorbed powet versus aerodynamic velocity, for 5000 and 6000 rpm.

4.1.4. Power Control then of the type:
The propellers are driven by two brushless motors equipped K,
with a variator. The variator input is a PWM signal which (Kp +t1z Zl> spP

corresponds to a value ranging from 0 to 1023 for the micro-

controller. Figure 14 represents the power output and the iwherek, andK; are the proportional and integral gains, and
tensity output to a step, for various values of the tension. 4p is the power error. The control diagram is represented
residual noise in steady state and a strong overshoot can beipbFigure 16, which shows control experiments in which the

served on both curves. As this overshoot does not correspgsélver is successively stabilized to follow a reference input
to a rotation velocity increase it has to be filtered. To this endtep of 50 and 100 W.

a first-order filter has been used. A discretized expression of
this filtgr has been considered to a sampling period of 50 '_112.2. Path Following
(see Figure 15):
b7-1 In this section we present the path-following control loop
e (10) which is to be executed in parallel to the velocity regulation
1+az™ described in the previous section (Hygounenc and Souéres
In order to minimize the output error the control loop include2003). Making the hypothesis that the longitudinal compo-
an integral action. The discrete expression of the controllerignt of the airship velocity is stabilized to a reference value
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Fig. 14. Power and intensity output for various values of the tension.
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Fig. 16. Power control scheme and experiment.
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Usually the reference path is determined by a sequence of
Fig. 17. Path following. passing through points. Using the on-board GPS, the distance
L to the path and the orientation error with respect to it can be
well approximated. However, the terth,, which is propor-
tional to the instantaneous path curvature, appears to be less
easy to determine. As the reference path curvature is supposed

u,, the lateral blimp’s dynamics is described by the system: ) . X
to be upper bounded, a practical way to solve this problem is

):(o = u cosy —vsSiny = u,cos(y+ B) to considery, as a piecewise constant perturbation. Defining
Yy = usiny + vcosy = u, sin(y + B) L as the system output and introduci@g= [1 0 0 (0 and
V=r G = [0, —1, 0, 0]", the path-following error dynamics can be
B =aup + Z—{?r + Z—j(S, written under the classical form:

= B+ + by, . .
r=anu,p + ayr 2 X = AX + BS, + G,

where they;; coefficients, j = 1, 2 are constant. Y =C X.
As the control objective is to regulate the blimp’s motion

within the lateral plane while its velocity, is constant, a From the previous model, a = u, andu, # 0, a

path-following strategy appears to be very appropriate. As vfficient condition to stabilize/ to zero is to stabilize the

consider a planar motion, the problem can be formulated ggeral distance. to zero. The control objective can then be

the regulation of the lateral distance and the orientation e¢pecified in terms of stabilizing the perturbed system (11),

ror with respect to a mobile Frenet frame whose orientatiophile insuring a zero output error. To this end, a stabilizing

is defined by projecting perpendicularly the poiton the state feedback with integral control is applied.

path (see Figure 17). However, contrary to what is done for Introducing the additional state variable

mobile robots (Canudas de Wit et al. 1993), the frame to be

stabilized along the reference path is the aeronautic flgme

instead of local frame®. The reason for this difference is that xo(t) = / Y (r)dr.

the blimp is not constraint to move tangentially to its main o

axis as non-holonomic robots. Indeed, due to the lateral slip- ) ) ]

page, the blimp velocity is directed along the-axis which foll'gwfs'fth'order augmented linear system is defined as

differs from the localX-axis by the skid anglg. Let L be |

the lateral distance betwe@hand the path, and the angu- ( %o ) - ( 8 i ) ( 20 ) n ( % )5, n ( g )y‘,d,

lar error between the blimp velocity, and the mobile frame X Al

X -axis whose orientation is given k. The error dynamics

(11)

t

Let us denote b)f( = (x0, X)" the augmented state, and

reduces to g _ . L
) o by A, B, G, E the augmented matrices. Using a stabilizing
L; =u,Siny controllery = —K X = —koxo— K X, the closed-loop system
v =v+8—1v,. can be stabilized while insuring a zero output error. Indeed, as

X(t) = (A— B K)X + Gy, + Ee converges asymptotically
to zero,xy(r) = L converges to zero as well. The controller
is presented in the block diagram 18.

Under the hypothesis that the angular ergoremains
small, a first-order approximation can be consideredysia
. Finally, the lateral path following including the skid dy-
namics can be represented by the following fourth-order line®EmMARK 1. The path-following controller allows us to sta-
system: bilize asymptotically the aeronautic frame-axis along the
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AIRSHIP

L*> Lateral Path Following
MODEL
X
Fig. 18. State feedback with integral control.
reference path. The body-fixed franke which is tangent to 1able 1. Airship Configuration
the blimp’s main axis, will then make a skid anglewith Equilibrium Null pitch angle at rest
the reference frame. If the reference path is a circle, the skid Payload Heavier than air-0.4 kg
angleg is then stabilized to a constant value. This illustrates Maximal thrust 20N
the necessary condition for the blimp’s dynamics to include Maximal mobile |45p

a constant lateral slippage to follow a circle. If the reference parts angle
path becomes rectilinea#,converges to zero and the blimp’s
orientation changes progressively until being tangent to the

path.
Table 2. Environment Configuration
4.3. Simulations Simulation A Simulation B
4.3.1. Introduction Air density p 1.225 kg nd 1.225 kg nd
. . . . ) External wind Null Front, horizontal
A flight simulator involving the complete mathematical omst

model of the airship has been developed by using the Mat
lab/Simulink software. It allows us to test the different con-

trollers by taking into account the whole dynamic and aerody-
namic forces and torques which have been identified. Before

starting the simulation, the following configuration parame- . . . .
ters are to be set: control involves the simultaneous regulation of the velocity

and the path-following process. The modulus of the reference
« the equilibrium parameters (relative position of the cenvelocity u, with respect to the Earth frame has been set to
ter of gravity); 5mst.
The path-planning procedure is based on the definition of
* the _payload (lighter than air, heavier or in aerostatig sequence of reference geometric poiPts X;, ¥;) within
equilibrium); the lateral plane. The reference trajectory is then defined as
a broken line by considering successive pairs of points. The
lateral errorL is deduced from the measure of the current
The environment can also be configured: position of the airship by means of the differential GPS or by
) ) ) ) - _using the stereovision. The angular erfois deduced from
+ density of air (which directly modifies the aerodynamighe apsolute orientation angle given by the compass and the
effects and the buoyancy); skid angle given by the anemometer. Note that the trajectory

« the external wind parameters: velocity and orientatiof2" be progressively constructed by defining additional pairs

angles (these parameters are then expressed with pépoints during the motion. Although this planning process
spect to the body-fixed frame). aims at being directed by the motion planner it has been per-

formed manually for the simulations.
Two simulations of the steady lateral control of Karma are For both simulations the takeoff phase has also been per-
presented. As explained in the previous sections, the latefatmed manually. Once a security altitude is reached the

« the limits on the actuator's dynamics.
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Fig. 19. 3D trajectory without wind.
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Fig. 20. Lateral motion and altitude variation.

vectored thrust angle is turned to zero (horizontal propulire 24 in which the variation of the lateral position erfor
sion). The velocity controller is activated until the airshipand of the orientation erraf are described. Three peaks cor-
has reached the cruising speed. At this stage the first pairrespond to the change of orientation.

points is defined and the autonomous lateral control is initi- In this simulation, the airship’s altitude is not regulated.
ated. The control objective was to follow four successive lin€he altitude increases slightly (less than 10 m for 800 m). The
segments to execute a square trajectory. The first simulatigariation of the altitude is dependent on the airship configura-
is performed for the nominal system, that is without windion parameters. In the case of a heavier-than-air airship, with
perturbations, while the second is performed with a constaatnegative pitch angle at the equilibrium, the altitude would
horizontal wind to test the control robustness. have decreased.

