
Evolutionary Algorithms — How to Cope With
Plateaus of Constant Fitness and When to Reject

Strings of The Same Fitness∗

Thomas Jansen and Ingo Wegener
FB Informatik, LS 2, Univ. Dortmund, 44221 Dortmund, Germany

{jansen, wegener}@ls2.cs.uni-dortmund.de

Abstract

The most simple evolutionary algorithm, the so-called (1+1)EA accepts a child
if its fitness is at least as large (in the case of maximization) as the fitness of its
parent. The variant (1 + 1)∗EA only accepts a child if its fitness is strictly larger
than the fitness of its parent. Here two functions related to the class of long path
functions are presented such that the (1 + 1)EA maximizes one of it in polynomial
time and needs exponential time for the other while the (1+1)∗EA has the opposite
behavior. These results prove that small changes of an evolutionary algorithm
may change its behavior significantly. Since the (1 + 1)EA and the (1 + 1)∗EA
differ only on plateaus of constant fitness, the results also show how evolutionary
algorithms behave on such plateaus. The (1 + 1)EA can pass a path of constant
fitness and polynomial length in polynomial time. Finally, for these functions it is
shown that local performance measures like the quality gain and the progress rate
do not describe the global behavior of evolutionary algorithms.

1 Introduction

Evolution strategies (Rechenberg (1994), Schwefel (1995)) are randomized search heuris-
tics for the optimization of functions. Here we consider the maximization of pseudo-
Boolean functions f : {0, 1}n → R

+
0 . Note, that we consider a discrete search space,

{0, 1}n, which substantially changes the analysis compared to the continuous space R
n.

Since this differs somehow from common analyses of evolution strategies we adopt the
broader term “evolutionary algorithm”. The perhaps most simple evolutionary algorithm
is the so-called (1 + 1)EA with the standard mutation probability 1/n.

Algorithm 1 ((1 + 1)EA).

1. Choose randomly an initial bit string x ∈ {0, 1}n.

2. Repeat the following mutation step:
Compute x′ by flipping independently each bit xi with probability 1/n.
Replace x by x′ iff f(x′) ≥ f(x).

∗This work was supported by the Deutsche Forschungsgemeinschaft (DFG) as part of the Collaborative
Research Center “Computational Intelligence” (SFB 531).

1

In applications, we need a stopping criterion. Here the (1+1)EA is analyzed as infinite
stochastic process and we are interested in two global performance measures. Let Xf be
the random variable describing the first point of time where x is a bit string of maximal
fitness. Then we are interested in the expected runtime E (Xf), the mean of Xf , and
the success probability sf (t) = Prob (Xf ≤ t). If the success probability for a polynomial
time bound t(n) is not too small (1/p(n) for a polynomial p is enough), a multi-start
strategy has a polynomial expected runtime.

Our analysis concentrates on the (1+1)EA, since more general evolutionary algorithms
will have no advantage on the functions f considered here. We will argue in later sections
why (µ + λ)- and (µ, λ)-evolution strategies and even crossover will not help. Hence, our
results are not only valid for the (1+1)EA. If the (1+1)EA reaches a plateau of constant
fitness values, it accepts each bit string on this plateau until it finds a better one. During
this time the (1+1)EA performs a kind of random walk on the plateau. It is an important
problem to determine which plateaus are easy for the (1 + 1)EA. Furthermore, one may
ask what we can loose if we do not perform the random walk on the plateau, i.e., if we
do not accept bit strings with the same fitness. This leads to the algorithm (1 + 1)∗EA:

Algorithm 2. (1 + 1)∗EA.
This algorithm works in the same way as the (1+1)EA with the exception that the condition
f(x′) ≥ f(x) is replaced by f(x′) > f(x).

Let X∗
f , E

(
X∗

f

)
, and s∗f(t) be the random variables and performance measures for the

(1 + 1)∗EA which correspond to Xf , E(Xf), and sf(t), resp., for the (1 + 1)EA.
It is an obvious conjecture that the (1+1)∗EA should perform worse than the (1+1)EA.

With respect to the NFL theorem (Wolpert and Macready (1997)) one has to be careful
with such statements. Droste, Jansen, and Wegener (1999) have shown that there is no
NFL theorem if the considered class of fitness functions is restricted to those functions
which may occur in black box optimization, i. e., functions which can be evaluated in
polynomial time and have a short description. Droste, Jansen, and Wegener (1998b) have
considered the so-called needle-in-the-haystack function (f(x) = 0 if x 6= 1n, f (1n) = 1).
Together with an improved complexity analysis by Garnier, Kallel, and Schoenauer (1999)
we can conclude that E (Xf) = Θ (2n) while E

(
X∗

f

)
= Θ (nn). However, both algorithms

are inefficient for this function. In Section 2 we present a function related to the long
path functions due to Horn, Goldberg, and Deb (1994) and called SPCn (short path with
constant values on the short path) such that E (XSPCn) is polynomially bounded while
E
(
X∗

SPCn

)
grows exponentially. Moreover, even multi-start variants of the (1 + 1)∗EA

need exponential time on SPCn. The existence of such a function is not surprising.
However, the analysis of this function has interesting features. In particular, we show
how the (1 + 1)EA is able to reach the end of a path of polynomial length without using
shortcuts and without getting hints from the fitness function. This result belongs to the
many investigations of different fitness landscapes (for an overview see Bäck, Fogel, and
Michalewicz (1997)).

The function SPCn is also used in Section 3 to compare local performance measures
like the quality gain and the progress rate with global performance measures. Obviously,
we are mostly interested in the global performance. Many authors (see Bäck, Fogel, and

2

Michalewicz (1997)) have claimed that the microscopic view described by the local per-
formance measures determines the macroscopic view described by the global performance
measures. Such statements are true in general only if the local performance measures
describe a sufficient statistics for the Markoff process. In Section 3 it is shown that most
of the considered local performance measures give wrong hints for SPCn. The quality
gain cannot find differences between the (1 + 1)EA and the (1 + 1)∗EA and the progress
rate indicates that the function SPCn cannot be maximized efficiently by the (1 + 1)EA.

