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Abstract. CROWN Grid aims to empower in-depth integration of resources and 
cooperation of researchers nationwide and worldwide. In such a distributed en-
vironment, to facilitate adoption of services, remote and hot service deployment 
is highly desirable. Furthermore, when the deployer and the target container are 
from different domains, great security challenges arise when a service is de-
ployed to the remote container. In this paper, we present ROST, an original 
scheme of Remote & hOt Service deployment with Trustworthiness. By dy-
namically updating runtime environment configurations, ROST avoids restart-
ing the runtime system during deployment. Moreover, we adopt trust negotia-
tion in ROST to assure the security of service deployment. We conduct experi-
ments in a real grid environment, and evaluate ROST comprehensively. 
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1   Introduction 

Grid computing promises to enable coordinated resource sharing and problem solving 
in dynamic, multi-institutional virtual organizations [1]. In recent years, service-
oriented grid architecture is introduced, which is widely considered as the future of 
grid computing [2]. Built on web services, OGSA [3] is the de facto standard for 
building service grids, in which various resources are encapsulated as services with 
uniform user interfaces. 

The main goal of our key project, CROWN (China R&D Environment Over Wide-
area Network) Grid, is to empower in-depth integration of resources and cooperation 
of researchers nationwide and worldwide. CROWN project was started in late 2003. A 
number of universities and institutes, such as Tsinghua University, Peking University, 
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Chinese Academy of Sciences, and Beihang University, have joined CROWN, with 
each contributing several computing nodes. More universities and institutes will be 
invited to join CROWN Grid by mid 2005.  

In the past years, many key issues in grid computing have been extensively studied. 
However, remote and hot service deployment has not been fully addressed. Before a 
service is ready for invocation, it must be deployed in a service container which pro-
vides a runtime environment. A grid is a highly distributed environment, in which 
numerous domains could be involved. The domains are usually geographically dis-
persed. It is highly desirable for a user to deploy its services into remote service con-
tainers for multiple purposes. For example, in CROWN Grid for bioinformatics appli-
cation, there are many computing intensive applications such as BLAST. A computing 
node could easily be over-loaded when multiple jobs arrive in a short period. The 
heavy load can be balanced if the node is able to deploy one or more BLAST service 
replica to remote nodes and then redirect some jobs. Similar requirements also exist in 
many other grid applications. 

Traditionally, remote service deployment is supported in a cold fashion, which 
means, to deploy a new service, the runtime environment need to be restarted. This 
results in many disadvantages because previously running services must be stopped, 
and they may have to resume or even restart their jobs, causing significant overhead. 
Therefore, hot service deployment has become increasingly important, which does not 
need to restart the runtime environment while deploying services. With the availability 
of remote and hot service deployment, many applications will benefit, such as load 
balancing, job migration and so on.  

Service deployment is actually not a new issue. Similar demands also exist in mo-
bile agents [4] and active networks [5]. To the best of our knowledge, however, there 
is no successful solution to enabling remote and hot service deployment in grid sys-
tems. The most updated Globus Toolkit version 4 [6], the de facto standard for grid 
middleware, does not provide the function of remote and hot service deployment yet. 
This may be due to the great security challenges arising when a user deploys a service 
to a remote container. Here we call a node deployer, which intends to deploy a service, 
and the remote service runtime environment target container, which is responsible for 
running and managing services being deployed. Without proper security mechanisms, 
a service provided by a deployer may be malicious, and the target container may be 
rogue or fragile. Also, the security policies of the deployer and the container could be 
incompatible. In an open grid environment, we can not expect any deployer and the 
corresponding target container to set up required trust relationship in advance. More-
over, it is too costly to build the trust across domains based on the traditional PKI 
infrastructure every time during remote deployment.  