Figure 21 shows the evolution of the airship velocity com-
ponents with respect to the local frame. As expected, the lon-
gitudinal component is correctly stabilized to the reference

h\éalue of 5 m s!. Furthermore, the longitudinal component
pears to be the essential part of the velocity as predicted

4.3.2. Smulation A: Navigation Without Wind

Figure 19 describes the 3D trajectory of the airship while t
projection of the motion in the lateral plane and the time varP )
ation of the altitude are described in Figure 20. The airshify > v andu > w). The curve of the propeller's thrust

follows closely the reference trajectory segments and remaiffPresented in Figure 23 shows the importance of the veloc-
close to the reference points. This result is confirmed by Fiéty regulator. Each time the orientation changes, the rudder’s
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Fig. 21. Velocity components with respect to the local frame.
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Fig. 23. Actuator activity.
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Fig. 24. Lateral and angular error evolution.

angle saturates inducing a strong increase of the tangentialAs before, the takeoff phase has been performed manually,
effort. To compensate for the phenomenon and to avoid thet this time by facing the wind. The reference points have
reduction of the velocity, the controller increases the prdseen determined following the same procedure as for the first
peller thrust. Three peaks corresponding to the saturation etperiment.
the rudder-angle saturation appear on the thrust curve in Fig- Figure 25 shows the airship’s 3D trajectory. The trajectory
ure 23. projection within the lateral plane and the variation of altitude
Figure 22 represents the evolution of the attitude angleare described in Figure 26. As shown, the trajectory passes a
The variation of the roll anglg justifies the choice to consider little distance away from points B and C. This error is mainly
it as a well-damped stable variable. The gondola fixed unddue to the delay of definition of these points. The altitude’s
the airship’s hull acts as a damped pendulum. Furthermorgriation differs from the previous experiment (Figure 20).
the amplitude of oscillations remains very low. Thisis dueto the fact that, although the velocity with respect to
The oscillations of the pitch angtethat can be observed the Earth is regulated, the aerodynamic velocity varies. When
have been generated during the vertical takeoff phase whittte airship is facing the wind’, increases by 2 m=$. The
has been performed manually. The following three peaks rdewnwards pitching torque induced by the gondola is greater
sultfrom the increase of the pitching momentwhich is inducetthan the upwards pitching torque induced by the vectored
by the thrust. The evolution of the yaw angles quite regu- thrust. As the pitch angle is lower than the incidence aagle
lar despite the three successive changes corresponding tottiairship moves downwards. Note that, despite this pitching
switch of reference segments. phenomenon, the altitude variation remains quite moderate,
This result shows the validity of the approach which conshowing the feasibility of the method.
sists of regulating the lateral motion while considering the Figure 27 represents the evolution of the components of the
roll angle as a stable well-damped state variable. On the othezlocity with respect to the Earth expressed in the body-fixed
hand, the stabilization of the longitudinal component of th&tame. As before, the longitudinal component constitutes the
velocity allows us toregulate the altitude quite well. Followingessential part of the velocity. The maximal value of the lateral
the control scheme of Figure 10 the altitude has to be adjustedmponenty is 2 m s*. Note that for the highest values of
from time to time by using the longitudinal controller. Thisv a static error of about 0.4 nTsoccurs in the regulation
switch between lateral and longitudinal control is determineof u. As shown in Figure 29, these variations induce a thrust

by the motion planner. increase from 2 to 14 N. Note that the initial thrust saturation
corresponds to the acceleration phase, allowing us to reach
4.3.3. Smulation B: Navigation Wth Lateral Wind the cruising speed.

Figure 28 shows the evolution of the airship’s attitude. As
The same flight objective has been simulated in the presengsfore, the roll angle behaves as a stable well-damped mode.
of an external lateral wind of 2 nT§ which according to ex- The pitch anglé appears to be strongly perturbed. This is due
periments constitutes a strong perturbation. The objective WgSthe presence of the strong lateral wind which acts differ-
to demonstrate the control robustness with respect to extergakly on the airship during the motion. Following the vertical
perturbations.
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. 27. Evolution of the velocity components in the body-fixed frame.
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takeoff, the pitch angle ranges betweedr and 8, inducing aerodynamic forces and torques acting on it. On this basis,
moderate changes of the altitude. The variation of the yatlhie proposed strategy involves the decoupling of the lateral
angley differs from the nominal case (22). Depending on thand longitudinal dynamics by considering two submodels.
relative wind direction, the time required for the turns and th&his approach allows us to construct a global control strat-
saturation time of rudders vary (see Figure 29). During thegy by addressing the control problem differently for each
first turn, the airship was facing the wind and the efficiency dlight phase. The presentation focused on the steady lateral
rudders was maximal with a relative wind of 7 mtsThis is  navigation which constitutes the central flight phase and for
the reason why this turn required a shorter time than the folhich the need for autonomy is predominant (for instance,
lowing next turns. Note that the wind was blowing from theén the case of exploration tasks as described in the second
back with a relative velocity of only 3 nT%for the second part of the paper). The proposed controllers have been sim-
turn, while its lateral action facilitates the last turn. The evoludlated by considering the complete model with and without
tion of lateral position and angular error is shown in Figure 3@ind perturbations. The decoupled approach, which consists
(Extension 4). of executing in parallel the velocity regulation and the track-
ing of the reference path, provides a robust and efficient way
to control the lateral motion. Although the roll angle and the
5. Discussion altitude are not directly controlled during this phase, their be-
havior is compatible with the control approach. The roll turns
The work presented in this first part of the paper is based @ut to be stable and well damped, while only a slight varia-
the synthesis of a complete model of the airship Karma. Thi®n of the altitude occurs. To answer the problem of altitude
model is issued from a careful analysis of the dynamic ardlift, the path-following control must be switched off when

Downloaded from ijr.sagepub.com at PENNSYLVANIA STATE UNIV on May 11, 2016


http://ijr.sagepub.com/

Hygounenc et al. / The Autonomous Blimp Project of LAAS-CNRS 493

L (m) Angular error (rad)
40 T T T 25 T
Second turn Third turn
Turn
30 e a
s
20 Takeoff
15F
101 : 1 Takeoff
0 r
-10- o5
—20}
0
_30k
First turn —osl-
—40- supervisor error .
50 1 1 1 1 I 1 1 | I | I
0 50 100 150 200 250 300 0 50 100 150 200 250 ] 300
Time Time

Fig. 30. Evolution of position and angular errors.

