
COMMENTARY

ALZHEIMER'S DISEASE AS A DISORDER OF MECHANISMS UNDERLYING

STRUCTURAL BRAIN SELF-ORGANIZATION

T. ARENDT*

Paul Flechsig Institute of Brain Research, Department of Neuroanatomy, University of Leipzig, Jahnallee 59,
D-04109 Leipzig, Germany

AbstractÐMental function has as its cerebral basis a speci®c dynamic structure. In particular, cortical and limbic areas
involved in ªhigher brain functionsº such as learning, memory, perception, self-awareness and consciousness continously
need to be self-adjusted even after development is completed. By this lifelong self-optimization process, the cognitive,
behavioural and emotional reactivity of an individual is stepwise remodelled to meet the environmental demands. While the
presence of rigid synaptic connections ensures the stability of the principal characteristics of function, the variable con-
®guration of the ¯exible synaptic connections determines the unique, non-repeatable character of an experienced mental act.
With the increasing need during evolution to organize brain structures of increasing complexity, this process of selective
dynamic stabilization and destabilization of synaptic connections becomes more and more important. These mechanisms of
structural stabilization and labilization underlying a lifelong synaptic remodelling according to experience, are accom-
panied, however, by increasing inherent possibilities of failure and may, thus, not only allow for the evolutionary aquisition
of ªhigher brain functionº but at the same time provide the basis for a variety of neuropsychiatric disorders.

It is the objective of the present paper to outline the hypothesis that it might be the disturbance of structural brain self-
organization which, based on both genetic and epigenetic information, constantly ªcreatesº and ªre-createsº the brain
throughout life, that is the defect that underlies Alzheimer's disease (AD). This hypothesis is, in particular, based on the
following lines of evidence. (1) AD is a synaptic disorder. (2) AD is associated with aberrant sprouting at both the
presynaptic (axonal) and postsynaptic (dendritic) site. (3) The spatial and temporal distribution of AD pathology follows
the pattern of structural neuroplasticity in adulthood, which is a developmental pattern. (4) AD pathology preferentially
involves molecules critical for the regulation of modi®cations of synaptic connections, i.e. ªmorphoregulatoryº molecules
that are developmentally controlled, such as growth-inducing and growth-associated molecules, synaptic molecules, adhe-
sion molecules, molecules involved in membrane turnover, cytoskeletal proteins, etc. (5) Life events that place an additional
burden on the plastic capacity of the brain or that require a particularly high plastic capacity of the brain might trigger the
onset of the disease or might stimulate a more rapid progression of the disease. In other words, they might increase the risk
for AD in the sense that they determine when, not whether, one gets AD. (6) AD is associated with a reactivation of
developmental programmes that are incompatible with a differentiated cellular background and, therefore, lead to neuronal
death. From this hypothesis, it can be predicted that a therapeutic intervention into these pathogenetic mechanisms is a
particular challange as it potentially interferes with those mechanisms that at the same time provide the basis for ªhigher
brain functionº. q 2001 IBRO. Published by Elsevier Science Ltd. All rights reserved.
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At the conclusion of the ªDecade of the Brainº in 2000,
the past presidents of the Society for Neuroscience drew
up a list of what they considered the major advances that
had occurred in neuroscience over the last decades.
Among the seven major research achievements that
were eventually listed based on a poll are the following
®ve, directly related to neurodegeneration and neuronal
plasticity:368 (i) cloning of genes for familial Alzheimer's
disease...; (ii) discovery of molecular bases of neural
plasticity and of substances mediating new brain
growth...; (iii) elucidation of the mechanisms underlying
neuron death...; (iv) discovery that neurons can be
induced to divide, and the detection of stem cells in the
brain...; and (v) discovery of molecules for guidance of
nerve ®bres during development, leading to understand-
ing of disorders in brain development and the potential of
repair.

This reÂsumeÂ undoubtedly shows that in the last
years major new insights have been achieved into
cellular mechanisms of neurodegeneration and into the
plastic potential of the brain that is retained throughout
life. It makes clear, moreover, that neurodegenerative
disorders such as Alzheimer's disease (AD) are not
solely genetically determined. There are good reasons
to assume that those mechanisms involved in processing
of epigenetic information both during development and
in the adult brain are at least equally involved in the
disease.

It is the objective of the present paper to summarize
evidence that it might be the disturbance of the structural
brain self-organization which, based on both genetic and
epigenetic information, constantly ªcreatesº and ªre-
createsº the brain throughout life, that is the defect that
underlies AD.

1. BASIC PRINCIPLES OF NERVOUS SYSTEM

SELF-ORGANIZATION

1.1. The process of self-creation of the brain during
developmentÐgenetic versus epigenetic information

The information contained in the structural organiza-
tion of such a highly complex organ as the mammalian
brain exceeds by far the information that can be stored in
the genome.703 Neurons are speci®ed not only with
respect to number and their position in the brain but
also with respect to their interconnections. The high
degree of freedom of theoretically possible interconnec-
tions becomes apparent when we assume that the number
of neurons in the human brain amounts to about 1012 with
each neuron receiving 104 to 105 synaptic contacts. The
human genome consists of the comparatively small
number of just 100,000 genes or even less (http://
www.nhgri.nih.gov/HGP/). As connections between
neurons, however, are by no means random but highly
speci®c the question of structural speci®city presents a
particular problem.186 This is even more so in higher
mammals379 and humans, where corticalization has led
to an enormous increase in the number and interconnec-
tions of neurons, an increase that is far beyond the rather
small evolutionary increase in the size of the genome.

As genetic instructions apparently are not suf®cient to
specify neuronal connectivity, algorithms of brain self-
organization have been acquired that involve two epi-
genetic sources of information necessary to specify
neuronal interconnections.311,703,749,805

During early development the information is provided
by the micro-environment, mainly through biochemical
signals, generated by local neurons and glial cells. Later
on, when neurons become electrically excitable their
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activity shapes their connectivity.333,619,772 Self-organization
of brain structure, however, cannot be based on spon-
taneously occurring activation pattern alone but requires
sensory experience that allows for the extraction of the
necessary additional epigenetic information.232 The para-
digm for thinking about how activity generates neuronal
changes during development has been the work of David
Hubel and Torsten Wiesel334,335,801,802 on the effects of
visual deprivation in cats and monkeys. Subsequent
studies have con®rmed and extended these ®ndings, lead-
ing to the consensus that the primary role of activity in
the development of the nervous system is to modulate
(competitive) interactions among neurons.118,271,521,687

The gradual brain enlargement during ontogenetic
development is modulated by experience and regional
growth is increased by locally augmented neural activ-
ity.271,423,619,621,639,688,722,836 Neuronal activity is necessary
not only for the initial establishment of speci®c con-
nections but also for their maintenance118 and re-
arrangement,391 i.e. this ªfunctional-self-creation plasticity
processº of the brain is a lifelong process.516

1.2. Activity-dependent self-organization is a lifelong
process

The wiring of the nervous system is highly variable
from individual to individual and changes during the life-
time of each individual.635 The degree of plasticity, and
therefore the adaptive potency, may vary throughout the
brain and may decline with increasing age. There are
neuronal systems where these mechanisms of experience-
dependent self-organization are limited to certain critical
periods during brain development and where associations
tend to be very stable once they are established. There are
other brain areas, in particular cortical and limbic areas,
where the function they subserve requires a lifelong
structural remodelling. Brain structures involved in the
regulation of ªhigher brain functionsº such as learning,
memory, perception, self-awareness and consciousness
continously need to be reoptimized and self-adjusted.
By this self-optimization process, the cognitive, beha-
vioural and emotional reactivity of an individual is
stepwise remodelled to meet the environmental
demands.338,339,355

Mental function, thus, has as its cerebral basis a speci-
®c dynamic structure. It is the combination of ¯exible
and rigid connections that the cerebral organization of
mental activity is based upon.287,351 While the presence
of rigid connections ensures the stability of the principal
characteristics of functions, the variable con®guration of
the ¯exible connections determines the unique, non-
repeatable character of an experienced mental act.351

It was indeed shown recently that those neuronal
systems playing a crucial role in ªhigher brain functionsº
and which, thus, become increasingly predominant
as the evolutionary process of encephalization pro-
gresses,274,326,789 such as hippocampus, neocortical asso-
ciation areas and the cholinergic basal forebrain neurons,
retain a high degree of structural plasticity throughout
life.19±22,32 As these are exactly the same brain structures
that display the highest degree of vulnerability during

ageing and in AD,19±22,32,84±86 a breakdown of mechan-
isms regulating modi®cations of synaptic connections as
the basic process for the realization of ªhigher brain
functionsº308 is, thus, likely to be critically involved in
the pathomechanism of AD.

1.3. Failures are inherent in a system of dynamic
stabilization

Whereas the basic wiring pattern of the mammalian
nervous system is genetically programmed, its ®ne
tuning throughout life is highly experience dependent.611

The genome can only de®ne the type of neurons capable
of re®tting connectivity throughout life and the rules
according to which relations between phenomena in the
outer world are evaluated and internalized through modi-
®cations of connectivity; it cannot, however, determine
the speci®c kind of connection.703

The process of ªselective stabilization of synapsesº
has been proposed by Jean-Pierre Changeux as a
mechanism for the speci®cation of neuronal networks
during ontogeny and learning: ªepigenesis exercises its
selection on preformed synaptic networks. Learning is
the stabilization of already established synaptic combin-
ations and the elimination of others.º117

Adaptive reorganization of neuronal connectivity
which allows for the acquisition of new epigenetic infor-
mation both during development and in the mature brain
is thus based upon the strengthening of existing synapses,
the formation of new synapses and the destabilization
of previously established synaptic contacts. With the
increasing need during evolution to organize brain
structures of increasing complexity, these processes of
dynamic stabilization and destabilization might become
more and more important. At the same time, how-
ever, the delicate balance between stabilization and de-
stabilization might also provide the basis for an increas-
ing rate of failure. The effects of plasticity can, therefore,
lead to either positive or negative changes. Thus, one can
envisage of a spectrum of types of neuronal modi®ca-
tions that lead, at one end, to bene®cial modi®cations
as they may occur in learning and, at the other end,
to detrimental effects as neurodegeneration and cell
death.113,260,468,508 This preservation of mechanisms of
structural stabilization and labilization underlying a life-
long remodelling according to experience, with its
increasing inherent possibilities of failure, not only may
allow for the evolutionary aquisition of ªhigher brain
functionº but at the same time may provide the basis
for a variety of neuropsychiatric disorders.