In this paper, we present our original work, ROST (Remote and hOt Service de-
ployment with Trustworthiness), which achieves its goal by dynamically updating the 
runtime environment configurations. ROST avoids restarting runtime systems during 
remote deployment. Moreover, we include trust negotiation in ROST scheme, which 
greatly increases flexibility and security of CROWN. Major contributions of this work 
are as follows: 



• We identify the necessity of remote and hot service deployment in service grids, 
and their challenges. 

• We propose an effective approach, ROST, to enable remote and hot service de-
ployment. Also, we add trust negotiation into the scheme to meet general security 
requirements for grid environments. 

• We implement ROST in CROWN Grid and evaluate the performance of ROST by 
comprehensive experiments. 

The rest of this paper is organized as follows. We discuss related work in Section 2. 
In Section 3, we introduce the design and implementation experiences. We present 
experimental methodology and performance evaluation of ROST in section 4. And in 
section 5, we conclude this work. 

2   Related Work 

Globus Toolkit is the most famous grid middleware and it has begun to support ser-
vice-oriented grid computing based on OGSA since version 3. But even in the updated 
release version 4, remote and hot service deployment is not supported. Grid service is 
actually built on Web service, and extended to include functions such as state and life 
cycle management. For Web services, several middleware, such as Apache Axis [7], 
JBOSS [8] and Microsoft .NET [9], have partly implemented dynamic service de-
ployment, i.e., deploying a local service without restarting service containers. How-
ever, Web service is much simpler than grid service, e.g. web services are normally 
stateless, so web service middleware can not apply to grid environments. Also, most 
of them only consider local deployment. 

Friese et al. [10] proposed a method for hot service deployment in an ad hoc grid 
environment based on OGSI which is now replaced by WSRF. To ensure security, 
they make use of sandbox which can restrict the service function. DistAnt [11] extends 
the Apache Ant build file environment to provide a flexible procedural deployment 
description, and provides a solution to remote and hot service deployment based on 
Globus Toolkit 3. It does not provide any security mechanism for remote deployment. 
Baude et al. [12] proposed a solution for deployment and monitoring of applications 
written using ProActive, which is a Java-based library for concurrent, distributed and 
mobile computing. It does not consider grid service deployment issues. 

3   ROST Design and Implementation 

CROWN consists of numerous organizations with each of them forming a domain, as 
illustrated in Figure 1. Domains are usually connected by the Internet. CROWN, as a 
service-oriented grid, encapsulates various resources as services. In CROWN, a com-
puter must be installed a Node Server (NS), a CROWN middleware. An NS contains a 
service container which provides runtime environment for various services. Each NS 
usually belongs to a security domain. Every domain has at least one RLDS (Resource 



Locating and Description Service) to provide information service. RLDS maintains 
dynamic information of available services. 
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Fig. 1. Resource organization in CROWN 

Remote service deployment is needed when a deployer needs to deploy a service on 
an NS in a different domain. In this paper, we refer to deploying a service to an NS 
and deploying a service to a container interchangeably, which means the same. A 
service is basically an entity that consists of an executable program, a description file, 
and several configuration files. Before a deployer’s services can be ready for invoca-
tion in the remote NS, two key issues must be addressed. The first is security, namely, 
how to guarantee the service provided by the deployer is not malicious and the envi-
ronment provided by the remote container is safe to the service. The second is how to 
enable the service to be available without restarting the remote container. 

In CROWN, services follow the WSRF specifications [13]. A complete service 
consists of several files, as shown in the following. 

• Executable programs. Such as Java classes, scripts, EJBs, etc. 
• One or multiple WSDL files. Description of interfaces and access protocols of a 

service. 
• A WSDD file. Web Service Description Descriptor, description of service configu-

ration for the service container. 
• BPEL files. Description of composed services which are described in BPEL4WS 

(Business Process Execution Language for Web Services). 
• A JNDI configuration file. Description of WSRF resources of a service. 
• A security configuration file. Description of authorization approach and other secu-

rity related information. 

To facilitate the transportation and protection of services, we compress a service 
into one single file. By far, we have adopted Globus Toolkit’s GAR file format. In 
addition, we have extended GAR so that it is able to contain multiple types of execu-
table programs and description files.  