necessary to adjust the altitude according to the diagram efploitation of common environment representations, using
Figure 10]. In parallel, thanks to the second control loop, thaata provided by all possible sources. This is the case in loose
velocity remains continuously regulated during both phasesooperation schemes, e.g., where the ground rover operates
The control switch is activated by the supervisor on the basdter the aerial robot. The map built can then be used to pre-
of the prescribed navigation constraints (landmark visibilitypare the rover mission, but also online, to localize the rover as
for instance). it navigates for instance. Also, in tighter cooperation schemes,
This theoretical study is currently pursued in two direct.e., when both types of robots operate jointly, the ability to
tions. A first part of the work concerns the application of adbuild, share and maintain a common environment model is,
vanced control technigues to extend the control performances$.course, a key functionality.
One important objective is to better take into account actuator This part of the paper presents our approach to the SLAM
saturation and uncertainties due to perturbations in designipgoblem, using only a set of non-registered low-altitude stere-
the control laws. A second part of the work, carried out ivision image pairs. The approach is presented in the follow-
collaboration with the CEMIF Laboratory of the Universitying section, and in Section 7 we present the basic algorithms
of Evry, concerns the trajectory planning problem. on which it relies: stereovision, interest point detection and
However, the main effort is now directed towards experimatching, and visual motion estimation. In Section 8 we de-
ments. The autonomous lateral control is expected to be d@ail our implementation of the extended Kalman filter (EKF),
perimented in the very near future. It will constitute the firswith a focus on the identification of the various errors. Local-
part of the longer-term objective, which is to execute compleieation results and the building of digital elevation maps are

autonomous flights from takeoff to landing. then presented and discussed in Section 9.
Part B: High-Resolution Terrain 6. Simultaneous Localization and Map Building
Mappmg The main difficulty in building high-resolution terrain maps

is to precisely determine the sensor position and orientation
High-resolution terrain mapping can be the main payloags it moves. Dead-reckoning techniques, which integrate over
of flying devices in a wide variety of applications: fine getime the data provided by motion estimation sensors, such as
ographic survey, environmental analysis, mine detection aigheel encoders for rovers or inertial sensors, are not sufficient
localization, etc. However, terrain mapping is also a way tfr that purpose. Indeed, not only may the position estimate
achieve precise localization of the flying robot, by providinghey provide between successive data acquisitions not be pre-
environment references, thus enabling a position estimatiefze enough, but they are intrinsically prone to generate po-
with bounded errors as the robot flies. Finally, mapping isjtion estimates with unbounded error growth. Visual motion
a prerequisite to the development of cooperative air/grourgtimation techniques that use stereovision and visual fea-
robotics ensembles. Indeed, whatever the cooperation sggre tracking or matching have recently been proposed in the
nario, one of the most important issues to address in orderdgntext of ground rovers (Mallet, Lacroix, and Gallo 2000;
foster the development of such ensembles is the building atilson et al. 2001). They allow us to obtain a more precise
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position estimate between successive data acquisitions, But. Overview of our Approach

their errors also cumulate over time, since they do not mems- . — '
y rT(])ur approach is an application of a Kalman filter based solu-

orize any environment feature. : . . o
The only solution to guarantee bounded errors on the p?gln thth_e SLS‘I\:I pro_blec;nk,) "LYVth? thelr%bot posmontls to- q
sition estimates is to rely on stable environment features th y _(|.e., determined by tnree transiation parameters an
gee orientation parameters) and that exclusively uses vision.

are detected and memorized as the robot moves. It has eatly; .
ion has the great advantage to allow both a very precise

been understood in the robotic community that the proble (ft rmination of the orientation parameters and the detection
of mapping such features and estimating the robot location a &'c ation otthe onentation parameters a € detectio

intimately tied together, and that they must therefore be solvgﬂ]d association of stable environment features. Moreover, us-

in a unified manner (Chatila and Laumond 1985; Smith seffld @ stereovision bench, range estimates of the features are
and Cheeseman 1987) ' '~ directly available, although much less precise than the data

This problem, known as the “SLAM problem”, has r]OWprovided by a laser range finder. We will, however, see that

been widely studied in robotics, mostly in the case of robofganks to the Kalman filter it is possible to achieve extremely
' ecise localization of the stereovision bench, without the aid

moving on planes, i.e., whose position is totally determined . h itioni
three parameters (a historical presentation of the main cont - any other positioning sensor. . .
In our approach, landmarks are “interest points”, i.e., vi-

butions can be found in the introduction of Dissanayake et al. feat that b tched wh vedf .
2001). Among the different approaches to solve it, the Kalma alteaturesthatcan be matchedwhen perceived fromvarious
ositions, and whose 3D coordinates are provided by stereo-

filter based approach, or variants such as the information oS . . T
ter, is undoubtedly the most popular. It is theoretically welision. The key algorithm that allows both motion estimation

l : y :
grounded, and it has been proved that its application to tl%a tween cc_msecutlve stereO\_/|S|0n frame_s and the qbserva’uon
d matching of landmarks is a robust interest point match-

SLAM problem converges (Dissanayake et al. 2001). Sonf&

contributions cope with its main practical drawback, i.e., itd'd talgorflttf;]m.éllv<<la:qscathan EKF etls a tr.e Cur?\t’ﬁ f'lt?r; thebstat(ra]
complexity which is cubic in the dimension of the considere ector ot the IS the concatenalion of the Stereo benc

state (Leonard and Feder 2000; Guivant and Nebot 200 osition (six parameters) and the landmark’s positions (three

such developments are necessary when the robot navigate fiaﬁameters for eac'h Iandmark.)..The visual mohon estlmathn
large areas etween consecutive stereovision frames is used to predict

Other approaches to the SLAM problem have been pr he filter state, ar_1d is fused with the observations provided by
dmark matchings.

posed, mainly to overcome the assumption that the vario Th . lorithmic st hieved i ¢
error probability distributions are Gaussian, which is required .. € various aigorithmic s a:jges aé: '?Vf de_ve'?/ |me§ls ere-
by the Kalman filter. Set membership approaches just ne8Y'SION IMage pairis acquired are depicted in Figure 5.L.

the knowledge of bounds on the errors (Kieffer et al. 2000; 1 giereovision. A dense 3D image is provided by stereo-
Di Marco et al. 2001), but they are practically difficult to vision (Section 7.1), along with an estimate of the co-

implement when the number of position parameters exceeds  \ariances on the coordinates of the computed 3D points
three, and are somehow suboptimal. Expectation minimiza- (Section 8.2.1).

tion (EM) algorithms have also been successfully adapted to
the SLAM problem (Thrun, Fox, and Burgard 1998), and an 2. Interest point detection and matching. Interest points
approach that address incremental SLAM in this context can  are detected in one of the acquired images, and are
be found in Thrun, Burgard, and Fox (2000). matched with the interest points detected in the pre-
In terms of sensor modality, solutions to the SLAM prob- vious step (Section 7.2).
lem have mainly been experimented with range sensors in
indoor environments: sonar sensors (Leonard and Durrant-
Whyte 1991; Wijk and Christensen 2000), laser range find-
ers (Moutarlier and Chatila 1991; Thrun, Burgard, and Fox
2000), and recently millimeter wave radars in outdoor envi-
ronments (Guivant and Nebot 2001; Dissanayake et al. 2001).
To our knowledge, there are many fewer contributions to the
SLAM problem based on vision. In Deans and Herbert (2000),
monocular vision is used as a bearing sensor, with a combina-
tion of a Kalman filter and a bundle adjustment technique. In
Se, Lowe, and Little (2001), an approach that uses stereovi-
sion and visual scale-invariant feature transforms for a robot
evolving on a plane is presented, the data association problem4. visual motion estimation (VME). The interest points re-
being solved a Hough transform hashing. tained as “non-landmarks” are used to estimate the six
motion parameters between the previous and current

