
Integrated Reliability and Availability Aanalysis of Networks With Software Failures and

Hardware Failures

by

Wei Hou

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
Department of Industrial and Management Systems Engineering

College of Engineering
University of South Florida

Major Professor: O. Geoffrey Okogbaa, Ph.D.
Tapas Das, Ph.D.
A.N. Rao, Ph.D.

Sudeep Sarkar, Ph.D.
Michael Weng, Ph.D.

Date of Approval:
March 17, 2003

Keywords: performance evaluation, distributed systems, system redundancy, end-to-end
solution modeling, event tree, application tool

© Copyright 2003 , Wei Hou

DEDICATION

To My Parents

献给我的父母

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my major professor Dr. O. Geoffrey

Okogbaa for his academic guidance and financial support to my doctorate research.

I have been indebted to Dr. Tapas Das, Dr. Michael Weng, Dr. Sudeep Sakar, and Dr.

A.N. Rao, for the services in my dissertation committee and their precious advice. I am

also very thankful to Dr. Rajan Sen for serving as my defense chairperson and Dr. Peter

Maurer for his partial service in my committee.

It would be impossible to complete my Ph.D. education, without the support of the

Department of Industrial and Management Systems Engineering and its people. I greatly

appreciate the help from Dr. William Miller, Dr. Anita Callahan, Ms. Marsha Brett, and

Ms. Gloria Hanshaw.

Finally, I am highly grateful of the co-sponsoring of NSF (National Science Foundation)

to my dissertation research.

TABLE OF CONTENTS

LIST OF TABLES ….……………………………………………………………………………..…. iv

LIST OF FIGURES ………………….……………………………………………………………..… v

ABSTRACT ………….………………………………………...……………………………………. viii

CHAPTER 1 INTRODUCTION ... 1

1.1 Background.. 1
1.2 Objectives of Research .. 4
1.3 Motivation of Research ... 5
1.4 Overview of Research ... 8

CHAPTER 2 LITERATURE REVIEW ... 10

2.1 Reliability Studies for Networks with Unreliable Links and Perfect Nodes....... 13
2.2 Reliability Studies for Networks with Unreliable Nodes and Perfect Links....... 13

2.2.1 Residual Node Connectivity Model.. 13
2.2.2 Coherent Model .. 16

2.3 Reliability Studies for Networks with Unreliable Links and Unreliable Nodes . 18
2.3.1 AGM Method.. 19
2.3.2 NPR/T Method.. 20
2.3.3 ENR/KW Method ... 21

2.4 Software Models.. 21
2.4.1 Software Reliability .. 21
2.4.2 Software Reliability Models ... 24

2.4.2.1 Time Between Failures Models... 24
2.4.2.2 Failure Count Models.. 28
2.4.2.3 Fault Seeding Models.. 32
2.4.2.4 Input Domain Based Models.. 33

2.5 Petri Nets in Reliability Analysis of Integrated Networks 34
2.5.1 Introduction of Petri Nets.. 34

i

2.5.1.1 Evolution of Petri Net Models .. 35
2.5.1.2 Definitions of Petri Nets.. 39
2.5.1.3 Timed Petri Nets (TPN) .. 42

2.5.2 Colored Petri Nets... 44
2.5.2.1 Advantages of Colored Petri Nets... 46

2.5.3 Tools for Petri Nets Applications ... 49
2.5.4 PN_RAIN Approach... 50

2.5.4.1 Construction of PN_RAIN Models ... 52
2.6 Possibilistic Reliability Functions and Fuzzy Sets Theory 58

CHAPTER 3 PROBLEM FORMULATION ... 60

CHAPTER 4 PROACHES FOR CALCULATING NETWORK
RELIABILITY .. 63

4.1 Probabilistic and Deterministic Networks... 63
4.2 Network Operations... 65
4.3 General Approaches for Calculating the Reliability of Probabilistic Networks . 66

4.3.1 State-space Enumeration... 66
4.3.2 Inclusion-Exclusion .. 69
4.3.3 Disjoint Product .. 71
4.3.4 Factoring ... 72
4.3.5 Fault Tree Analysis ... 75

4.4 Computational Complexity of Reliability Analysis .. 78

CHAPTER 5 MODELING RELIABILITY OF INTEGRATED NETWORKS
(MORIN).. 80

5.1 MORIN Method .. 80

CHAPTER 6 SIMPLIFIED NETWORK AVAILABILITY MODELING 86

6.1 Introduction ... 86
6.2 Problem Description.. 89
6.3 Methodologies and Tools .. 91

6.3.1 Common Methodologies .. 91
6.3.2 Commonly-used Tools ... 92
6.3.3 SAMOT Tool ... 92

CHAPTER 7 COMPUTATIONAL EXPERIMENTS .. 99

7.1 MORIN Examples ... 99
7.1.1 Sample Network 1... 99
7.1.2 Sample Network 2... 104

7.2 SAMOT Experiment Results... 106
7.2.1 Practical Networks .. 107

ii

7.2.2 SAMOT Modeling Results ... 109
7.2.2.1 System Availability... 109
7.2.2.2 Availability of 1:1 Redundant Systems .. 111
7.2.2.3 Network Path Availability... 114

CHAPTER 8 CONCLUSIONS AND FUTURE RESEARCH 115

REFERENCES.. 118

APPENDICES ... 127

Appendix 1 SAMOT Modules .. 128
Appendix 2 Markov Analysis Tool ... 138
Appendix 3 MORIN Algorithm .. 142

ABOUT THE AUTHOR ……………………………………….………………………… End Page

iii

LIST OF TABLES

Table 1.1 Probabilities of Operational Outage Caused by Various Sources …………. 7

Table 7.1 Availability Metrics of Aggregation Device …………………..………….… 109

Table 7.2 Availability Metrics of Core Router ………………………………………..… 110

Table 7.3 Availability Metrics of SoftSwitch …………………………………………… 110

Table 7.4 Availability Metrics of LAN Switch …………………….…………………… 110

Table 7.5 Availability Metrics of Edge Server 1 ……………………………………….. 111

Table 7.6 Comparisons of Availability Modeling Results on Unplanned

Outages of 1:1 Redundant System by SAMOT and Markov …………… 112

Table 7.7 Availability of Signaling Path and Bearer Path of the Sample

Network ……………………………………………………………………………. 114

 iv

LIST OF FIGURES

Figure 2.1 Residual Node Connectedness Reliability Model ………...………………… 15

Figure 2.2 Modified Reliability for A Directed Network ………...……………………... 19

Figure 2.3 Modified Reliability for A Undirected Network …..……...…………………. 19

Figure 2.4 A Typical Plot of Z(ti) for the JM Model (N = 100, Φ = 0.02) ………...… 25

Figure 2.5 A Typical Plot of Z(ti) for the SW Model (N = 150, Φ = 0.02) ………..… 26

Figure 2.6 Input and Output Places of A Transition ………...……………………………. 40

Figure 2.7 The Delayed Switching of A Transition………………………………….… 41

Figure 2.8 Replacing A Multigraph by A Graph With Weighted Edges …..…………. 41

Figure 2.9 Sample Concurrent Events ………...…………………………………………..… 50

Figure 2.10 States Transition of A Node in An Integrated Network …………………… 51

Figure 2.11 A Sample Bridge Network (Figure 4.1) With Node States ..……………… 52

Figure 2.12 PT-net Describing the Processes in An Integrated Network ……………… 54

Figure 2.13 CPN Describing the Failure Modes in the Integrated Network ..………… 56

Figure 4.1 A Sample Bridge Network ..…………………………………………………...… 67

Figure 4.2 Probabilistic Rules of Reduction ..……………………………………………… 73

Figure 4.3 Contraction of an Edge in Fig 4.1, Using (a) e = 3 and (b) e = 1 ..……… 74

Figure 6.1 Segments of A Typical VoIP Solution ..…………………………………….… 90

Figure 6.2 Reliability Block Diagram of A Sample System ..…………………...……… 91

 v

Figure 6.3 Interactive Modules in SAMOT ..…………………………………………….…. 94

Figure 6.4 IRBD for 1:1 R in SAMOT’s Redundancy Module ..…………………….… 94

Figure 6.5 Markov Diagram for Failure Mode Transitions of 1:1

Software-Hardware System Redundancy ..…………………………………… 96

Figure 7.1 Sample Network 1 ..………………………………………………………………. 100

Figure 7.2 Event-Tree Generated by the MORIN Algorithm for Sample

Network 1 ..………………………………………………………………………….100

Figure 7.3 Sample Network 2 ..……………………………………………………………… 104

Figure 7.4 Event-Tree Generated by the MORIN Algorithm for Sample

Network 2 ..………………………………………………………………………….105

Figure 7.5 Architecture of A Sample Network with Redundancy ..………………..… 107

Figure 7.6 Block Diagram of A Sample Baseline Network ..………………….………. 107

Figure 7.7 Modeling Flowchart for A Baseline Network ..…………………………..… 107

Figure 7.8 Block Diagram of A Sample Network with 1:1 System

Redundancy ..……………………………………………………………………… 108

Figure 7.9 Modeling Flowchart for A Network with 1:1 System Redundancy ….... 108

Figures 7.10 Discrepancy of SAMOT & Markov Modeling Results ..…………………. 113

Figures 8.1 Complementary Relationship Between MORIN and SAMOT ..……..…. 117

Figure A-1.1 SAMOT-Main Module: Solution Architectural Scenarios ..…………..… 128

Figure A-1.2 SMOT-Main Module: End-to-End Availability Worksheet ..…………… 129

Figure A-1.3 SAMOT-Main Module: Aggregation Device ..…………………………..… 130

Figure A-1.4 SAMOT-Main Module: Core Router ……………………………………...…. 131

Figure A-1.5 SAMOT-Main Module: Softswitch System ……………………………...… 132

 vi

Figure A-1.6 SAMOT-Main Module: LAN Switch ……………………………………...… 133

Figure A-1.7 SAMOT-Main Module: Edge Server 1 ……………………………………… 134

Figure A-1.8 SAMOT-1:1 Redundancy Module: SoftSwitch ……………………………. 135

Figure A-1.9 SAMOT-1:1 Redundancy Module: LAN Switch ………………………….. 136

Figure A-1.10 SAMOT-1:1 Redundancy Module: Edge Server 1 ………………………... 137

Figure A-2.1 Markov Analysis Summary Demo ………………………………………....… 138

 vii

INTEGRATED RELIABILITY AND AVAILABILITY ANALYSIS OF NETWORKS

WITH SOFTWARE FAILURES AND HARDWARE FAILURES

Wei Hou

ABSTRACT

This dissertation research attempts to explore efficient algorithms and engineering