3.1 ROST Architecture 

As shown in Figure 2, ROST is composed of several components while our discus-
sions will focus on the two major ones, i.e., TNA and RHD.  

TNA is responsible for trust establishment between a pair of deployer and container, 
and RHD is for remote and hot service deployment. The SCC (Service Container 
Configuration) is the abstract of various configurations of service containers. Indeed, 
each deployment operation results in an update to SCC.  

 
Fig. 2. ROST components 

The procedure of service deployment can be divided into two phases: trust negotia-
tion by TNA and deployment by RHD. To be more specific, the workflow of ROST is 
depicted as follows:  

Step 1: the deployer sends a deployment request to a remote NS; 
Step 2: the remote NS checks locally whether it can afford the new service; if yes, 

goes to Step 3; 
Step 3: the remote NS checks whether the deployer has been trusted according to 

the local domain controller or the history information. If yes, sends a trusted notifica-
tion; otherwise, initiates trust negotiation;  

Sep 4: the deployer checks whether the remote NS has been trusted. If yes, sends a 
trusted notification, and goes to Step 5; otherwise, initiates trust negotiation; 

Step 5: if the negotiation successfully sets up the desired trust, the deployer initi-
ates service deployment by transferring the service to the remote NS; 

Step 6: the remote NS performs hot deployment of the service. 
Step 7: the remote NS acknowledge the success of the deployment. 



3.2 TNA: Trust Negotiation Agent 

3.2.1 ATN Technology 
Several security infrastructures have been proposed for grid computing. For instance, 
in Grid Security Infrastructure (GSI) [14], every user or computer is uniquely identi-
fied by a X.509 certificate, which is issued by a Certificate Authority (CA). This fash-
ion provides very limited capability of security control and it is rarely possible to 
deploy such a global hierarchy of CAs in an open environment like CROWN.  

ATN (Automated Trust Negotiation) [15-19] is a new approach to access control in 
an open environment, which, in particular, successfully protects sensitive information 
while negotiating a trust relationship. With ATN, any individual can be fully autono-
mous. Two individuals try to set up a trust relationship by exchanging credentials 
according to respective policies.  

Based on the above observations, we solve the trustworthiness problem in ROST 
by adding a Trust Negotiation Agent (TNA) , which is generally based on ATN tech-
nologies.  

3.2.2 Trust Negotiation in ROST 
As illustrated by Figure 3, TNA has mainly four components as follows. 

• TrustTicket Manager: The Access Mediator is responsible for issuing new Trust-
Tickets for requesters and validating TrustTickets based on local Ticket Reposi-
tory. 

• Strategy Engine: The negotiation strategy [20] is used to determine when and how 
to disclose local credentials and policies. Also, it makes decisions to update the ne-
gotiation states, including success, failure or continuance. 

• Compliance Checker: This component determines which local credentials satisfy 
the requester’s policies or whether the requester’s credentials satisfy local policies.  

• Credential Chain Discovery: For trust negotiation in open networks, access con-
trol decision often involves finding a credential chain that delegate authority from 
the source to the requester, when the credentials are not stored locally. The main 
function of this component is to discover and collect necessary credentials.  

In ROST, TNA is deployed on both sides of deployers and target containers. If a 
requestor has a valid TrustTicket, then the access mediator will call TrustTicket Man-
ager to make access decision. Otherwise, trust negotiation will be triggered. When the 
requestor discloses its policies, the Strategy Engine decides whether the negotiation 
should continue. If so, the Access Mediator will call Compliance Checker to make 
corresponding verification to ensure which credentials should be provided, then re-
sponds with the necessary credentials and policies. In some cases, if the credentials 
are not available in local Credential/Policy Repository, Credential Chain Discovery is 
called to dynamically retrieve necessary credentials. Similarly, when the requester 
submits its credentials, the Access Mediator will call Compliance Checker to make 
corresponding verification to ensure whether the credentials satisfy local policies and 
make access decisions.  