3. Landmark selection. A set of selection criteria are ap-
plied to the matched interest points, in order to par-
tition them in three sets: an observed-landmark set, a
non-landmark set, and a candidate-landmark set (Sec-
tion 8.3). The observed landmarks are the detected
points that match already mapped landmarks, non-
landmark points will solely be used to estimate the el-
ementary motion between the current and the previous
step, and candidate landmarks are points that may be
added to the filter state, if they pass through the selec-
tion criteria during the next steps.
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Fig. 31. Functional architecture of our approach to the SLAM problem on the sole basis of stereovision.

steps (Section 7.3), using a least-squares minimizatiod. Basic Algorithms
The associated covariances are also estimated, by prop-
agating stereo and matching errors (Section 8.2.3). Our vision-based SLAM approach is based on three basic al-
gorithms. Dense stereovision computes the 3D coordinates
5. Position refinement. This is the update of the Kalmaof most of the perceived pixels, providing thousands of 3D
filter state (Section 8). points in the environment. The interest point detection and
matching algorithm finds and identify visual landmarks, and
After every SLAM cycle defined by these steps, a digital elallows both the estimation of elementary motions and the ob-
evation map is updated with the acquired images (Section 9.8prvation of already mapped landmarks. Finally, visual mo-
There is an important point to mention here. Indeed, thgon estimation rejects the outliers produced by the matching
stereovision bench being the only sensor used in our approaglyorithm and computes an accurate estimate of the motion

its data are used both for the prediction stage (visual motigsetween consecutive stereovision frames with the remaining
estimation) and the observation stage of the Kalman filtgpliers.

The prediction and observation are therefore not fully inde-

pende_nt, which V|ollates a necessary copdmo_n for the filter 1;?1_ Stereovision

be valid. However, in the absence of calibration errors of the

stereovision bench, applying the prediction and the obsery&/e use a classical pixel-based stereovision algorithm, now
tion stages on two separate sets of points does not induce avigely used in field robotics. It relies on an offline calibrated
correlation (which is clear when we consider that the pointsinocular stereovision bench; the images are first warped (rec-
are perceived by different cameras). This is why the interestied) so that epipolar lines are horizontal, which allows a dra-
points are separated in different sets during the landmark seatic optimization to compute similarity scores between the
lection. Still, the assumption that there is no calibration errguixels (Faugeras et al. 1993). A dense disparity image is then
is of course never satisfied, and the errors of the predictigmoduced from the warped image pair thanks to a correlation-
and observation stages are therefore correlated, which idbased pixel matching algorithm (we use either the ZNCC
limitation of our approach. criteria or the census matching criteria; Zabih and Woodfill
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Fig. 32. A result of the stereovision algorithm, with an image pair taken at about 30 m altitude. From left to right: one of the
original images, disparity map (the disparities are inversely proportional to the depth of the pixels, and are shown here in a
blue/close-red/far-color scale), and 3D image, rendered as a mesh for readability purposes.

1998), false matches are removed thanks to a reverse corrééstor computes the autocorrelation matrix with gradients of
tion. Finally, the 3D coordinates of all the matched pixels argignal on each image point, the two eigenvalues of this matrix
determined, using the relative 3D position between the twaeing the principle curvatures (Schmid, Mohr, and Bauckhage
cameras of the bench provided by the offline calibration stagE998). When the principle curvatures are significant and lo-
In Section 8.2.1 we present how a covariance error matrix @lly maximum, the point is declared as an interest point (or
associated with these coordinates. corner). Inthe precise version of the Harris detector, Gaussian
With the digital cameras of Karma, this algorithm worksunctions are used to compute the derivatives. To stabilize the
well for all the scenes we tested. In Figure 32, we can see thadrivatives in scale space, the Gaussian functions are normal-
pixels have been properly matched in all the perceived ared@ed with respect to scale changes. The autocorrelation matrix

even the low textured ones. of scale adaptive Harris detector is then
. . . - - 1 L1,
7.2. Interest Point Detection and Matching MX, 5,5 =GCXHS| ;% (12)

Visual landmarks should be invariant to image translation,
rotation, scaling, partial illumination changes and viewpoint
changes. Interest points, such as detected by the well-known /s = $CGuX. ) x 1) [, =sG,(X.5) x 1) (13)

Harris detector (Harris and Stephens 1988), has proven ereG is the Gaussian kerneg, , is the first-order deriva-
have good stability properties; their repeatability is over 50%ye in theu, v direction, andk = (u, v). When scale change
when the scale change is no greater than 1.5 times (Schmigdnot significants is set to 1 and the autocorrelation matrix
Mohr, and Bauckhage 1998; Jung and Lacroix 2001). If thefg the same as in the precise version of the Harris detector.

is a prior knowledge on the scale change, even approximate, oy matching algorithm relies on local interest point group
a scale adaptive version of the Harris detector yields a "Bratching, imposing a combination of geometric and signal
peatability high enough to allow robust matches (Dufournaudimijarity constraints, thus being more robust than approaches

Schmid, and Horaud 2000). When no information on scalgyely based on local point signal characteristics. Its steps are
change is available, scale adaptation is not possible. In sugbfgliows.

cases, scale-invariant feature detection algorithms have re-

Cent'y been proposed (Lindeberg 1998, Lowe 1999’ Mikola- 1. Starting with a I’andomly selected interest pOint in the

jczyk and Schmid 2001). However, these methods generate first image, matching hypotheses are generated with a
many fewer features than the standard or scale-adaptive de- Similarity measure based on the computed curvatures;
tectors. Also, matching features in such contexts is quite time- & Set of candidate matching points is determined in the
consuming, scale being an additional dimension to search ~ second image.

through.

To match interest points, we use an algorithm that we
originally described in Jung and Lacroix (2001). We briefly
presents its principle here, with an adaptation to roughly
known scale variations.

Interest points are local features for which the signal 3. Point-to-point match hypotheses are generated for the
changes in a two-directional (2D) way. The precise Harrisde-  neighboring points with the same similarity measure as

2. Local interest point groups are constructed around the
studied point and its candidate matches, considering
then closest neighboring points (aeing of the order
of six).
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Fig. 33. A result of interest point matching between two non-registered aerial images.

above. The 2D affine group transformation hypothesdant point here is to remove the outliers (wrong matches), as
are established on the basis of these hypotheses. Tthey considerably corruptthe minimization result. The interest
transformation yielding the highest point repeatabilitypoint matching outliers could be rejected using the epipolar
is confirmed by another similarity measure computedonstraint defined by the fundamental matrix computed on the
on all the points of the groups. basis of the matches. However, the computation of this matrix
o is very sensible to the small errors in the point positions and
4. Once a group hypothesis is generated, steps 1-3 g&he outliers themselves. Also, such an outlier removal tech-
reiterated, starting with the closest point to the firshique will not deal with stereovision errors, such as those that
matched group in the first image, and using the estccyr along depth discontinuities for instance; inlier matches
mated 2D affine transformation to focus the search iy the image plane might become outliers when considering
the second image. the corresponding 3D coordinates.