methodologies of analyzing the overall reliability and availability of networks integrated

with software failures and hardware failures. Node failures, link failures, and software

failures are concurrently and dynamically considered in networks with complex

topologies. MORIN (MOdeling Reliability for Integrated Networks) method is proposed

and discussed as an approach for analyzing reliability of integrated networks. A

Simplified Availability Modeling Tool (SAMOT) is developed and introduced to

evaluate and analyze the availability of networks consisting of software and hardware

component systems with architectural redundancy. In this dissertation, relevant research

efforts in analyzing network reliability and availability are reviewed and discussed,

experimental data results of proposed MORIN methodology and SAMOT application are

provided, and recommendations for future researches in the network reliability study are

summarized as well.

 viii

CHAPTER 1

INTRODUCTION

1.1 Background

The focus of reliability theory studies is the overall performance of a system comprising

failure-prone elements. Typically, the components of the system are not perfect with

respect to their operation, and their underlying failure structure is assumed to follow

certain probabilistic distributions. It is therefore important to characterize the behavior of

the system in terms of the stochastic behavior of its components.

The reliability of a network is its ability to maintain operational over a period of time t.

formally, the reliability R(t) of a network is

 R(t) = Pr (the network is operational in [0, t]}

1

Another measure often used for the analysis of networks is availability. The availability

of a network is often expressed as the instantaneous availability A(t) and/or the steady-

state availability (i.e., limt→∞A(t)). The A(t) is defined as the probability that a system is

operational at time t. It allows one or more failures to have occurred during the interval

[0, t]. If a system is not repairable (e.g., a spaceship), the definition of A(t) is equivalent

to R(t). Dependability is used as a catch-call phrase for various measures such as

reliability, availability etc.

Network reliability is concerned with the interconnectivity of various elements in the

form of network, or graph, as exemplified by telecommunication, distribution, and

computer networks. For example, the nodes of a computer communication network might

represent the physical computers (servers, switches, routers, etc.) and the edges of such a

network might represent existing communication links between these nodes. Each node,

or edge, or group, or the network can be either operational or failed. Operational in this

case means that a specific sender and specific receiver are able to communicate over

certain network links, while failure means no complete transmission path is available.

Not only are the reliabilities of individual components of importance, but also the manner

in which they are arranged can have a significant effect on the overall dependability

performance of the system. For instance, Moore and Shannon [19] configured unreliable

components through the use of redundancy to obtain a reliable (high available) system.

The challenge of determining the reliability of a complex system, whose components are

subject to failures, has received considerable attention in the engineering, operations

research, and statistical literature. Networks have become widely used for modeling

complex systems that are subject to component failures.

The earliest use of the stochastic network model was related to analyzing the effects of

component or module redundancy in a variety of electronic and mechanical systems [23].

More general networks were analyzed later to determine the effect of blocking in circuit-

switched telephone systems. The study of computer communications systems generated

2

interest in networks with both node and link failures, in both undirected and directed

networks, and in measures of reliability more complex than the 2-terminal system.

In the case of probabilistic networks (where nodes and /or edges fail randomly and

independently with known probabilities), a number of measures have been explored.

Suppose a network G is directed, with s and t being distinguished nodes of G. The 2-

terminal reliability Rst(G) is the probability that there exists at least one path of operating

edges in G between s and t. The all-terminal reliability is the probability that for every

pair of nodes there is at least one path between them; equivalently, this is the probability

that the graph contains at least one spanning tree. The k-terminal reliability of the

network is the probability that for k specified target nodes, the graph contains paths

between each pair of the k nodes.

The study of network reliability can be categorized into analysis and synthesis. Typical

concern about analysis is the computational complexities. It has been shown that network

reliability problems with respect to a network with general structure are all NP-hard, for

k-terminal, 2-terminal, all-terminal in undirected networks, and all-terminal in directed

networks [4, 17]. Synthesis problem focuses on finding a network topology that satisfies

certain deterministic or probabilistic criteria.

Past research in the network reliability field [3, 8-10, 27-30] has focused mainly on

networks with perfect nodes and unreliable links. Some of the literatures [2, 5-7, 13-16]

have also discussed situations where nodes are subject to failures. However, very few

3

publications on network reliability field have been found developing the concomitant

analysis of both software failures and hardware failures in network nodes [31-32].

1.2 Objectives of Research

This dissertation aims to develop efficient approaches to analyze the reliability and

availability of networks integrated with node failures, link failures, and software failures.

Modeling Reliability for Integrated Networks (MORIN) approach will be proposed and

illustrated in Chapter 5 and 7.

Designing handy modeling tools to facilitate the reliability and availability analysis and

synthesis is also one of the research objectives to tackle practical network availability

problems where integrated systems are subject to hardware failures and software failures,

and architectural redundancies are usually deployed at the board level, system level. A

Simplified Availability Modeling Tool (SAMOT), which incorporates Markov Analysis

and Reliability Block Diagram (RBD) methodologies, is to be developed to address

practical network reliability and availability issues, as described in Chapter 6 and 7.

The most common software failure models (such as Jelinski and Moranda model) are to

be discussed and applied in computational experiments of the proposed approaches.

4

1.3 Motivation of Research

The study of network reliability is of singular importance due to its clear applicability to

computer networks, communication systems, and distribution systems. In certain

situations, improving network reliability and availability can be more important than

reducing the system cost, especially for mission-critical systems. Reliability analysis can

be applied to a variety of practical systems, ranging from large-scale telecommunication

system, transportation system, and mechanical system, to integrated circuit boards.

Network reliability is characterized by success of at least one path between two specified

nodes. Most of the available researches assume that the nodes of the network are

perfectly reliable. However, in a practical communication network or computer network,

nodes are also subject to failures with certain probabilities thus under such circumstance

reliability evaluation that assumes perfect nodes is not realistic. The evaluation procedure

or results are quite complicated and expensive, even for moderately sized networks. So it

is quite necessary to develop some simple and efficient approaches.

Major network failures are essentially of three types:

• Node failure due to equipment breakdown or equipment damage resulting from an

event such as an accidental fire, flood, or earthquake; as a result, all or some of

the communication links terminating on the affected node may fail.

• Link failure due to inadvertent fiber cable cut; despite increased network care and

maintenance efforts, the link between one telecommunication office or computer

server and the other still fails frequently due to ubiquitous construction activities.

5

• Software failure that can impact a large portion of the given network, and is, in

general, hard to identify and recover from.

Network failures may arise because the routing algorithm is unable to detect a functional

route, although one exists. Failures may also arise because the flow control algorithm

causes the network to be flooded with traffic, resulting in network failure due to overload.

Both events are caused by software control to the network, rather than by topological

considerations. In modern information age, software failures, which are shown as traffic

congestion, protocol deadlock etc, are very common. Nowadays, software is carrying

various types of information and performs more functions, and software reliability is

becoming the dominant driver of reliability for complex systems. In a large portion of

computer and telecommunication networks, software failures cause more down time than

hardware failures do. Software driven outages have been reported to exceed hardware

outages by a factor of 10 [11]. Software errors often manifest themselves as network

congestion that is quite different from the congestion that arises from hardware failures or

traffic overloads. For instance, hardware failures cause congestion by decreasing the

number of resources in the network. On the other hand, software errors dramatically

decrease the efficiency of network resources used.

During the network operation, failures or errors can also be resulted from changes in the

physical state or damage to hardware. Physical changes may be triggered by

environmental factors such as fluctuations in temperature or power supply voltage, static

discharge. Transient states can be caused by design errors in hardware or software. The

6

outages of network operation were reported being relatively evenly distributed among

hardware, software, maintenance actions, operations, and environment. Table 1.1 depicts

the distribution of outages from six different studies [75].

Table 1.1 Probabilities of Operational Outages by Various Causes

 AT&T Japanese
 Causes Switching Systems Bellcore Commercial Tandem Nortel Mainframe
 of Outages [Toy, 1978] [Ali, 1986] Users [Gray, 1987] Networks Users

 Hardware 0.20 0.26 0.25 0.19 0.19 0.45
 Software 0.15 0.30 0.25 0.43 0.19 0.20
 Maintenance --- --- 0.25 0.13 --- 0.05
 Operations 0.65 0.44 0.12 0.13 0.33 0.15
 Environment --- --- 0.13 0.12 0.28 0.15

 Note: Dashes indicate that no separate value was reported for that category in the cited study

A lot of research has focused on hardware reliability and software reliability studies.