1.4. Structural reorganization of the adult brain

The idea that information could be stored by modify-
ing interneuronal connections was originally proposed by
Cajal.628 He believed it probable that mental excercise
led to greater growth of neuronal collaterals in the stimu-
lated regions of the brain. (Cajal is quoted by Hebb as
having advanced the ªfantasticº idea that learning and
memory are associated with amoeboid movements of
synaptic endings.) Principles of sculpturing neuronal
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connectivity closely follow rules of synaptic strengthen-
ing postulated by Hebb312 which basically require a
concerted activation of pre- and postsynaptic elements.
He was proven right some 20 years later when an arti®-
cially induced modi®cation of synaptic strength was ®rst
reported in the hippocampus.69,70 This phenomenon of
long-term potentiation is currently regarded as one of
the best models of memory formation and has been
shown recently to be associated with the formation of
new synapses.198,764

This ®nding clearly shows that mechanisms of activity-
dependent self-organization of brain structure are not
con®ned to embryonic stages of development but simi-
larly operate in post-natal life703 and apparently also
persist as a basic strategy in the adult brain.98,380,478,586,635

There is good evidence to assume that the basic
principles of this continuous restructuring of the brain
in adulthood are the same as in brain maturation in
early development.145,146,199,473,618,779

The work of Dale Purves has shown that ongoing
changes in the nervous system and the variability of
neuronal circuitry are not theoretical notions, but estab-
lished fact.620,622,623,640 Using the tools of electrophysiol-
ogy and later optical techniques monitoring the living
brain over time, he provided direct evidence that the
nervous system is a structurally dynamic organ.618

Applying a series of special microscopical techniques
to living animals, he was able repeatedly to image indi-
vidually identi®ed neural elements in muscle,451,472,638

autonomic ganglia,608,620,622 surface epithelia such as the
cornea302 as well as the brain itself.424,425,607,618 Using
these methods, he could demonstrate that synaptic
endings on mammalian skeletal muscle are remarkably
stable451 while synapses on the surface of autonomic
ganglion cells observed over a period of several weeks
change appreciably.620,622 The most rapid remodelling
that he was able to directly observe in the nervous system
occurred in the mammalian eye, in which axons from
sensory neurons in the trigeminal ganglion ramify near
the surface of the cornea.302 Substantial changes in ter-
minal con®guration occurred over periods as brief as a
day.

Dendrites of identi®ed neurons in the superior cervical
ganglion of adult mice show slow and progressive
changes in their higher order branches over periods of
weeks to several months.620 These changes produce an
increase in the overall length and complexity of the
dendritic arborization. When individual branches of the
same neuron are followed over time, dendrites can be
seen to extend, retract, disappear or form de novo. The
net changes in dendritic length and complexity are
accompanied by a continual reorganization of individual
dendritic elements. As the majority of synapses in sym-
pathetic ganglia occur on dendritic branches,226 the
remodelling of postsynaptic elements implies a substan-
tial rearrangement of synaptic connections.

Direct evidence for spontaneously occurring synapse
turnover has also been provided by the work of Townes-
Anderson and Raviola.767±769 In their ultrastructural
studies of the parasympathetic innervation of the ciliary
muscle of adult monkeys they found about 2% of the

axonal pro®les degenerating and a similar number
regenerating.

1.5. Epigenetic information continously reshapes the
brain

Basic experimental paradigms used to analyse how
environmental epigenetic information is processed dur-
ing brain maturation are sensory deprivation and enriched
environmental conditions. Recent evidence indicates that
these paradigms not only cause changes during develop-
mental stages282±284,367,377,378,400,545,647,652,704,705,792 but simi-
larly induce long-lasting consequences if applied to adult
organisms.150,199,391,473,779

Many representations of sensory stimuli in the neo-
cortex are arranged as topographic maps. These cortical
maps are not ®xed, but show experience-dependent plas-
ticity. Sensory deprivation, for example, causes the corti-
cal area representing the deprived input to shrink, and the
neighbouring spared representations to enlarge.219,369,781,813

Representational sensory cortical maps are modi®able
by manipulations of their sensory inputs throughout
life indicating a constant restructuring by pattern of
use.98,188,380,447,586 This restructuring occurs not only under
conditions of pathological disturbances, but also during
the normal behavioural experiences of animals359,632±634

and similarly affects somatosensory, auditory, visual and
motor representations.3,4,359,515,570,633,634,742,796

Behavioural experience in¯uences not only organiza-
tion of sensory cortical representations but also the rate
of neurogenesis derived from progenitor cells in the
hippocampus,52,392±395,779 a capability that is retained into
adulthood in rodents,8,393,394,420,459 non-human primates277

and humans.199 Neurons generated from progenitor cells
migrate into the granule cell layer, differentiate, extend
axons and express neuronal marker proteins.109,385,386,581,725

In food-storing birds, storage and retrieval experiences are
correlated with changes in hippocampal size and neuro-
genesis.44,45,440,583 The increased size of the posterior
hippocampi suggested to be involved in storage of spatial
representations of the environment in birds has also been
observed in humans engaged in occupations that require
extensive navigation skills.473

These results clearly indicate that certain types of
focused behavioural activity both during development
and in the adult brain not only promote synaptic modi®-
cation and synaptogensis43,162,198,251,627,764 but can also
in¯uence neurogenesis and neuronal survival by control-
ling activation and progression of the cell cycle in the
process of neuronal differentiation.569,779,823

Enriched environment in young511,823 or even senes-
cent rodents395 results in persisting changes that drama-
tically reduce the rate of spontaneous apoptotic cell death
later in life and protect against age-related decline of
memory function. Social deprivation or stress, on the
contrary, either during development834 or in adult
animals240,276,277 is associated with an increased rate of
apoptosis in the hippocampus and a reduced rate of
neurogenesis in the adult animal. Early life events
might, thus, prevent the brain from reaching complete
levels of maturation and might predispose to a higher

T. Arendt726



risk of neuropsychiatric disorders.529,614 Those areas of
the brain that take the longest to mature during childhood
and adolescence are most vulnerable in AD,86 and it has
indeed been shown recently that the early-life childhood
and adolescent environment is associated with the risk of
AD.529

1.6. Molecular mechanisms that underlie structural
plasticity

Mechanisms involved in structural adaptive plasticity,
allowing for the constant re-adjustment of connectivity
providing the basis for ªhigher brain functionº, are dif®-
cult to study and, therefore, are not very well understood.
Attempts to develop an integrative theory of neuro-
plasticity have suggested that manifestations of plasticity
as one of the essential characteristics of nervous tissue
might have the same molecular basis, irrespective of the
cause which triggered them,771 and it has been proposed
that no distinctions should be made between ªdevelop-
mentalº, ªadaptiveº or ªrestorativeº plasticity.803 It is,
thus, reasonable to propose that reactive synaptic plasticity
in the adult brain is only the massive manifestation
of a normal potential of the nervous system and is
based upon processes that are accelerated but basically
identical to those involved in the natural turnover of
synapses.145,146,718

Mechanisms underlying ªhigher brain functionsº asso-
ciated with long-term microstructural impacts of experi-
ence on the CNS that are very likely to require a lifelong
high turnover of synapses might, therefore, involve the
same molecules as ªreactive synaptogenesisº as it occurs
for example after a lesion of the entorhinal cortex
(ECL)171 such as (i) neurotrophic factors such as nerve
growth factor (NGF),135,152,294,721 brain-derived neuro-
trophic factor (BDNF),224,294 insulin-like growth factor
(IGF)-1,387 ciliary neurotrophic factor (CNTF),441 inter-
leukin (IL)-1,204 ®broblast growth factor (FGF)-2205,266 or
transforming growth factor (TGF)-beta 1;417,534 (ii) several

growth-associated proteins such as GAP-43;53,452,486 (iii)
neural cell adhesion molecules such as NCAM375,522,737

and L1374,738 and several synaptic proteins such as synapto-
physin,103,486 synapsin I,514 NT75,103 SNAP 25;250,431 (iv)
cellular lipids602,603 and lipid carrier proteins such as
apolipoprotein E;601,602,604 and (v) changes in the expres-
sion250,596,729 and subcellular distrubution99,105,374 of
microtubule-associated proteins and other cytoskeletal
proteins.

1.7. Morphoregulatory molecules link genetic and
epigenetic mechanisms

The process of morphogenesis during development,
adaptation and regeneration is regulated by a process
designated as ªmorphoregulationº by Gerald M.
Edelman192 (Fig. 1). Morphoregulation involves cellular
programmes such as division, movement, adhesion and
death and is controlled by molecules. According to the
morphoregulator hypothesis,192 an essential link between
genetic and epigenetic mechanisms is provided by the
coordinated expression and function of three families
of morphoregulatory molecules:189,191,193,194 cell adhesion
molecules (CAMs), substrate adhesion molecules
(SAMs) and cell junctional molecules (JAMs). These
molecules exert critical interactions at both the cell
surface and the cytoskeleton. Recent studies have
supported the assumption of similar functions of these
molecules during ontogenic development and neuronal
plasticity in the adult brain.799

CAMs are single-pass transmembrane proteins that
bind in a homophilic manner. The two main CAM
families have as their prototypes the neural cell adhesion
molecule (NCAM), homologous to the immunoglobulin
superfamily190 and the liver cell adhesion molecule
(LCAM), which is homologous to the cadherins.753 Beha-
vioural tasks involving learning and memory function
evoke subtile changes in the distribution pattern of
NCAM,182,556,649 with the highest accumulation of
NCAM at the edges of synaptic active zone pro®les.706

Moreover, fragments of integrins or antibodies to NCAM
or L1, another cell adhesion molecule of the immuno-
globulin superfamily, interferes with long-term poten-
tiation (LTP) in vivo.11,42,182,466,646,669,726 Cadherins are
involved in synapse formation both during develop-
ment207 and in the adult.48,124,125,773

The SAMs are mainly extracellular matrix proteins
secreted by cells such as ®bronectin, laminin, collagen,
cytotactin and various proteoglycans.811 The JAMs form
tight junctions, adherent junctions and desmosomes after
initial cell adhesion mediated by CAMs.512 The combin-
atory possibilities of interactions between morpho-
regulatory molecules are enormous, some CAMs have
domains homologous to those of SAMs and CAMs
may also be part of intercellular junctions. This dynamic
set of interactions allows these molecules to bind and link
cells transiently.