The local affine transformation is updated each time a new Therefore, we _have developed a specific outlle_r_rejectlon
group matchisfound, and these steps are iterated until no mgﬂgthOd that con5|de_\rs both match_lng and stereowguon EITors.
matches are found. Figure 33 shows that this interest poﬂrst,_m_atches that imply a 3D pomt_whose coordinates un-
matching algorithm can generate many good matches, ev(é?{ta_“m'es are over athresholq are d|scard§d (the thres_hc_)ld IS
when the viewpoint change between the considered im‘,jlgeglglpmcally determined by statistical analysis of stereowsm_n
quite high. errors). Then, the remaining matches are analyzed according

Between consecutive images, and in the absence of atrc?ythe following procedure.
external motion estimation, no information is available on the 1. A 3D transformation is determined by least-squares
scale change. This change is however always small, and the
precise version of the point detector is used (i.és,setto 1).
When flying over a previously perceived area, the altitude of
the blimp might have changed significantly, and so the scale. 5 A threshold is defined dstimes the residual error stan-
However, an estimate of this altitude change is known thanks  4ard deviationk should be at least greater than 3.
to the SLAM algorithm; an estimation of the scale change

available, and is used to match the already mapped landmarks3. The 3D matches whose error is over the threshold are

minimization. The mean and standard deviations of the
residual errors are computed.

in the current image. eliminated.
7.3.Visual Motion Estimation 4. k is set tok — 1 and the procedure is reiterated until
k=3.

The interest points matched between consecutive images and

the corresponding 3D coordinates provided by stereovision This outlier rejection algorithm guarantees a precise 3D
are used to estimate the six displacement parameters betwe@tion estimation (see results in Sections 8.2.3 and 9.1),
the images. This is achieved by the least-squares minimiaahich can then be used during the prediction stage of the
tion technique presented in Haralick et al. (1989). The impokalman filter (Section 8.1).
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8. Kalman Filter Setup S(k+1)=VhP;(k +1|k)Vh" + P, (k+1). (20)

We present here in detail our Kalman filter setting, using thgpgate. The update stage fuses the prediction and the obser-

results of the three algorithms sketched above. After the profstion to produce and estimate of the state and its associated
lem formulation and the description of the estimation proggyariance according to the following formulae

cess, we detail the identification of the various errors, which

is the key problem in setting up a Kalman filter to solve theX(k + 1|k +1) =%k + 1| k) + Kk + Dvk+ 1) (21)

SLAM problem. An active selection of the landmarks is then

proposed, which allows us to minimize the state dimensionp 1 1|k + 1) = Py(k + 1| )

growth and to optimize the precision of the estimations. (22)
— Kk +1)Sk+ 1K (k + 1)

8.1. Extended Kalman filter in which K(k + 1) = Pi(k + 1 | K)Vh'S(k + 1) is the

The EKF is an extension of the standard linear Kalman fiKalman filter gain matrix.
ter, which linearizes the nonlinear prediction and observation
models around the predicted state. The goal of the EKF is &1.2. Filter Setup for Sereovision-Based SLAM

estimate the state of a stochastic nonlinear dynamic systelm, h. the state of the filter i d of the si
which evolves under control inputs. n our approach, the state of the filter is composed of the six

positioning parameters, = [¢, 6, ¥, t,, t,, t.] of the stere-
ovision bench (or the robot; the notations are the same as in
the first part of the paper) and of a set®flandmarks 3D

A general discrete nonlinear system is modeled as coordinatesn; = [x;, y;,z;], 0 < i < N:

8.1.1. General Framework

x(k+1)=fx®),uk+1)+vk+1) (14 X(k) = [Xp, My - --my]. (23)
whereu (k) is a control input, ana is a vector of temporally The associated state covariance has the following form

uncorrelated process noise with zero mean and covariance P,,(k) P, (k) }

PK. | | Pk) = [ Pt () P (k)
The nonlinear observation model of the system is mod- ]
eled as whereP,, represents the robot pose covariarig, denotes

the landmark covariance af},, is the cross-covariance be-
z(k) = h(x(k)) + w(k) (15) tween the robot pose and landmark estimates.

wherel maps the state space into the observation space, fprgdiction. Under the assumption that landmarks are station-

w is a vector of temporally uncorrelated observation erro@Y; the state prediction is

with zero mean anq covariane (k). . . Rk +11k) = fk + &K, uk + 1)) (24)
In the Kalman filter framework, the state estimation en-

compasses three stages: prediction, observation and updatereu(k + 1) = (A¢, A6, Ay, At,, At,, At,) is the visual

of the state and covariance estimates. motion estimation result betweérandk + 1 positions. The

o . . . i t i .(18)) i i
Prediction. The state and observations are predicted usnPgredlCted state covariance (eq. (18)) is written as

egs. (14) and (15), and the state covariance is obtained throughP,, (k + 1| k) = V,f(k + 1)P,,(k)V,f"(k + 1)

the linearization of eq. (14): VA DROVI (D) (25)

Rk +11k) =f@E®), ulk+1) (16) SR+ 1)
Z2k+11k)=h@EKk+1]k) 7) P,k +1|k) = V,f(k + 1P, (k) (26)
Pitk +11k) = VIP:()VIT +P,(k +1).  (18) Pun(k + 1| k) = P, (k) (27)

Observation. The true state:(k + 1) is observed, yielding whereR, represents the error covariance of the visual motion

the innovatiorv (k + 1), the corresponding covariance beingeﬁt'mat'ém r;a;ult. N(;)_tet.that the covariance of landmarks is not
obtained by linearizing eq. (15): changedinthe prediction stage.

R Observation.When observing thah landmark, the observa-
vik+1) =z(k+1)—z(k+11k) (19) tion model and the Jacobian of the observation function are
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written as « the landmark observation error (covariance maR;jx

. R for the observed landmatl;
2(k+1|k)=h(k+1DXKk+1]|k)) (28)
« the error of the input contrak, which is the visual

motion estimation result (covariance ma .
Vh;(k) = [V,h;(k),0---0,V,, h;(),0---0] (29) ( )

This isimportant, as a precise determination of these errors
whereh; (k + 1)(X(k + 1 | k)) is a function of the predicted will avoid the empirical “filter tuning” step. Note that, in our
robot state and thigh landmark in the state vector of the ﬁ|tel’.appr03_ch, the lumped process naisis set to 0, landmarks
It can then also be written ds(k + 1)(X,(k + 1| k), M;(k+  being stationary and the robot pose prediction being directly
1| k)). The innovation and the associated covariance aggmputed with the current pose and the result of the visual

written as motion estimation.
(k+D)=z(k+1D)—2(k+1]|k 30
vik+h=zGk+D—=2G+110 (30) 8.2.1. Landmark Initialization Errors
(k+1) = Vh,(k + 1Pk +1 |V, (k + 1 Landmarks are detected and matched on the video images,
Sk+1) k+DPE+110 k+1) (31) their 3D coordinates being computed by stereovision. When
+ R k+1) a new landmark is detected, its identity is given by the cor-

responding interest point, and the covariance majxon

its state coordinates is totally defined by the stereovision er-

ror. Once identified, a new landmark is added in the filter state

Update. The update stage of the state and associated covaffctor according eq. (32), and its uncertainties are propagated
ance estimates is made through the applications of egs. (211 the state estimate covariance matrix according to eq. (33).

and (22), inwhich the gain matrl, innovationv and associ- - An error model of stereovision.During the stereo matching
ated covarianc8 are respectively replaced b, v;, andS..  phase, disparities are computed for integer values, the match-
If no observation are made (i.e., if no already mapped Ianq:h—g disparityd,, being the one that maximizes the similarity
marks are re-perceived), the observation and update stages@i§es. In order to obtain a finer disparity estimate, a sub-
not activ_ated; the state and its covariance are just updatedrpye"ic disparity d’, is determined by fitting a parabola to
the prediction stage. o the similarity score curve at its peak, the parabola being de-
When detecting a new landmark, it is added {@ineq py the similarity scores computed at disparities- 1,

the state vector of the filter, which becomésk) = 4 anda, + 1. The subpixellic disparity is the disparity that
[X, k), My (k) - - - My (k), My, (k)] (its size increased by three maximizes the found parabéla
units). The landmark initialization model is

where R; represents the error covariance it landmark
observation.

