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Abstract

We consider the solutions lying on the global attractor of the two-dimensional Navier—Stokes equations with periodic
boundary conditions and analytic forcing. We show that in this case the value of a solution at a finite number of nodes
determines elements of the attractor uniquely, proving a conjecture due to Foias and Temam. Our results also hold for the
complex Ginzburg—Landau equation, the Kuramoto—Sivashinsky equation, and reaction—diffusion equations with analytic
nonlinearities. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Foias and Temam showed in [21] that a sufficient number of “nodal values” will determine the asymptotic
behaviour of a solution of the 2D incompressible Navier—Stokes equations. In particular, they showed tha} if
andv(x, t) are two solutions of the equation

ad
a—l:—vAu+(u~Vu)+Vp=f, V.ou=0 xeg 1)
with either Dirichlet or periodic boundary conditions, then there exists a disasgeh that for any finite collection

of nodes in2, {x1, ..., xx} with

min [x —x;| <§ forall x € £, (2)
1<j<k

then if
sup |u(x;, 1) —v(x;, )] - 0 ast — oo, 3)
1<j<k
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one has

suplu(x,t) —v(x,t)] > 0 ast — oo.

xes
Since the asymptotic behaviour on this collection of nodes fixes the asymptotic behaviour of the whole solution,
they have been termed a set of “determining nodes”. Since then, better estimates of the maximum séparation
which guarantees this result have been obtained by Foias et al. [19], Foias and Titi [23] and Jones and Titi [35,36]
(see also [3] for a more general discussion of “determining functionals”).

What this result does not say is that the values(af, ) at these nodes determine instantaneously the values of
u(x, t) throughout the domain. In general, we cannot expect this to be the case, since there is no reason to believe
that the transient behaviour is determined by a finite number of degrees of freedom. However, if we restrict to the
long-time asymptotic behaviour it seems more plausible, and it was conjectured by Foias and Temam in their paper
that the nodal values uniquely determine the elements of the global attractor.

This global attractotd describes all possible long-term configurations of the system. More precisely, if the
solutions of a PDE define a dynamical system on a Banach gpasxeethat

u(t; ug) = S(t)uo
with the solution operatof (z) satisfying the semigroup properties

S(O) =id, St +s)=S8@)S(s), |imOS(t)uo = ug,
—

then the global attractor is a compact subse® efhich is invariant, i.e.

St)A=A forall + >0,
and attracting, i.e.

distg(S@)X,A) — 0 ast — o (4)
for any bounded set c B. In (4), distz is the Hausdorff semi-distance B i.e.

distg (X, Y) = supinf | X — Y| 5.
xeX YeY
See [31] or [57] for more details.

In this paper, we show that the conjecture of Foias and Temam is true, for the case of periodic boundary conditions
with a forcing function which lies in an analytic Gevrey class.

In fact we prove a result valid under general assumptions, and then show that these hold for the 2D Navier—Stokes
equations, the complex Ginzburg—Landau equation (1D and 2D), the scalar Kuramoto—-Sivashinsky equation, and
reaction—diffusion equations in any dimension. Preciselyr fer 0 we letG, denote the Gevrey class of functions
(see Section 2 for full details)

1/2
G = D(e*),

whereA denotes the negative Laplacian operator, and we prove the following theorem.

Theorem 1. Let 2 be a periodic domain ifR”, and let.A be a finite dimensional compact subsefl3f2) =
[L2(s2)]™, which in addition is uniformly bounded ifi;. Then provided that > 16ndr(A), for almost every set
of k nodes

X=(x1,...,Xk), Xj €8,
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the values ofi(x;) uniquely determine the function € A. [*Almost every” is with respect to nk-dimensional
Lebesgue measute.

We say that almost every setiohodes are instantaneously determining; we show in Section 7 that such a set of
nodes are also “determining” in the sense of Foias and Temam.

That the attractor is bounded in a Gevrey class is used in two important ways. First, along with the finite-dimen-
sionality of the attractor it allows us to obtain a parametrisation of the attractor which is Hoélder continuous in the
parameters, with the Holder exponent as close to 1 as we wish. Secondly, that the functions are analytic allows
us to control the structure of their zero sets, which is fundamental to our approach. Indeed, observe that without
the assumption of analyticity such a result is not possible under similar hypotheses. For a simple example take a
one-parameter family af > functions on {1, 1]

0, x <0,

u(x; e) =
efe/xz, x>0

with € € [1, 2], and observe that no number of nodes-1] 0] will suffice to determine which value efwe have
chosen.

A similar result to Theorem 1 could be obtained on replacingy the spaceé (A’ €"4") for anyr > 0 and any
s > 0. For simplicity, we restrict below to the case= 0 ands = % which arises naturally in the examples that we
have consider in Section 6.

