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Abstract— We investigate the fundamental performance limits
of target localization, where a network of sensors observe and
cooperatively estimate the 2D location of a target. Taking a
general view of a sensor as any device whose observations depend
statistically on target position, we consider the binary hypothesis
testing problem of choosing between the correct target location
and an incorrect location at a distance r from it, given the outputs
of all sensors in the network. By considering a random placement
of sensors in an infinitely large sensing area, we obtain upper
and lower bounds on the error probability of this hypothesis
testing problem. The error bounds depend only on the type of
sensor and are independent of the detailed geometry of the sensor
network deployment. This provides a compact comparison of the
localization performance of sensors whose characteristics might
differ widely (e.g., received signal strength, proximity and time
of arrival sensors). Also the bounds decrease exponentially with
the density of sensors, and the rate of decrease is shown to have
a simple geometric interpretation.

I. INTRODUCTION

We consider the problem of (2D) localization where a

network of sensors collaborate to estimate the location of a

target within a sensing region. Any device whose observation

depends on the target position can be used as a localization

sensor. The accuracy of localization depends on the number

of sensors available, the geometry of the sensor network,

and on the quality of each sensor’s observation. For instance

localization accuracy can be improved by using a more densely

deployed sensor network, or by using less noisy sensors. In this

paper we use an information-theoretic approach to quantify

this relationship.

We assume a general sensing model where the sensors

are specified only by the conditional probability distribution

Pr(y|~s) of the sensor observation y given the location ~s of

the sensor relative to the target. Our approach is based on

the following simple binary hypothesis testing problem that

is related to localization. Given a set of noisy sensor obser-

vations, we want to choose between two candidate locations

O: the correct target location, and X: a point located distance

r away from the correct location. Our key insight is that this

problem is analogous to the problem of communicating one
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of two codewords through a noisy channel; randomizing the

sensor placement is equivalent to picking random codewords,

and increasing the area of the sensing region is equivalent to

increasing the block-length of the codewords. This analogy

allows us to use standard information-theoretic techniques

to compute bounds on the probability Pr of choosing the

error hypothesis X. Furthermore, because of our assumptions

of random sensor placement and large sensing region, the

bounds are completely independent of the detailed geometry

of the sensor network, and thus provide a simple benchmark

for comparing the localization accuracy of different types of

sensors.

The upper-bound on Pr assumes the simple form e−λAr

where λ is the density of deployment of the sensors, and

Ar depends only on Pr(y|~s). The coefficient Ar has the

dimensions of area, and we show that it has a simple geometric

interpretation as the effective coverage area of a sensor for

a desired accuracy r of localization. Intuitively, smaller Pr

indicates better localization accuracy.

Related Work. An extensive literature exists on the theory

of localization as well as on algorithms for its implementation

in sensor networks1. This literature is surveyed in [2], and

covers a wide range of sensing modalities include RF, acoustic,

infrared and video signals, from which various attributes of the

target position can be estimated such as range, connectivity,

time of arrival (TOA), angle of arrival (AOA) and so on

[3], [4]. A virtual radar approach to localization was recently

proposed in [5] which uses a combination of TOA and AOA

modalities. In [6] it was shown that many of these modalities

can be conveniently abstracted as proximity or received signal

strength (RSS) observations.

The authors in [6] also analyze the accuracy of localization

using the Cramer-Rao bound and by experimental measure-

ments for quantized and unquantized RSS sensors. Specifically

it is shown that errors increase with the degree of RSS

quantization (as expected from intuition) and are about 50%

higher with proximity sensors as compared to unquantized

1Some of the sensor network literature is concerned with the problem
of self-localization, where the sensing nodes cooperatively learn their own
position using their observations of each other [1] and a small number of
known reference positions or “anchors”; this can be considered as a variation
of the target localization problem considered in this paper, and is subject to
similar limits on localization accuracy.



RSS sensors. A similar analysis of quantized RSS sensors

using the Cramer-Rao bound and simulations is presented in

[7]; however the authors in [7] use a different fading model for

the RSS and obtain a larger increase in localization error with

quantization as compared to [6]. Localization using ideal prox-

imity sensors was studied in [8] using geometric arguments,

and it was shown that for a densely deployed network of such

sensors the overall localization error is inversely proportional

to both the detection range and the sensor density.

In all of these works, the analysis is closely tied to specific

types of sensors, and cannot be easily generalized. The authors

in [9] propose a Bayesian Bound for the localization error

which is simpler to derive compared to the Cramer-Rao bound.