Hardware reliability has reached a nearly mature status and various well-developed

hardware reliability techniques have been widely and successfully applied. In the area of

software, considerable advances have been made in software reliability modeling,

software defect avoidance, software fault-tolerance, and software defect removal

(testing). However, this does not solve the reliability problem for network with hardware

failures and software failures in a comprehensive way nor does it reveal their inherent

relationships. Hence a logic step is to develop appropriate approaches for systems with

integrated hardware and software reliability. A number of efforts [78-80] have helped to

preliminarily understand the combined hardware-software system reliability.

7

Analyzing the hardware and software separately by simplifying the system without

failures due to interface software might lead to inaccurate estimate of the system

reliability [33]. A stochastic process is a mathematical model for description of a

probabilistic nature as a function of a parameter that usually has the meaning of time. The

set of possible values of the function is the state space of the random variable. The

property of a Markov process defines a stochastic process for which the behavior in the

future depends only on the present situation, not on the past history. Markov processes

with a discrete state space are called Markov chains. Markov chains are accurate, but the

state space will explore for large sized networks. Fault tree models can help making

accurate analysis, but it is hard to deploy in a real network due to the complex topological

relationship between numerous nodes and links.

A comprehensive approach for network reliability analysis has to be developed for

practical networks with unreliable components, where link hardware failures, node

hardware failures, and node software failures coexist.

1.4 Overview of Research

This dissertation consists of eight chapters. Chapter 2 reviews past relevant researches in

the area of network reliability, including the application of Petri net (PN) and Colored

Petri nets (CPN) in modeling and analyzing the network reliability. Chapter 3 defines and

formulates the problem. The most common used approaches for calculating network

reliability are introduced in Chapter 4. The proposed approach, namely, MORIN

8

(MOdeling Reliability for Integrated Networks) is discussed in Chapter 5. Chapter 6

introduces the Simplified Availability Modeling Tool (SAMOT), which incorporates the

Markov analysis and RBD methodologies, to model reliability and availability for end-to-

end network with system redundancies. Chapter 7 illustrates the MORIN methodology

and SAMOT with some examples and numerical experiment results of practical network

reliability problems. Chapter 8 summarizes the research and provides recommendations

for future researches in the network reliability and availability area.

9

CHAPTER 2

LITERATURE REVIEW

Network reliability and availability researches have made remarkable progress and

development in both academic researches and industrial applications. The development

of telecommunication systems dates back to the last century with the development of

telegraph, telephone, and the transmission, switching and signaling systems supporting

them. The forerunner of the internet, the computer communication network ARPAnet

was originated in 1969 when the US Department of Defense Advanced Research Projects

Agency (ARPA) initiated experiments in resource sharing. Convergence of the two

technologies has now occurred with the development of integrated digital networks to

support multimedia applications involving voice, data, images and video. The application

area covers a vast range of systems embodying traditional telecommunication systems

and computer networks, is of utmost importance in the development of new and advanced

information systems and services, while maintain or achieve high network availability.

Reliability and availability for integrated networks are becoming vitally important to the

global economy. The consequences of failure of the information infrastructure range from

minor annoyance to major disruption. It is therefore very important to design and

10

engineer high available integrated networks according to efficient algorithms, optimized

methodologies, rigorous standards, and customer requirements.

Any communication network, computer network, or distributed systems can be modeled

as a graph, wherein each node is a switch, computer, or processing entity with its own

memory and peripherals, and links are communication lines between nodes. Such a

system graph is used in reliability analysis. Moreover, a fault-tree or reliability logic

diagram of the system has also been considered. Fault-tree basically translates a physical

system into a structured logic diagram and is constructed using the event and logic

symbols. In a fault tree, pre-specified causes lead to certain top events of interest. Top

events are obtained from a preliminary hazard analysis and usually are undesired system

states that could occur as a result of subsystem functional faults.

The reliability block diagram (RBD), on the other hand, shows the functional

relationships among resources and indicates which system elements must operate to

accomplish the intended function successfully. It should be noted that the RBD is

different from the system graph that simply depicts the physical relationship of the

system elements. In logic diagrams, if two components must simultaneously function to

achieve system success, the blocks representing these corresponding components are

shown in series, whereas parallel blocks represent functionally redundant components.

In network analysis, the reliability graph and the system graph could be used

interchangeably. Nonetheless, the reliability graph has a probability of operation

11

associated with each node and with each link. Usually the following basic assumptions

are used for the reliability analysis:

• All the elements (nodes and/or links) are always in active mode (no standby or

switched redundancy) except stated

• Each element can be represented as a two-terminal device

• The state of each element and of the network is either good (operating) or bad

(failed)

• The states of all elements are statistically independent

• The network is free from directed cycles and self-loops, as the success or failure

of branches in a directed cycle or self-loop do not alter the terminal reliability

These assumptions are helpful in making the model tractable.

Computer communication networks have evolved in recent years to cope with a massive

demand for the information transmission. The interconnection of severs or terminals is

achieved by a backbone network. Failures of a LAN (local access network) will affect

communications for only a few terminals or end-users, which is not catastrophic.

However, backbone failure is usually interpreted as a catastrophic event. Thus most

researches in reliability assessment have focused on the synthesis and analysis of reliable

backbone network.

12

2.1 Reliability Studies for Networks with Unreliable Links and Perfect Nodes

Most mathematical models for network reliability assume that the network is represented

by a graph whose nodes are perfectly reliable and whose edges fail according to some

known probabilistic model. There are some traditional approaches to calculate the

reliability of networks with unreliable links only [1, 17], as described in Chapter 4.

2.2 Reliability Studies for Networks with Unreliable Nodes and Perfect Links

2.2.1 Residual Node Connectivity Model

The oldest and most extensively studied model dealing with the case where nodes fail but

links are perfectly reliable is the “residual node connectivity model”- first introduced by

Frank [43-45]. The network is represented by a simple (no self-loops or parallel links)

undirected graph G with node set V and link set E containing 2-element subsets of V. If

some sets of nodes fail, these nodes and their incident links are removed from G. The

remaining sub-graph is induced by the surviving nodes W, and is denoted by <W>. The

links of <W> are those links from E having both endpoints in W. If <W> is connected,

the network is operational, and W is an operating state. A reliability function, residual

node connectedness reliability, is

 Rn(G, p) = P(network is operational)

Where p is the vector of pv. If for all nodes, pv = p, then use Rn(G, p) or Rn. If in additional

all nodes operate s-independently of each other, then

 Rn(G, p) = (2.1) ∑
=

−−
n

i

ini
i ppS

1

)1(

Where Si is the number of connected induced sub-graphs of G having exactly i nodes.

13

There is an immediate analogy of Rn to the traditional link-failure model where a

reliability function for equal link-probabilities is expressed similarly to (2.1) in terms of

the number of spanning connected sub-graphs having exactly i links. The coefficients of

the link and node reliability functions can also be defined in terms of link cuts or node

cuts respectively. It has been determined that calculating Rn is NP-Hard for link failures.

However, there are special classes of graphs that admit efficient algorithms for

determining Rn [46].

With regard to the synthesis of optimal networks, an important concept is a uniformly

optimal network, which has a reliability function that is maximal for all values of p over

all networks with the same number of nodes and links. In both the link and node cases,

uniformly optimal networks do not always exist [47-51]. Furthermore, some results have

been found regarding networks that are optimal for sufficiently small or sufficiently large

values of p, paralleling results for the link case [47].

Unfortunately the analogy between the link reliability model and the residual node

connectedness model is not complete. Indeed the node model has some disturbing

properties not shared by the link model.

The model defining Rn assumes that every connected residual graph is acceptable

regardless of its size. Figure 2.1 shows an example that is an unusual graph.

14

The reliability function is not monotone. Making each individual node more reliable can

make the network less reliable. Non-monotone behavior is not presented in the link

reliability model. Consider any system consisting of a set E of elements and a collection

of subsets of E called operating states. If every superset of an operating state is also an

operating state, then the system is coherent. Any coherent system has (by definition) a

monotone reliability function. The system that defines Rn is not coherent, and is easily

verified. Consider G in Figure 2.1, the sub-graph G-u-v is an operating state. Let node v,

which was previously failed, be operating. The new resulting induced sub-graph, G-u, is

disconnected since v is isolated. Thus G-u-v is an operating state but G-u is not.

 • If both u and v fail, the state is operating
 u v • If only u fails, the state is failure (not

 n nodes coherent)
 • If all nodes except u and v fail, the state

 G is operating

Figure 2.1 Residual Node Connectedness Reliability Model

The above approach is traditional in the sense that it models network inoperability due to

node failure as being caused by node-cuts. This is the direct analog of the link-failure

model that uses link-cuts. A few other probabilistic models for studying network

vulnerability due to node failure have been introduced. The concept of using the s-

expected number of node pairs that are connected by a path as a measure of

invulnerability was introduced by Amin et al [52-53]. This serves as a reasonable

approach to the study of graceful and catastrophic degradation of a multiprocessor

network. Since this measure is not a probability and thus not reliability, it is difficult to
15

understand how the results of this approach can be evaluated from the perspective of

reliability theory.

An important reliability measure introduced by Fotoh and Colbourn [54-55] contains

many results regarding its properties from both synthesis and analysis points of view. It is

shown that it is coherent and does not suffer from any of the defects of the residual node

connectedness reliability discussed in the foregoing. However, Fotoh and Colbourn

described a scenario for their model that a specified set K of nodes (k-terminal) are the

perfectly reliable hosts or targets that communicate via switching nodes with known

probabilities of operating. This important theory, which covers situations like radio

frequency (RF) broadcast networks, does not apply to the study of graceful and

catastrophic degradation of a multiprocessor network, because in many such networks all

nodes are subject to failures.