We note that this is not the first result which gives a parametrisation of the attractor using a finite number of
variables. Indeed, aslong ago as 1981 Marié [45] proved an abstract result along these lines, and we use a strengthened
version of his result due to Hunt and Kaloshin [33] in our proof. However, to our knowledge this is the first result
which provides an experimentally realisable method of parametrisation.

2. Gevrey classes of analytic functions

The main assumption in the proof is that the global attractor is a bounded finite-dimensional subset of a suitable
Gevrey class of functions. We restrict to the case of periodic boundary conditions (see comments at the end
of this section), and for simplicity consider a domah = [0, 27]" — of course, similar results apply when
22 =1[0,L1] x---x[0, L]

The negative Laplacian o2, A = — A, is a linear self-adjoint unbounded non-negative operatdr&gs), and
has a complete set of orthogonal eigenfunctions, just the Fourier mdde®eall j € Z", which satisfy

Adi* =|j2ei*,
The spacé.?(£2) = [L2(£2)]" can be identified (cf. [59]) with the space of all functiansatisfying
u:Zujeij‘x, u; eC", u_j=u; %)
jezr
with

m
2 2 2
@)Y ujl? = lulf, =Y |ujl5, < oo
j=1

jEZ"
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We can also considet as an operator 0h?(£2), so that fon: € L2, A acts on each componentmflt follows that
the domain ofd, D(A), and of any of its positive power®)(A¥), can be characterised as thasef the form (5)
for which

@)™y " 1j1%*ujl? = 14 u]? < oo
J
(where| - | is thel.? norm).
We will use multi-index notation, so that= («1, ..., ,), and
9% = ot ... 9%,

We also write|a| = a1 + -+ + oy, a! = a1!...a,!, andx® = xJ*...x,". We will need some inequalities
concerning factorial functions; these all follow from the identity

k!
R
lot|=k
settingx; = --- = x, = 1, we obtain
k!
J = nk’ (6)
la|=k

and setting: = 2 gives

2722k < (k1% and

(k:—lr)! < 2kt )

Foru of the form (5), we have formally

0%u = Zi‘“lj“uj gl
J

so that

0%u? = 2m)" Y 1P |u;l%
J

Since
lullZe = > 10%ul?,
loe| <k
we consides = (jZ, ..., j2), so that
DL = D08
loe| <k o] <k

Now, using (6), we have

DY (’%s" = Is[".

la|=k loel=k "
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and|s| < |j|2, hence it follows that
k
SO =Y <21k,
el <k 1=0
which yields

luell 2 < 2C2m)" Y 11 Juy1? = 2| A%2u)?. ®)
J

Fort > 0, the Gevrey clas§; is defined to beD(e”‘l/z), the domain ifL2(£2) of the operator?—.*“l/z, i.e. all those
u of the form (5) with

@)y ;2 = €4 ul? < oo, ©)
J

Following [22], we will write the norm orG; as

1/2
u = uj.
lul, = €74 ul

In the proof of the main theorem, we assume that the functiond &we uniformly bounded i, for somer.
Fundamental to all that follows will be the following lemma.

Lemma 2. Suppose thaf2 = [0, 27]", and thatu € G, as defined above. Then u is real analytic and can be
extended to an analytic function on the region

T
Sz{z.RezeQ,llmdSE] (10)
with
supu(z)| < Blul., (11)
z€eS

whereg is a constant depending only on n and

Proof. If u =" ;u; €/ asin (5), then from (9)

12 . @] jp*
uf? = 1 = @y P = @)Y

k!
Jk

J
27)k 27)k
= e CE S = 3 A,
j |

k k

It follows that
|AK 442 < k120) ¥ |u|? forall k,
from which

|A% 2412 < £ =222 2\ |u|2.
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Now, 272 (2k)! < (k)2 using (7), and so
|AK2y) < e %KV u),.

(We have shown, unsurprisingly, thBt(e”‘l/Z) C D(AK) for all k.) Using the standard Sobolev embedding result
(e.g. [58])

and (8), we obtain
k+14+(n/2) n
10%ulloo < C'| A2 2y | < 1 (—) (k+1+3)!Hule.
T
whereC’ is uniform overk. Now, using (7) this estimate becomes

||a“u||oos[c’(—) ( +”)! (—) k! ul .
T 2 T

We write this as

o\ k
10%ulloc < Clule (—) k! 12)
T

wherek = |a| andC(t, n) = C'(2/7)T /2 (1 + n/2)!
Now (following [54, Theorem 19.9]; cf. [34, Section 3], [10] and also [41]) writas the Taylor sum (cf. [53,
Exercise 9.30])

u(x) = Z 8“:|(a)(x T Z %u(a + (x — a)t)(x —a)

|
H (o4
el <k lor|=k+1

for somer € (0, 1). Since, we can estimate the final term (ojegr= k + 1) using the bound in (12) as

3« t(x — 2/T) Lk + 1)! 2n\F 1
> Pulatt=a) (. _ gyl < Clul, > Gk DY, (‘n) v — al+L,
ol ol T

lor|=k+1 loe|=k+1

using (6). Takingx — a| < § < t/2n the final term tends to zero &s— oo, from which it follows that«(x) can
be written as the Taylor series

u(x) = Z 8“:(61) o — )

la|=0

for all realx with |x — a] < § < 7/2n. Since the series converges absolutely, it is in fact convergent far all
(complex values too) withx — a| < 8. The functionu(x) is therefore real analytic, and can be extended to an
analytic function for alk with |z — x| < § for somex € £2.