Using this bound, the authors show that for TDOA sensors,

good localization accuracy can be achieved within the area

defined by the convex hull of the sensor locations. The analysis

in [9] uses the notion of an optimum sensor observation,

defined as the measurement corresponding to a given target

position, that would be obtained in the absence of noise. In

general this introduces a degree of arbitrariness in identifying

the “noise” component of the observation. A hypothesis testing

model for localization was first proposed in [10].

Outline. The rest of the paper is organized as follows. In

Section II we outline our mathematical model for sensor net-

work localization, and illustrate the model using the examples

of proximity, RSS and quantized RSS sensors. We derive upper

and lower bounds on the probability of localization error using

a Chernoff bound approach in Section III. Some results based

on these bounds, specialized to proximity and RSS sensors,

are presented in Section IV. Section V concludes with a short

discussion of open issues.

II. MATHEMATICAL MODEL FOR LOCALIZATION

Consider a target located in a field of N identical sensors.

In order to avoid edge effects, we assume a very large sensing

area. Without loss of essential generality we take the target

position as the origin, and the sensing area CA as a circle of

radius RA centered at the origin. Thus λ
.
= N

πR2

A

is the density

of sensors. Each sensor makes a random observation whose

distribution depends on the position of the sensor relative

to the target. Denoting the position of sensor i by ~si and

its observation by yi ∈ Y , the sensing model is completely

specified by the sensing function fs(y,~s)
.
= Pr(yi = y|~si =

~s). Each sensor’s observation is conditionally independent of

other sensors observations given their locations relative to the

target. We denote the outputs of all the N sensors in the

network by ȳ
.
= [y1, y2, . . . , yN ], and their locations by

S̄
.
= [~s1, ~s2, . . . , ~sN ].

A. Examples of localization sensors

We now introduce two simple sensing models that we will

use to illustrate our ideas in the rest of the paper. Both of

our examples are isotropic sensors whose observations depend

only on distance from the target and not on its direction i.e.

fs(y,~s) depends only on |~s|. This makes such sensors easier to

visualize, however our results in this paper do not require this

property and apply to both isotropic and non-isotropic sensors.

One important non-isotropic sensor of significant practical

importance is the Angle of Arrival (AOA) sensor [11].

(a) Ideal sensor: always de-
tects a target inside unit
circle, and never detects a
target outside.

(b) Non-ideal sensor:
has a non-zero prob-
ability of detection in
the annulus.

Fig. 1. Binary proximity sensors.

1) Binary proximity sensor. This type of sensor is a

detection sensor that outputs a ‘1’ when its observation

indicates the presence of a target in its coverage area

and a ‘0’ otherwise. This sensor is fully specified by its

detection function fs(1, s) ≡ Pr(y = 1||~s| = s).
The ideal binary proximity (IBP) sensor always detects

a target located within a unit distance i.e. |~s| ≤ 1, and

never detects a target outside this range. We use this

simple sensor extensively in this paper to gain intuition;

it plays the same role in our analysis that the error-

free binary symmetric channel does for understanding

channel capacity. The IBP sensor is illustrated in Fig.

1(a). A non-ideal binary sensor is shown in Fig. 1(b);

this sensor always detects a target within a distance 1−α,

never detects a target at a distance greater than 1, but

has an “uncertain” region where a target at a distance

between 1 − α and 1 may be detected with a non-zero

probability.

2) RSS sensor. This type of sensor measures the received

signal strength (RSS) of an incoming signal from the

target to estimate distance from the target. For an RF

wireless signal, assuming Line of Sight (LoS) transmis-

sion the received power varies according to the inverse

square law with distance. The sensor observation can be

written as

y =
∣

∣

∣

A

|~s|
+ n

∣

∣

∣
(1)

where n is a (complex) AWGN. According to (1), the

sensor observation y follows a Rician distribution. It

is possible to modify this model to take into account

other impairments such as multi-path and fading effects;

however these modifications do not introduce anything

conceptually different to the analysis. In this paper

we restrict ourselves to the simple RSS sensor given

by (1), and the quantized RSS (qRSS) sensor where

the observation y is quantized into a finite number of



possible levels. The noiseless outputs of the RSS and

qRSS sensors are illustrated in Fig. 2. Note that the

binary proximity sensor can be considered as a special

case of the qRSS sensor.