2.2.2 Coherent Model

As the residual node connectedness reliability model has two grievous faults, one might

initially consider that an appropriate model could be obtained by a revision of the residual

node connectedness reliability model in which only connected sub-graphs of order of at

least k are defined as operating states. Such a revision corrects the fault that small-

connected sub-graphs are considered to be operating states. However, there are two

obvious objections to the adoption of this particular revision: a). It is still not coherent in

general; b). More importantly, from the standpoint of multiprocessor networks, there is

no need to require that every collection of more that k nodes induce a connected sub-

16

graph. The reasonable requirement is to insist that the sub-graph induced by surviving

nodes contain a component having at least k nodes.

Boesch et al [23] proposed a new coherent model for the problem of obtaining

appropriate models for network reliability when the nodes rather than the links are

subject to failure. For the application of reliability theory to multiprocessor networks, an

operating state is defined as any collection of surviving nodes that induces a sub-graph

that contains at least 1 component having k or more nodes. The properties of this model

are considered under the additional probabilistic assumption that the nodes fail s-

independently of each other, all with probability p. This is the k-node operating

component reliability and denoted by, as appropriate Roc
(k)(G, p), Roc

(k)(G), Roc
(k).

The model properties can be observed as,

Roc
(1)(G, p) = 1 – (1-p)n

for every G and all p, and is trivial. Thus they concentrate on Roc
(k)(G, p) for k ≥ 2.

Roc
(k)(G, p) = ∑

=

−−
n

i

inik
i ppGA

1

)()1()(

Aj
(k)(G) ≡ number of j node induced sub-graphs of G which contain a

 component having at least k nodes.

 Aj
(k)(G) = 0 for j < k,

 Aj
(k)(G) = , for j ≥ max(k, n-k(G) + 1)

j
n

 Ak
(k)(G) = Sk(G), (*)

17

 Aj
(k)(G) ≥ Sj(G), for k+1 ≤ j ≤ n

The equation (*) shows that the computation of the k node operating component

reliability is NP-hard. Indeed if polynomial algorithms exist to calculate Roc(G) for each

1 ≤ k ≤ n and each 0 ≤ p ≤ 1, then each Ak
(k)(G) can be calculated in polynomial time.

However, this means each Sk(G) and therefore Rn(G) can be calculated on polynomial

time. But the computation of Rn(G) is NP-hard, hence the calculation of Roc
(k)(G) for all

NP-hard.

2.3 Reliability Studies for Networks with Unreliable Links and Unreliable Nodes

In a practical telecommunication or computer network, each component of the network is

subject to failure. There have been a few approaches proposed to analyze and evaluate

the network reliability, considering the node failures [2, 6-10, 13-15].

The methods to evaluate reliability of this type of networks can be classified as explicit or

implicit. The explicit has two steps: firstly a symbolic reliability expression presuming

perfect nodes is derived, then a special method such as AGM [2] or NPR/T [7] is applied

explicitly to the resultant expression to compensate for unreliable nodes. With implicit

method, it is unnecessary to apply a special method to account for node failures; the

procedure for computing the effect of unreliable nodes is directly embedded into the

algorithm and hence it directly computes the reliability expression with unreliable nodes.

For instance, ENR/KW [6], TPR/NF [13] and KHR [14] are typical implicit methods to

directly obtain the reliability of networks with node failures.

18

2.3.1 AGM Method

To account for node failures, the first and most commonly used method is presented by

Aggarwal, Gupta, Misra (AGM). AGM approach has been rigorously proved as a

corollary of the general theorem on complex system decomposition. There are some other

more efficient algorithms derived from it. However, the computational time of this

method increases exponentially with the number of links.

The AGM method considers each link in the network (with link-failure and node-failure

probability) as a series combination of a perfect node and the link with modified

reliability, as shown in the following figure,

 Vi Ej

Figure 2.2 Modified Reliability for A Directed Network

In a directed network showed above, the reliability for node i is αi, the reliability for link

j is βj, the modified reliability for link j is βj’ = αiβj.

Vi Ej Vk

Figure 2.3 Modified Reliability for An Undirected Network

In the interconnecting network, a link can be traversed in both directions. The reliability

for node i is αi, the reliability for node k is αk, the reliability for link j is βj, the modified

reliability for link j is βj’ = αiαkβj.

19

As a result of the substitution, a particular αi could appear in a product term more than

once. It is necessary to apply an operator to each of these product terms as

][][∏=∏ ∗

i
i

i

c
i

i αα

where ci is the multiplicity of αi. After the traversing, all the nodes can be regarded as

perfectly reliable and any algorithms for perfect node networks can be used to derive the

reliability.

The AGM method expands each term of the reliability expression derived from perfect

nodes and replaces the variables by functions of nodes and link variables. After this

substitution, Boolean simplification might be needed. Unfortunately the computing time

and cost increase exponentially with the number of links. Furthermore, the use of

symbolic calculations rather than direct numerical ones can require prohibitively large

storage.

2.3.2 NPR/T Method

Torrieri [7] proposed the NPR/T method for calculation of Node-Pair Reliability for large

networks with unreliable nodes. In general, NPR/T is much simpler, more direct, and

more rigorously derived than AGM, and can compute the same algorithms as AGM. With

NPR/T, a set of definite concise formulas is used to capture the relationships between a

node and its associated directed links. Therefore the cost of this method rises linearly

with the number of links.

20

For undirected networks, NPR/T should transform the original undirected network into an

equivalent directed network wherein each undirected link is replaced with two directed

links in anti-parallel; however, such transformation generates s-dependent events in the

reliability computation formula and hence, can yield incorrect results for some undirected

cases.

2.3.3 ENR/KW Method

Based on the concept of network partition, Ke and Wang [6] explored some simple

efficient techniques to handle the unreliable nodes, for directly computing the network

reliability instead of using any compensating method. The basic idea of ENR/KW is to

partition the network directly into a set of smaller disjoint subnetworks by only

considering link elements as if all nodes are perfect. Each disjoint subnetwork is

generated by maintaining a specific directed graph structure to consider the effect of

imperfect nodes. Therefore, the reliability expression for imperfect nodes can be obtained

directly from the disjoint subnetwork and the specific directed graph.

2.4 Software Models

2.4.1 Software Reliability

An important quality attribute of a network is the degrees to which it can be relied on

perform its intended function. Until 1960’s, attention was almost solely on the hardware

related research. In the early 1970’s software started becoming a matter of concern,

21

primarily due to a continuing increase in the cost of software relative to hardware, in both

development and the operation phases of the system.

Since software is produced by human beings in a large extent, the finished product is

often imperfect in the sense that a discrepancy exists between what the software can do

versus that the user or the environment wants it to do. The computing environment refers

to the physical machine, operating system, compiler and translator utilities, etc. These

discrepancies are called software faults. Basically, software faults can be attributed to

ignorance of the user requirements, to ignorance of rules of the computing environment,

to poor communication of software requirements between the user and the programmer,

or poor documentation of the software by the programmer. Even if we know that

software contains faults, we generally do not know their exact identity.

There are two approaches to indicate the existence of software faults: program proving

and program testing. Program proving is formal and mathematical while program testing

is more practical and heuristic. The approach taken in program proving is to construct a

finite sequence of logical statements ending in the statement, usually the output

specification statement, to be proved. Each of the logical statements is an axiom or is a

statement derived from earlier statements by the application of an inference rule. Program

proving by using inference rules is known as the inductive assertion method [56]. Other

work on program proving is on the symbolic execution method that is the basis of some

automatic program verifiers. Despite the formalism and mathematical exactness, program

22

proving is still imperfect tool for verifying program correctness. It is showed several

programs that were proved to be correct but still contained faults [57].

However the faults were due to failures in defining what exactly to prove and were not

failures of the mechanics of the proof itself.

Program testing is the symbolic or physical execution of a set of test cases with the intent

of exposing embedded faults in the program. A given testing strategy may be good for

exposing certain kinds of faults but not for all possible kinds of faults in a program. An

advantage of testing is that it can provide useful information about a program’s actual

behavior in its intended computing environment, while proving is limited to conclusions

about the program’s behavior in a postulated environment.

In practice neither proving nor testing can guarantee complete confidence in the

correctness of a program. Each has its advantages and limitations and should not be

viewed as completing tools. Thus a metric is needed to reflect the degree of program

correctness and plan and control additional resources needed for enhancing software

quality. One such quantifiable metric of quality is called software reliability. A

commonly used approach for measuring software reliability is via an analytical model

whose parameters are generally estimated form available measures are then computed

from the fitted model.

23

2.4.2 Software Reliability Models

A number of analytical models have been proposed to address the problem of software

reliability measurement. These approaches are based mainly on the failure history of

software and can be classified according to the nature of the failure process.

2.4.2.1 Time Between Failures Models

This is one of the earliest classes of models proposed for software reliability assessment.

When the interest is in modeling times between failures, it is expected that the successive

failure times will get longer as faults are removed from the software system.

A number of models have been proposed to describe such failures. The most common

approach is to denote the time between the (i-1)st and the ith failures with a random

variable Ti. Basically the models assume that Ti follows a known distribution whose

parameters depend on the number of faults remaining in the system after the (i-1)st

failure. The assumed distribution is supposed to reflect the improvement in software

quality as faults are detected and removed from the system. Another approach is to treat

the failure times as realizations of a stochastic process and use an appropriate time-series

model to describe the underlying failure process. The key models in this class are

described below.