S(dm - 1) - S(dm + 1)

R . d =d, .
Mya(k) = 9R) (X, (k). Zn1(K)) 32 T T ) — 5 — D+ (5(dy) — 5(d + 1))
(34)
P, (k) P (k) The sources of errors in the disparity estimates are the im-
P(k) = P (k) P (k) age noise, the slight viewpoint change of the two cameras, the
V,9(k)P,, (k)  V,9(k)P,, (k) spatial sampling of the scene induced by the cameras, the size

of the correlation window used, and the interpolation of the
similarity score curve. Thorough studies of these phenomena
can be found in the vision literature, but they lead to complex
algorithms that are not tractable online.

(33) In order to have an estimate of the disparity errors, we stud-

wherezy,, (k) denotes the new landmanggk) represents the ied the distribution of the disparities on a set of 100 stereo
N

initialization function using the current robot pose estimatd ' 29€ pairs acquired from th_e same position. AS n Matthles
andR .. is the error covariance of the new landmark. (1992), it appeared that the distribution of the disparity com-
puted on any given pixel can be well approximated by a Gaus-

sian (Figure 34). However, a much more interesting fact is that
there is a strong correlation between the shape of the similar-
To implement the Kalman filter in our context, the followingity score curve around its peak and the standard deviation on
errors must therefore be estimated:

(V,g(k)P,, (k)"
(V,9(k)P,,, (k)T
V,9(k)P,,(k)V,g" (k) + V.9(k)R,, (k) V.g' (k)

8.2. Error | dentification

2. Note that there does not exist any theoretical ground that justifies the use of

e . . aparabolic interpolation. It is only simple to compute, and it shifts the value
* the landmark initialization error (covarlance matr'xoftheintegerdisparitytowardsthe neighbor that gives the highest similarity

R..); score, which is intuitive.
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the disparity; the sharper the peak, the more precise the diry different (e.g. when re-perceiving alandmark after along
parity found (Figure 34). This rather intuitive relation is thdoop), the projective deformation of the 3D scene and possible
basis of our error model; online, during the stereo matchimgeclusion effects are much more important. In such cases, it
phase, a standard deviatienis associated to each computedmight happen that the matched pgifitdoes not lie within the
disparityd, using the curvature of the similarity score curvepixel which covers the first point (and it might also happen
at its peak. This is done at no extra computing cost, as thisat no matches are detected in the worst cases); the expected
curvature is that of the interpolating parabola at its peak. matching error value is then set to 1 pixel, which is consistent
Once matches are established, the coordinates of the @dh the maximum error of 1.5 pixel generally tolerated to
points are computed with the usual triangulation formula assess good matches using the epipolar constraint (Schmid,
Mohr, and Bauckhage 1998). Figure 35 illustrates this phe-
, x = Bz, V=12, (35) homenon. The two leftmost images were consecutively taken
d during a flight and the matching errors are less tharpiel,
wherez is the depthb is the stereo baseline, aadg,, andy, ~Whereas in the rightmost image that has been taken from a
are calibration parameters (the latter two dependinguom),  Very different viewpoint, the matching location error exceeds
the position of the considered pixel in the image). Using &5 Pixel, butis not greater than 1 pixel.

first-order approximation, it becomes Now that interest point matching error is defined, it is nec-
essary to combine it with the errors on the corresponding

2 3z\* ,  (ba)? 3D estimates to define the observation error. The principle of

= (@) ¢« = "0 G (36)  this combination is illustrated in Figure 36; the observation

matching error is defined by the reprojection of the matching
Substituting the definition of defined in eq. (35), we have error in the 3D scene. When the 2D matching error is set to 1
ou pixel, the expected value of a matching pgpis defined by
T =35 (37) its eight closest neighbors, k = 1,2...8. The stereo error
distribution being a zero mean normal one, the expected 3D
which is a well-known property of stereovision, i.e., that theoordinate and associated variance of the matching point is
errors on the depth grow quadratically with the depth, ancbmputed as follows
are inversely proportional to the stereo baseline. (This is the 8 8
reason why we chO(_)se az2.z2 m_vx_/lde stere_o bench; with the s _ }Zxk’ a§ _ }ZO-( —X,)? +6§ (39)
new gondola, we will adapt a rigid 3 m wide bench.) The 9 &~ 9 &~

covariance matrix of the point coordinates is then whereX, andX, are the 3D point coordinates pf and its

1 8 Vo neighbors, and, ando ;. are the corresponding variances.
R.=| B B B (222)2 . (38) When the expected matching error is set.&gpixel, the 3D
Vo ﬂ,,l)l/v 2 b coordinates being only computed on integer pixels by stere-

ovision, we assume the 3D surface variation is locally linear,
When a new landmark is observed, its coordinates aead the expected 3D coordinate and corresponding variances
added to the filter state, and the state covariance is updatddhe observed poim, are then

according to egs. (32) and (33).
g to egs. (32) and (33) g 5%y 4 X,
X=5(%o+> :
; 9 2
8.2.2. Observation Error k=1
(40)
In our case, landmark observation is based on interest point 13 (X=X, 2 o040\
matching; matching errors on the image plane is the first error o; = 9 Z > + ( > )
source to consider to define the observation error. Two types of k=0

error can occur: wrong matches (outliers), and interest point These coordinates and the associated variances are used in
location errors. Outliers are rejected by the rejection algoritheqgs. (30) and (31).
presented in Section 7.3; only interest pointlocation errors are
considered to determine the matching error. 8.2.3. Motion Estimation Errors
With the precise Harris detector, the subpixellic coordi- A
nates of an interest poimt belong to one pixel. When per- Given a set of 3D matched poings = [X;...Xy, Xy...X'y],
ceived again from a very close point of view (e.g., in two conf‘-he func_tlon_ whichis m|_n|m|zed tq determine the correspond-
secutive images), most of the area corresponding to this pixBf motion is the following (Haralick et al. 1989)
is mapped into another pixel, and the matched interest point R N o
coordinates lie within this pixel. The expected matching error J(0, @) = Z(X/,, — R($, 0, ¥)X, — i, 1, 1.]")*  (41)
is therefore set to.8 pixel. However, when the viewpoint is n=1
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Fig. 34. Left: Examples of some probability density functions of disparities computed on a set of 100 image pairs, with the
corresponding Gaussian fit. Right: Standard deviation of the disparities as a function of the curvature of the similarity score
curve at its peak.