One may ask whether the consideration of the (1 + 1)∗EA is useful at all. Menke
(1998) has found a particular function (not a sequence of functions) where the (1+1)∗EA
has a smaller expected runtime than the (1 + 1)EA. Here we present a sequence of
functions denoted by SPTn (short path with a trap) such that the (1 + 1)EA running for
exponentially many steps has a very small success probability while the (1+1)∗EA running
for O (n3 log n) steps has a very high success probability. However, if we perform cn5/2, c
a constant large enough, independent runs of the (1 + 1)EA, we have a good chance to
find the optimum in polynomial time. Therefore, we present a more complicated function
with many traps where the (1 + 1)∗EA is still successful while even multi-start variants
of the (1 + 1)EA have only very small success probability.

2 Evolutionary Algorithms on Short Path Functions

With a Constant Fitness on the Path

A path in {0, 1}n is a sequence x0, x1, . . . , xp of bit strings such that the Hamming distance
between adjacent strings equals 1, i. e., H(xi, xi+1) = 1 where H(x, y) = #{j|xj 6= yj}. A
path is called short if it has polynomial length and long if it has exponential length. Horn,
Goldberg, and Deb (1994) have defined long path functions where the fitness is increasing
along the path. Moreover, each bit string outside the path has a smaller fitness than all the
bit strings on the path and their fitness is defined in such a way that all hints lead to the
beginning of the path (Rudolph (1997)). Horn, Goldberg and Deb (1994) conjectured that
evolution strategies have difficulties with long path functions. Rudolph (1997) has shown
that this is not the case in general, since especially for the long path functions presented
by Horn, Goldberg, and Deb (1994) it is very likely that the (1 + 1)EA uses shortcuts (in
this case jumps of length 3) and this leads to a polynomial expected runtime. Rudolph
(1997) also has suggested long paths where shortcuts seem to be unlikely. This has been
proved by Droste, Jansen, and Wegener (1998b). The (1 + 1)EA needs exponential time
on these long path functions.

We start our discussion with the consideration of a short path function SPIn (short
path with increasing values on the path). This result will be used in Section 3 and
Section 4.

3

Definition 3. SPIn : {0, 1}n → R
+
0 is defined by

SPIn(a) :=

2n if a = 1n,

n + εi if a = 1i0n−i, 0 ≤ i ≤ n − 1,

n − ONEMAXn(a) otherwise,

where 0 < ε0 < ε1 < · · · < εn−1 < n and ONEMAXn(a) = a1 + · · · + an is the function
counting the number of ones of a.

0n

1n → 2n → optimal

a with j ones → n − j

a = 1i0n−i → n + εi

Figure 1: Illustration of the function SPIn, if 0 < εi < εi+1 < n, and of the function
SPCn, if εi = 0 for all i.

Proposition 4. The expected runtime of the (1+1)EA and the (1+1)∗EA on SPIn equals
Θ (n2).

Proof. The function ONEMAXn has been analyzed by many authors. The expected
runtime of the (1 + 1)EA equals Θ(n log n) (see Mühlenbein (1992) for an early proof
of the upper bound and Droste, Jansen, and Wegener (1998a) for the lower bound).
Both proofs also work for the (1 + 1)∗EA. Hence, the expected time to reach the path
x0 = 0n, xi = 1i0n−i, 1 ≤ i ≤ n − 1, xn = 1n is O(n log n). The expected time to reach
some x ∈ {xi+1, . . . , xn} from xi equals O(n), since the probability to obtain xi+1 by
mutation equals 1/n(1 − 1/n)n−1 ≥ 1/(e · n). Since n of these steps are sufficient, the
upper bound is proved.

4

The lower bound can be proved as follows. By Chernoff’s bound (see Hagerup and
Rüb (1989) or Motwani and Raghavan (1995)), the probability that the initial string has
at most (1/2 + ε)n ones, ε > 0 an arbitrary constant, is exponentially close to 1, i. e., is
1 − e−Ω(n). The probability that εn bits flip simultaneously is exponentially small. This
also holds for one step among at most n2 steps. Hence, with a probability exponentially
close to 1, the algorithm either takes at least n2 steps or reaches the path at some bit string
xi, i ≤ (1/2+2ε)n. (With a refined analysis we can bound i even by nε.) The probability
of a jump from xi to xi+j equals (1/n)j(1 − 1/n)n−j = Θ ((1/n)j). The probability of a
jump of the length j = 3 among n2 steps is bounded by O(1/n). Using only steps of length
1 and 2, the expected runtime to perform (1/2 − 2ε)n steps on the path is Ω (n2).

Proposition 4 shows that evolutionary algorithms are very efficient on short paths
with increasing fitness values on the path. We quickly find the path and then can follow
the hints given by the fitness function. Larger populations do not help for SPIn and the
crossover of two bit strings x and y belonging to the path, x = 1i0n−i, y = 1j0n−j, i ≤ j,
can only create bit strings z outside the path or “between” x and y, i. e., z = 1k0n−k

where i ≤ k ≤ j.

Definition 5. SPCn : {0, 1}n → R
+
0 (short path with constant values on the short path)

is defined by

SPCn(a) :=

2n if a = 1n,

n if a = 1i0n−i, 0 ≤ i ≤ n − 1,

n − ONEMAXn(a) otherwise.

The function SPCn differs from SPIn in one essential aspect. Only the terminal string
on the path is better than the rest of the path. The path from 0n to 1n−10 is a plateau
of bit strings with the same fitness value. Is it possible for evolutionary algorithms to
find the “golden terminal” of the path in polynomial time? Our results easily can be
generalized to shorter and longer paths as long as their length is polynomial. First, we
show that the (1 + 1)∗EA is inefficient for SPCn implying that in this situation a random
exploration of the plateau is necessary.

Theorem 6. The success probability of the (1 + 1)∗EA on SPCn within nn/2 steps is
exponentially small, i. e., bounded by e−Ω(n). The expected runtime is bounded below by
nΩ(n).

Proof. The result on the expected runtime follows from the result on the success proba-
bility. The function SPCn takes only n + 1 different values implying that the (1 + 1)∗EA
accepts the new bit string at most n times. We investigate a typical run of the (1+1)∗EA
and estimate the so-called “failure probability” of each phase, i. e., the probability that
the run of the (1+1)∗EA is not typical. We prove that a typical run takes nn/2 steps and
that the sum of all failure probabilities is bounded by e−Ω(n).