For (11) in the statement of the lemma we now use the Taylor expansion, (6) and (12) as above to obtain

2/7)1 ! X r2ns\*
fuleo = Clule § 3 G et = cpu, Z( ) x—alt < Clule Y (T)
la|>0 k=0

|ue] e,

C
< -
= 1— (2n8/7)
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provided thatx — a| < § < t/2n. If we takes = t/4n, we get

sup [u(z)| = 2C|ulx,

[Imz|<6

which is (11) withg = 2C. O

The use of periodic boundary conditions significantly simplifies the problem, since it is only in this case that one
can expect, in general, to obtain a function which has the same radius of analyticity throughout the whole domain
£2. John [34, Section 7, 1(b)] shows that for the equatipr- Au = 0 on a domain2 with smooth boundary,
if the boundary conditions are Dirichlet|; = 0) then the radius of analyticity of a solutiatix, ) at a point
x € £2 can only be bounded below by dist 952), which shrinks to zero as one approaches the boundary.6Gruji
and Kukavica [28] obtain a similar result for the scalar nonlinear heat equatienAu + u*.

We treat the case of Dirichlet boundary conditions in a separate paper [25].

3. Parametrising finite-dimensional sets

We will need to use two different measures of the dimension of arbitrary sets. The Hausdorff dimension will
prove useful since it is stable under countable unions,

00
dH UXj < made(Xj), (13)
j=1 !

whereas the fractal dimensialy has the property that (X) < oo thenX can be embedded “nicely” in a
finite-dimensional Euclidean space.
We first discuss the weaker of the two notions, the Hausdorff dimension

3.1. Hausdorff dimension

The Hausdorff dimension is based on the definition oftftimensional Hausdorff measure, which is essentially
a generalisation of Lebesgue measure to “fractional dimensions”. Indeed, later on we will use the fact that for integer
values ofd, d-dimensional Hausdorff and Lebesgue measure are proportional [15, Theorem 1.12].

To find thed-dimensional Hausdorff measure of a Sgttake a cover o by balls B(x;, r;) with radiir; < ¢,
and define

w(X,d,e) =inf !Zrl-d i <eandX C U;B(x;, r;)

Thed-dimensional Hausdorff measure ¥f 7% (X), is given by

HI(X) = lim (X, d, ),

and the Hausdorff dimension &f, dy (X) is essentially that value af (if any) for which#¢ (X ) takes a finite value

dy(X) = Lilrlfo{d - HY(X) = 0).
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We will need the stability ofl; under countable unions (which is (13)), and the fact th#tifX — Y is a Holder
continuous function, so that

If(x1) — fFGlly < Cllxy — x2ll%, 0<6 <1,

thenifE Cc X

dn (f(E)) < dHQ(E). (14)

For proofs of these facts see [16].
A stronger definition of dimension allows us to parametrise “finite dimensional” sets using a finite number of
parameters.

3.2. The “fractal” dimension

The “fractal” dimension ofX, dy(X), is based on a covering df by a collection of balls of fixed radius.
In finite-dimensional spaces the following definition is the same as that of the “upper box-counting dimension”;
however, in infinite-dimensional spaces we are forced to consider balls rather than boxes since the “Hilbert cube”
(consisting ofu = 3% c;e; with {¢;} a countable basis d and|c;| < 1) contains elements with arbitrarily
large norm. We therefore define the fractal dimensioX afs

logN (X, €)
log(1/€)
whereN (X, ¢) is the minimum number of balls of radiesnecessary to covex.

That an embedding theorem holds for sets with finite fractal dimension but not necessarily for those with finite
Hausdorff dimension is a consequence of the inequality

df(X) =limsup._,q

di(X x Y) < dp(X)+ds(Y), (15)

a similar expression does not hold for the Hausdorff dimension. We note that the fractal dimension also obeys (14).
(Ref. [14] contains a nice discussion of the difference between the Hausdorff and fractal dimensions.)

3.3. An embedding theorem

We will use the following theorem, due to Hunt and Kaloshin [33], which guarantees that there are many linear
maps from a Banach spaseinto R¥ (for somek) which are embeddings of a finite-dimensional set. In particular,
their result gives a bound on the Holder constant of the parametrisatignadfich results from this embedding.
(Mafié [45] first showed the existence of such embeddings, with Foias and Olson [20] first guaranteeing the Holder
property of the inverse.)