Axonal and dendritic plasticity requires tuned changes
at both the neuronal surface and the cellular interior.
Through regulating cell adhesion, morphoregulatory
molecules might be involved in relaying signals to the
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Fig. 1. The process of morphoregulation (according to the concept
proposed by Edelman192) that regulates morphogenesis during devel-
opment, adaptation and regeneration involves cellular programmes
such as cell division, movement, adhesion and death and is controlled
by molecules. The coordinated expression and function of these
morphoregulatory molecules (CAMs: cell adhesion molecules;
SAMs: substrate adhesion molecules; JAMs: cell junctional mole-
cules) provide an essential link between genetic and epigenetic
mechanisms. These molecules exert critical interactions at both the
cell surface and the cytoskeleton and mediate their effects through
activation of intracellular signalling cascades such as the p21ras/

MAP-kinase pathway (see Fig. 6).



cell interior, thereby controlling primary cellular pro-
cesses such as cell division, movement and differentia-
tion.270,799 Cell surface modulation events can alter the
mobility of transmembrane proteins via changes in
cytoskeletal states and is correlated with inhibition of
mitogenesis.187 Adhesion molecules might also form a
direct part of intracellular signalling cascades regulating
cell proliferation and differentiation.288,415,513,530,675,676

Integrins and NCAMs are coupled to intracellular signal
transduction pathways via focal adhesion kinases (FAK)
and the ras-dependent mitogen activated protein kinase
cascade,298,404,575,582,668 which both are implicated in the
pathomechanism of AD.238,239,699,832,833

2. ALZHEIMER'S DISEASE AS A DISORDER OF

BRAIN SELF-ORGANIZATION AND MORPHOREGULATION

There are numerous indications of alterations of neuro-
plasticity in AD and the idea that aberrant plasticity, i.e.
abnormal sprouting or a regenerative failure, is critically
involved in the pathomechanism of AD has repeatedly
been suggested.40,101,142,176,177,222,246,406,517,527,565,594,642,745,793

We propose that it might not just be the ability of the
brain to react to some age-related or otherwise unde®ned
structural disturbance, but rather that it is its ability to

modify its own structural organization and functioning as
an adaptive response to functional demands,409,803 (i.e.
the structural potential that ªcreatesº the brain), which
is impaired in AD (Fig. 2).

Based on this hypothesis several testable predictions
can be formulated:

1. AD is a synaptic disorder.
2. AD is associated with aberrant sprouting at both the

presynaptic (axonal) and postsynaptic (dendritic) site.
3. The spatial and temporal distribution of AD pathology

follows the pattern of structural neuroplasticity in
adulthood, which is a developmental pattern.

4. AD pathology preferentially involves molecules criti-
cal for the regulation of modi®cations of synaptic
connections, i.e. ªmorphoregulatoryº molecules that
are developmentally regulated, such as growth-
inducing and growth-associated molecules, synaptic
molecules, adhesion molecules, molecules involved
in membrane turnover, cytoskeletal proteins, etc.

5. Life events that place an additional burden on the
plastic capacity of the brain or that require a particu-
larly high plastic capacity of the brain might trigger
the onset of the disease or might stimulate a more
rapid progression of the disease. In other words,
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Fig. 2. Brain areas affected by AD pathology are those structures involved in the regulation of ªhigher brain functionsº that become
increasingly predominant as the evolutionary process of encephalization progresses, such as hippocampus, neocortical association
areas and the cholinergic basal forebrain neurons. The functions these areas subserve such as learning, memory, perception, self-
awareness and consciousness require a lifelong re®tting of synaptic contacts that allows for the aquisition of new epigenetic
information (1). This adaptive reorganization of neuronal connectivity in the mature brain is mediated by the process of morphor-
egulation (2) and results in the strengthening of existing synapses, the formation of new synapses and the destabilization of
previously established synaptic contacts (3). With the increasing need during evolution to organize brain structures of increasing
complexity, these processes of dynamic stabilization and destabilization become more and more important but might also provide
the basis for an increasing rate of failure. It is proposed that it is this particularly high plastic ability of a subset of neurons in the adult
brain that allows for ongoing morphoregulatory processes after development is completed but at the same time renders these neurons
particularly vulnerable. Morpho-dysregulation in AD (2a), accompanied by an aberrant activation of intracellular mitogenic signal-
ling might, thus, be a slowly progressing dysfunction that eventually overrides the differentiation control and results in synaptic de-
stabilization, aberrant growth and dedifferentiation, a condition that is in con¯ict with the otherwise ªmatureº background of the

nervous system (3a) and, thus, ultimately results in cell death.



they might increase the risk for AD in the sense that
they determine when, not whether one gets AD.

6. AD is associated with a reactivation of developmental
programmes that are incompatible with a differentiated
cellular background and, therefore, lead to neuronal
death.

If the hypothesis is correct, it can be predicted, further-
more, that a therapeutic intervention into these patho-
genetic mechanisms might be particularly dif®cult as it
potentially interferes with those mechanisms that at the
same time provide the basis for ªhigher brain functionº.

Predictions 1 to 3 have been proven right (Fig. 3 and
Section 2.2);19±22,32 the same holds true for prediction 5.
All risk factors for AD, particularly those related to
life events, such as early-life childhood and adolescent
environment,529 psychosocial and mental inactivity, loss of
motivation and mental stress,47,243,405,712 a lower level of
education and/or occupation,65,73,107,172,543,576,727,728,800 higher
age,244,373 exposure to neurotoxic factors,230,421,454,661,674,713

brain injury510,544,630,641 or known risk factors for vascular
disease also relevant to AD such as high blood pres-
sure,435,707,746 low blood levels of folate and vitamin B12

and elevated total homocysteine levels,126 might be asso-
ciated either with a lower capacity of plastic adaptability
or with an additional burden placed on the system of
structural adaptation. This assumption, either that a
pathological predisposition might lower the critical
threshold of decompensation or that some additional
force might override this threshold, is in agreement
with the previous suggestion126,364 that some kind of
ªinsultº may trigger the onset of AD. Similarly, the
genetic risk factor ApoE 4 allel has recently been
shown to predict ªwhen not whetherº susceptible indivi-
duals will develop AD.518 Genetic aetiologies such as
mutations in the genes for APP or presenilins might
also be related to alterations in the normal plastic
capacity of the brain (see Section 2.1).

With respect to prediction 4 observations might be
relevant indicating that a partial ontogenetic regression
occurs in AD that involves reactivation of developmental

programmes including abortive mitosis that eventually
results in cell death as they are in con¯ict with the other-
wise ªmatureº background of the nervous system (see
Section 2.3).

2.1. Morphoregulatory molecules in Alzheimer's disease
and other neurodegenerative disorders

A disturbance of brain self-organization that becomes
manifested in the adult brain might involve morphoregu-
latory molecules, i.e molecules that are developmentally
regulated and are expressed in the adult brain mainly in
areas that retain a high neuroplastic potential. According
to the necessity of synaptic turnover and reorganization,
growth cone and synaptic properties might overlap to
some degree and the preservation of these properties
might allow for synaptic plasticity in the adult brain.593

One notable candidate involved in these processes is
GAP-43 that persists in neocortical association areas
and in the limbic system throughout life, where the
protein might play an important role in mediating
experience-dependent plasticity.54

Recent studies demonstrate alterations of different
cellular and substrate adhesive molecules, their ligands
and other morphoregulatory molecules in AD. The
presence, for example, of GAP-43, heparan sulfate, lami-
nin, NCAM, various cytokines and neurotrophic factors
in neuritic plaques (see Table 1) might be an indication of
tissue remodelling.

There is a growing body of evidence, moreover, that
the amyloid precursor protein (APP), presenilins, alpha-
synuclein, prion protein (PrP) and apolipoprotein E
(ApoE) critically involved in the pathology of AD,
Parkinson's disease, Lewy body dementia, Creutzfeldt±
Jacob disease and other neurodegenerative disorders, are
in fact morphoregulatory molecules playing a role in
formation, turnover and stabilization of synapses both
during development and in the adult brain. All these
molecules are developmentally regulated and are
expressed in the adult brain only in areas that retain
a high neuroplastic capacity. They share molecular
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Fig. 3. The distribution of vulnerable neurons in AD matches the pattern of late ontogenetic development and a high neuroplastic
potential in the mature brain. Those neuronal systems playing a crucial role in ªhigher brain functionsº and, thus, become increas-
ingly predominant as the evolutionary process of encephalization progresses such as hippocampus and neocortical association areas
retain a high degree of structural plasticity throughout life. These areas of the brain take the longest to mature during childhood and
adolescence. Exactly the same brain structures display the highest degree of vulnerability during ageing and in AD. (Modi®ed after

Refs 22, 85 and 86.)



properties of classical CAMs or directly interact with
them and have similar distributions as CAMs or
growth-associated proteins (GAPs)144,566,733,734 (see
Tables 2±6).

2.1.1. Classical morphoregulatory molecules. While

the number of NCAM-expressing neurons is reduced
in AD,821 the highly polysialylated form (PSA-
NCAM), a developmentally regulated molecule
involved in neurite growth, synaptogenesis and structural
remodelling151,553,645,680 and expressed in the adult brain
only in areas that retain a neuroplastic potential, is
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Table 1. Indication of dendritic and axonal sprouting in Alzheimer's disease

Dendritic sprouting

Somatodendritic sprouts (®lopodium-like processes that resemble growth cones) occur on both cortical and subcortical neurons
MAP2 and tau are co-localized in these growth structures which recapitulates their co-distribution in developing neurites
References: 37, 214, 345, 470, 585, 667

Axonal sprouting

Axonal sprouts present as abundant coiled ®bres and dystrophic neurites in association with plaques contain GAP-43 and synaptophysin
Spine density of the granular cell dendrites is signi®cantly reduced in distal parts of the dendrites while it remains unaltered in most proximal parts

which might indicate collateral sprouting of undamaged inputs
AChE innervation pattern in the terminal zone of the perforant pathway in AD indicates compensatory septal afferent sprouting in the
hippocampus
Expansion of kainic acid receptor distribution in AD hippocampus matches the pattern of receptor spreading observed in rats after axon sprouting of

commissural and associational ®bres into the denervated molecular layer of the dentate gyrus induced by lesions of the entorhinal cortex
References: 248, 256, 342, 497

Tangle-bearing neurons and dystrophic neurites contain growth-associated proteins

GAP-43
Thy-1
Collagen IV
Laminin
Integrin receptor VLA6
Heparin binding growth-associated molecule (HB-GAM)
Transforming growth factor (TGF)-beta 2
Neuronal growth-associated protein SCG10
Spectrin
N and C termini of amyloid precursor protein (APP)
References: 221, 443, 482, 489, 496, 498, 574, 702, 806, 831

Growth-promoting factors and their receptors are increased in plaques

S100 beta
Basic ®broblast growth factor (bFGF)
Hepatocyte growth factor (HGF/SF)
Platelet-derived growth factor (PDGF)-BB
TrkA and TrkB receptors
Proteoglycans:

heparan sulfate
keratan sulfate
deramatan sulfate
chondroitin sulfate

Epidermal growth factor receptor (EGF-R)
Intercellular cell adhesion molecule ICAM-1
Integrins
Collagen
Laminin
Telencephalin
References: 67, 137, 178, 195, 210, 234, 265, 323, 492, 557, 689, 711, 784