Fig. 35. lllustration of the matching point location error, in the case of small and big viewpoint changes. Top images show the
detected interest points, the uncertainty of the matched ones being represented by black circles in the close-up bottom images.
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g

Fig. 36. Principle of the combination of the matching and stereovision errors. The points located in the square box are the
projection of P on the image plane. Small ellipses indicate stereovision errors, and the large dotted ellipsoid is the resulting
observation error.

wherel = (¢.6, . 1,.7,..). 0 and@ can be written with
random perturbations 3 1
Au=— <£(u + AU @+ AQ))

I=u+Au, @Q@=@Q+AQ (43)
0 o
%(u 1 AU @ + AQ)AQ
where the truel and@ are not observed. In order to measure
the uncertainty of local motion estimation, the uncertainties of

3D matching points set are propagated to the optimal motion $ Ei_g(fJ &) 71(‘9_5,’“J & . dg
estimatdl. Assuming the optimal motion estimate minimizes S W TT Q" INORFY)
the cost function, the Jacobian of the cost function is 0, and i (44)
the uncertainties of landmarks and their observation can be ~ oA (08 o o~

; . : . G.@ (-G.a)) .
propagated by taking Taylor series expansion of the Jacobian au

aroundu and@, as shown in (Haralick 1994) o )
Considering thak, andX’, are not correlated, the covari-
R R ance estimat®, can be also written as
g(u,@)=g(U+ Au, @ + AQ) . )
0g . ~ \ 0g . A\
o . P = (—g(u, a)) (Ax + Ax) (—gw, a)) (45)
— —=U+ Au,@ + A@)AuU 42 ou ou
au (42)
dg R where

— E(u + AU, @ + A@Q)AQ

N dg dg T
Ax =Y (0, X,)Px, (8X (a,xn)>

whereg = g—lj is the Jacobian of the cost function, agﬁds the
Hessian of the cost function with respectitalhe Hessiarjﬁ
is positive definite for alqu, éz) because the relative extremum o g . g .\, !
of the cost function is a relative minimum; this guarantees Ax = Z W(u’ Xn)Px, <87(u’ X ")> ’

! n=1 " "
the existence of the reciprocal of the Hessian. Sine@du
minimizeJ (0, @) andJ (u, @), g(0, @) andg(u, @) aresetto P, = R, is the input covariance matrix which is used in
0in eq. (42). The random perturbatidru and its covariance eg. (25) to estimate the state variances during the filter pre-
are then computed as follows diction stage. Results of the visual motion estimations and
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Fig. 37. The motion parameters computed by the visual motion estimation algorithm between consecutive frames along a 40
image sequence (top), and corresponding estimated errors (bottom). Note that there are no obvious correlations between the
image angular and linear distance and the computed errors.

Table 3. Statistics on the Estimated Errors of the VME of Figure 37

P ® W t, t, t,
Average of estimated VME errors .apg 0.089 0.037 0.036 m 0.038 m 0.011m
o of VME estimated errors 024 0.030 0.008 0.013m 0.011m 0.003m

the corresponding error estimates are presented in Figure 8@t is simply the points that correspond to landmarks already in
along a sequence of 40 images taken from Karma. The meilue state vector of the EKF. New candidate landmarks should
computed variances on the six motion parameters, and thb# cautiously added to the filter state, in order to avoid a rapid
dispersion are summarized in Table 3; the visual motion estirowth of its dimension and to obtain a regular landmark cov-
mation measures translations of a few meters with an accuraenage of the perceived scenes. The candidate-landmark se-
of a few centimeters, and measures rotations with a precisitattion procedure is made according to the following three

of the order of Q1°, with quite good regularity. criteria.
8.3. Landmark Selection » Observability. Good landmarks should be observable
in several consecutive frames: it guarantees that they

As explained in the overview of our approach (Section 6.1),
the 3D matches established after the interest point matching
step are split into three groups: observed landmarks, non- < Stability. The 3D coordinates of good landmarks must
landmarks, and candidate landmarks. The observed-landmark be precisely estimated by stereovision.

are salient.
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« Representability. Good landmarks must efficiently erence to validate the position estimates of the stereo bench.
represent a 3D scene. The robot state estimation wilowever, when Karma flies over an already perceived area
be more stable if landmarks are regularly dispatche@e., when it “closes a loop”), the visual motion estimate can
in the perceived scene, and this regularity will avoid @rovide an estimate of the relative positions between the first
rapid growth of the EKF state vector size. and last images of the sequence that overlaps. This reference

is precise enough, as compared to the cumulation of errors

The number of candidate landmarks that are checked;|§y,ced with the visual motion estimation applied on consec-
determined on the basis of the number of new interest PoiRtive frames.

matches (i.e., those that do not match with an already mapped,;igure 38 presents a comparison of the reconstructed loop

Ian_dm.ark). This number ii a percentage of the new intergglio 1ory with a set of 40 images, while Figure 39 shows the
points; we actually use 10%, as the visual motion estimatiqq, ), tion of the standard deviation of the six position param-

technique requir.es many matchestoyield a pre_cise result. T@l%rs of the stereo bench when applying the EKF. Two phases
landmark selection is made through the following steps. can be seen on this latter figure: until image 25, the stan-

1. The found number of new landmark candidates is fir§fard deviation grows, however, much more slowly than when
selected using the observability criterion. The obsenRropagating only the errors of the VME. A few landmarks de-
ability of a landmark candidate is evaluated during sevécted in the beginning of the sequence are re-perceived in the
eral frames. When the selected landmarks at timee  10llowing images; the standard deviation decreases, and stabi-
observable up to time+ k, the candidates discoveredlizes for the subsequent images where some “old” landmarks

at times + 1 should be observable at least until time2"e Still observed. o
f+k+ 1. The quantitative figures summarized in Table 2 are much

more informative. They compare the results of the final posi-
2. The candidates that pass through the observability tegn estimate with respect to the reference defined by the VME
are then checked for stability. Their position and obse&pplied between images 1 and 40. The precision enhancement
vation errors during the observability check are menbrought by the EKF is noticeable, and the absolute estimated
orized, and they are ranked according to the maximugtrors are all bounded by twice the estimated standard devia-
of these errors. tions. The translation errors are below 0.1 m in the three axes

3. Finally, the candidate representability is checked. Tk%ﬁer a trajectory about 60 m long, and angular errors are all

ranked candidate list is scanned, starting from the mo ?Igiwuflzlf 4az)dsek?c:\?vi' another traiectory reconstructed with a
precise one; every time a candidate is located at a 9 J y

distance greater than a given threshold from the a?—et of 1(.)0 IMmages, and finally Figures 41. and 42 show results

o integrating 400 images, the corresponding numerical results
ready mapped landmarks, it is added to the mapped . . . "
landmarks eing presented in Table 3. In this latter case, a strong position

refinement is provided by the filter when the blimp flies again
The observability criterion requires that candidates a@ver data acquired at the beginning of the trajectory.

evaluated through several successive frames; the EKF is there-

fore activated a few image frames later as the images & Digital Elevation Maps

gathered. Thanks to the precise positioning estimation, the processed

stereovision images can be fused after every update of the

EKF into a digital elevation map (DEM), which describes the

environment as a function= f(x, y), determined on every

Our developments have been tested with hundreds of imad&! (xi, ;) of a regular Cartesian grid.

taken on-bard Karma, at altitudes ranging from 20 to 35 m. Our algorithm to build a DEM simply computes the el-
The digital cameras of the 2.2 m wide stereo bench are 1/2 ing4ation of each cell by averaging the elevations of the 3D
CCD sensors with 1024 768 pixels, and are equipped with !oomt_s that are vertically prOJ_egted on the elementa_ry s.urface
a 4.8 mm focal length lens (6% 53 field of view). The it deﬁnes. The standard deviation on the cell glevatlon is alsfo
cameras have been calibrated at full resolution, and imag@isaightforwardly computed, and, since a luminance value is
are processed after being subsampled by a factor of 2, to s@&ssociated to each 3D point produced by stereovision, it is

stereovision computing time (which is cubic in the dimensiof!SC possible to compute a mean luminance value for each
of the images). map cell. Figure 43 shows a digital elevation built from the

100 images during the trajectory shown in Figure 40; the res-
olution of the grid is here Q@ m, and no map discrepancies
can be detected in the corresponding orthoimage, which is the
The GPS on-board Karma is a differential code GPS withertical orthogonal projection of the luminance information
3o accuracy of 2 m; it cannot be used as a ground truth reéncoded in the DEM grid (Extension 3).