 

Fig. 3. TNA structure 

In TNA, we adopt refined RTML (Role-based Trust Management Language 
Markup Language) to represent both access control policy and attribute-based creden-
tials. When credential storage is distributed, the goal-directed algorithm [16] ensures 
that all credentials available can be discovered and collected. In ROST design, the 
TrustTicket takes the form of <subject, issuer, subject, valid date, expiration data, 
signature>. It is an identity assertion represented with XML with short lifetime as-
signed by the issuer. 

In addition, negotiation information exchange between participants must rely on a 
secure communication protocol such as SSL/TLS to prevent eavesdropping, man-in-
the-middle attacks, replay attacks, etc. Our ROST implementation conforms to WS-
Security and WS-Conversation specifications for SOAP message protection. 

3.3 RHD 

After a negotiation successfully sets up desired trust, the container receives the service 
from the deployer and begins to deploy it.  

RHD enables remote hot deployment as well as providing a convenient way for lo-
cal hot deployment. RemoteDeployment and AutoDeployment, as shown in Figure 2, 
are respectively responsible for remote and local service deployment. 

3.3.1 RHD APIs 
We design APIs for both remote and local deployment, through which users are able 
to develop high level middleware and applications. There are basically three types of 
deployment operations: deploy, update, and undeploy. We define nine APIs to support 
these deployment operations as follows. 



(1) deploy (String garFilePath) 
(2) deployByFTP (URL garFileURL, String user, 

String password) 
(3) deployBySOAPAttach(String garFilePath) 
(4) update (String garFilePath) 
(5) updateByFTP (URL garFileURL, String user, 

String password) 
(6) updateBySOAPAttach(String garFilePath) 
(7) undeploy(String garFileName) 
(8) undeploy(String serviceName) 
(9) getAllDeployedServices() 

Note that (1)-(3) are three interfaces for deploying a service, while (1) is for de-
ploying a service locally; and (2)(3) provide two different interfaces for remote de-
ployment. The (4)-(6) defines three interfaces for updating deprecated services. The (7) 
and (8) defines two interfaces for removing services from service containers. We 
define (9) for querying all services deployed in a service container. 

3.3.2 Remote Deployment 
After mutual trust is successfully established, ServiceReceiver is called to receive the 
GAR file and uncompress it by GARUnzipper. Then the underlying deployment func-
tions are called to perform corresponding operations. 

A service container must include various configurations of the deployed services. 
Indeed, the key to hot deployment is to update the configuration of SCC dynamically. 
Relevant configurations include executable programs, WSDL description, WSDD, 
and JNDI configuration. For example, when a new service implemented with JAVA 
needs to be deployed, we have to let SCC load JAVA classes of the service. 

For updating or un-deploying an existing service, it should be careful since other 
services or users might be using it. Simply updating or undeploying a service without 
adding special measures may lead to unexpected service interruption to users. To 
solve this problem, we add a reference counter for each deployed service. The initial 
value of a counter is zero, and the value increases/decreases by one each time when 
the service is invoked/completed. When an update or undeployment request comes, 
we first check the counter of the service. A service is ready to be updated or unde-
ployed only if the reference counter is equal to zero.  

3.3.3 Auto Deployment 
Besides remote and hot deployment, RHD component also provide a convenient 
method to hot-deploy services to local containers.  

A file folder is specified to receive GAR files and an EventListener keeps listening 
to the events associated to the folder. The EventListener is interested in two types of 
events: arrival of new files and deletion of existing files. 