In the statement of the theorem, the “thicknessXofr (X), is given by

logd(X, ¢)
log(1/¢) ’

whered (X, €) is the minimum dimension of all finite-dimensional subspaégxf B such that every point ok
lies withine of V.

7(X) =limsup._,¢
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Theorem 3 (Hunt and Kaloshin [33]). If X is a compact subset of a Banach space B then, provided that D is an
integer withD > 2d¢(X) and

D —2d;(X)

0 < ,
D1+ (X))

a dense set of linear maps from B i@ have the following properties
1. they are injective on X
2. their inverse is Holder continuous from LX into X with exportent

(We note here that their result is in fact slightly stronger, giving a “prevalent” set of linear maps with this Holder
property, see [32,61].)

It was shown in [24] that when the sEtconsists of infinitely differentiable functions theiX') = 0; however,
the result in that paper considers the case wkiés a subset of.2, and we will find it convenient to considef
as a finite-dimensional subset of the Gevrey clags for some 0< ¢ < 1. The following lemma shows that if
X is bounded inG, and has finite fractal dimension it?(£2), then in fact it is a zero-thickness finite-dimensional
subset oiG,; forall0 < ¢ < 1.

Lemma 4. Suppose that X is a bounded subsetGef Then, for0 < ¢ < 1, the thickness of X measured in
Gy, is zero. Furthermore, if the fractal dimension of XIiA, dr(X, IL2), is finite, the fractal dimension 0y,
dr(X, Gyz), is bounded as

dr(X,1L?)

(16)

Proof. It is convenient to denote by; and; the eigenfunctions and eigenvaluesdf= — A, ordered so that
Xjy1 = Aj. Sinceg is a periodic domain ilR", the eigenvalues of are proportional to sums afsquare integers,
and so in particulak j» ~ j2. It follows thatx; ~ j2/".

Now, if u = ) ,c;w; we let P; denote the projection on to the firseigenfunctions, and; = I — P;. Then

—(1-¢)TAY2 (1—¢g)rA1/? —(1—p)TAY2 1-¢)rAY2
i = Pjulye =1Qjulyr = &7 TN julyr < eI Q i 0ple A

_(1—@)TAY2 _(1—)r2M?
= le= @O0 Hloplul, < € Ty,

Sincex; ~ j%/" it follows that (for some: > 0)

_cril/
|M_Pju|<pr < e ‘v !

],
which implies that, for somé€ > 0,
d(X,e) < C(—loge)".

It follows thatt(X) = 0in Gy:.
To prove (16), we show that the identity map on the attractor is a Holder maplifanto G- With exponent
1— ¢, and then use (14). Far, v € X, setw = u — v and write

w = E cjwj.
J
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Then, using Holder’s inequality

@ 1-¢
20722 20).%2
|w|§20.[ :Zewf)n] |C/|2 S Ze‘[)»j |C/|2 Z|C1|2 ,
J J J
so that
wlpr < |wl¢]w[*™%.
SinceX is bounded irG, the Holder property follows, and we can deduce (16) using (14). O

We will use a corollary, a combination of Lemma 4 and Theorem 3, in the proof of the main theorem.

Corollary 5. Under the hypotheses of Lem#hdor eachD > 2d (X, LL2) and each

2d(X,1L2?)
-
there exists &g > 0 such that for eacld < ¢ < ¢g there is a parametrisation of X using D parameters which is
Holder continuous intd,,., with Holder exponern.

o<1 , (17)

Proof. Choosepg small enough that
2d (X, 1L2)
“(d—¢0)
and
2d (X, 12
- (A-goD’
The result then follows from Lemma 4 and Theorem 3. O

<1

4. Zero sets of analytic functions

We will need the following Holder implicit function theorem to investigate the structure of the zero sets of
functionsu (x; €) analytic inx and Hoélder continuous ia.

Theorem 6. Let E ¢ R?, and letu(x; €) be a function fronR x E into R which isCt in x, Hélder continuous in
€ with exponend, i.e.

Ju(x; €) — ulx; €)] < Cleg — €51,

and withu, (x; €) continuous ire. Then if
u(xo; €9) =0 and uy(xo; €9) #0

there exists a neighbourhood@b, €j) in R x E, and a Holder continuous function¢) with exponent, such that
u(x(€),e) =0

andx(¢) is the unique zero af(x, €) in this neighbourhood
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Proof. For a proof of the result in this form, without the usual assumption of differentiabili¢y @me can follow

the proof in Hale [30, Chapter 0, Theorem 3.3] which uses the uniform contraction mapping theorem. The Holder
continuity ofx(¢) in ¢ follows from the Holder continuity ofi(x; €) in €, once again employing an argument from
Hale [30, Chapter 0, Theorem 3.2]. a

We now apply this to generalise a lemma from a paper of Yamazato [60] concerning the zero sets of real analytic
functions. We call a set a Holdermanifold if it is given locally as the image &”" under a Holder continuous
function f. Note that it follows from (14) that the Hausdorff or fractal dimension of this manifold can only be
bounded by: /6, whered is the Holder exponent of.