• Jelinski and Moranda (JM) De-Eutrophication Model

This is one of the earliest and probably the most commonly used model for assessing

software reliability. It assumes that there are N software faults at the start of testing, each

24

is independent of each other and is equally likely to cause a failure during testing. A

detected fault is removed with certainty in a negligible time and no new faults are

introduced during the debugging process. The software failure rate, or the hazard

function, at any time is assumed to be proportional to the current fault content of the

program, which is,

Z(ti) = Φ[N – (i – 1)]

Where Φ is a proportionality constant. This hazard function is constant between failures

but decreases in steps of size Φ following the removal of each fault. A typical plot of the

hazard function for N = 100 and Φ = 0.02 is shown in Figure 2.4.

 1.00
 t1
 0.98
 t2
 0.96
 Z(ti)
 0.94 t3

 0.92 t4

 0.90

Cumulative Time

 Figure 2.4 A Typical Plot of Z(ti) for the JM Model (N = 100, Φ = 0.02)

25

A variation of the above model was proposed by Moranda [58] to describe those testing

situations where faults are not removed until the occurrence of a fatal one at which time

the accumulated group of faults is removed. In such a situation, the hazard function after

a restart can be assumed to be a fraction of the rate that attained when the system crashed.

For this model, called the geometric de-eutrophication model, the hazard function during

the ith testing interval is given by

 Z(ti) = Dki-1

Where D is the fault detection rate during the first interval and k is a constant (0 < k <1).

• Schick and Wolverton (SW) Model

This model is based on the same assumptions as the JM model that except the hazard

function is assumed to be proportional to the current fault content of the program as well

as to the time elapsed since the last failure. The hazard function is given by

Z(ti) = Φ{[N – (i – 1)]}ti

The above hazard rate is linear with time within each failure interval, returns to zero at

the occurrence of a failure and increases linearly again but at a reduced slope, the

decrease in slope being proportional to Φ. A typical behavior of Z(ti) for N = 150 and

Φ = 0.02 is shown in follow Figure 2.5.

 75

 50

 Z(ti)
 25

 t1 t3 t4
 t2
 0 20 40 60 80 100

Cumulative Time

 Figure 2.5 A Typical Plot of Z(ti) for the SW Model (N = 150, Φ = 0.02)

A modification of the above model was proposed by Schick and Wolverton [59] whereby

the hazard function is assumed to be parabolic in test time and is given by

26

Z(ti) = Φ[N – (i – 1)](-ati
2 + b ti + c)

Where a, b, c are constants and the other quantities are as defined as above. This function

consists of two components. The first is basically the hazard function of the JM model

and the superimposition of the second term indicates that the likelihood of a failure

occurring increases rapidly as the test time accumulates within a testing interval. At

failure times (ti = 0), the hazard function is proportional to that of the JM model.

• Goel and Okumoto Imperfect Debugging Model

The above models assume that the faults are removed with certainty when detected.

However that is not always true. Goel and Okumoto [60-61] proposed an imperfect

debugging model which is basically an extension of the JM model. In this model, the

number of faults in the system at time t-X(t) is treated as a Markov process whose

transition probabilities are governed by the probability of imperfect debugging. Times

between the transition of X(t) are taken to be exponentially distributed with rates

dependent on the current fault content of the system. The hazard function during the

interval between the (i-1)st and the ith failures is given by

Z(ti) = [N – p(i-1)]λ

Where N is the initial fault content of the system, p is the probability of imperfect

debugging, and λ is the failure rate per fault.

27

• Littlewood-Verrall Bayesian Model

Littlewood and Verall [62-63] took a different approach to the development of a model

for times between failures. They argued that software reliability should NOT be specified

in terms of number of errors in the program. Specifically they assumed the times between

failures follows an exponential distribution but the parameter of this distribution is treated

as a random variable with a gamma distribution, which is:

 and ii t
iii etf λλλ −=)|(

α
λψ

ψαλ
λψαα

Γ
=

−− ii
i

i
ei

if
)(1)]([

))(,|(

where ψ(i) describes the quality of the programmer and the difficulty of the programming

task. It is claimed that the failure phenomena in different environments can be explained

by this model by taking different forms for the parameter ψ(i).

2.4.2.2 Failure Count Models

This class of models is concerned with modeling the number of failures seen or faults

detected in given testing intervals. As faults are removed from the system, it is expected

that the observed number of failures per unit time will decrease. If this is so, then the

graph of the cumulative number of failures versus time will eventually level off. The time

interval may be fixed a priori and the observed number of failures in each interval is

treated as a random variable.

28

Several models have been suggested to describe such failure phenomena. The basic idea

behind most of these models is that of a Poisson distribution whose parameter takes on

different forms for different models. It should be noted that Poisson distribution has been

found to be an excellent model in many fields of application where interest is in the

number of occurrences.

• Goel-Okumoto Nonhomogeneous Poisson Process Model

Goel and Okumoto [64] assumed that a software system is subject to failures at random

times caused by faults present in the system. Letting N(t) be the cumulative number of

failures observed by time t, they proposed that N(t) can be modeled as a nonhomoge-

neous Poisson process, i.e., as a Poisson process with a time dependent failure rate. Based

on their study of actual failure data from many systems, they proposed the model as

)(

!
))((})({ tm

y

e
y
tmytNP −== y = 0, 1, 2, …

where and λ(t) ≡ m’(t) = abe)1()(bteatm −−= -bt

m(t) is the expected number of failures observed by time t and the failure rate. a is the

expected number of failures to be observed eventually and b is the fault detection rate per

fault. This is a fundamental departure from the other models which treat the number of

faults to be a fixed unknown constant.

• Goel Generalized Nonhomogeneous Poisson Process Model

Most of the times between failures and failure count models assume that a software

system exhibits a decreasing failure rate pattern during testing. In other words, they

assume that software quality continues to improve as testing progresses. In practice, it has

been observed that in many testing situations, the failure rate first increases and then

29

decreases. In order to model this increasing/decreasing failure rate process, Goel [65-66]

proposed the following generalization of the Goel-Okumoto NHPP model.

)(

!
))((})({ tm

y

e
y
tmytNP −== y = 0, 1, 2, …

 m)1()(
cbteat −−=

where a is expected number of faults to be eventually detected, and b and c are constants

that reflect the quality of testing. The failure rate for the model is given by

 1')(−−=≡ cbt tabcemt
c

λ

• Musa Execution Time Model

In this model Musa [67] makes assumptions that are similar to those of JM model except

that the process modeled is the number of failures in specified execution time intervals.

The hazard function for this model is given by

 z(τ) = Φf(N – nc)

where τ is the execution time utilized in executing the program up to the present, f is the

linear execution frequency (average instruction execution rate divided by the number of

instruction in the program), Φ is a proportionality constant, which is a fault exposure

ratio that relates fault exposure frequency to the linear execution frequency, and nc is the

number of faults corrected during (0, τ).

30

One of the main features of this model is that it explicitly emphasizes the dependence of

the hazard function on execution time. Musa also provides a systematic approach for

converting the model so that it can be applicable for calendar time as well.

• Shooman Exponential Model

This model is essentially similar to the JM model. For this model the hazard function is

of the following form

)]([)(τcn
I
Nktz −=

Where t is the operating time of the system measured from its initial activation, I is the

total number of instructions in the program, τ is the debugging time since the start of

system integration, nc(τ) is the total number of faults corrected during τ, normalized with

respect to I, and k is a proportionality constant.

• Generalized Poisson Model

This is a variation of the NHPP model of Goel and Okumoto and assumes a mean value

function of the following form,

 m(ti) = Φ(N – Mi -1) ti
α

where Mi –1 is the total number of faults removed up to the end of the (i – 1)st debugging

interval, Φ is a constant of proportionality, and α is a constant used to rescale time ti .

• IBM Binomial and Poisson Models

31

Brooks and Motley [68] consider the fault detection process during software testing to be

a discrete process, following a binomial or a Poisson distribution. The software system is

assumed to be developed and tested incrementally. They claim that both models can be

applied at the module or the system level.

2.4.2.3 Fault Seeding Models

In fault seeding models, a known number of faults is seeded (planted) in the program.

The number of exposed seeded and indigenous faults is counted after testing. Using

combinatorics and maximum likelihood estimation, the number of indigenous faults in

the program and the reliability of the software can be estimated.

• Mills Seeding Model

The most popular and most basic fault seeding model is Mills’ Hypergeometric model

[69]. This model requires that a number of known faults are randomly seeded in the

program to be tested. The program is then tested for some amount of time. The number of

original indigenous faults can be estimated from the number of indigenous and seeded

faults uncovered during the test by using the hypergeometric distribution.

Lipow [70] modified this problem by considering probability of finding a fault, of either

kind, in any test of the software. Then for statistically independent tests, the probability

of finding given numbers of indigenous and seeded faults can be calculated. In another

modification, Basin [71] suggested a two stage procedure with the use of two

programmers to estimate the number of indigenous faults in the program.

32

2.4.2.4 Input Domain Based Models

The basic approach in the input domain based models is to generate a set of test cases

from an input (operational) distribution. Because of the difficulty in estimating the input

distribution, the various models in this group partition the input domain into a set of

equivalence classes. An equivalence class is usually associated with a program path. The

reliability measure is calculated from the number of failures observed during symbolic or

physical execution of the sampled test cases.