A typical run starts with an initial string with at most (2/3)n ones. The bound on
the failure probability follows from Chernoff’s bound.

5

A typical run meets the path within O (n2 log n) steps. The expected time to reach the
path is O(n log n), since the function behaves like −ONEMAXn outside the path. Hence,
by Markoff’s inequality, the success probability for O(n log n) steps is at least 1/2. This
holds independently from the initial string. Within Ω (n2 log n) steps we have n phases of
length Θ(n log n). Hence, the failure probability is bounded by e−Ω(n).

A typical run meets the short path at some string x = 1i0n−i where i ≤ n/3. Here
we can assume that the failures considered above did not happen. We investigate the
(1 + 1)∗EA on −ONEMAXn. It accepts at most one string on the i-th level, i. e., one
string with i ones. This is a random string among all strings on the i-th level. For all levels
l, n/3 ≤ l ≤ 2n/3, the probability to find a string x whose Hamming distance to 1l0n−l

is smaller than n/10 is e−Ω(n). Hence, also the probability that a mutation step leads to
a string on the path is e−Ω(n). This holds for the whole phase of length Θ (n2 log n) until
we reach the path.

If all considered failures do not happen, the path is met at some string 1i0n−i where
i ≤ n/3. In order to reach xopt = 1n it is necessary that all zeros flip simultaneously and
all ones do not flip. This probability is bounded above by (1/n)2n/3. The probability that
such an event happens within nn/2 steps is bounded above by e−Ω(n). Altogether, we have
proved the theorem.

Theorem 7. The expected runtime of the (1+1)EA on SPCn is bounded above by O (n3).
The success probability for n4 steps is bounded below by 1 − e−Ω(n).

Proof. We prove that the success probability for cn3 steps, where c is some large enough
constant, is bounded below by some constant α > 0. This implies both statements,
since the statement holds for arbitrary initial strings. In the same way as in the proof of
Theorem 6 we can assume that the path is reached within O (n2 log n) steps. The failure
probability is e−Ω(n).

In the following we have to investigate the (1 + 1)EA on the path from x0 = 0n via
xi = 1i0n−i, 1 ≤ i ≤ n − 1, to xn = 1n. The (1 + 1)EA accepts each string on the path
until 1n is reached. There are unsuccessful steps where x mutates to some x′ outside the
path. A step is called successful if it produces a string x′ which differs from the current
string x and which is accepted as new current string. The probability of a successful step
is at least 1/(en), since each point on the path has a Hamming neighbor on the path. For
each c′ > 0 there exists some c such that the probability of less than c′n2 successful steps
among cn3 steps is e−Ω(n). This again follows from Chernoff’s bound.

Now we investigate the c′n2 successful steps where c′ can be chosen large enough. The
conditional probability that a successful step mutates k bits equals Θ

(
(1/n)k−1

)
for all

k and the probability that a successful step mutates at least 4 bits equals Θ ((1/n)3). A
typical run of c′n2 successful steps consists of

– no successful step flipping at least 4 bits (failure probability O(1/n) by direct cal-
culation),

– some successful steps flipping 3 bits,

– some successful steps flipping 2 bits,

6

– and at least c′′n2 successful steps flipping exactly one bit where c′′ depends on c′

and can be chosen arbitrarily large if one increases c′ (the conditional probability
that a successful step flips more than one bit is bounded by O(1/n), this implies by
Chernoff’s bound that the number of successful steps flipping more than one bit is
with large probability bounded above by n3/2, the failure probability is e−Ω(n)).

We claim that the probability to reach one of the last four strings of the path, namely
1n−303, 1n−202, 1n−10, 1n, is bounded below by a positive constant. If we do not have
reached one of the target strings, the probability that a successful step of length l ∈
{1, 2, 3} increases the number of ones is at least 1/2. With probability at least 1/2 at
least half of the successful steps of length 3 increase the number of ones of the current
string. The same holds for the successful steps of length 2 (independently of the steps of
length 3). Finally, we consider the successful steps of length 1. Here we use another notion
of “success”. A step is a success if x′ is closer to 1n than x. We have c′′n2 independent
Bernoulli trials with success probability 1/2. We want to estimate the probability of
at least (1/2)c′′n2 + (1/2)n successes. The probability of less than (1/2)c′′n2 successes
is bounded above by 1/2. The probability of exactly k successes is bounded above by(

N
N/2

)
2−N for N = c′′n2. By Stirling’s formula, this probability can be bounded by b·N−1/2

for some constant b. By choosing c′′ large enough, this probability can be bounded by
1/(2n). This implies that the probability of less than (1/2)c′′N2 + (1/2)n successes is
bounded above by (1/2)+(n/2)·(1/(2n)) = 3/4 and the probability of at least (1/2)c′′n2+
(1/2)n successes is bounded below by 1/4. Altogether, the probability that the number
of ones increases by c′n2 successful steps by at least n is at least 1/16 − o(1) taking into
account all possible failures. Hence, we reach one of the last four strings of the path
with probability 1/16 − o(1). Having reached 1n−j0j, 1 ≤ j ≤ 3, there is a probability of
(1/2)j − o(1) that each of the next j successful steps increases the number of ones by one
and we reach 1n. Altogether the probability to reach 1n within cn3 steps, c a constant
large enough, is bounded below by (1/128) − o(1) and this proves the theorem.

3 Local Vs. Global Performance Measures

Local performance measures consider the behavior of evolutionary algorithms within one
step or at most a small number of steps.

Definition 8. i) The quality gain QA
f (a) of an evolutionary algorithm A with popula-

tion size 1 is the expected value of f(x) − f(a) where x is the string describing the
random string created in one step from the string a.

ii) The progress rate rA
f (a) of an evolutionary algorithm A with population size 1 work-

ing on {0, 1}n and a function f with a unique optimum xopt is the expected value of
H(a, xopt)−H(x, xopt) (H is the Hamming distance) where x is the string describing
the random string created in one step from the string a.

The following simple result follows from the definition.