Synaptic proteins are enriched in plaques

Chromogranin A
Chromogranin C/secretoneurin
SNAP 25
Synaptophysin
Synaptotagmin
NT75
Spectrin
References: 103, 216, 280, 389, 434, 490, 780, 790, 795



over-expressed in AD.520 The intercellular adhesion
molecule-1 (ICAM-1) is also increased and is mainly
enriched in senile plaques.6,783 Expression of telence-
phalin (TLN), a cell adhesion molecule of the immuno-
globulin superfamily that is developmentally expressed in
the telencephalon of the mammalian CNS during dendritic

elongation and synaptogenesis,535 on the contrary, is
markedly decreased in the brain of AD patients.323

2.1.2. Acetylcholinesterase. Apart from its catalytic
function in hydrolysing acetylcholine, acetylcholinesterase
(AChE) affects cell proliferation, differentiation and
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Table 2. Involvement of û-amyloid precursor protein in synaptic plasticity and morphoregulation

Synaptic localization and role in cell adhesion

APP undergoes fast axonal transport to synaptic sites
APP (and its homologue APLP) is preferentially localized to presynaptic membranes
APP co-localizes with adhesion patch components on the surface of cortical neurons in primary culture
Cell-surface APP co-localizes with beta 1 integrins at substrate contact sites in neural cells, a C-terminal APP fragment promotes cell adhesion in an

integrin-like mode
APP is a substrate for transglutaminase involved in synapse stabilization by cross-linking large, multidomain extracellular glycoproteins
APP homologue APLP2 contributes to epithelial cell adhesion
Down-regulation of APP by antisense oligonucleotides reduces neuronal adhesion to speci®c substrates
APP isoforms contain extracelluar domains for binding of glycosaminoglycans and collagen
Appican, the chondroitin sulfate proteoglycan form of APP promotes cell adhesion to extracellular matrix
Transgenic Drosophila expressing human APP show a blistered-wing phenotype
References: 88, 102, 147, 227, 258, 325, 376, 398, 411, 448, 554, 578, 637, 659, 671, 672, 694, 697, 700, 733, 762, 811, 816

Synaptotrophic effects/induction of sprouting

APP (and their homologue APLP) is developmentally expressed, peaks during periods of neuronal differentiation and synaptogenesis in vivo and in
vitro; beta APP695 increases selectively and progressively during neuronal differentiation

APP is localized in growing neurites of neonatal rat brain
In mammals, transmembrane APP is associated with elongating axons, whereas secreted APP is correlated with synaptogensis
Differentiation of neurons is accompanied by increased ûAPP695 expression and membrane retention of the protein as intact, full-length molecules
Drosophila APPL is enriched in growing axons and areas of synapse formation, overexpression of Drosophila APPL promotes synapse

differentiation and increases the number of synaptic boutons at the neuromuscular junction
APP induces functional synapse maturation in vitro (spontaneous oscillations of intracellular Ca21 concentration)
sAPP regulates spontaneous and impulse-evoked postsynaptic currents on developing synapses in vitro
Hippocampal neurons in vitro from APP-de®cient mice show diminished viability and retarded axon growth, dendrite branching, and dendrite

numbers
Neuronal overexpression of human APP in transgenic mice induces expression of synaptophysin and GAP-43
Entorhinal axons in transgenic mice (APP23 mice, Swedish double mutation) form dystrophic GAP-43-immunopositive axonal terminals around

amyloid plaques as well as surrounding vascular amyloid in ectopic locations within the hippocampus, the thalamus, white matter tracts
APP is localized in GAP43-immunoreactive outgrowing neurites of neonatal rat brain as well as in GAP43-immunoreactive aberrant sprouting

neurites in AD
APP-null mice develop profound loss of immunoreactivities for the presynaptic terminal vesicle marker proteins synaptophysin and synapsin,

reduction of dendritic length of CA1 neurons
Administration of an APP17mer increases the number of presynaptic terminals in rat brain and attenuates the neuronal dysfunction induced by

ischaemia in rabbit brain
Administration of sAPP counteracts the inhibitory effect of glutamate on dendrite outgrowth in cultured embryonic hippocampal neurons
Administration of APP with the Kunitz insert in vitro induces axonal sprouting
sAPP enhances proliferation of neural stem cells from fetal rat brain
APP is a mediator of the effects of nerve growth factor on neurite outgrowth; APP is involved in NGF-mediated trophic signalling; antibodies to

APP or APP antisense oligonucleotides diminish NGF-induced increases in cellular size, neurite length and branching in PC12 cells
Neurite outgrowth promoting effects of APP are mediated via interaction with a developmentally regulated HSPG
References: 9, 10, 82, 91, 127, 149, 163, 206, 235, 310, 341, 363, 398, 402, 410, 458, 460, 475, 496, 498, 509, 526, 531, 536, 537, 547±550, 571, 572,

589, 597, 626, 643, 655, 679, 708, 734, 765, 766, 770, 804, 822

Regulation of synaptic plasticity associated with LTP and learning

APP-null mice and transgenic mice with APP mutations show impaired LTP associated with impaired cognitive performance
sAPP shifts the frequency dependency for induction of LTD and enhances LTP in hippocampal slices
Administration of Aû alters LTP both in vitro and in vivo
Intraventricular infusion of antibodies to APP impair passive avoidance learning
Synaptic APP increase with learning capacity in rats
Administration of an APP17mer to rat brain increases memory retention
References: 119, 154, 163, 181, 336, 348, 426, 432, 551, 563, 643, 679, 761, 810, 837

Up-regulation in response to synapse loss

APP is up-regulated in response to traumatic brain injury/experimental brain lesion
Soluble Ab in AD inversely correlates with synapse loss
References: 252, 462, 735, 778



responses to various insults, including stress. While
ªsynapticº AChE-S constitutes the principal multimeric
enzyme in brain and muscle; soluble, monomeric ªread-
throughº AChE-R appears in embryonic and tumour
cells and is induced under psychological, chemical and
physical stress.289 The homology of AChE to the cell
adhesion proteins, gliotactin, glutactin and the neurexins,
which have more established functions in nervous system
development, might be the basis of its morphogenetic
functions.289,437

AChE associated with the pathological lesions of AD
possesses different enzymatic properties to synaptic
AChE257 with some resemblance to the embryonic
enzyme,23 making a morphogenetic ªneo-embryonicº437

function involved in induction of aberrant growth of
neuronal processes likely.

2.1.3. Amyloid precursor protein. The amyloid
protein precursor (APP) gene is part of a multigene
superfamily from which 16 homologous amyloid pre-
cursor-like proteins (APLP) and APP species homo-
logues have been isolated and characterized. APP is a
type I integral membrane protein homologue to glycosyl-
ated membrane receptors384 present on the surface of
neurons and glia.89,700,816 It is processed by proteases
referred to as ªsecretasesº into soluble APP fragments
and Ab, the major component of senile plaques in AD.384

APP is developmentally expressed,213,547 is highly abun-
dant at synaptic sites and is released under conditions of
LTP.209

Although the precise physiological function of APP is
still unclear, both cellular APP and secreted forms have
been implicated in the modulation of differentiation,
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Table 3. Involvement of presenilin 1 in synaptic plasticity and morphoregulation

Synaptic localization and role in cell adhesion

Presenilin concentrates at synaptic sites in the brain and intercellular contacts in epithelial tissue (proteolytic fragments of presenilin 1 are present
in synaptic plasma membranes, neurite growth cone membranes, and small synaptic vesicles of rat brain)

Presenilin forms complexes with the cadherin/catenin cell±cell adhesion system
Presenilin overexpression in human kidney cells enhances cell±cell adhesion
Endogenous PS1 redistributes to the surface of lamellipodia upon adhesion of Jurkat cells to a collagen matrix
In COS-7cells overexpressing PS1, PS1 immunoreactivity is concentrated on the surface at cell±cell-contact sites
References: 50, 253, 383, 637, 677, 751, 752, 794, 824

Developmental regulation of expression

Developmental expression of presenilin shows two peaks, one during late embryogenesis paralleling the pattern previously reported for Notch,
suggesting an involvement in neurogenesis and skeleton formation and a second during postnatal development when proliferation and migration
are still ongoing, suggesting an involvement in differentiation and synaptogenesis

Presenilin null mice exhibit early embryonic patterning defects
Presenilin processing is developmentally regulated and an alternative pathway of PS1 proteolytic processing is induced in the brain by neuronal

differentiation
References: 58, 110, 179, 206, 303, 304, 532, 754, 777, 809

Notch signallingÐregulation of cell differentiation, proliferation

The presenilin homologue sel-12 in Caenorhabditis elegans facilitates lin-12 function, the mammalian homologue thereof is Notch1, a
transmembrane receptor involved in regulation of cell differentiation, proliferation and programmed cell death

Presenilins show speci®c physical interaction with Notch1
Notch1 inhibits neurite outgrowth in postmitotic primary neurons, an effect that is markedly attenuated in neurons from PS1 knockout mice, and

enhanced in neurons from transgenic mice overexpressing wild-type PS1, but not mutant PS1
Mutations in Drosophila presenilin (Dps) genetically interact with Notch and result in an early pupal-lethal phenotype characterized by defects in eye
and wing development and incomplete neuronal differentiation within the larval CNS
PS1-de®cient mice develop cortical dysplasia
References: 55, 56, 292, 304, 445, 519, 631

Regulation of neurite outgrowth

Overexpression of wild-type PS1 gene in mouse neuroblastoma (N2a) cell lines stimulates neuritic outgrowths accompanied by accumulation of
PS1 immunoreactivity in neurites; this effect is disturbed in FAD-linked PS1 mutations (P117L, M146L)

Expression of AD-linked human PS-1 mutation (L286V) in PC12 cells results in aberrant differentiation responses to nerve growth factor (NGF)
References: 180, 236

Involvement in synaptic plasticity associated with LTP

Transgenic mice carrying FAD-linked PS1-mutation show alterations in LTP
References: 580, 827

Synaptic dysfunction in FAD-linked PS1-mutation

PS1 mutant mice show altered calcium homeostasis and mitochondrial dysfunction in cortical synaptic compartments
Reference: 49



growth and connectivity of neurites7,438,475,526,589,626,654,670

(see Table 2).
Comparison of exon structure (including the unchar-

acterized APL-1 gene), construction of phylogenetic
trees, and analysis of the protein sequence alignment of
known homologues of the APP superfamily were
performed to reconstruct the evolution of the family
and to assess the functional signi®cance of conserved
protein sequences between homologues. This analysis
supports a cell adhesion function for all members of
the APP superfamily, with speci®city determined by
those sequences that are not conserved between APLP
lineages, and provides evidence for an increasingly
complex APP superfamily during evolution. The analysis
also suggests that Drosophila APPL and Caenorhabditis
elegans APL-1 may be a fourth APLP lineage indicating
that these proteins, while not functional homologues of
human APP, are similarly likely to regulate cell adhe-
sion.147,148 Recent evidence suggests that accumulation of
Ab may disrupt cell-adhesion mechanisms in vivo.612,650