• Nelson Model

In this input domain based model [72], the reliability of the software is measured by

running the software for a sample of n inputs. The n inputs are randomly chosen from the

input domain set E = (Ei: i = 1, …, N) where each Ei is the set of data values needed to

make a run. The random sampling of n inputs is done according to a probability

distribution Pi; the set (Pi: i = 1, …N) is the operational profile or simply the user input

distribution. If ne is the number of inputs that resulted in execution failures, then an

unbiased estimate of software reliability
n
n

R e−= 1
)

. The test set used during the

verification phase may not be representative of the expected operational usage.

• Ramamoorthy and Bastani Model

Ramamoorthy and Bastani [73] concerned the reliability of critical, real-time, process

control programs where no failures should be detected during the reliability estimation

phase, so that the reliability estimate is 1. Thus the important metric of concern is the

33

confidence in the reliability estimate. This model provides an estimate of the conditional

probability that the program is correct for all possible inputs given that it is correct for a

specified set of inputs. The basic assumption is that the outcome of each test case

provides at least some stochastic information about the behavior of the program for other

points that are close to the test points. A main result of this model is

 P{program is correct for all points in [a, a + V]

 | it is correct for test cases having successive distances xj, j = 1, … , n-1}

= ∏
−

=
−

−

+

1

1 1
2n

j
x

V
je

e λ
λ

where λ is a parameter which is deduced from some measure of the complexity of the

source code.

Unlike other sampling models, this approach allows any test case selection strategy to be

used. Hence, the testing effort can be minimized by choosing test cases which exercise

error-prone constructs. However, the model concerning the parameter λ needs to be

validated experimentally.

2.5 Petri Nets in Reliability Analysis of Integrated Networks

2.5.1 Introduction of Petri Nets

Petri nets were originally introduced by C.A. Petri in his seminal PhD thesis in 1964, for

the study of the qualitative properties of systems exhibiting concurrency and

34

synchronization characteristics. Although many other models of concurrent and

distributed systems have been developed since then, Petri nets are still a central model for

concurrent systems with respect to both the theory and applications. They are often used

as a yardstick for other models of concurrency. The performance evaluation of

communication systems and flexible manufacturing systems, resource allocation

problems in information processing systems, communication protocols, production

control and process synchronization can be cited as examples of Petri nets applications.

This diversity of application has encouraged the study of Petri net theory and both the

theory and the applications of this model have been flourishing [90-96] in last decade.

One of the main attractions of Petri nets is the way in which the basic aspects of

concurrent systems are identified both conceptually and mathematically. The ease of

conceptual modeling (based also on a natural graphical notation) makes Petri nets the

model of choice in many applications. The natural way in which Petri nets allow to

formally capture many of the basic notions and issues of concurrent systems contributed

greatly to the development of a rich theory of concurrent systems based on Petri nets.

2.5.1.1 Evolution of Petri Net Models

The first nets were called Condition/Event Nets (CE-nets). This net model allows each

place to contain at most one token – because the place is considered to represent a

Boolean condition, which can be either true or false. In the following years a large

number of people contributed to the development of new net models, basic concepts, and

35

analysis methods. One of the most notable results was the development of Place/

Transition nets (PT-nets). This net model allows a place to contain several tokens.

For theoretical considerations, CE-nets are more tractable than PT-nets, and much of the

theoretical work concerning the definition of basic concepts and analysis methods has

been performed on CE-nets. A new net model called Elementary Nets (EN-nets) was

proposed later. The basic ideas of this net model are very close to those of CE-nets – but

EN-nets avoid some of the technical problems that turned out to be presented in the

original definition of CE-nets.

PT-nets were used for practical applications. But this net model was often too low-level

to cope with the real-world applications in a manageable way, and different researchers

started to develop their own extensions of PT-nets – adding concepts such as priority

between transitions, time delays, global variables to be tested and updated by transitions,

zero testing of places etc. In this way a large number of different net models were

defined. However, most of these net models were designed with a single, and often very

narrow application area in mind. Although some of the net models could be used to give

adequate descriptions of certain systems, most of the net models possessed almost no

analytic power. The main reason was the large variety of different net models. So it is a

difficult task to translate an analysis method developed for one net model to another.

The breakthrough with respect to this problem came when Predicate/Transition Nets

(PrT-nets) were presented. PrT-nets were the first kind of high-level nets which were

constructed without any particular application area in mind. PrT-nets form a

36

generalization of PT-nets and CE-nets and can be related to PT-nets and CE-nets in a

formal way. This makes it possible to generalize most of the basic concepts and analysis

methods that have been developed for these net models.

However, PrT-nets present some technical problems when the analysis methods of place

invariants and transition invariants are generalized. It is possible to calculate inviriants

for PrT-nets, but the interpretations of the invariants is difficult and must be done with

great care to avoid erroneous results. The problem arises because of the variables which

appear in the arc expressions of PrT-nets. These variables also appear in the invariants,

and to interpret the invariants it is necessary to bind the variables, via a complex set of

substitution rules. The first version of Colored Petri Nets (CPN1) was defined to

overcome this problem. The main ideas of this net model are directly inspired by PrT-

nets, but the relation between a binding element and the token colors involved in the

occurrence is now defined by functions and not by expressions as in PrT-nets. This

removes the variables, and invariants can be interpreted without problems.

Colored Petri nets (CP-nets) have two different representations. The expression

representation use arc expressions and guards, while the function representation use

linear functions between multi-sets. Moreover, there are formal translations between the

two representations. The expression representation is nearly identical to PrT-nets, while

the function representation is nearly identical to CPN. Most of the practical applications

of Petri nets use either PrT-nets or CP-nets although several other kinds of high-level nets

have been proposed. The main difference between PrT-nets and CP-nets are hidden

37

inside the methods to calculate and interpret place and transition invariants. So PrT-nets

and CP-nets are viewed as two slightly different dialects of the same language due to

very little difference between them.

Several other classes of high-level nets include algebraic nets, CP-nets with algebraic

specifications, many sorted high-level nets, numerical Petri nets, OBJSA nets, PrE-nets

with algebraic specifications, Petri nets with structured tokens and relation nets. All these

net classes are quite similar to CP-nets but use different inscription languages. The

functional programming language Standard ML has been developed at Edinburgh

University and is used for the inscriptions of CP-nets. It is also one of the programming

languages used in the implementation of the CPN tools described in section 2.5.3.

“Petri nets” is a generic name for a whole class of models that can be divided into three

main layers. The first layer is the most fundamental and is especially well suited for a

thorough investigation of foundational issues of concurrent systems. The basic model is

that of elementary net systems or EN-nets [110-112]. For modeling real-life systems of

nontrivial size, elementary net systems may explode in size and become much too large

to be managed effectively. The second layer allows one to collapse the repetitive features

of elementary net systems in order to get more compact representations. The basic model

here is place/transition systems or PT-nets [113-114]. Finally, the third layer is that of

high level nets, where one uses essentially algebra and logic to yield compact nets

suitable for real-life applications. Colored Petri nets [103] and predicate/transition nets

(PrT-nets) [115] are the best known high-level models.

38

In the framework of EN systems, a concurrent system is seen as consisting of local states,

local transitions (between local states), and the neighborhood relationship between the

local transitions and the local states. The global state of a system (its configuration) is

simply the collection of all local states that concurrently hold. The extent of change

caused by a (local) transition is fixed and is restricted to the neighborhood of the

transition; it does not depend on the part of the global state that is outside the

neighborhood. This simple and elegant setup lends itself to a nice graphical

representation of both the static structure of the system and its dynamic behavior.

The EN system model has resulted from a number of modifications of the basic system

model called Condition/Event Systems, or CE-nets. The most significant difference is

that CE-nets transitions can also be reserved, recovering in this way the history of the

system. An EN system can also be viewed as a special case of a PT-net.

For many practical applications, the execution time and/or stochastic processes need to be

considered. This leads to timed and stochastic Petri nets.

2.5.1.2 Definitions of Petri Nets

Petri net definitions have a “static” part and a “dynamic” part. The former describes net

topology and a momentary marking. The latter describes the movement of tokens in time

via a switching (or firing) rule.

39

A Petri net is a bipartite directed graph. It consists of two types of nodes: places (drawn

as circles), which can be marked with tokens (drawn as bold face dots), and transitions

(drawn as squares), which are marked by the (random or deterministic) time, D by which

they delay the output of tokens. If D = 0, the transition is called immediate; otherwise it is

called timed. The movement of tokens is governed by so-called firing rule. If all input

places of a transition are marked by at least one token each, then this transition is called

enabled; and after a delay D ≥ 0 this transition switches or fires, i.e., it removes one token

from each of its input places and adds one to each of its output places. See Figure 2.6,

where place 3 (p3) is at the same time an input and an output of transition 1, t1.

 ... …
 1 1

 …
 ...
 2 Output (or successor) places of t1
 …
Input (for processor) Place of t1
 3
 …

T

•

•

Figure 2.6 Input and Output Places of A Transition

The number of tokens in a Petri net is not necessarily a constant. Tokens move along (or

through) edges at infinite speed. Figure 2.7 shows an example of a transition with 3 input

places and 2 output places.

40

 Dj

 later

(a) (b)

Dj •

•

• •

•••

Dj

•

•••

• •

Figure 2.7 The Delayed Switching of A Transition; (a) prior to, (b) after switching

If a PN is initially a multigraph as shown in Figure 2.8, then it is replaced by a graph with

weighted edges where the default value is 1. The transition of Figure 2.8 is not enabled,

since p2 has only one token but needs at least 2 for firing.