9. Results

9.1. Positioning Errors
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Fig. 38. A first result of our SLAM implementation with a sequence of 40 stereovision pairs, taken at altitudes ranging from
20 to 25 m. The top images show the reconstructed trajectory in orthogonal projection and in 3D. The bottom images show
the 120 landmarks mapped, with Limcertainty ellipses (left, real scale; right, magnified by a factor of 40).

Table 4. Comparison of the Errors Made by the Propagation of the VME Alone and With the SLAM EKF Approach,
Using as a Reference the VME Applied Between Images 1 and 40

Frame Reference VME SLAM SLAM
1/40 Standard VME Absolute SLAM Standard Absolute
Reference  Development Result Error Result Development Error
P —7.08 0.10° -10.3% 3.30 -7.29 0.2r 0.20°
C) —-1.50 0.09 —3.90 240 —-2.1r 0.28& 0.6
v —105.7t 0.04 —105.15 0.56° —105.82 0.09 0.1r
te —184m 004 m —2.75m 091 m —2.08m Q11m 024 m
1, —-331m 004 m —4.78 m 1.47m —3.38m 008 m Q07 m
t, —-1.73m Q01 m —2.64m Q91 m —1.83m Q04 m Q10 m
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Fig. 39. Evolution of the standard deviations of the robot position parameters during the flight shown in Figure 38.

Table 5. Comparison of the Errors Made by the Propagation of the VME Alone and With the SLAM EKF Approach
for the Trajectory of Figure 41, Using as a Reference the VME Applied Between Images 1 and 400

Frame Reference VME SLAM SLAM
1/40 Standard VME Absolute SLAM Standard Absolute
Reference  Development Result Error Result Development Error
P -0.12 0.87 -0.26° 0.15 -1.05 0.40¢ 0.94
C) 287 114 —6.16 9.02 174 0.44 1.12
v 105.44 0.23 101.87 3.57 10477 0.1#4 0.67
t, —4.93m Q57 m 6.29m 11.22m —281m Q23 m 1.12m
t, 0.14m Q46 m 3.22m 3.08m 153 m PAm 1.39m
t. 3.89m 015m 2017 m 16.27 m 3.48m 08 m Q41 m
9.3. Discussion est point matching algorithm is, of course, a key point here, as

itallows robust data associations. Also, the use of the visual es-

Thefirstresults described here show that thanks to the appli¢ination technique as a means to achieve the prediction stage
tion of an EKF on the sole basis of stereovision, it is possiblef the filter is very efficient; its estimates are precise enough
to achieve a positioning of the blimp with a precision of 40 yield a fast convergence, keeping the filter linearizations
few centimeters after a flight of several tens of meters, th@s fair approximations. Finally, a thorough study and iden-
enabling the possibility of building very high resolution endification of the various error estimates involved in the filter
vironment maps. To our knowledge, this is the first attemgtllowed us to set it up properly, without any empirical tuning
to tackle a SLAM problem in 3D space, using exclusivelystage, which would have been very tedious.
information provided by vision. There remain, however, various points to tackle, before

The main advantage of our approach relies on the use lafiving the system integrated on board Karma. First, the high
interest points as landmarks. Such points are indeed very mumber of landmarks will not allow us to maintain the whole
merous in any type of environment; no “obvious” landmark&KF state vector over a few tens ofimages, because of compu-
(such as trees, rocks, fences, pebbles, etc.) are required fortgiEon time constraints. An implementation such as the com-
algorithms to operate successfully, and this allows an actiygessed EKF (Guivant and Nebot 2001) is definitely required.
selection of the landmarks to map. The reliability of our interSecondly, the fact that the prediction and observation stages
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Fig. 40. Another trajectory reconstructed with a sequence of 100 images; 320 landmarks have been mapped (the magnification
factor of the uncertainty ellipses in the bottom-right image is here 20).
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originate from the same sensor, and are therefore not fulllge exploitation of the built maps by a ground rover. Es-
uncorrelated, might raise some convergence problems ovepecially, at the considered map resolutions, DEMs are not
long time, especially as calibration bias is not negligible; weuited to represent verticals and overhangs present in the en-
were, however, not able to detect such problems in our exironment (see how bad the trees look in Figure 43). Some
periments. Anyhow, our algorithms for the prediction stagpre-processing is required in order to detect such situations
(VME) or the landmark mapping could easily be integratetdefore fusing the data in the DEM.

with any other positioning sensor in a Kalman filter frame-
work. Finally, our approach is intrinsically limited in altitude 1
by the use of a stereovision bench. Our experiments showe

thata baseline/depth ratio (the well-knowyf¥{ ratioin aerial - \ye have presented the current status of our project, insisting

imagery) of 1/15 is big enough to allow centimeter accuracy, qevelopments related to flight control and terrain mapping.

positioning. We believe that our algorithms will have similafp,o project is ongoing, and now focuses on integration.

performances unth/ H ratios as small as 1/30 (i.e. altitudes ’

around 70 m), but this has to be confirmed experimentally.  « Integration of the control laws during actual flights
Other issues remain to be considered before considering  will be achieved in a progressive manner, thanks to

9. Conclusions
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Fig. 41. Another result of our SLAM implementation with a sequence of 400 stereovision pairs. Top images show the
reconstructed trajectory in orthogonal projection and in 3D. Bottom images show the 340 landmarks mapped, with 1o
uncertainty ellipses (left, real scale; right, magnified by a factor of 40).

the electronic switch module that allows a mix opera- absolute positioning, allowing the achievement of long
tor/automatic control. Actual flight data will help to re- trajectories. Autonomous mapping of a given area is
fine some of the involved parameters, in both the model  then achievable, thanks to an “exploration planner” that
and control laws definition. will send reference trajectories to the motion planner,

) ) . . on the basis of the current state of the built map.
« Integration of the mapping algorithms is rather a matter

compressed SLAM approach performances). the fusion of data acquired from a ground rover with the
aerial map is currently under way, as a first step to coopera-

* However, the most interesting aspects come when tadkve air/ground robotics. Most of the difficulties rely here on
ling the integration of control and mapping issues. Futhe registration of the ground data with respect to the existing
sion of the blimp state parameters, considering also tlmeap; the viewpoints, the resolution, and the precision of the
control inputs, with the state as measured by the SLAMata are indeed extremely different between air and ground
algorithms will allow us to enhance the precision otata.
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Fig. 42. Evolution of the standard deviations of the robot position parameters during the flight shown in Figure 41. A drastic
decrease of the variances appears in the end, when several landmarks are re-perceived.
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Fig. 43. The DEM computed with 100 images, positioned according to the trajectory of Figure 40: orthoimage and 3D view
of the bottom-left area. The map covers an area of about 3500 m

Appendix: Index to Multimedia Extensions

The multimedia extension page is found at http://www.

ijrr.org.
Table of Multimedia Extensions 3 Video lllustration of our simultane-
Extension Type Description Z:Zr?::rl]lzatlon and mapping
1 Video  Ateleoperateflightsof Karma 4 Video  Simulation of autonomous
2 Video Replayof a flight from GPS flight control
and attitude logged informa-
tions
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