0 2

0

1

|s|

y

RSS

4−level qRSS

Fig. 2. The observations of an unquantized and a 4-level quantized RSS
sensor in the absense of noise plotted against distance |~s| from target.

III. BOUNDS FOR LOCALIZATION ERROR

We illustrate the analysis by first considering the special

case of the ideal proximity (IBP) sensor. We start with

brief review of the following derivation that was originally

presented in [8].

A. Localization performance of ideal proximity sensors

When a target is detected by an IBP sensor, it can be inferred

that its location is somewhere within the sensor’s coverage

area i.e. inside a circle of unit radius centered at the sensor’s

location. Similarly when a target is not detected by an IBP

sensor, its location must be somewhere outside of the sensor’s

coverage area. Given the outputs of all the sensors in the

network, we can narrow down the possible locations for the

target to a localization patch which consists of the intersection

of the coverage areas of all detecting sensors, excluding the

coverage areas of all non-detecting sensors. In effect the N

unit circles representing the coverage areas of the N sensors

in the network divide the entire sensing area into a set of

localization patches. These patches are illustrated in Fig. 3(a).
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(a) IBP sensors divide the
sensing region into localization
patches denoted as P1, P2 etc.

(b) The area Ar represents the
set of possible locations for IBP
sensors that will result in correct
localization of a target at O.

Fig. 3. Localization using ideal binary proximity (IBP) sensors.

The size of the patches determines the localization accuracy

of the network. In general the patches can be irregular in shape

depending on the sensor placement. If the sensor placement

is random, the size of the patch containing the target location

(i.e. the origin O) is also random. Consider a point, X located

at a distance r from the origin in an arbitrary direction, say

the X-axis. The width of the localization patch containing the

target is at least as large as r if the same set of sensors detect

both O and X. Let us denote this event by Er and its probability

by Pr. Event Er happens if and only if there is no sensor that

detects O but not X or vice versa, i.e. there are no sensors in

the area Ar in Fig. 3(b).

Under random placement, the number of sensors Nr in Ar

follows Poisson statistics with mean λAr, where we recall λ

is the density of sensor deployment. We can now express the

probability Pr in terms of the angle2 α = arcsin
(

r
2

)

defined

in Fig. 3(b):

Pr
.
= Pr(Er) ≡ Pr(Nr = 0) = e−λAr

where Ar = 2α + sin(2α) (2)

Equation (2) can be considered as a lower-bound on the

complementary cdf of the width of a localization patch for a

network of IBP sensors. However the concept of a localization

patch is unique to this type of sensor because its coverage

area has a hard boundary. For other types of sensors this

definition needs to be generalized. We do this next based

on the insight that the random sensor placement considered

above is analogous to choosing random code-words for a

communication channel.

B. Generalization to arbitrary types of sensors

We first need to generalize the definition of Er. Given

two candidate target locations O and X, we define Er as

the event that a target located at the origin O is incorrectly

localized to X. For the IBP sensor, the sensor observations

are deterministic given the sensor positions S̄ relative to the

target. In a network of IBP sensors, for a given fixed placement

of all the sensors, Pr(Er) is either 0 or 1 depending on

whether there is at least one sensor in the region Ar in Fig.

3(b) or not. In contrast, the observations of non-IBP sensors

are, in general, random (noisy) and we need to specify a

decoder. We consider the ML decoder where we choose O

if Pr(ȳ|O, S̄) > Pr(ȳ|X, S̄), and X otherwise. Note that

P (ȳ|O, S̄) = Pr(ȳ|X, S̄) results in error for this decoder, i.e.

{ȳ : P (ȳ|O, S̄) = Pr(ȳ|X, S̄)} ⊂ Er.

Equation (2) can be interpreted as computing Pr(Er) for

a large number of fixed placements S̄ and then taking an

average. With this interpretation we can extend the analysis

of Section III-A to arbitrary types of sensors. Since the sensor

outputs are conditionally independent of each other, we have

Pr(ȳ|O, S̄) =

N
∏

i=1

Pr(yi|O,~si) =

N
∏

i=1

fs(yi, ~si)

Pr(ȳ|X, S̄) =
N
∏

i=1

Pr(yi|X,~si) =
N
∏

i=1

fs

(

yi, (~si − ~x)
)

(3)

2The angle α is undefined when the two circles in Fig. 3(b) do not intersect
i.e. when r > 2. To be consistent with later results, we simply define α to
be 90◦ for r > 2.



where ~x represents the position X. We define the following

disjoint “decoding sets”:

DO
.
=

{

ȳ : Pr(ȳ|O, S̄) > Pr(ȳ|X, S̄)
}

DX
.
=

{

ȳ : Pr(ȳ|O, S̄) < Pr(ȳ|X, S̄)
}

DXO
.
=

{

ȳ : Pr(ȳ|O, S̄) = Pr(ȳ|X, S̄)
}

(4)

We also define the error probabilities

Pe|O,S̄
.
= Pr

((

DX ∪ DXO

)
∣

∣O, S̄
)

Pe|X,S̄
.
= Pr

((

DO ∪ DXO

)∣

∣X, S̄
)

(5)

Then we have

Pr ≡ Pr(Er) = ES̄

[

Pe|O,S̄

]

(6)

Using standard Chernoff bounding techniques ([12], pp.121),

we can upper-bound Pe|O,S̄ as

Pe|O,S̄ ≤

∫

ȳ∈YN

Pr(ȳ|O, S̄)1−γ Pr(ȳ|X, S̄)γ dȳ (7)

for3 any non-negative γ. With γ = 0.5, we also have the

following lower-bound ([12], pp.127)

Pe|O,S̄ + Pe|X,S̄ ≥
1

2

(
∫

ȳ

√

Pr(ȳ|O, S̄) Pr(ȳ|X, S̄) dȳ

)2

(8)

We can now use the conditional independence of the sensor

observations to simplify these expressions. Using (3) in (7) we

have

Pe|O,S̄ ≤

N
∏

i=1

(
∫

yi∈Y

fs(yi, ~si)
1−γfs

(

yi, (~si − ~x)
)γ

dyi

)

Noting that yi is just a dummy variable of integration, we have

Pe|O,S̄ ≤
N
∏

i=1

(

1 − fr(~si, γ)
)

, ∀γ ≥ 0

fr(~s, γ)
.
= 1 −

∫

y∈Y

fs(y,~s)1−γfs

(

y, (~s − ~x)
)γ

dy (9)

By definition fr(~s, γ) ≤ 1 with equality if and only if the

support sets of fs(y,~s) and fs

(

y, (~s − ~x)
)

do not overlap

(except for a zero probability subset of Y). Further for γ ≤ 1,

we have using Jensen’s Inequality that

fs(y,~s)1−γfs

(

y, (~s−~x)
)γ

≤ (1−γ)fs(y,~s)+γfs(y, (~s−~x)
)

Therefore fr(~s, γ) ≥ 0 with equality if and only if fs(y,~s) =
fs

(

y, (~s − ~x)
)

for almost all y ∈ Y .

Note that an IBP sensor located inside the region labeled Ar

in Fig. 3(b) satisfies fr(~s, γ) = 1, and an IBP sensor located

outside Ar satisfies fr(~s, γ) = 0.

These observations lead to the intuitive interpretation of

fr(~s, γ) as the probability that a sensor located at ~s can

successfully disambiguate a target at the origin O from a

target at location X . Fig. 4 shows mesh plots of fr(~s, γ) with

3If the set of sensor observations Y is discrete, all integrals over Y should
be replaced by summations.

(a) IBP sensor.
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(b) 4-level qRSS sensor, noise vari-
ance E[|n|2] = 0.1.

Fig. 4. 3D mesh plot of fr(~s, γ) as a function of sensor location ~s with
γ = 0.5 and r = 1; the volume under this plot is equal to Ar .

γ = 0.5 for a IBP sensor and a 4-level qRSS sensor with a

small noise variance. We note the resemblance of Fig. 4(a) to

the region Ar in Fig. 3(b); specifically we see that the exponent

Ar of the localization error probability given by (2) is equal

to the volume under the mesh of fr(~s, γ) for the IBP sensor.

We now show that the same relationship holds for any type of

sensor.