Suppose an event e caught by EventListener is passed to the EventAnalyer for 
analysis and further process. Based on contents of an event, the EventAnalyzer will 
call underlying different deployment functions. In the following, we provide the 
pseudo code of this process. 



if (e is arrival of a new file){ 
if (file type is GAR){ 

        if ( the file already exists){ 
         while(reference number > 0){ 
         sleep(2000 milliseconds); 

} 
     update the corresponding service; 

        }else{ 
     deploy the corresponding service; 
        } 
}else{ 

    remove the file; 
} 

}else if ( e is file deletion){ 
     while( reference number > 0){ 
           sleep(2000 milliseconds); 

} 
undeploy the corresponding service;  
} 

As a result, users may deploy/update/undeploy a local service by simply stor-
ing/replacing/removing its GAR file to/in/from a folder. They need not to care about 
underlying processes, and services are deployed/undeployed automatically and trans-
parently. 

4   Performance Evaluation 

ROST is implemented as a core component of CROWN middleware. We evaluate the 
performance of ROST by comprehensive experiments in real grid environments. 

4.1 Experimental Environment 

The experiments are conducted across two domains connected by the Internet. The 
deployer resides in Tsinghua University, while the target NS’s (i.e., target containers) 
are located in Beihang University. The deployer has a Pentium III 1.6Ghz CPU and 
512M memory, with a 10M bps connection to the Internet. Remote NS’s reside in a 
32-node cluster with each has two Intel Xeon 2.8GHz CPUs and 2G memory. The 
cluster is connected to the Internet through a 100M bps connection. No other tasks are 
running on each node except the necessary CROWN middleware. 

4.2 Performance Metrics 

We use the following metrics to evaluate ROST. 



• Deployment response time. It is important that a remote service deployment intro-
duces shorter response time. When multiple concurrent deployment requests are 
sent to a single NS, the deployment response time increases.  

• Task execution time. A task here means a collection of independent jobs, while a 
job means an invocation of a specific service. Given a task, we concern its total 
execution time. 

4.3 Experimental Results and Analysis 

We execute the experiment 100 times and report the average. 
In the first experiment, we evaluate the performance of ROST in terms of deploy-

ment response time.  The deployer in Tsinghua University issues concurrent deploy-
ment requests to a node server in Beihang University. We vary the ways of service 
GAR file transfer, FTP and SOAP attachment. Each GAR file has a size of about 6K 
bytes.  

Figure 4 shows the average deployment response time as a function of the number 
of concurrent requests. When there is only one request each time, the response time of 
ROST is as short as seven seconds. In contrast, the cold deployment needs as long as 
30 seconds to merely stop and restart the service container so as to load a new service. 
With increasing number of concurrent requests, the average response time increases 
roughly linearly. When the number of concurrent requests reaches 30, the average 
response time is about 52 seconds. We also observe that SOAP transfer has similar 
performance with FTP mechanism. 
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Fig. 4. Average deployment response time v.s. Number of concurrent requests 

We then study how well ROST can help to achieve load balancing. In the second 
experiment, two schemes are compared, with and without ROST. There are 20 NS’s 



available for processing jobs, while initially only a fraction of the nodes are deployed 
with the required service.  
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Fig. 5. Task execution time vs. number of nodes initially deployed with Blast service 

Figure 5 plots the task execution time with different number of nodes initially de-
ployed with the service. With ROST, the task execution time is significantly reduced, 
as a node may easily deploy its service to other relatively idle nodes. In some specific 
cases, the maximum improvement can be four times faster. When the fraction of nodes 
initially deployed with the service increases, the effect of time reduction becomes less. 

5   Conclusions and Future Work 

CROWN Grid aims to integrate nationwide and worldwide valuable Internet resources. 
In CROWN, remote and hot service deployment is highly demanded. In this paper, we 
present early design and implementation experience of remote & hot service deploy-
ment with trustworthiness (ROST). With ROST, services can be deployed to a remote 
container in a different security domain in a hot and secure fashion, which signifi-
cantly improves service efficiency and quality. The experiments in real grid environ-
ment demonstrate the effectiveness of ROST.  

In future work, we will perform more experiments, explore more relevant trust 
mechanisms, and further improve trust negotiation and deployment efficiency. Addi-
tionally, we will further integrate ROST with other CROWN middleware to handle 
real application problems such as load balancing and job migration. 
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