 3

 2

 2

(a) (b)

Dj

•

• • •

•••

Dj •

•

• •

•••

Figure 2.8 Replacing A Multigraph by A Graph With Weighted Edges

41

2.5.1.3 Timed Petri Nets (TPN)

One of the main attractions of Petri nets is the way in which the basic aspects of

concurrent systems are identified both conceptually and mathematically. The ease of

conceptual modeling (based also on a natural graphic notation) makes Petri nets the

model of choice in many applications.

Petri nets (PN) were originally developed and used for the study of the qualitative

properties of systems exhibiting concurrency and synchronization characteristics. The use

of PN-based techniques for the quantitative analysis of systems requires the introduction

of temporal specifications within the basic, untimed models. This fact leads to several

different proposals for the introduction of temporal specifications in PN.

The main alternatives that characterize the different proposals concern

• The PN elements associated with timing (normally either places or transitions,

but some also looked into the possibility of defining timed arcs or tokens),

• The firing semantics in the case of timed transitions (either atomic firing or

firing in three phases),

• The nature of the temporal specification (either deterministic or probabilistic),

• The conflict resolution policy.

We consider PN models that are augmented with a temporal specification by associating

a (possibly null) firing delay with transitions. The transition firing operation is assumed

to be atomic, i.e., tokens are removed from input places and put into output places with a

42

single, indivisible operation, after the transition firing delay has elapsed. The

specification of the firing delay of timed transitions is of probabilistic nature, so that

either the probability density function (pdf) or the cumulative distribution function (cdf)

of the delay associated with a transition needs to be specified. Such functions may be

general, or even degenerate, thus allowing the definition of constant (possibly null)

delays. We refer to this type of timed Petri nets as Generally Distributed Times

Transitions Stochastic Petri Nets (GDTT_SPN).

The class of TPN is however too wide to allow a simple solution of any GDTT_SPN

model; so special attention are paid to two special subclasses of GDTT_SPN, that have

nice property of permitting a reasonably simple representation metrics:

• Stochastic Petri Nets (SPN), where all transition firing delays are non-null and

have negative exponential pdf.

• Generalized SPN (GSPN), where immediate (null-delay) transitions are freely

mixed with timed transitions associated with exponentially distributed non-

null random firing delays.

A SPN is a GDTT_SPN in which the W function assigns to each transition an

exponential pdf. Since the exponential distribution is fully characterized by its mean

value (or by its inverse, the rate), and its memory-less characteristics makes inessential.

The definition of a SPN is SPN = (P, T, I, O, H, M0, W)

Where - (P, T, I, O, H, M0) is the underlying PN system, as for GDTT_SPN,

43

W: T → R is a weight function; w(t) is the rate of the exponential distribution

associated with transition t. w(t) is also called the firing rate of transition t.

The key factor that limits the applicability of SPN models is the complexity of their

analysis. The possibly very large number of reachable markings is by far the most critical

reason among many other reasons. Other aspects may however add to the model solution

complexity. One of these is due to the presence in one model of activities that take place

on a much faster (or slower) time scale than the one relating to the events that play a

critical role on the overall performance. This results in systems of linear equations which

are difficult to solve with an acceptable degree of accuracy by means of the usual

numerical techniques. On the other hand, neglecting the “fast” (or “slow”) activities may

result in models which are logically incorrect.

GSPN models comprise two types of transitions:

• Timed transitions, which are associated with random, exponentially

distributed firing delays, as in SPN, and

• Immediate transitions, firing in zero time with priority over timed transitions.

Furthermore, different priority levels of immediate transitions can be used, and weights

are associated with immediate transitions.

2.5.2 Colored Petri Nets

A Colored Petri Net (CPN) model of a system describes the states a system can get into,

and shows events which can occur and the states which will result if an event occurs for

44

each state. A CPN state is broken into a number of component states, each component

being determined by tokens in a place. Tokens can have arbitrary values determined by

their type or color. Each distinct token value can be thought of as a different colored or

shaped piece on a board game. The places are like the parts of a game board where you

can put pieces. Events are represented by transitions. They are connected to some of the

places by arcs next to which are expressions that determine the redistribution of tokens

that occurs when the event occurs.

High level Petri nets, such as CPN and SPN have the particular feature of presenting

concise and easy to understand graphical models that visualize the interactions between

the different communicating and cooperating entities of the system. The applications of

high level Petri Nets to the modeling and simulation of communication protocol has

increased in recent years [97-103].

CPNs, and especially Hierarchical CPN (HCPN)[103], are the response to the first

requirement, as they have means for modeling and specifying very large scale systems,

with their colored tokens and hierarchy constructs, folding the system description into

very compact forms. While SPNs (with its extensions, GSPNs and Deterministic SPNs)

constitute an answer to the second requirement, as they can be useful in modeling

complex system with a very high level of abstraction.

45

2.5.2.1 Advantages of Colored Petri Nets

There are three different reasons to use CPN models. First of all, a CPN model is a

description of the modeled system, and it can be used as a specification (of a system

which we want to build) or as a presentation (of a system which we want to explain). By

creating a model we can investigate a new system before constructing it. This is in

particular for networks where design errors may jeopardize reliability or be expensive to

maintain. Secondly, the behavior of a CPN model can be analyzed, either by means of

simulation (which is equivalent to program execution and program debugging) or by

means of more formal analysis methods (which are equivalent to program verification).

Finally, the process of creating the description and performing the analysis usually gives

the modeler a dramatically improved understanding of the modeled system.

There exist many different modeling languages that it would be very difficult and time

consuming to make an explicit comparison with all of them. Instead we can make an

implicit comparison by listing twelve of those properties which make CPN a valuable

language for the design, specification and analysis of many different types of systems.

Most of the advantages of CPN are subjective by nature and cannot be proved in any

formal way. Jensen [94] presented the general list of CPN advantages.

• CPNs have a graphical presentation. The graphic form is intuitively appealing.

CPN diagrams resemble many of the informal drawings which designers and

engineers make while they construct and analyze a system.

• CPNs have a well-defined semantics which unambiguously defines the behavior

of each CPN. It is the presence of the semantics which makes it possible to

46

implement simulators for CPNs, and it is also the semantics which forms the

foundation for the formal analysis methods.

• CPNs are very general and can be used to describe a large variety of different

systems. The CPN applications range from informal systems (e.g. the description

of work processes) to formal systems (e.g. communication protocols), from

software systems (e.g. distributed algorithms) to hardware systems (e.g. VLSI

chips), finally from systems with a lot of concurrent processes (e.g. flexible

manufacturing) to systems with no concurrency (e.g. sequential algorithms).

• CPNs have very few, but powerful, primitives. The definition of CPNs is rather

short and it builds upon standard concepts which many system modelers already

know from mathematics and programming languages. This means that it is

relatively easy to learn to use CPNs. However, the small number of primitives

also means that it is much easier to develop strong analysis methods.

• CPNs have an explicit description of both states and actions. This is in contrast to

most system description languages which describe either the states or the actions

but not both. At some instances it may be convenient to concentrate on the states

while at other instances it may be more convenient to concentrate on the actions.

• CPNs have a semantics which builds upon true concurrency, instead of

interleaving. The notions of conflict, concurrency and casual dependency can be

defined in a very natural and straightforward way. In an interleaving semantics it

is impossible to have two actions in the same step, and thus concurrency only

means that the actions can occur after each other, in any order.

47

• CPNs offer hierarchical descriptions. This means that we can construct a large

CPN by relating smaller CPNs to each other, in a well-defined way. The

hierarchy constructs of CPNs play a role similar to that of subroutines,

procedures and modules of programming languages, and it is the existence of

hierarchical CPNs which makes it possible to model very large systems in a

manageable and modular way.

• CPNs integrate the description of control and synchronization with the

description of data manipulation. This means that it can be seen what the

environment, enabling conditions and effects of an action are. Many other

graphical description languages work with graphs which only describe the

environment of an action – while the detailed behavior is specified separately.

• CPNs are stable towards minor changes of the modeled system. This is proved by

many practical experiences and it means that small modifications of the modeled

system do not completely change the structure of the CPN.

• CPNs offer interactive simulations where the results are presented directly on the

CPN diagram. The simulation makes it possible to debug a large model while it

is being constructed – analogously to a good programmer debugging the

individual parts of a program as he finishes them.

• CPNs have a large number of formal analysis methods by which properties of

CPNs can be proved. There are four basic classes of formal analysis methods:

construction of occurrence graphs (representing all reachable markings),

calculation and interpretations of system invariants (called place and transition

invariants), reductions (which shrink the net without changing a certain selected

48

set of properties) and checking of structural properties (which guarantee certain

behavioral properties).

• CPNs have computer tools supporting their drawing, simulation and formal

analysis. This makes it possible to handle even large nets without drowning in

details and without making trivial calculation errors. The existence of such

computer tools is extremely important for the practical use of CPNs.

Many of above listed advantages of CPNs are also valid for other kinds of high-level

nets, P/T nets, and other kinds of modeling languages. Thus CPNs must be used together

with other kinds of modeling languages to describe different aspects of the system, then

the resulting set of descriptions should be considered as complementary, not alternatives.

2.5.3 Tools for Petri Nets Applications

There have been a lot of tools for Petri Nets (PN) applications, with the development of

Petri Nets theory. The simplest PN tool shows the typical changes of state, sometimes

interpretable as the wandering of tokens and the waiting times in between. This is often

done in connection with a graphical display of the PN. Some other tools include:

• SHARPE [105]

• Great SPN [106]

• ESP [107]

• Ultra SAN [108]

• SPNP [109]

49

2.5.4 PN_RAIN Approach

A practical network is usually subject to node failures, link failures, and software failures,

where node failures and link failures here are viewed as failures on hardware aspect.