2.1.4. Presenilins. Presenilin 1 (PS1) is a transmembrane
protein with eight transmembrane domains expressed in

many tissues including the brain where it is enriched in
neurons.157,196,449,691 Presenilins in¯uence the functions of
different cell adhesion molecules either directly or in-
directly (see Table 3). PS1 binds members of the armadillo
family of proteins including d- and b-catenin824,838 and
promotes processing and signalling of Notch1 receptor,
suggesting a role in development.175,736,820 Notch is a
neurite outgrowth promoting cell surface glycoprotein
with EGF-like repeats, characteristic of many cell adhesion
molecules, that may only reach the cell surface in the
presence of presenilins.166,631,736,820

Notch-ligand interactions are a phylogenetically
highly conserved process that mediates cell±cell-
communication and regulates cell proliferation and
differentiation.38,39,285,519,525,625 At least in some cells,
Notch-1 signalling affects cell-cycle progression and
might, thus, be involved in neuronal plasticity5 and in
regulating the balance between proliferation and differ-
entiation.112,167 Mechanisms of cell fate determination
by Notch-dependent signalling may involve key signal-
ling molecules such as p53, ras and myc family
members.519

Presenilin 1 and 2 are mutated in the majority of
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Table 4. Involvement of a-synuclein in synaptic plasticity and morphoregulation

Synaptic localization

a-Synuclein is axonally transported by all rate components and is localized to presynaptic membranes and synaptic vesicles
In the adult brain, expression of a-synuclein is highest in brain regions, involved in ongoing experience-dependent modi®cations such as

hippocampus, olfactory bulb, amygdala
References: 346, 352, 360, 479, 480, 491, 562, 693

Developmental regulation of expression

Expression of synucleins is developmentally regulated and peaks during synaptogenesis and neural differentiation
The ratio a-synuclein/synaptophysin (i.e. the a-synuclein content per synapse) is particularly high during synaptogenesis
References: 307, 331, 352, 590, 807

Involvement in regulation of cell differentiation

a-Synuclein expression is up-regulated during phorbol ester-induced megakaryocytic differentiation, while û-synuclein is down-regulated
a-Synuclein is widely distributed in brain tumours showing neuronal differentiation, predictor of tumour progression
Synucleins are involved in spermatogonia where expression coincides with meiosis
References: 307, 390, 692

Involvement in neuronal regeneration and structural plasticity

a-Synuclein is highly expressed in olfactory receptor neurons (ORNs) of the olfactory epithelium that regenerates throughout the lifespan
Reference: 184

Involvement in synaptic pathology

A fragment of a-synuclein, the non-A beta component of AD amyloid (NAC), is highly co-localized with synaptophysin-immunoreactive structures
(presynaptic terminals)

The ratio a-synuclein/synaptophysin (i.e. the a-synuclein content per synapse) is doubled in AD
Degenerative terminals of the perforant pathway in patients with PD, diffuse Lewy body disease and dystrophic neuritic processes in mixed DLB/

AD cases are a-synuclein immunoreactive
Expression of rat synuclein in the substantia nigra pars compacta is up-regulated in a rodent model of apoptotic death induced by developmental

injury to their target, the striatum
References: 155, 241, 347, 397, 491, 774

Involvement in learning-associated synaptic plasticity

a-Synuclein expression is altered during the critical period of song learning in birds
Reference: 255



familial, early-onset AD cases.413,636 Patients with spora-
dic AD show increased Notch1 expression in the hippo-
campus.57 It remains unknown at present whether this
may represent an accumulation of incorrectly processed
or targeted protein, or a compensatory mechanism.

Classical cadherins, including E- and N-cadherin, are a
family of cell surface single-pass transmembrane
proteins that control critical events in cell±cell adhesion,
recognition and tissue development. Cadherin-based
junctions are specialized forms of cellular adhesive
contacts at which plasmalemmal classical cadherins
form complexes with cytosolic catenins linked to the
cortical actin cytoskeleton. Cadherins and associated
catenins are found in synaptic junctions, where they are
thought to link pre- and postsynaptic membranes.775

Recent reports provide evidence that PS1 is localized at
cell±cell adhesion sites and forms complexes with
components of the cadherin/catenin adhesion system,
suggesting a function for PS1 in cell±cell adhe-
sion.253,555,824,835,838 FAD-mutant PS1 expression decreases
the stability and/or enhances the degradation of beta-
catenin.383,794

2.1.5. Synucleins. Synucleins comprise a family of
closely related proteins, especially abundant in neural
tissue, where they are particularly enriched in presynap-
tic terminals.479 The synucleins were originally identi®ed
independently as being involved in vesicle-associated
processes in the Torpedo electrical organ,479 as develop-
mentally regulated proteins related to song learning in
birds255 and as a phosphoprotein (PNP-14) in mammalian
brain.562

Alpha-synuclein, particularly enriched in the telence-
phalon,346,352 has been identi®ed as the primary com-
ponent of Lewy bodies720,791 that might also contain
other synaptic proteins.790 In AD, a central 35-residue
fragment of alpha-synuclein, orginally being referred to
as ªthe non-A-beta-component precursorº (NACP), is a
major component of amyloid plaques where it comprises
about 10% of all protein components.491,774 In early AD,
alpha-synuclein appears to be elevated both in the
cytosol353 and at individual synaptic sites.491 A rare
form of inherited Parkinson's disease is linked to a muta-
tion in the alpha-synuclein gene.606

The physiological function of alpha-synuclein
remains unknown (see Table 4). Its structure is highly
conserved among vertebrates and resembles those of
apolipoproteins.128 In the CNS alpha-synuclein appears
to be localized almost exclusively to presynaptic ter-
minals.346,354 Its structure and subcellular localization
indicate that it may be capable of interacting transi-
ently or reversibly with phospholipid membranes.129

Alpha-synuclein undergoes a massive conformational
shift in the presence of acidic phospholipids.158 It
is also a highly speci®c inhibitor of phospholipase
D2 (PLD2)356 which produces phosphatidic acid by
hydrolysis of phosphatidylcholine.203 These mechan-
isms might be involved in the regulation of cleavage
of membrane lipids and might, thus, be highly
relevant to membrane biogenesis and turnover.129

Cellular injection of PLD2, for example, provokes cyto-
skeletal reorganization and production of ®lopodia.132

This potential involvement in membrane turnover
might also be relevant to its function in non-neuronal
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Table 5. Involvement of the cellular prion protein PrPc in synaptic plasticity and morphoregulation

Synaptic localization

PrPc is predominantly localized to presynaptic membranes
PrPc is particularly abundant in synaptic terminal ®elds in brain regions involved in ongoing experience-dependent modi®cations such as

olfactory bulb, limbic-associated structures
References: 228, 264, 316, 656, 755

Neurotrophic action

Intracerebral inoculation of Sc237 scrapie in hamsters results in increase branching of basal dendrites of hippocampal CA1 pyramidal cells
Reference: 46

In¯uence on neuronal connectivity

PrP null mice show abnormal mossy ®bre reorganization in the hippocampus
Reference: 133

In¯uence on LTP and learning/memory

Hamsters intracerebrally inoculated with Sc237 scrapie or mice infected with ME7 scrapie show impaired LTP
PrP null mice show disturbed long-term memory
References: 46, 134, 365, 567

Synaptic pathology is the primary neuropathological feature of spongiform encephalopathy

Synaptic markers (synaptophysin, synapsin-I, SNAP-25, syntaxin-I) are reduced early in the course of sporadic CJD
PrPsc is preferentially found in the presynaptic domain of synapses in CJD, Gerstmann±StraÈussler±Scheinker disease (GSS), kuru and bovine

spongiform encephalopathy
Synaptic degeneration is an early event in CJD and in a panencephalitic model of CJD (Echigo-1 strain)
References: 96, 131, 217, 286, 295, 328, 399, 450, 506, 579, 644, 715, 756, 797, 815



cells where it has been implicated, for example, in
breast cancer progression.361 The expression of
synucleins is developmentally regulated with a selec-
tive up-regulation of alpha-synuclein during cellular
differentiation.307

One of the best characterized model systems
where alpha-synuclein is involved, is the avian song
control system.254 In this system it is highly enriched
in synapses during the early period of learning362

when synapses undergo a large physical change in their
organization with a reduction in their numbers by half
accompanied by a doubling in size of remaining
synapses.317 Based on this evidence, the hypothesis has
been put forward129 that synuclein is involved in loca-
lized, experience-dependent turnover of synaptic
membranes, a process important for ªsynaptic
taggingº,233 providing the basis for lifelong learning
and memory formation.

2.1.6. Prion protein. The prion protein (PrPC, the normal,
cellular isoform) is a cell surface sialo-glycoprotein
with a glycosyl-phosphatidyl-inositol (GPI) domain

permitting attachment to cell membranes, present in a
number of tissues including brain.51,72,79,114,723,724 An
anomalous, protease-resistant form (PrPSc) accumulates
in brain during transmissible spongiform encephalo-
pathies (TSE) such as Creutzfeldt±Jakob disease, scrapie
and bovine spongiform encephalopathy, which has led to
the hypothesis that this protein is the infectious agent in
these diseases.616

Although due to this involvement in TSE, the PrP has
been of considerable interest, its function in the normal
brain is unknown (see Table 5). The cellular form of PrP
is attached to the cell surface by a GPI anchor.78 In
neurons, newly synthesized PrP is anterogradely trans-
ported to the synaptic terminal.77 PrP is enriched at many
limbic brain structures, such as hippocampus, ventral
pallidum, olfactory bulb, piriform, entorhinal and cingu-
late cortices, where it is localized in synaptic pro-
®les.228,229,656 Expression of PrP is maximal during
synaptogenesis, a process accompanied by a shift of the
protein from the developing axon to synaptic terminal
®elds.657 Based on its subcellular distribution and on
®ndings on altered structural reorganization in PrP-null
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Table 6. Involvement of apolipoprotein E in neuronal plasticity and morphoregulation

Developmental regulation of expression and secretion

ApoE and its main receptor in brain, the alpha-2-macroglobulin/low-density lipoprotein receptor-related protein, are transiently highly expressed in
embryonic development during morphogenesis