Proposition 7. Let E ¢ R?, and suppose that(x1, ..., x,; €) is real analytic inx € R” and Hélder continuous
in e € E together with all its partial derivatives in x (all with exponehit In addition we suppose the function
u(., €) is not identically zero for any € E. Then the zero set af(x; ¢), viewed as a subset Bf* x E c R"” x R?,

is contained within a countable collection of H6ldBr+ n — 1-manifolds, given in the form

(', xj(x', ) €), (18)
wherex’ = (x1,...,Xj_1,Xj41, ..., X,), andx; is a Holder function of its arguments with exponent
In the proof we writee; for the multi-index(s;1, . . ., 8in), wheresj is the Kronecker delta.

Proof. We assume thatis a function intdR, since ifu takes values ifR"™ with m > 1, the zero set of is a subset
of the zero set of any of the components:of

We cannot apply the implicit function Theorem 6 (IFT) to every point in the zerd setu —1(0; 0), since there
may be points at which derivatives ofare zero. The idea is to apply the IFT repeatedly, removing manifolds of
zeros of decreasingly high order derivatives:ofinally, we end up with a set on which the IFT applies to gives
the set of all remaining zeros. Each set we consider is a Héddem — 1 manifold.

We will assume thaZ is non-empty, otherwise we are finished. So tak® €%) € Z: u(., €9) is analytic and
not identically 0. Thus there exists a multi-index= (a1, .. ., «,) (depending or) such that®u(x, %) # 0
anddfu(x?, €% = 0 for all multi-indicesg s.t.8; < aj, j = 1,...,n, andp # «. (If not then the analyticity
of u would imply thaty = 0.) Asa is not (0, ..., 0), there exists an intege{ with «;; > 1. For simplicity of
presentation, we assume that> 1.

By the preceding IFT, we get an open neighbourhbigd= U (x°; €°) of (x0; €°) such thatWy = Ug N [9%~1
u = 0] is represented as

(x;€) = (go(x', €), x2, ..., xn; €),

wherego is a Holder continuous function and, e vary in a neighbourhood afcd, .. ., x2; €°). We takeW, as
the first Holder manifold in our collection. Note that, by the definitiorptx?; €°) is contained inWy. It suffices
to show that all zeros af contained inU° can be represented as stated in the formulation of the theorem. In the
case thatr — e; = (0, ..., 0) we have finished; otherwise there exists a second iniegeith (« — e1);, > 1. As
before, for simplicity of presentation we will treat the particular case 2 (if io = i1 then the argument would be
similar). By removingWp we have excluded all points froii® where we cannot apply the IFT again; indeed, on
Up \ Wo we haved* 1y £ 0.

We now considei¥; := (Ug \ Wo) N [0%~¢1~¢2y = Q]. For any(x; e1) € Wy the assumptions for the IFT are
fulfilled, and we get open neighbourhoods.ot; 1), sayU1, w.l.0.g. contained ii/o \ Wo, where p*—¢1—¢2y = 0]
is given aqx; €) = (x1, g1(x’, €), x3, ..., x; €), g1 being a Holder function. The (a priori uncountable) union over
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all (x1; €1) € Wy of all these open neighbourhoods is an open s&biniWy coveringW. Lindeléf’'s Theorem (see,
e.g. Kuratowski [42, Chapter II, Section 17]) allows us to reduce this to a countable tiniestherefore covered
by a countable union of open sets, and in each of tHans represented as a Holder manifold. 8gis contained
in a countable union of such manifolds.df— e1 — ex = (O, ..., 0) we have finished. Otherwise we continue as
before now considering the s@tp \ Wo) \ W1 where we can apply the IFT again.

This algorithm stops aftey_ «;, a finite number of steps. Note that in the last s#égs; really consists of zeros
of u. All the W;s before were thrown away for “security reasons”. O

5. Proof of main theorem

In this section, we use the results of Sections 3 and 4 to prove the main theorem of this paper. We now restate
Theorem 1 in a slightly different, but equivalent formulation, and then give the proof.

Theorem 8. Let 2 be a periodic domain ifR”, and.A a finite-dimensional compact subsefldi(£2) = [L2(2)]"
which is bounded iz, for somer > 0. Then, provided that > 16nd; (A), the map from4 into R™K given by

Eyiur (u(x1),...,u(xy))
is 1-1 betweemd and its image for almost every= (x1, . .., xx) in £2% (with respect to nk-dimensional Lebesgue
measurg

Proof. We investigate the set of nodal valuetr which the mapFy fails to be 1-1. For such anthere must exist
two functions inA4, u andv, such that

ulx;) =v(x;) foral 1<j<k.