7

Proposition 9. The local performance measure quality gain cannot distinguish between
the (1 + 1)EA and the (1 + 1)∗EA.

This trivial fact implies that the quality gain would predict for SPCn the same behavior
for the (1 + 1)EA and the (1 + 1)∗EA, although their global performances differ a lot:
the (1 + 1)∗EA is very inefficient while the (1 + 1)EA is efficient. Moreover, the quality
gain shows only very small differences between SPCn and SPIn (for small εi). However,
the (1 + 1)∗EA behaves quite differently on these fitness functions. The quality gain for
SPCn can be estimated as follows:

– Q
(1+1)
SPCn

(a) = Q
(1+1)∗

SPCn
(a) = 0 for a = 1n (this always holds for optimal strings),

– Q
(1+1)
SPCn

(a) = Q
(1+1)∗

SPCn
(a) = Θ ((1/n)n−i−1) for a = 1i0n−i, 0 ≤ i ≤ n − 1,

– Q
(1+1)
SPCn

(a) = Q
(1+1)∗

SPCn
(a) ≥ i/(e · n) for all other a with i ones.

The quality gain is quite large outside the path but exponentially small on the path. A
small part of the search space with a very small quality gain is an obstacle only if this
part is reached with large probability. No local performance measure makes a forecast
whether this small part will be reached. We know that the short path is reached with high
probability. The quality gain on the path is very small and with respect to the quality
gain one would not expect that the (1 + 1)EA is efficient for SPCn.

The consideration of the progress rate for SPCn is interesting. For all strings a outside
the path the progress rate is the same for the (1 + 1)EA and the (1 + 1)∗EA. For strings
on the path, the (1 + 1)EA accepts all strings on the path. The progress rate of the
(1 + 1)EA and the (1 + 1)∗EA for SPCn can be estimated as follows:

– r
(1+1)
SPCn

(a) = r
(1+1)∗

SPCn
(a) = 0 for a = 1n,

– r
(1+1)∗

SPCn
(a) = +Θ ((1/n)n−i(n − i)) for a = 1i0n−i, 0 ≤ i ≤ n − 1,

– r
(1+1)
SPCn

(a) = −Θ ((n − i + 1)(1/n)n−i+1) for a = 1i0n−i, i > n/2,

– r
(1+1)
SPCn

(a) = +Θ ((i + 1)(1/n)i+1) for a = 1i0n−i, i < n/2,

– r
(1+1)
SPCn

(a) = r
(1+1)∗

SPCn
(a) = −Θ(i/n) for all a with i ones and lying outside the path.

The progress rate indicates that SPCn is very difficult. It is positive for the (1 + 1)EA
only on the first half of the path where we are far away from the optimum. On the
second half of the path we have the strings 1i0n−i with i > n/2. We reach 1i+j0n−i−j, if
i + j ≤ n, with the same probability as 1i−j0n−i+j and we have a positive probability of
reaching the earlier strings of the path. The progress rate outside the path is negative,
since the hints of SPCn point to 0n. Although only n/2 strings have a positive progress
rate and although these positive values are very small and although all strings with a
positive progress rate are far away from the optimum, the (1+1)EA is efficient for SPCn.

8

Moreover, the progress rate indicates that the (1 + 1)∗EA is better than the (1 + 1)EA
for SPCn which is totally wrong.

We conclude that the knowledge of the behavior of local performance measures can
be useful. However, there are functions like SPCn where the local performance measures
lead to wrong indications.

4 Two Functions Where Strings of the Same Fitness

Should Be Ignored

It seems to be obvious that it is better to explore a plateau of search points with the same
fitness than to wait at the point where the plateau is reached for the first time for a step
to some point with a better fitness. This will be the case in most situations of fitness
functions which are easy to evaluate and to describe. However, this statement is not true
for all these functions. The following function has the property that the plateau is reached
with high probability close to some specific point. Sitting at this point it is quite likely
to find the optimum efficiently but not too quickly. If one starts an exploration of the
plateau during the waiting time, it is very likely that it takes a long time to come back
close to the specific point and this makes it unlikely to leave the plateau.

In order to simplify the notation we assume that n = m2 for some integer m. The
statements hold for all n and m =

⌊
n1/2

⌋
.

Definition 10. The function SPTn : {0, 1}n → R
+
0 (short path with a trap) is defined by

SPTn(a) =

3n if a ∈ A = {a∗}, where a∗ = 0001n−m−30m,

2n if a ∈ B, i. e., a starts with n − m ones,

n + i if a ∈ C = {1i0n−i, 0 ≤ i ≤ n − m − 1},

n − ONEMAX(a) if a ∈ D = {0, 1}n − (A ∪ B ∪ C).

With high probability, the search starts in D and efficiently finds the short path C
at one of the strings in the initial part of C. The search follows this path efficiently and
reaches the plateau B at 1n−m0m or close to this string. There is a 3-bit-mutation from
1n−m0m to the optimal string a∗, the only string contained in A. If the search explores
the plateau it performs a random walk in B and all but an exponentially small fraction
of the strings of B have a Hamming distance of at least m/5 to a∗ which requires a
specific mutation with at least m/5 flipping bits. The waiting time for such an event is
exponentially large. These ideas are made precise in the rest of this section.

We partition B into the sets Bi of all b with i ones among the last m positions. Let
b∗ = 1n−m0m be the only string in B0. First we are interested in the random time TA∪B

until the (1 + 1)EA and the (1 + 1)∗EA enter A∪B and in the probability distribution p
describing where the algorithms enter A ∪ B.

Proposition 11. The following results hold for the (1 + 1)EA and the (1 + 1)∗EA and
the function SPTn.

9

0n

a = 1i0n−i, 0 ≤ i ≤ n − m − 1 → n + i

1n

a with j ones → n − j

a∗ = 0001n−m−30m → 3n → optimal

a = 1n−m∗m → 2n

Figure 2: Illustration of the function SPTn.

– Prob (TA∪B = O (n2 log n)) = 1 − O(1/n),

– Prob (TA∪B = O (n3)) = 1 − e−Ω(n),

– p (a∗) = Θ ((1/n)3),

– p (B − {b∗}) = Θ
(
(1/n)1/2

)
,

– p (Bi) = Θ
((

m
i

)
(1/n)i

)
, 1 ≤ i ≤ m, and

– p (b∗) = p (B0) = 1 − Θ
(
(1/n)1/2

)
.