References: 41, 460, 798

Neurotrophic effects/induction of sprouting

ApoE stimulates neurite growth on primary neuronal cultures, neurite growth-promoting effects are isoform speci®c: ApoE3 . ApoE4
Synaptic densities of cholinergic, noradrenergic and serotonergic projections in speci®c brain regions of apoE-de®cient mice are markedly lower

than those of controls
Cultures derived from ApoE-knockout mice are defective in neuronal sprouting, transgenes restore sprouting isoform speci®c: ApoE3 . ApoE4
The enhancement of synaptic sprouting by estradiol (E2) in response to entorhinal cortex (EC) lesion operates via an apolipoprotein E (ApoE)-

dependent mechanism
References: 120, 297, 564, 624, 731, 758, 759

Effects on cell cycle

ApoE inhibits the proliferation of several cell types, including endothelial cells, human melanoma cells, interleukin-dependent lymphocytes and
human breast carcinoma cells in a dose- and time-dependent manner

ApoE inhibits the proliferation of growth factor-responsive cells by blockade in the G1 phase of the cell cycle
Apo E inhibits platelet-derived growth factor-induced vascular smooth muscle cell migration and proliferation by suppressing signal transduction

and preventing cell entry to G1 phase
Antiproliferative effects of ApoE involve alterations of cell-matrix interactions and have been correlated with signi®cant reductions in agonist-

stimulated MAP-kinase activity and cyclin D1 expression
References: 350, 528, 577, 788

LTP/memory function

The low-density lipoprotein receptor-related protein, the main ApoE receptor in brain is involved in hippocampal LTP
ApoE-de®cient mice show alterations in LTP and cognitive dysfunction
Alpha-2-macroglobulin (a ligand of the ApoE receptor) inhibits LTP
Cognitive impairment in ApoE-de®cient mice is ameliorated by infusion of recombinant ApoE
ApoE antibodies affect the retention of passive avoidance memory in the chick
References: 115, 272, 278, 418, 419, 427, 502, 573, 782, 839

Involvement in the repair response to tissue injury

Apo E markedly increases at sites of injury and regeneration in the peripheral and central nervous system
ApoE may play an isoform-speci®c role in determining both the initial response and the subsequent consequences to acute brain injury
ApoE can interact with growth regulatory factors such as CNTF, heparin, laminin and proteoglycans
References: 197, 279, 293, 332, 343, 344, 474, 828



mice,133 PrP has been suggested to be involved in
stabilization of opposing synaptic membranes through
adhesive mechanisms.264,656

2.1.7. Apolipoprotein E. Members of the low-density
lipoprotein receptor (LDL-R) family and their ligands
play a critical role in brain development and in neuronal
remodelling in the adult nervous system (see Table 6).
ApoE, a 34,000 mol. wt protein, is the major ligand of the
LDL-R and the LDL receptor-related protein (LRP) in
the brain.93,318,467,741

ApoE plays an important role in cholesterol and phos-
pholipid transport, uptake and redistribution599 and is
also involved in the modulation of cell growth, cell-
cycle control and differentiation.111,185,340,474 Within the
nervous system, apoE might be involved in maintaining
synaptic integrity after injury and during ageing by
several different mechanisms. Among them, recent
studies have suggested that ApoE: (i) stabilizes the
neuronal cytoskeleton; (ii) plays an important role in
transporting esteri®ed cholesterol to neurons undergoing
reinnervation, where it is taken up by the LRP pathway
and used as a precursor for the synthesis of new synaptic
terminals; (iii) regulates interactions between neurons
and the extracellular matrix (e.g. laminin); (iv) regulates
levels of intracellular calcium;500 and (v) controls cell-
cycle progression.788

In mice de®cient in ApoE, a loss of synaptophysin in
nerve terminals and of MAP2-immunoreactive dendrites
have been observed,495 indicating that ApoE is necessary
to preserve synaptic integrity. The ApoE4 allele
frequency is markedly increased in both late-onset spora-
dic and familial AD.139,600,660 Reduced levels of ApoE
have repeatedly been reported in AD.320,598 Isoform-
speci®c differences in binding, internalization and degra-
dation of ApoE291 apparently associated with dysfunction

of dendritic plasticity34 might account for the ApoE4-
associated risk of AD (Fig. 4).

2.2. Disturbances of morphoregulationÐsynapse loss
and aberrant sprouts are the pathological hallmarks of
Alzheimer's disease

Data obtained by electron microscopy, immunocyto-
chemical and biochemical analyses on synaptic marker
proteins in AD biopsies and autopsies indicate that
synaptic loss is an early change and the major struc-
tural correlate of cognitive dysfunction (see Table
7).63,95,161,169,259,662,267,296,314,434,483±485,487,489,490,499,501,505,757,795

Synaptic pathology is re¯ected by a loss of all major
components of small synaptic vesicles and most peptides,
stored in large dense core vesicles accompanied by exten-
sive pathological changes of the synapse.433 Although
degeneration of subcortical input might contribute to
cortical synapse loss,13±15,20,21,29,35 most of the synaptic
loss in the neocortex might derive from loss of cortico±
cortical associational ®bres,330,446,501,503,542 i.e. from ®bres
arising in brain areas that normally retain a high structural
potential in the adult brain.

AD is a slowly progressing disorder apparently
preceded by a clinically silent period of several years
or even decades. Similarly, synaptic degeneration is a
slow process progressing from an initially reversible
functionally responsive stage of down-regulation of
synaptic function to stages irreversibly associated by
marked synapse loss.629 Recent ®ndings of a deregulation
of proteins involved in structural plasticity of axons and
dendrites309,372,461,520 as well as results of computational
studies308,329 indicate a failure of local neuronal regula-
tory mechanisms of synaptic plasticity and make a
primary disturbance of synapse turnover very likely.

This assumption is further supported by alterations
in the composition59,275,476,744 and ¯uidity of mem-
branes211,678,840,841 as well as by direct morphological
evidence of a disturbed axonal and dendritic remodelling
(see Table 1).

As opposed to the continuous growth during age-
ing,97,223 both axonal and dendritic proliferation in AD
is restricted to certain cell types and stages of the
disease20,22,34 and is aberrant with respect to their locali-
zation, morphological appearance,16,18,36,37,215 and com-
position of cytoskeletal elements.470 Dystrophic neurites,
mainly dendritic but occasionally also axonal in
origin,267,615 form a constant component of AD pathol-
ogy. These neurites were originally regarded as aberrant
sprouts by Fischer220 (Fig. 5) and Simchowicz,701 an
assumption supported more recently by Golgi
studies,37,214,215,345,667 ultrastructural evidence585 and the
accumulation of growth-associated proteins, such as GAP-
43, MARCKS, and spectrin, synaptic/axonal proteins and
cytoskeletal proteins.143,245,248,249,412,488,490,494,497,498,504,505,653

Aberrant sprouts can be detected rather early in AD,345

apparently precede tangle formation and occur even with-
out massive neuronal loss.18,740 They might, thus, repre-
sent an event of primary signi®cance, inherent to the
pathomechanism rather than a response triggered by
ongoing degeneration.247,494,501
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Fig. 4. The presence of the ApoE 14-allele, a risk factor for AD, is
associated with a decrease in the neuroplastic capacity (de®ned as the
ratio of dendritic growth versus neuronal loss) of cortical pyramidal

neurons. (Modi®ed after Ref. 34.)



2.3. Replay of developmental mechanisms as an endstage
of a slowly progressing ªmorpho-dysregulationº

2.3.1. Re-expression of developmentally regulated
genes. The aberrant neuritic growth in AD, as a likely
indication of defect synapse turnover, is accompanied by
microtubular reorganization414,470 associated with the
re-expression of a number of developmentally regulated
proteins involved in morphoregulation, in particular cell-
adhesion proteins such as PSA-NCAM371,520 and cyto-
skeletal proteins such as the fetal form of alpha-tubulin
and MAP5 (MAP1B)17,23,24,87,250,262,305,382,538,808 (see
Table 8).

MAP1B is the ®rst MAP to be detected in the develop-
ing nervous system where its expression, particularly of
its phosphorylated isoform (MAP1B-P), is associated
with axonal growth.273,469 Expression becomes down-
regulated postnatally507 and in the adult brain remains
at relatively high levels only in regions that retain a
capacity for structural plasticity.568 There its distribution
closely follows that of the embryonic PSA-NCAM rich in

polysialic acid,74 a developmentally regulated molecule
involved in neurite growth and synaptogenesis,151,553,680

suggesting that both molecules, overexpressed in AD,
might play a role in structural remodelling of the adult
brain.568

The notion of a replay of developmental mechanisms
in the pathomechanism of AD is supported further by the
occurrence of fetal-type post-translational modi®cations
of cytoskeletal proteins that involve a particular develop-
mentally regulated pattern of phosphorylation (see Table
8 and below).

Evidence indicating that the formation of abnormal
growth pro®les might be associated with an aberrant
and elevated expression of growth factor receptors,200,552

that precede neuro®brillary degeneration,18 prompted us
to suggest a sequence of events leading to neuronal
degeneration and cell death in AD.12

This hypothesis proposes that it is the process of
continous synaptic reorganization that becomes defective
in AD. In this pathogenetic process, a subset of neurons
retaining a high degree of plasticity and which are
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Table 7. Synaptic alterations in Alzheimer's disease

Loss of molecular components of presynaptic plasma membranes

SNAP-25
Syntaxin 1/HPC-1
References: 130, 159, 174, 696

Loss of molecular components of synaptic vesicles

Synaptotagmin
Synaptobrevin
Synaptophysin
Synapsin I
rab3a
p65
SV2
Clathrin assembly protein AP180
References: 68, 92, 94, 108, 159, 160, 296, 300, 313, 314, 327, 434, 455, 457, 489, 504, 505, 588, 658, 696, 748, 790, 795, 818, 829, 830

Loss of molecular components of postynaptic membranes

Neurogranin
Drebrin E and A
References: 116, 159, 301, 309

Morphological changes of synapses

Synaptic number in cortical regions is reduced by 30±50% while synaptic contact length is increased
The synapse-to-neuron ratio is decreased by about 50%
Density of neocortical synapses inversely correlates with mental dysfunction
References: 2, 60±62, 168, 169, 533, 662±666, 719, 757

Brain imaging

Iodine-123 iomazenil (a speci®c tracer for the GABAA receptor, the dominant inhibitory synapse of the brain) as a measure of loss of synapses shows
a reduced cortical distribution volume

Reference: 717

EEG

Cordance and coherence, two quantitative EEG measures, allow non-invasive assessment of regional brain dysfunction associated with disturbances
in synaptic connectivity in AD

Reference: 138



presumably in a ªlabile state of differentiationº, are
forced into a condition of dedifferentiation that is char-
acterized by an expression of developmental regulated
genes, post-translational modi®cations, and an accumu-
lation of gene products to an extent that goes beyond
those observed during regeneration. This replay of
developmentally mechanisms might be the endstage of
disturbed structural brain self-organization and a slowly
progressing ªmorpho-dysregulationº. This process of
dedifferentiation involves molecular events that, in divid-
ing cell populations, would lead to cellular transforma-
tion and is, thus, not compatible with the state of a neuron
being irreversibly blocked from the re-entry into the cell
cycle. It might, therefore, lead to neuronal death. From
this hypothesis it can be predicted that those molecular
events that are involved in neoplastic transformation
might also play a key role in the pathomechanism of
AD.315 These mechanisms are notably a dysfunction of
mitogenic signal transduction and cell-cycle control.