Equivalently, if we define
X={w:w=u—v,uveA,

then there must exist a non-zero functiore X such that
w(x;)=0 forall 1< <k.

Since we want to exclude zero, we define
X% =Xx\{0}.

Note thatdf(XO) < df(X) < 2d¢(A), sinceX is the image ofA x A (with dr (A x A) < 2dr(A) using (15))
under the Lipschitz magu, v) — u — v (use (14)).

We study the zeros of functions ixi° and the collections of such zeros. We show that the union of all such
collections over all functions iX® has Hausdorff dimension less thakif « is sufficiently large. This will imply
that the collection of “bad” nodes has measure zero.

The first step is to use Theorem 3 to find a linear map ko with D > 4d;(A), such that a parametrisation
of X0 is given by theD parameters € R”. We use the fact that is bounded irG, to deduce from Corollary 3.3
that for some O< ¢ < 1 we can obtain a parametrisation’f, w(x; €), which is Hoélder continuous fro? into
Gy, with Holder exponent anything less thar-1(4d ¢ (A)/ D).
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It follows from (11) that the parametrisation is also continuous into the space of continuous functions on the
“strip” S defined in Lemma 2 by (10), replacingby ¢z. It then follows from the Cauchy integral formula (see,
e.g. Range [51, Theorem 1.3])

w(x; €) = (Zni)‘”/ wit: ) d¢y... dg,,

c(@1—z1)...(&n —zn)
(whereC = {¢ € C" : |¢; — z;| = 8}, with § such that all contours lie in the domain of analyticityugfthat all the

derivatives ofw(x; €) also depend in a Holder way enwith the same exponeft
We are thus led to consider a parametrised family of functions

w(x; €), xe2, e€€kE,

whereE = LX? is the parameter space, a bounded subsBthfandw(x; €) and all its derivatives depend in a
Hélder continuous way oa.

Now, Proposition 7 guarantees that the zero set of the funatiane¢) in £2 x E is contained in a countable
number of manifolds which are given in the form

&', x (', 05 0, (19)

wherex” = (x1,...,xj_1, xj, ..., x,),andx; isaHolder function of its arguments. Observe that ther@®aren —1)
parametersD of these are always.
Now consider the set which consists of collections @éros ofw(x; €), as a subset ab¥ x E, i.e. each element
is
ol x (el x e Z(w(; o)),

whereZ(w(-; €)) is the zero set ifR” of the functionw (x; ¢) for fixede.
This set is clearly a countable union of Holdermanifolds, withm no more thark[D + (n — 1)]. We show in
fact that each manifold is B + k(n — 1)-manifold. Indeed, the! component of the product is given in the form

r 1,7 .
(™, x5, (x7, )5 €,

and in general the’ component is given as
(' g (e e)s e

In other words, thed parameterg are common to all components, and otherwise there are an additignal 1)
parameters. Since the set is given as a Holder function of these parameters, it lies within alH@lden — 1)-
manifold.

It follows that the Hausdorff dimension of each manifold is bounded by

D+k(n—1)
9 9
since it is the image of a subset®P+*~D under a Hélder map with exponefit(using (14)). Since can be
taken arbitrarily close to & (4dr(A)/D), this can be made as close as required to

D+kn—-1)
1-(4dy(A)/D)

Since the Hausdorff dimension is stable under countable unions (13), the Hausdorff dimension of the set of all such
zeros, a subset of the union of all these countable manifolds, is bounded by the same quantity. Since projections are
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Lipschitz, it follows that this quantity also bounds the Hausdorff dimension of the projection of this sebnto
(using (14)). This is precisely the collection of all setscaferos over all functions itx©
To ensure that this set has dimension less tilamwe need

D2

> D Tand A

the value ofD which gives the smallest value bfis D = 8nd(A), which givesk > 16nds(X).

Itfollows from the definition of Hausdorff dimension (see Section 3.1) that the set of all “bad” choices of nodes has
nk-dimensional Hausdorff measure zero. Singadimensional Hausdorff measure anikddimensional Lebesgue
measure are proportional (see [15, Theorem 1.12]) it follows that this set has Lebesgue measure zero.

Thus almost every choice éfnodes is instantaneously determining. |

6. Applications

We now show that our theorem applies to several examples.

6.1. The 2D Navier-Stokes equations

We first show that our theorem applies to the 2D Navier—Stokes equations,
ur—vAu+w-Vyu+Vp=f, V-u=0

with periodic boundary conditions and a Gevrey regular forcing function. For simplicity we follow the standard
presentation, in which we assume thfatindug both have zero average ow@r(cf. [12,22,59], see also [8,57]).