Proof. The proof works for both algorithms, although they differ in their behavior on D.
However, they have the same behavior on C. The search starts with probability 1−e−Ω(n)

with a string with at most (1/2 + ε)n ones and enters A ∪ B ∪ C at some string with at
most (1/2 + 2ε)n ones. For our purposes it is sufficient to set ε = 1/10. Moreover, the
set A ∪ B ∪ C is reached within O (n2 log n) steps with a probability of 1 − e−Ω(n), since
we have Ω(n) phases of length O(n log n) and can apply the results for ONEMAXn. All
strings from A∪B ∪C with at most (1/2 + 2ε)n ones belong to C. (Since our results are
asymptotical ones, we may assume that n is large enough.)

Let c be the last string reached in C, before the algorithm enters A ∪ B. We denote
by mut(c → E) the probability that the string obtained by mutation of c belongs to some
set E. If c = 1n−m−j0m+j ,

– mut(c → a∗) = Θ ((1/n)j+3),

10

– mut(c → Bi) = Θ
((

m
i

)
(1/n)j+i

)
, 1 ≤ i ≤ m,

– mut(c → B − {b∗}) = Θ
(
1/n)j+1/2

)
,

– mut(c → b∗) = Θ ((1/n)j).

Independently of j, we obtain the same asymptotical probabilities mut∗ under the condi-
tion that the result of the mutation belongs to A ∪ B, namely

– mut∗(c → a∗) = Θ ((1/n))3),

– mut∗(c → Bi) = Θ
((

m
i

)
(1/n)i

)
, 1 ≤ i ≤ m,

– mut∗(c → B − {b∗}) = Θ
(
(1/n)1/2

)
,

– mut∗(c → b∗) = 1 − Θ
(
(1/n)1/2

)
.

This implies the results on the probability distribution p. The results on TA∪B follow
from the proof of Proposition 4 that the expected time to reach the terminal of a path of
linear length with increasing fitness values equals O (n2) independently from the starting
point.

Theorem 12. Let k ≥ 0 be an integer. The success probability of the (1 + 1)∗EA on
SPTn within O

(
n3+k log n

)
steps is bounded below by 1 − O

(
(1/n)(k+1)/2

)
.

Proof. By Proposition 11, we can assume that A ∪ B is reached within O (n3) steps. We
also know the probability distribution describing where A ∪ B is entered. If we have
reached a∗, the search was successful. Otherwise, the (1+1)∗EA has reached some b ∈ Bi

and accepts only a∗. Hence, we wait for a success within independent Bernoulli trials
with success probability Θ ((1/n)i+3). The expected waiting time equals Θ (ni+3). The
failure probability for Θ (ni+3 log n) steps equals Θ(1/n) and for Θ (ni+4 log n) steps it is
exponentially small.

Now we investigate the probability that the (1 + 1)∗EA has not found a∗ within
Θ
(
n3+k log n

)
steps. This happens if b ∈ Bi and Θ

(
n3+k log n

)
steps are not sufficient to

reach a∗ from b. The probability of this event is bounded above by 1, if i > k, by O(1/n),
if i = k, and e−Ω(n), if i < k. With the results of Proposition 11 describing where we enter
A ∪ B, we obtain the following upper bound on the failure probability where the three
terms reflect the three cases i > k, i = k, and i < k considered above (remember that
m = n1/2):

1 · O

((
m

k + 1

)(
1

n

)k+1
)

+ O

(
1

n

)
· O

((
m

k

)(
1

n

)k
)

+ e−Ω(n) · 1 =

O

((
1

n

)(k+1)/2
)

.

For constant k, it is possible to bound the probability to enter A ∪ B in some Bi, i > k,
by O (p(Bk+1)).

11

Theorem 12 implies that the success probability within O (n3 log n) steps tends to 1.
Nevertheless, the expected runtime of the (1+1)∗EA grows exponentially. The probability
to enter A ∪ B in Bm/2 equals Θ

(
2mm−1/2(1/n)m/2

)
and the expected waiting time in

this situation equals Θ
(
(1/n)m/2+3

)
. In applications, a success probability tending to 1

is good enough.
In the following, we prove that the (1+1)EA has a very small success probability even

if we allow more than polynomially many steps.

Theorem 13. The success probability of the (1 + 1)EA on SPTn for O (n2 log n) steps

is bounded below by Ω
(
(1/n)5/2

)
. The success probability for 2εn1/2

steps, ε > 0 small

enough, is bounded above by O
(
(1/n)5/2

)
.

Proof. The first result is quite easy. Proposition 11 ensures that with probability 1−o(1)
the set A∪B is entered within O (n2 log n) steps at the point b∗. The (1+1)EA accepts in
b∗ all strings from A∪B. The probability to reach a string b ∈ B−{b∗} is Ω

(
(1/n)1/2

)
and

the probability to reach a∗ equals Θ ((1/n)3). Hence, the probability to reach a∗ before
some b ∈ B − {b∗} equals Θ

(
(1/n)5/2

)
and the probability to leave b within O (n2 log n)

steps is 1 − o(1).
It is more difficult to prove the upper bound on the success probability. The proof of

Proposition 11 shows that the probability of reaching A ∪ B ∪ C in A ∪ B or at some c
with more than (7/10)n ones is e−Ω(n). Hence, we assume in the following that we have
reached the path at c with at most (7/10)n ones. At c, the probability to reach the next
string on the path is Θ(1/n). If c = 1n−i0i, the probability to reach a∗ is Θ ((1/n)i−m+3).
Hence, the probability that we reach a∗ if we leave c is bounded above by O ((1/n)i−m+2).
Altogether, the probability to reach a∗ as the first string from A ∪ B is bounded above
by O ((1/n)3).