C. Averaging over random sensor placements

We now bound Pr using (6), by averaging (7) and (8)

over randomized sensor placements S̄; each sensor is placed

independently at a randomly chosen position in the sensing

region, CA i.e. a circle of radius RA ≫ 1 centered at the

origin. Using (9) in (7), we have

Pr ≤ ES̄

[

N
∏

i=1

(

1 − fr(~si, γ)

]

=

N
∏

i=1

E~si

[

1 − fr(~si, γ)
]

=
(

1 − E~s

[

fr(~s, γ)
])N

, ∀γ ≥ 0 (10)

If dA(~s) is an infinitesimal area element at position ~s, the

probability that a given sensor will be placed within that area

is
dA(~s)
πR2

A

. Thus we have

E~s

[

fr(~s, γ)
]

≤
Ar

πR2
A

, where Ar
.
= max

γ≥0
Ar(γ),

and Ar(γ)
.
=

∫

~s∈CA

fr(~s, γ) dA(~s) (11)

As RA becomes large, we expect Ar

πR2

A

→ 0, because under

any reasonable sensing model, the contribution of far-away

sensors decreases with distance from the target. Using (11)

and N = λπR2
A in (10), we get in the limit of large RA

Pr ≤ lim
RA→∞

(

1 −
Ar

πR2
A

)λπR2

A

≡ e−λAr (12)

When the sensing area CA is large, there is a symmetry

between O and X, and we can show that Ar(γ) ≡ Ar(1 −
γ), ∀γ ∈ (0, 1). Furthermore we can show that γ = 0.5
maximizes Ar(γ), and Ar is simply the Bhattacharya bound

given by

Ar ≡

∫

~s

∫

y

(

√

fs(y,~s)fs

(

y, (~s − ~x)
))

dy dA(~s) (13)



The symmetry between O and X also gives ES̄ [Pe|O,S̄ ] ≡
ES̄ [Pe|X,S̄ ]. Therefore we have from (8)

Pr ≥
1

4
ES̄

[

(

∫

ȳ

√

Pr(ȳ|O, S̄) Pr(ȳ|X, S̄) dȳ
)2

]

≥
1

4

(

ES̄

[

∫

ȳ

√

Pr(ȳ|O, S̄) Pr(ȳ|X, S̄) dȳ
]

)2

where we used the Jensen’s Inequality for E[(.)2] ≥ (E[.])2.

Thus we have both upper and lower bounds for Pr in terms

of Ar:
1

4
e−2λAr ≤ Pr ≤ e−λAr (14)

As noted earlier, for the IBP sensor, Ar is equal to the area of

the region labeled Ar in Fig. 3(b), and (12) reduces to (2). This

suggests that we can think of Ar as the effective coverage area

of a sensor; roughly speaking it corresponds to the area where

the sensor’s observations can successfully localize a target to

within an error of r.

IV. NUMERICAL RESULTS

We now look at some numerical results to further build

intuition into the bound (12). Fig. 5(a) shows a plot of Ar for

the binary proximity sensors of Fig. 1. The figure shows that

as the width α of the uncertain sensing region decreases, the

coverage area of the non-ideal binary sensor approaches that

of the IBP sensor as given by (2).
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(a) Ideal and non-ideal binary prox-
imity sensors.
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Fig. 5. The “effective coverage area” Ar of BPS and RSS sensors.

Fig. 5(b) shows Ar for quantized and unquantized RSS

sensors. The measurement model follows (1) with the transmit

power and noise variance normalized to unity, i.e. A = 1
and E

[

|n|2
]

= 1. No attempt was made to optimize the

RSS quantization levels, which were simply chosen as Y =
{0, 1}, Y = {0, 1, 2}, Y = {0, 1, 2, 3} for the three qRSS

sensors shown. Clearly the 2-level qRSS sensor is highly

suboptimal compared to the 4-level sensor, whose performance

is close to the unquantized sensor except for very small r.

V. CONCLUSION

The main contribution of this paper is the derivation of

upper and lower bounds on the probability, Pr of incorrect

localization with random sensor placement. This bound de-

pends only on the sensing characteristic and not on the details

of specific deployments such as the size of the network and

the sensor locations. Thus it provides an objective metric to

compare the localization accuracy of different types of sensors.

Our analysis of localization error is based on a hypothesis

testing problem which involves choosing between two candi-

date target locations based on the sensor observations. More

generally, localization is the parameter estimation problem of

computing an estimate of the (2D) target location, rather than

choosing from a finite number of candidate locations. When

the density of deployment λ is very large, we expect that

the likelihood function is highly peaked close to the origin,

and since Pr is the probability that the likelihood of location

X is larger than at the origin, we expect it provides a good

lower-bound to the complementary cdf of the localization error

of a ML estimator i.e. Pr(|~xML| > r) ' Pr. A detailed

exploration of this relationship is beyond our scope here, and

is an important open issue for future work.

Other open problems include an enquiry into the general

properties of “effective coverage area” Ar; for instance we

would expect Ar to be monotonically non-decreasing in r for

most sensors.
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