The existence of a global attractor, with finite fractal dimensioh3as2), is shown by Constantin et al. [9] (see
also [12]); the best estimate of this dimension is of the order of

G231 +1logG)¥3,

where G is the Grashof numbel; = L2|f|/v2. The Gevrey regularity of solutions was considered by Foias
and Temam [22], who showed that ff € D(e"Al/Z) for somes > 0 then the attractor is uniformly bounded in
D(AY2 e 4"%) for somer > 0. By considering the Fourier representation (cf. (9))

AV2 gAY _ (o2 Z 1127 2,
jez?

it is clear that the attractor is also boundediip.

It follows that our theorem applies in this case, and that the number of nodes necessary is bounded.ky, 32
so of the ordelG%/3(1 + log G) /3.

We will compare this to the classical, heuristic, length scale estimates due to [37] (see also [58]; Doering and
Gibbon [12] give a much more detailed discussion of such length scales, and Eden et al. [13] give a very good
summary of the various bounds). Kraichnan'’s theory constructs a length scale from the viscous enstrophy dissipation
and the forcing. The enstrophy dissipatipiis given by

2_ Vi 10 2
X = v{Au)- = ﬁhm SUB_, ~ SUp— [ |Au(s)|ds,
upe At JO
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and a standard bound in the analysis of the 2D NSE with periodic boundary conditions (see, e.g. [59])

r 2 r .o 2
V/O |Au(s)|“ds < ;Ifl + lluoll%,

gives
2
P
~ L%
The only length that can be formed fromandv is

L (U3>1/6
X X ’

which yields

(5)-
L

If we space our nodes evenly over the domain, then the separation required by our theorem is of thedordér of

with logarithmic corrections, confirming the Kraichnan length scale by analytically rigorous means. Note also that
this is an entirely natural way to produce a length-scale from the equations, and ties in with the heuristic argument
that one would expect that

L 2
X

(See, e.g. [12])

The same argument applies to the 3D equations, provided that one assumes regularity (in the sense of Constantin
et al. [7]), although in this case the estimate of the dimension of the attractor and hence of the number of nodes is
much larger (see [7,58] or [26]).

For more discussion of this case see Ref. [52].

=13L75G2.

6.2. The complex Ginzburg—Landau equation

Gevrey regularity for the complex Ginzburg—Landau equation
up — (L +iv)Au+ L+ iw)|ul’u —au=0

on a periodic domain in dimensions 1 and 2 was shown by Promislow [50], and by Doelman and Titi [10] (also in
those cases in which one can prove existence and uniqueness of solutions in 3D); Kukavica [39] gives a proof of
the Gevrey regularity in the 1D case only.

Doering et al. [11] and Bartucelli et al. [1] show that the equation has a finite-dimensional global attractor, and
the above results then guarantee that this attractor is bounded in some Gevréy,qtmssan appropriate > 0).

It follows that our theorem holds for the complex Ginzburg—Landau equation in dimensions 1 and 2, and in 3
dimensions in those cases for which one can prove existence and uniqueness (see [10]).

6.3. The Kuramoto—Sivashinsky equation

Collet et al. show [4] that the 1D Kuramoto—Sivashinsky equation

ur + uxxxx+ Uxx + uly =0, u(x,t) =u(x+L,1),
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possesses a finite-dimensional global attractdri0, L), and [5] that this attractor is bounded in the Gevrey class

G, forsomep > 0. (For the restricted case of odd initial conditions such results were obtained previously — the ex-
istence of an attractor by Nicolaenko et al. [48] and the Gevrey regularity by Liu [43]; some further details on Gevrey
regularity for solutions on the attractor are given by Gr{#9].) It follows that our results hold in this case also.

6.4. Reaction—diffusion equations with analytic nonlinearity

For scalar reaction—diffusion equations

M au= fw
— —vAu= f(u),
ot
on periodic domains ifiR" the existence of finite-dimensional attractors is shown in Marion [46] and Temam [48],
provided thatf is C2 and satisfies the estimates
—k —als|P < f(s)s <k—Bls|]” and f'(s) <!

foralls € R. The Gevrey regularity of solutions has been shown for polynomial nonlinearities by Promislow [50], and
for general analytic nonlinearities with a majorising function (see below) by Ferrari and Titi [17] (reaction—diffusion
equations on the two-dimensional sphere are treated in a similar way in [2]). The main assumption from [17] is
that if

e .
f)y=> ajul,
j=0
then the majorising function

g(s) =Y laj|s’ (20)
j=0

converges for alk € R. Under this condition they show that if the attractor is bounded in the Sobolev E({ape

for p > %n then it is also bounded in the Gevrey cld3gA?/2 e”Al/z). Since Marion [47, Theorem 5.2] shows
that in this case the attractor is in fact bounded{ﬁgr(ﬂ) for all k, the required Gevrey regularity follows and our
theorem applies to reaction—diffusion equations in all space dimensions.