Hence, we can assume that we have reached A∪B in some string in B. The (1+1)EA
has the best success probability if A∪B is reached in b∗. We consider 2εm successful steps
of the (1 + 1)EA, i. e., steps where some string different from the current one is accepted.
Let x0 = b∗ and let xt be the current string after t steps under the condition that xi 6= a∗

for all i < t. We prove an upper bound α(t) on the probability to reach a∗ during the next
successful step. If xt ∈ Bj, α(t) = O

(
(1/n)5/2

)
, since there are m 1-bit-mutations leading

to a successful step and, therefore, the probability of a successful step is Ω
(
(1/n)1/2

)
and

the probability to obtain a∗ from xt ∈ Bj by mutation is Θ ((1/n)j+3).
As long as the (1 + 1)EA explores B, the current string starts with n − m ones and

a step is unsuccessful if one of these bits flips. Hence, we consider the current bit string
as a string of length m where we are starting with 0m. Let yt be the random string
after t mutations (where still each bit flips with probability 1/n). Here we consider also
steps which do not change one of the last m bits. The i-th bit of yt equals 1 iff this bit
has flipped for an odd number of times. The number of flips of each bit is binomially
distributed with parameters t and 1/n. For t = n this distribution can be approximated
by the Poisson distribution with parameter λ = 1. Hence, the probability that the i-th
bit of yt equals 1 converges to e−1 and is larger than 1/4 for n large enough. The bits
of yt are flipped independently. Hence, by Chernoff’s bound, the number of ones in yt is

12

at least m/5 with a probability of 1 − e−Ω(m). This also implies that the probability of
reaching a∗ with the next successful step is O

(
(1/n)m/5+5/2

)
.

We can generalize these calculations to all t ≥ n, since the probability that the i-th
bit of yt equals 1 converges monotonically to 1/2. Hence, the success probability of

2εm = 2εn1/2

steps (ε > 0 some constant small enough) is exponentially small if the
(1 + 1)EA was not successful before reaching B and during the first n steps after having
reached B.

We still have to estimate the success probability for the first n steps after having
reached B. The probability that a step is successful is Θ

(
(1/n)1/2

)
. Hence, by Chernoff’s

bounds, there are with large probability at most Θ
(
n1/2

)
successful steps. The probability

that a∗ is reached by a successful step is bounded by O
(
(1/n)5/2

)
. Hence, the probability

of reaching a∗ within Θ
(
n1/2

)
successful steps is bounded by O ((1/n)2). We can improve

this rough estimate. All successful steps from some string b ∈ B − B0 have a probability
to reach a∗ which is even bounded by O

(
(1/n)7/2

)
. Hence, the probability to reach a∗

within Θ
(
n1/2

)
successful steps starting in B − B0 is bounded above by O ((1/n)3). We

look for a bound how often a successful step starts from b∗, the single string contained in
B0.

This estimation is performed using a simplified Markoff chain with three states 0, 1
and 2 representing B0, B1 and B − (B0 ∪ B1) resp. Since we consider successful steps
not reaching a∗, the state 0 is left with probability 1 within one step. The probability to
reach b∗ again is overestimated if we assume that each step from state 0 reaches state 1. A
successful step from state 1 reaches state 0 with probability Θ

(
(1/n)1/2

)
(one appropriate

1-bit-mutation), state 1 with probability Θ(1/n) (m−1 appropriate 2-bit-mutations), and
state 2 with the remaining probability of 1−Θ

(
(1/n)1/2

)
. We overestimate the probability

to reach state 0 by adding the probability to stay in state 1 to the probability to reach
state 0. A successful step from state 2 reaches state 0 with probability O

(
(1/n)3/2

)
(one

appropriate mutation flipping at least 2 bits), reaches state 1 with probability O
(
(1/n)1/2

)

(the probability is maximal for strings b ∈ B2 where we have one appropriate 1-bit-
mutation) and stays in state 2 with the remaining probability of 1 − O

(
(1/n)1/2

)
. We

overestimate the probability to reach state 0 by assuming a probability of Θ(1/n) to reach
state 0 from state 2 and a probability of 0 to reach state 1 (the probability to reach state
0 via state 1 is O(1/n)). This leads to the following Markoff chain with the corresponding
transition probabilities:

1

Θ((1

n
)1/2)

0 1 2 1 − Θ(1

n
)

Θ(1

n
)

1 − Θ((1

n
)1/2)

The probability of the short loop 0 → 1 → 0 equals Θ
(
(1/n)1/2

)
. The probability

of using this loop six times consecutively equals Θ ((1/n)3). The probability that this
happens within Θ

(
n1/2

)
steps is bounded by Θ

(
1/n)5/2

)
. Hence, we can assume that we

reach state 0 at most six times before reaching state 2. The probability to reach state 0
from state 2 equals Θ(1/n). The probability that this happens 5 times within Θ

(
n1/2

)

13

trials is bounded by O
(
(1/n)5/2

)
. Hence, with a failure probability of O

(
(1/n)5/2

)
we

have at most 30 trials to reach a∗ from b∗ which proves the theorem.

Theorem 13 implies that the success probability within the first O (n2 log n) steps

equals Θ
(
(1/n)5/2

)
(because of the lower bound for 2ǫn1/2

steps) and that the success

probability increases during the following 2ǫn1/2

steps only by a constant factor. There is
only one short period of time with a good chance to find the optimum.

A multi-start strategy only has a good success probability if we work with Ω
(
n5/2

)

multi-starts. Altogether, the (1 + 1)∗EA is much more efficient on SPTn than the
(1 + 1)EA.

In the following we present a function where the (1 + 1)∗EA has an overwhelming
success probability for a small polynomial number of steps but the success probability of
the (1+1)EA is exponentially small — even after an exponential number of steps. Hence,
multi-start strategies do not help. The function is based on a sequence of traps. First,
we present a function with only one of these traps. The purpose is to develop the main
technical results. This function is called PT (plateau with a trap). We have a main path
M of length 2k+1 where k =

⌊
n1/2

⌋
. The middle point of this path has a very bad fitness.

Besides this the fitness is increasing along the path. The point with the bad fitness is
called the “hole” in the path. Just before the hole another path P of length m =

⌊
n1/4

⌋

is starting. All but the last point on this path have the same fitness as the starting point,
namely the point before the hole. The last point has the largest fitness. The set of points
with the same fitness is called the plateau, the last point is called the trap. It is quite
obvious that neither the (1 + 1)EA nor the (1 + 1)∗EA have difficulties to find points in
the last quarter of M or the trap. If the last quarter of M is reached before the trap, this
is called a success. Otherwise, the algorithm is called “trapped”. The reason is that we
later define a function where the way to the global optimum leads along M .