2.3.2. Mitogenic signal transduction in Alzheimer's
disease. 2.3.2.1. Protein phosphorylation. The presence
in the AD brain of growth-associated proteins, such as
GAP-43, MARCKS, spectrin, heparan sulfate, laminin,
NCAM, various cytokines and neurotrophic factors such
as NGF,137,153,200 bFGF,265,388,732 EGF,67,739 IL-1,104 IL-
2,337 IL-6,201 IGF-1,136 IGF-2,760 PDGF444 and HGF/
SF210 as well as growth factor receptors18 might be an
indication of an increased trophic force particularly
pronounced within the microenvironment of plaques
(see also Table 1).

Mitogenic effects of these compounds are intracellu-
larly mediated by a hierarchy of phosphorylation signals.
These mechanisms of protein phosphorylation and
dephosphorylation are normally involved in the regula-
tion of neuronal plasticity673,763 and, therefore, are essen-
tial to the basic processes of adaptive changes in the
CNS. In AD, these phosphorylation processes are criti-
cally impaired263,653 and might provide a link between
disturbed mitogenic signalling, aberrant neuroplasticity,
deregulation of cell-cycle control and cell death.

The cytoskeletal protein tau, the major component of
PHF, may play a central role in the pathological cascade
since tau can act as a link that transduces the trophic
signal into cytoskeletal rearrangement, which might
partly be responsible for the dendritic sprouting. Further-
more, tau in its hyperphosphorylated, aggregated form
(PHF-tau) might disturb neuronal viability by interfering
with axonal transport. However, a moderate elevation of
the expression and phosphorylation state of tau has been
associated with neuroprotection against apoptotic cell
death.25,26,202,444,524,558,819 Tau protein is more highly phos-
phorylated during mitosis.610,613 Numerous phospho-
epitopes incorporated into PHF are of a mitotic nature,
displaying a temporally restricted pattern of appearance
during M-phase in a variety of proliferating eukaryotic
cells.408,786 Those kinases that can phosphorylate tau in a
PHF-like manner such as mitogen-activated protein
(MAP) kinase,183,261 glycogen synthase kinase 3b,477

Cdc2/cyclin B1 kinase439,785 and cdk564,584 are all asso-
ciated with the cell cycle. Similarly, protein phosphatase
2A, able to dephosphorylate PHF-like tau and likely to be
involved in abnormal phosphorylation processes in
AD,25,26,261,268 is cell-cycle regulated.716

2.3.2.2. The small G-protein p21ras. Proliferative
and growth-stimulating effects of a number of growth
factors that are elevated in early stages of AD are
mediated by the activation of the MAPK pathway,
which is also involved in modulating the expression
and post-translational processing of APP and tau
protein.141,173,281,523,651 The activation of cell surface
receptors of trophic and mitogenic factors is relayed to
the downstream MAPK cascade by the small G-protein
p21ras.

In mammalian cells, the p21ras gene product is
encoded by a family of ras proto-oncogenes that include
at least three functional loci, H-ras, K-ras and N-ras.695

Binding of the neurotrophins to tyrosine kinase receptors
(trk) converts p21ras from its inactive, GDP-bound, to
active, GTP-bound, state. GTP-bound p21ras recruits
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Fig. 5. In 1907 Oskar Fischer published a detailed description on the
histopathology of senile dementia apparently not being aware of the
somewhat earlier description by Alzheimer where he clearly regarded
the thickened neurites seen in the periphery of plaques (Fig. 4 of Ref.
220; marked by c and b) as growing and aberrantly formed new

neurites.



raf-kinase from the cytoplasm to the plasma membrane,
where it is activated.730 Raf-kinase phosphorylates and
activates the mitogen-activated protein kinase kinase
(MAPKK) leading to the activation of the mitogen
activated protein kinase (MAPK). During brain
development, p21ras is involved in the regulation of
the G0/G1 transition of the cell cycle and might, thus,
be a critical regulator for cellular proliferation and
differentiation.75,76,156,212,747 In the adult nervous system,
p21ras plays a role in reactive dendritic proliferation and
neosynaptogenesis595 that occurs in response to injury.

In early stages of AD, p21ras is already highly
expressed in vulnerable brain areas prior to its affection
by neuro®brillary degeneration, which makes a primary
involvement in the pathomechanism very likely.238 In
more advanced stages of the disease, both neurons
containing tangle-bearing material and neurons not

affected by neuro®brillary degeneration as well as glial
cells closely associated with plaques show a high expres-
sion239 (see Fig. 6).

2.3.2.3. Nitric oxide and the process of self-perpetuation
of neurodegeneration. p21ras is also activated by nitric
oxide (NO) and intermediates generated through oxida-
tive stress.826 Thus, NO might be a key mediator linking
cellular activity to gene expression and long-lasting
neuronal responses through activating p21ras by redox-
sensitive modulation.164 In AD, nNOS, the neuron-
speci®c NO synthesizing enzyme is aberrantly expressed
in potentially vulnerable neurons of the isocortex and
entorhinal cortex. Since these neurons express nNOS
prior to their affection by neuro®brillary degeneration,463,465

transcriptional induction of nNOS might be an early
event in the process of neurodegeneration.
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Table 8. Replay of developmental mechanisms in Alzheimer's disease

Re-expression of fetal proteins

Fetal Alz-50 clone 1 (FAC1), a DNA binding protein and transcriptional regulator
Embryonic alpha-tubulin
Embryonic beta-tubulin
hnRNP
Protein l-isoaspartyl methyltransferase (PIMT)
Ferritin heavy chain
Type IV collagen
Actin-binding protein co®lin
Pro®lin
C-series gangliosides
References: 83, 250, 370, 407, 538, 750, 808

Fetal-type phosphorylation of tau

Fetal tau shares many phosphoepitopes with PHF-tau, i.e. hyperphosphorylation of PHF-tau can be considered to consist of fetal-type
phosphorylation and additional proline-directed and non-proline-directed phosphorylation

Tau on Ser 262, a phosphorylation site within the ®rst microtubule-binding domain that is phosphorylated in fetal tau, adult tau and PHF-tau is
phosphorylated by a developmentally regulated 100,000 mol. wt protein kinase exhibiting signi®cantly greater activity in the embryonic rat
brain than in the adult rat brain

PHF-1 immunoreactivity in the developing nervous system is associated with early stages of axon formation, both in vivo and in vitro, indicating an
association between axon growth and formation of the PHF-1 epitope

References: 87, 90, 263, 306, 358, 382, 396, 442, 539, 609, 685

Re-expression and post-translational modi®cations of other fetal MAPs

Microtubule-associated protein MAP5�MAP1B (the ®rst MAP to be expressed in neurons and with an important role in neurite outgrowth)
showing a fetal phosphorylation pattern is present in dystrophic neurites of senile plaques, neuro®brillary tangles and neuropil threads as well as
neurons not yet affected by neuro®brillary degeneration

References: 247, 305, 366, 750, 776

Re-expression of neuronal thread protein

Neuronal thread proteins (NTP) are a family of phosphoproteins expressed in neuroectodermal tumour cell lines and in the brain during neuritic
sprouting. The 15,000±21,000 mol. wt NTP cluster is associated with development and neuronal differentiation, whereas the 21,000 and 39,000±
42,000 mol. wt species are overexpressed in AD, correlating with neurodegenerative sprouting and synaptic disconnection

References: 170, 814

Re-expression of cell-cycle-related proteins and formation of mitosis-speci®c epitopes

Expression of proliferation-associated proteins: p105, Ki-67, PCNA in variable subsets of neurons
Formation of mitotic speci®c phosphoepitopes in potentially vulnerable neurons prior to neuro®brillary degeneration
Association of PHFs with mitotic speci®c phosphoepitopes
Re-expression and deregulation of cyclin-dependent kinases: cdk1, cdk4, cdk5
Re-expression of cyclins D, E, B, A in variable subsets of neurons prior to neuro®brillary degeneration
Re-expression of cyclin-dependent kinase inhibitors p16INK4a, p15INK4b, p18INK4c, p19INK4d, p21Cip1, p27Kip1

References: 27, 28, 31, 33, 100, 408, 471, 493, 559±561, 709, 710, 785±787



nNOS was originally thought to be a constitutively
expressed enzyme. It becomes increasingly clear now,
however, that its levels are dynamically regulated in
response to neuronal development, plasticity and
injury.164,165,225 The transcriptional induction of nNOS
that is controlled by neurotrophins and other growth
factors,322,592,605 is in turn involved in regulating the
expression of immediate-early genes in neurons,540

thereby controlling neuronal growth and differentia-
tion319,591,592 and might thus be part of the neuronal
reparative/regenerative response to injury.

NO may play a major role in nervous system
morphogenesis and plasticity and may be involved in
activity-dependent establishment of connections in both
developing and regenerating neurons.164,464,648,714,812,817,825

Under developmental conditions, NO may trigger growth
arrest, a process that at least in certain cell types, might
involve inhibition of cdk2, a key regulator of the G1 and S
phases of the cell cycle (see below). These antiprolifera-
tive effects of NO involve the repression of cyclin A re-
expression as well as an induction of the cyclin-
dependent kinase inhibitor p21Cip1.242,349,605 The high
degree of co-expression of nNOS with p16INK4a,465 indi-
cates that further regulators of the G1±S-transition might
be involved in the NO-induced cell-cycle arrest or that
additional mechanisms of proliferation and differentia-
tion regulating mechanisms are activated in parallel in
the course of neurodegeneration in AD. Thus NO serves
as an inducer of cell-cycle arrest, initiating the switch to
cytostasis during differentiation,164,422,592 a process that
can alternatively lead to apoptosis.242

Although the molecular mechanism for the control
of NO in proliferation, differentiation, cellular survival
and death is not understood in detail, recent evidence
indicates that activation of p21ras, a potential endogen-
ous NO-redox-sensitive effector molecule, is critically
involved.428,430,826 p21ras is essential for NO downstream
signalling and endogenous NO can activate p21ras in the
same cell.429 Activation of the p21ras-dependent MAP-
kinase cascade by NO may be mediated by direct acti-
vation of ras-GTPase activity.428,429,546 NO-dependent
activation of p21ras may also mediate activity-dependent
survival of immature cortical neurons.269

As expression of nNOS in AD is highly co-localized
with p21ras,465 an autocrine loop may exist within cells,
whereby NO activates p21ras that in turn leads to cellular
activation and stimulation of NOS expression.430 The co-
expression of NOS and p21ras in neurons vulnerable to
neuro®brillary degeneration early in the course of AD
clearly provides the basis for a feedback mechanism

that might exacerbate the progression of neurodegenera-
tion in a self-propagating manner (see Fig. 6). This self-
perpetuation of a process likely to be associated with
limited prospects of physiological control and termina-
tion might be the critical switch converting two poten-
tially neuroprotective mechanisms such as NO208,269 and
p21ras321 dependent signalling into a disease process lead-
ing to slowly but continuously progressing neuronal death.