6.5. Gevrey regularity in other examples
We note that other equations are amenable to the Gevrey analysis, although the existence of finite-dimensional
attractors is unresolved: the weakly damped driven nonlinear Schrédinger equation is treated by Oliver and Titi

[49]; Bénard convection in a porous medium by Ly and Titi [44], and the Navier—Stokes equation on the whole of
RR? by Grujic and Kukavica [27]. For use of Gevrey regularity to analyse other problems see [39-41].

7. Discussion
7.1. Instantaneously determining nodes are also asymptotically determining

A simple corollary of our result shows that instantaneously determining nodes are also “determining” in the sense
of Foias and Temam [21].
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Corollary 9. Let the hypotheses be those of the main theorem, and assumé #t@acts in thel.°°(£2) norm.
Then almost every set of k nodes is determining, providedithalénds (A).

Proof. We take a set of nodes which are instantaneously determining, as guaranteed by Theorem 1, and consider
A as a subset di>. Note that Lemma 4 shows that the identity map on the attractor is continuoud_frimto
G, and so certainly continuous frob# into IL°°; it follows that.A is a compact subset &,

Observe that the map from into R* given by

ur Ex(u) = (u(xy), ..., u(xp))

is continuous. Since it is also injective ghand.A is compact, it follows that the map froi (A) into A given by
ExLis continuous. This implies that given an> 0 there exists & which can be taker € such that, ifu, v € A
and

supu(x;) —v(x;)| <6,
J

then
1
lu —vloo < 3€.

Now suppose that(x, t) andv(x, t) are two solutions which agree asymptotically on the set of nodes, as in (3).
SinceA is the attractor, givea > 0 there exists a tim& such that

dist (u(x, 1), A) < 18, dist . (v(x, 1), A) < 38,
and

supu(xj, 1) — v(xj, )] < 38,
J

forall + > T. It follows that there are functions(¢) andv*(¢) lying in A such that

@) —u@llos < 38, 'O = vl < 3, (21)
and

lu*(xj, 1) —v*(xj, 0| <8 forall 1<; <k,
and therefordlu™® () — v*(t)]lco < %e. Combining this with (21) shows that

u@) —v()lloo <€

forallt > T, and we are done. O

We note that this result gives estimates for the number of determining nodes in line with the dimension estimates
of the attractor. For the 2D Navier—Stokes equations@i?(1+ log G)1/2 improves on the previous best estimate
for the number of nodes was of the order®f36]. (Note, however, that this coarser bound is valid without the
assumption of Gevrey regular forcing.)

However, it is worth pointing out that in 1D problems the analyticity of solutions can be exploited in a much
stronger way — for example, Kukavica [38] has proved that for the 1D Ginzburg—Landau equation two nodes are
asymptotically determining if they are close enough together; Oliver and Titi [49] do the same for weakly damped
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driven nonlinear Schrédinger equation, and Collet and Titi [6] for the CGLE on the whole real line. Foias and
Kukavica [18] show that for the 1D Kuramoto—Sivashinsky, four nodal values suffice. Nonetheless, these results do
not provide the instantaneously determining nodes of our Theorem 1.

7.2. Other embedding results

Itis interesting to compare this result to the usual experimental method of reconstructing dynamics using Takens’
time-delay embedding theorem [56]. Rather than taking measurements scattered throughout the spatial domain,
this method consists of taking a series of measurements of some “observation fuhctibequally spaced time
intervals.

This theorem has only been proved in the finite-dimensional case, and we give a statement valid for Lipschitz
continuous differential equations @&t. In the formulation of Hunt and Kaloshin [33] (see also [55]), if the attractor
has dimensior then for a prevalent set of Lipschitz functiohs R” — R and allT sufficiently small, the map

u > Hlu] = (h[u(0)], h[u(T)], h[u(2T)], ..., h[u(2dT)])

is 1-1 on the attractor.
In this method each additional measurement recovers dynamical information, sinég@®g . . ., 2[u(2dT)]
are known, onlyz[u((2d 4+ 1)T] is required to determing(T), since

H[u(T)] = (h[u(T)], h[uT)], h[uBT)], ..., hlu((2d + 1)T)]).

The instantaneously determining nodes are much less efficient in this regard, since the only way to det@&mine
is to take measurements at every node again atTime

Aversion of the proof in this paper allows one to give, in certain circumstances, arelated result which combines the
delay-embedding approach with the distributed nodes approach, to show that a sufficient number of measurements,
distributed in both space and time would be enough to determine a unique element on the attractor (cf. [55, Remark
2.9] in the finite-dimensional case). This is discussed in more detail in [52].
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