Definition 14. Let k =
⌊
n1/2

⌋
and m =

⌊
n1/4

⌋
. The main path consists of the points

in M = {1i0n−i | 0 ≤ i ≤ 2k, i 6= k}, the set H only contains the hole h∗ = 1k0n−k. The
plateau consists of the points in P =

{
1k−10n−k+1−j1j | 1 ≤ j ≤ m − 1

}
, the set T only

contains the trap t∗ = 1k−10n−k+1−m1m. The function PTn is defined by

PTn(a) =

−2 if a = h∗

i if a = 1i0n−i ∈ M

k − 1 if a ∈ P

n if a = t∗

−1 otherwise.

Let s(n) resp. s∗(n) be the probability that the (1 + 1)EA resp. the (1 + 1)∗EA starting at
0n reaches one of the last k points of M before reaching t∗.

Lemma 15. s∗(n) = 1 − (1/n)Ω(m). Moreover, if one the last k points of M is reached
before t∗, this point is reached within O

(
n5/2

)
steps with a probability of at least 1 −

(1/2)Ω(m).

14

0n=̂ starting point → 0

all other points → −1

12k0n−2k → 2k

1i0n−i → i

1k−10n−k+1 → k − 1

k − 1

t∗ → n

h∗ → −2

Figure 3: Illustration of the function PTn.

Proof. Let M1 be the part of M before 1k−10n−k+1, P ∗ =
{
1k−10n−k+1

}
, and M2 = M\M1.

As long as the actual string belongs to M1 all strings in M2 ∪ P ∪ P ∗ ∪ T are accepted
as new strings by the (1 + 1)∗EA. For each a ∈ M1 we get the following conditional
probabilities to reach the points from M2 ∪ P ∪P ∗ ∪ T (under the condition that a point
in this set is reached):

1k−10n−k+1 : Θ(1)

1k−10n−k+1−j1j : Θ
(
(1/n)j

)
for j ≥ 1

M2 : Θ
(
(1/n)2

)
.

Hence, with a probability of 1 − (1/n)Ω(m) the set M2 ∪ P ∪ P ∗ ∪ T is reached within
M2 ∪ P ∗ or one of the first ⌊m/10⌋ points of P . Sitting on P ∪ P ∗ no other point of this
set is accepted by the (1 + 1)∗EA. The Hamming distance to the first point of M2 is at
most ⌊m/10⌋ − 2 while the distance to t∗ is at least (9/10)m. Hence, with a probability
of 1 − (1/n)Ω(m) the (1 + 1)∗EA reaches at first a point from M2 before reaching t∗.

For the second claim, we can assume that if P ∪ P ∗ is reached, it is reached within
the first ⌊m/10⌋ points or in P ∗. Assuming that afterwards a point in M2 is reached, we
obtain for the conditional expected time of this event the upper bound

O

(
n2 · 1 + n3 ·

1

n
+ n4 ·

1

n2
+ · · · + n⌊m/10⌋+2 ·

1

n⌊m/10⌋

)
= O

(
n2 · m

)
= O

(
n9/4

)
.

By Markoff’s inequality, there is a probability of at most 1/2 that O
(
n9/4

)
steps are not

sufficient. The bound follows by considering m phases of this length. We still have to
consider the time to reach one of the points in P ∪ P ∗ ∪ M2. There is a short path of
length O

(
n1/2

)
with increasing fitness values leading to P ∗. The expected time to reach

the end of this path is O
(
n3/2

)
and we additionally have the chance to reach points in

P ∪ M2. It is sufficient to consider m phases of length O
(
n3/2

)
.

The function MPTn (multiple plateaus with traps) works with ⌊k/5⌋ traps. The
definition of MPTn is at first illustrated for five traps.

15

a with j ones → n − j

0n

1n → 2n + 1

1i0n−i → n + i

traps with fitness 2n

plateaus

holes with fitness 0

1n/403n/4
plateaus

Figure 4: Illustration of the function MPTn.

Definition 16. The main path M of MPTn consists of all points 1i0n−i except the N :=
⌊k/5⌋ holes. The j-th hole hj is the string 1i(j)0n−i(j) where i(j) = ⌊n/4⌋ + j(k + 1) − 1.
The j-th plateau Pj consists of the points 1i(j)−10n−i(j)+1−r1r, 1 ≤ r ≤ m−1, and the j-th
trap Tj consists of the point t∗j = 1i(j)−10n−i(j)+1−m1m. The function MPTn is defined in
the following way.

MPTn(a) =

2n + 1 if a = 1n

i if a = 1i0n−i ∈ M \ {1n}

0 if a is a hole

2n if a is a trap

i(j) − 1 if a ∈ Pj

n − ONEMAXn(a) otherwise.

Theorem 17. The success probability of the (1 + 1)∗EA on MPTn within O (n3) steps is

bounded below by 1 − (1/2)Ω(n1/4).

Proof. We consider a typical run of the (1 + 1)∗EA on MPTn and bound the failure
probability by (1/2)Ω(m), m =

⌊
n1/4

⌋
. A typical run does not contain a step where at

least k =
⌊
n1/2

⌋
bits flip simultaneously (failure probability O (n3/k!) which is small

16

enough). A typical run starts with an initial string of at most (3/4)n ones. For the
fitness function n − ONEMAXn the (1 + 1)∗EA reaches at most one string with j ones,
j ≤ (3/4)n. This string is a random one among the strings with j ones. Each level
with respect to the number of ones has for MPTn at most 2 strings where the fitness
differs from n − ONEMAXn. The probability that such a string is reached on a level j,

(1/4)n ≤ j ≤ (3/4)n is bounded by O
(
n/
(

n
n/4

))
. Hence, a typical run meets M ∪ P ∪ T

(P is the union of all Pj and T the union of all Tj) in some point of M with less than
n/4 ones. This happens within O (n2 log n) steps (the failure probability is exponentially
small).