2.3.2.4. Mitogen-activated protein-kinase cascade.
The MAPKs or extracellular signal regulated kinases
(ERKs) and MAPKK or MAP/ERK kinase (MEK) belong
to a group of protein kinases which is highly conserved
from yeast to vertebrates.81 They are key molecules in
signal processing that become activated in response to a
wide variety of reagents. Among these are tumour promo-
tors, interleukins, growth factors whose receptors are tyro-
sine kinases, mitogens whose receptors couple to
heterotrimeric guanine nucleotide binding proteins (G
proteins), and agents that induce N-methyl-d-aspartate
receptor activation.80,587 When activated, ERKs rapidly
phosphorylate targets that lead to changes in kinase
cascades, protein function or gene expression. Effectors
include Ser/Thr kinases (pp90rsk, MAPK-activated
protein kinase-2 and 3p-kinase), transcription factors
(Elk-1, c-Myc, c-Jun, NF-116 and ATF-2) and structural
proteins (talin, microtubule-associated proteins and
lamins).122,123,218,453,617,681,686

The MAP kinase, referred to as p42 or ERK2183,261 and
perhaps other members of the MAPK family are able to
phosphorylate recombinant tau in vitro and convert it to a
form which is similar to PHF tau.

In AD, the expression of both MAPKK and MAPK is
increased.30 Elevation of both kinases is most pro-
nounced during early stages of the disease and is inversely
related to the tissue content of abnormally phosphorylated
PHF-tau.30 Pronounced immunoreactivity of MAPKK
and MAPK is present in potentially vulnerable neurons
still unaffected by neuro®brillary degeneration as well as
in tangle-bearing neurons that are likely to be metaboli-
cally highly compromised. The subcellular translocation
of MAPK from the cytoplasmic to the nuclear compart-
ment provides additional evidence for an activation of
this signal pathway in the pathomechanism of AD30,481

(see Fig. 6).
A protein that has recently been suggested to partici-

pate in cell transformation and mitogenic signalling
pathways is the 14-3-3 protein.541 The 14-3-3 protein
interacts with the Raf-kinase, a component of the
MAPK cascade, as well as with other proto-oncogenes
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Fig. 6. Schematic illustration of the intracellular signalling events triggered by morpho-dysregulation in AD that involve an aberrant
activation of p21ras/MAP-kinase signalling, a loss of differentiation control, the subsequent re-entry and partial completion of the
cell cycle and eventually result in cell death. The immunohistochemical localization of major molecular components involved in
these processes is shown in insets. Upper left panels: Elements of the p21ras/MAP-kinase cascade. p21ras is highly expressed in
potentially vulnerable neurons prior to PHF formation, in tangle-bearing neurons and plaques. The high expression of B-Raf and p
14-3-3 is associated with PHF formation. MAPKK (MEK) and MAPK (ERK1/2), localized to the cytoplasm and not found in nuclei
in control brain, are subcellularly translocated to nuclei in AD (arrows) indicating an activation of these kinases prior to PHF
formation. Upper right panel: Aberrant expression of nNOS. nNOS is ectopically expressed in potentially vulnerable pyramidal
neurons prior to PHF formation. Lower panels: Regulators of the activation and orderly progression through the cell cycle. Cell cycle
associated proteins are highly expressed in potentially vulnerable neurons in AD prior to PHF formation. In more advanced stages of

the disease, they are associated with PHFs. Scale bars� 20 mm.
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and oncogene products, thereby modulating these signal-
ling proteins. The 14-3-3 proteins represent a highly
conserved family of dimeric proteins that are widely
distributed among eukaryotic cells. At least seven
isoforms have been identi®ed in mammalian tissue.
They are remarkably abundant in the brain where they
constitute about 1% of the cytosolic protein. In AD,
expression of 14-3-3 protein is increased, closely asso-
ciated with neuro®brillary tangles and dystrophic neur-
ites within neuritic plaques237 (see Fig. 6).

2.3.3. Loss of cell-cycle control and dedifferentiation
in Alzheimer's disease. The data presented above suggest
that the activation of the p21ras/MAPK cascade that plays
an essential role in transmitting proliferative responses is
also involved in early steps of the pathomechanism of AD.
The induction of cell proliferation by MAP kinase has been
shown to be a direct result of increased transcription of
many immediate-early genes121,684 including cyclin D1.
In transforming cells, moreover, p21ras is involved in the
regulation of the G0/G1 transition of the cell cycle mediated
through cooperation with cyclin D1.

Expression of cyclin D1, a critical regulator of the
transition from the G0 to the G1 phase of the cell cycle
1,436 that acts through activation of cdk4, is increased in
neurons prone to neurodegeneration in AD.31,100 Cyclins
other than D1 such as cyclins E and A involved in
regulation of G1±S-transition as well as cyclin B regu-
lating G2±M-transition31,559,709,785 are also elevated (see
Fig. 6).

Several cyclin-dependent kinases critical for the pro-
gression through the cell cycle403 such as cdk1 (cdc2),
cdk4 and cdk5 are deregulated in AD.64,100,439,561,584,785

The cdk1 (cdc2) kinase is able to phosphorylate tau protein
at sites known to be phosphorylated in AD401,439 (also see
Section 2.3.2.1). APP, furthermore, is phosphorylated both
in vitro and in intact cells by a cdk1 (cdc2)-like kinase in a
cell cycle-dependent manner which is associated with
altered production of potentially amyloidogenic fragments
containing the entire b/A4-domain.743

Activation of cyclin-dependent kinases is nega-
tively regulated by proteins of the cyclin-dependent
kinase inhibitor (cdki) family which bind directly to
cdk4/6 or to complexes of cdk4/6 with D-type
cyclins.66,71,140,290,299,324,682,690 Cyclin-dependent kinase
inhibitors can be classi®ed into two groups based on
the structure of the protein. One group, the INK4 family,
includes p16INK4a, p15INK4b, p18INK4c and p19INK4d which
have an ankyrin repeat motif. The p21Cip1 and p27Kip1,
which contain a homologous amino-terminal cyclin-
dependent kinase inhibitory domain, belong to the
other group.66,71,698 The INK4 family of cyclin-dependent
kinase inhibitors might be involved in the regulation
of pathways that control cell growth and proliferation as
well as cell death. Deregulation of these cdki-proteins results
in either uncontrolled proliferation and neoplastic transfor-
mation or activation of apoptosis. Recent studies demon-
strate that activation of endogenous cyclin D1-dependent
kinases is essential during neuronal apoptosis.231,416,456

A prominent representative of the INK4 family is
p16INK4a.682 Recent evidence implicates the p16INK4a

protein in pathways for control of cell growth and
proliferation and demonstrates that p16INK4a can function
as a tumour suppressor protein to G1-arrest cells.106,381

p16INK4a apparently inhibits cdk4 by binding in competition
with cyclin D.682 Malignant cellular transformation
has been shown to produce major changes in the modula-
tion of the cyclin-cdk complexes by associated cdki-
proteins such as p16INK4a. A recent study416 clearly
shows that the overexpression of the cyclin-dependent
kinase inhibitor p16INK4a protects neurons from apoptotic
cell death.

In AD, we observed an increased expression of
p16INK4a and other members of the INK4 family of the
cyclin-dependent kinase inhibitors interacting with cdk4/
6 such as p15INK4b, p18INK4c and p19INK4d that was closely
related to neuro®brillary tangles and neuritic components
of plaques, while alterations of p21Cip1 and p27Kip1 were
less constant.27,28,33

The induction of the proto-oncogene p21ras239 and
cyclin-dependent kinase inhibitors of the INK4 family27

in AD is paralleled by experimental in vitro studies on
primary human or rodent cells showing that expression of
p21ras induces p16INK4a and subsequently results in a
permanent G1 arrest. This G1 arrest induced by p21ras
and accompanied by accumulation of p16INK4a is pheno-
typically identical to premature cellular senescence.683

Expression of dominant-inhibitory p21ras, furthermore,
can rescue neuronally differentiated PC12 cells from
death caused by NGF withdrawal, implying a relation-
ship between proliferative capacity and cell death.212 We
have shown previously that a high capacity of structural
neuronal plasticity in the adult brain might predispose
neurons to tangle formation in AD.20,22 This high poten-
tial of neuroplasticity associated with the necessity of
synaptic turnover and reorganization might require prop-
erties inherent to both growth cones and synaptic connec-
tions.593 These neurons might, thus, retain ªimmatureº
features and might not be ªfully differentiatedº, i.e.
arrested in G0, an assumption supported by recent ®nding
on the expression of cyclin B and E in hippocampal
neurons of healthy elderly subjects.559,709

It is, therefore, suggested that the re-expression of
developmentally regulated genes, the induction of post-
translational modi®cations and accumulation of gene
products to an extent which goes beyond that observed
during regeneration and the aborted attempt of ªdiffer-
entiatedº neurons to activate the cell cycle, which appar-
ently is a critical event in the pathomechanism of
AD,12,27,28,31,34,100,357,471,492,559±561,709,710,785±787 is due to a
loss of differentiation control that normally is involved
in the regulation of neuronal plasticity.

It might, thus, be a ªlabile ®xationº of plastic neurons
in G0 which allows for ongoing morphoregulatory
processes after development is completed. The delicate
balance, however, between G0 arrest and G1 entry
might be prone to a variety of potential disturbances
during the lifetime of an individual. Morphodysregula-
tion in AD, accompanied by aberrancies in intracellular
mitogenic signalling might, thus, be a slowly progressing
dysfunction that eventually overrides this differentiation
control and results in de-differentiation, a condition in
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con¯ict with the otherwise ªmatureº background of the
nervous system. Cell-cycle and differentiation control
might thus provide the link between structural brain self-
organization and neurodegeneration,12,315 both of which in
the human brain have reached a phylogenetic level unique
in nature.
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