Since we assume that less than k bits flip simultaneously, the (1 + 1)∗EA considers
the traps independently. The probability to get caught within one trap is bounded by
Lemma 15 by (1/n)Ω(m). The probability to get caught in one of the traps is bounded
by O

(
n1/2

)
· (1/n)Ω(m) = (1/2)Ω(m). The probability that the (1 + 1)∗EA does not pass

one of the traps within O
(
n5/2

)
steps (implying a time bound of O (n3) to pass all traps)

is bounded by Lemma 15 by O
(
n1/2

)
· (1/2)Ω(m) = (1/2)Ω(m). Here we assume that we

have reached one of the strings on M before the first hole. Besides this, the (1 + 1)∗EA
has to pass at most two short paths with increasing fitness values, both of length O(n).
The expected time for this is O (n2) and the failure probability for O (n3) steps is small
enough.

Lemma 18. s(n) = O
(
n−1/2

)
.

Proof. We can use some of the arguments of the proof of Lemma 15, since the (1 + 1)EA
and the (1 + 1)∗EA accept the same strings as long as the actual string belongs to M1.
Hence, the probability of reaching M2 before P ∪ T ∪ P ∗ is bounded by O ((1/n)2). If T
is reached, there is no way back to M2. We can apply Theorem 7 for the analysis of the
behavior of the (1 + 1)EA on P ∪ P ∗ ∪ T . The probability of reaching T within O

(
n3/2

)

steps is bounded below by a positive constant ε (remember that the length of the plateau
is m+1 = Θ

(
n1/4

)
). The probability to reach M2 within O

(
n3/2

)
steps is bounded above

by O
(
n−1/2

)
. We consider phases of length O

(
n3/2

)
each. With probability O

(
n−1/2

)
we

have a success, with probability Ω(1) we get trapped, and with the remaining probability
we start the next phase. The probability that the first success happens in a phase such
that we did not get trapped in one of the previous phases is bounded by O

(
n−1/2

)
.

Theorem 19. The success probability of the (1 + 1)EA on MPTn within nn/2 steps is

bounded above by (1/n)Ω(n1/2).

Proof. We consider a typical run of the (1+1)EA. It starts with overwhelming probability
with less than (3/4)n ones. On n − ONEMAXn it reaches 0n with overwhelming prob-
ability within O (n2 log n) steps and, therefore, visits at most O (n2 log n) strings. Using
arguments similar to the proof of Theorem 17 it reaches M at some string 1i0n−i where
i ≤ n/4.

We investigate the next O (n4) steps. With overwhelming probability there is no
step where at least k bits flip simultaneously. Hence, the traps can be considered in-
dependently. The time for the uninterrupted parts of the main path is bounded with

17

overwhelming probability by O (n4). The time to get trapped or to jump over one hole is
with overwhelming probability bounded by O (n3). Hence, with overwhelming probability
the (1+1)EA has found the global optimum 1n or has reached a trap within O (n4) steps.
By Lemma 18, the probability of passing all holes without getting trapped is bounded

above by
(
O
(
n−1/2

))n1/2

= (1/n)Ω(n1/2). For large n, each trap has a Hamming distance

of at least n/2 + n1/2 to 1n. Hence, we have to wait for an event whose probability is

bounded above by (1/n)n/2+n1/2

. The probability that such an event happens within nn/2

steps is bounded above by (1/n)n1/2

.

5 Conclusions

We have shown that small details can change the behavior of evolutionary algorithms
significantly. The point of time where the success probability becomes significantly larger
than 0 may increase from polynomial to exponential and the same can happen for the
point of time where the success probability comes very close to 1. A function is presented
which is easy to evaluate and to describe and where it is very advantageous to accept
only strings with a better fitness. A very simple function, a short path function with
constant fitness values on the path has the opposite behavior. This proves that simple
evolutionary algorithms can cope with plateaus whose shape is a path of polynomial
length. The investigations also provide examples where local performance measures like
the quality gain and the progress rate do not contain enough information to predict the
global behavior of evolutionary algorithms.

References

Bäck, T., Fogel, D. B., and Michalewicz, Z. (1997). (Ed.) Handbook of Evolutionary
Computation. Oxford University Press, Oxford.

Droste, S., Jansen, T., and Wegener, I. (1998a). A rigorous complexity analysis of the
(1+1) evolutionary algorithm for linear functions with Boolean inputs. ICEC 1998, Int.
Conf. on Evolutionary Computation, 499–504.

Droste, S., Jansen, T., and Wegener, I. (1998b). On the optimization of unimodal func-
tions with the (1 + 1) evolutionary algorithm. PPSN V, Parallel Problem Solving from
Nature, LNCS 1498, 13–22.

Droste, S., Jansen, T., and Wegener, I. (1999). Perhaps not a free lunch but at least a free
appetizer. GECCO 1999, Genetic and Evolutionary Computation Conference, 833–839.

Garnier, J., Kallel, L., and Schoenauer, M. (1999). Rigorous hitting times for binary
mutations. Evolutionary Computation 7, 173–203.

Hagerup, T., and Rüb, C. (1989). A guided tour of Chernoff bounds. Information Pro-
cessing Letters 33, 305–308.

18

Horn, J., Goldberg, D. E., and Deb, K. (1994). Long path problems. PPSN III, Parallel
Problem Solving from Nature, LNCS 866, 149–158.

Menke, R. (1998). Personal communication.

Motwani, R., and Raghavan, P. (1995). Randomized Algorithms. Cambridge University
Press, Cambridge.

Mühlenbein, H. (1992). How genetic algorithms really work. I. Mutation and hillclimbing.
PPSN II, Parallel Problem Solving from Nature, 15–25.

Rechenberg, I. (1994). Evolutionsstrategie ’94. Frommann-Holzboog, Stuttgart.

Rudolph, G. (1997). How mutations and selection solve long path problems in polynomial
expected time. Evolutionary Computation 4, 195–205.

Schwefel, H.-P. (1995). Evolution and Optimum Seeking. Wiley, New York.

Wolpert, D. H., and Macready, W. G. (1997). No free lunch theorems for optimization.
IEEE Trans. on Evolutionary Computation 1, 67–82.

19