Each type of failure can occur concurrently, as in Figure 2.9.

 e1 e2

Figure 2.9 Sample Concurrent Events

The failure events e1 and e2 can occur concurrently, in the sense that they both have

concession and are independent in not having any pre or post conditions in common.

Reflecting to the network under study (refer to Chapter 3), that means node failures, link

failures, and software failures can occur concurrently in general, but two failures can not

occur at the same time among a node and its incident links.

Taking the networks described in Chapter 3 as the research object, an approach of Petri

Nets in Reliability Analysis of Integrated Networks (PN_RAIN) will be introduced.

50

 Operational State

 ♦ • ♥

 D1 D2 D3

 Link failure Node (HW) failure Software failure

 HW failures Node (HW/SW) failures

 Failure State

♦: token for link failure •: token for software failure ♥: token for node (HW) failure

Figure 2.10 States Transition of A Node in An Integrated Network

Generally there are three types of failure processes, initiated by link failures, node

failures, and software failures. Link failures represent failures associated with links

incident to the node. The three failure processes are independent and concurrent. In

Figure 2.10, there are three different colors of tokens representing three types of failures.

Each of D1, D2, and D3 represents the firing delay of each type of token correspondingly.

In a practical network, each type of firing delay follows the stochastic distribution of link

failures, or node (hardware) failure, or software failures. Figure 2.10 represents a node in

51

an integrated network. There are four nodes in Figure 4.1, thus the node state in Figure

2.10 can replicate four times, as shown in Figure 2.11.

Figure 2.11 A Sample Bridge Network (Figure 4.1) With Node States

2.5.4.1 Construction of PN_RAIN Models

For all modeling languages, it takes a considerable amount of experience to become a

good and efficient CPN modeler. The construction of CPN models usually follows:

• Identify some of the most important components of the modeled system.

• Consider the purpose of the model and determine an adequate level of detail.

• Try to find good mnemonic names for objects, processes, states and actions.

• Do not attempt to cover all aspects of the considered system in the first

version of the model.

• Choose one of the processes in the modeled system and try to make an

isolated net for this process.

• Use the net structure to model control and the net inscriptions to model data

manipulations.

52

• Distinguish between different kinds of tokens.

• Use different kinds of color sets.

• Augment the process net by describing how the process communicates/

interacts with other processes.

• Investigate whether there are classes of similar processes.

• Combine the subnets of the individual process to a large model.

Assume we have two types of processes, N-processes (for node) and L-processes (for

link). There are four N-processes and five L-processes in a network depicted by Figure

2.11. A N-process is subject to the node (hardware) failures and software failures. Since

the failure of either hardware or software of a node will bring its incident links down, a

L-process is subject to failures of its incident nodes and link itself. Obviously node

failures, software failures and link failures follow different stochastic distributions, but

we assume same type of failure follows the same stochastic distribution in different

processes. There is only one token in each place, which means one type of failure can

only occur once among the corresponding node and its links. When any failure (by nodes

or links) transition is enabled and fired, the state of the system changes.

53

 N-processes A • L-processes
 (HW/SW)

 B
 DL

 DN • FL
 B •

 C • DN

 • FN

 C •
 DS

 • FS
 DS
 D

 D

Figure 2.12 PT-net Describing the Processes in An Integrated Network

In Figure 2.12 we have to represent the two kinds of processes by two separate subnets –

even though the N-process and L-process encounter failures in a similar way. This kind

of problem is annoying for small problem, and it may be catastrophic for the description

of a large network. Practical systems often contain components which are similar but not

identical. Using PT-nets, these components must be represented by disjoint subnets with

a nearly identical structure. So the practical use of PT-nets to describe real-world systems

has demonstrated a need for more powerful net types to describe complex systems in a

54

manageable way. The development of high level Petri nets constitutes a very significant

improvement in this respect. CP-nets (CPN) belong to the class of high-level nets.

The more compact representation has been achieved by equipping each token with an

attached data value – token color. For a given place all tokens must have token colors that

belong to a specified type. This type is called the color set of the place. The use of color

sets in CPN is analogous to the use of types in programming languages.

A CPN consists of three different parts: the net structure (i.e. the places, transitions and

arcs), the declarations and the net inscriptions (i.e., the various text strings which are

attached to the elements of the net structure). CPN ML language is used for declarations

in our study.

Now the system described in Figure 2.13 can be represented in a compact way by CPN as

in Figure 2.14. A distribution of tokens on the places is called a marking. The initial

marking is determined by evaluating the initialization expressions, i.e., the underlined

expressions next to the places. In the initial marking (Figure 2.6) there is one (L, 0)

tokens on A, B and C, while D has no tokens. Moreover, each of FL, FN, FS has one

token. The marking of each place is a multi-set over the color set attached to the place.

Multi-sets allow two or more tokens to have identical token colors. We shall also allow

initialization expressions which evaluate to a single color c, and interpret this as if the

value was 1’c (i.e., the multi-set contains one appearance of c).

55

 1’(L, 0)
 P 1’(L, 0)
 A
 E (x, i)
 [x=L] If x=L
 DL Then 1’(L, i+1)
 (x, i) Else empty
 FL 1’e
 1’e E 1’(L, 0) 1’(L, 0)
 (Case x of N => 1’e | L => 1’e) P B If x=N Then 1’(N, i+1)
 (x, i) Else empty
 DN
 (If x=L then 1’e E
 Else empty) FN 1’e (x, i)
 1’e P
 e C
 1’e (x, i)
 FS E 1’e
 1’e DS
 (x, i)

 P D
 (x, i)

 (Case x of N=> 1’e | L => 1’e)

Color U= with N | L;
Color I = int;
Color P = product U*I;
Color E = with e;
Var x: U;
Var i: I;

Figure 2.13 CPN Describing the Failure Modes in the Integrated Network

There are some arc expressions around transitions in Figure 2.13. These expressions have

two variables, x and i, and from the declarations it can be seen that x has type U while i

has type I, e is an element of the color set E while N and L are elements of U. x and i

need to be bound to colors of the corresponding types (i.e., elements of the color sets U

and I). One possibility is to bind x to N and i to zero: then we get the binding b1 = <x =

N, i = 0>. For each binding we can check whether the transition with that binding is

enabled in the current marking. For the binding b1 the two input arc expressions evaluate

56

to (N, 0) and 1’e, respectively. Thus we conclude that b1 is enabled. CPN contains both

case expressions and if-expressions to illustrate different possibilities, such as

“case x of N => 1’e | L => 1’e”. Expressions in Figure 2.6 with an italic style are just to

show the choice functions, no special meaning in the specific system. More CPN ML

knowledge can be referred to [94, 97].

From the above experiment, it is observed that the benefits achieved by using CPN

instead of PT-nets, are very similar to those achieved by using high-level programming

languages instead of assembly languages.

• Description and analysis become more compact and manageable because the

complexity is divided between the net structure, the declarations and the net

inscriptions.

• It becomes possible to describe simple data manipulations in a much more

direct way by using arc expressions instead of a complex set of places,

transitions and arcs.

• It becomes easier to see similarities and differences between similar system

parts because they are represented by the same subnet.

• The description is more redundant and this means that there will be less errors.

Some kinds of errors become impossible or at least unlikely, e.g., it is difficult to add an

extra state for the N-processes without considering whether the same should be done for

the L-processes. It is possible to create hierarchical descriptions, i.e., structure a large

description as a set of smaller CPN with a well-defined relationship.

57

2.6 Possibilistic Reliability Functions and Fuzzy Sets Theory

Classically, reliability theory has been based upon binary structure functions and

probability theory. A binary structure function represents the deterministic relation

between the component states and the system states, while probability theory is applied to

develop the notion reliability of both components and systems.

Some obvious problems arise while applying this theory. A binary structure function

allows only two states: a perfect functioning or a complete failure. The binary structure

functions are too restrictive to model real life situations, since the concepts of failure or

functioning are not always well defined or since a binary approach is too restrictive [81].

Hence, intermediate states must be allowed to describe the more complex systems. This

is the topic of multistate structure functions that is closely related to fuzzy set theory

since many real life problems simply cannot be represented by a dichotomous model.

By allowing intermediate states, we must extend the classical notion of reliability based

on the probability of failure or functioning of a component or system. Some research

showed that probability theory is not the only possible way of representing imprecision

and uncertainty. Possibility theory and fuzzy set theory, e.g., provide useful alternatives

to the probabilistic approach of reliability.

In classical reliability, probability theory is considered as the unifying model to represent

uncertainty since classical reliability theory was developed at the early 30s and mainly

after the WWII as an application of probability theory and quality control. Later on, the

58

reliability theory became a new, mainly a probabilistic field of interest. At that time, non-

probabilistic uncertainty models were not available or at least not very popular. The

confidence that the system will function properly at a certain level is classically defined

in a probabilistic way, and leads to the well-known definition that the reliability of a

system is the probability that the system functions during a certain time period.

On the other hand, some important deficiencies of the probabilistic approach became

apparent in the early 60s. NASA developed alternative models to analyze the reliability

aspects of the Saturnus V missile, since a classical approach failed. There were some

reasons why a probabilistic approach was not successful. There was, e.g., an

accumulation of errors due to the lack of sufficient statistical information about the

failure aspects of the components, hence, there was an overestimation of the probability

of failure. A qualitative approach was more appropriate. Since the introduction of fuzzy

sets and possibility theory, new tools became available to model uncertainty. They are

more qualitative by nature and can therefore be applied to situations where a quantitative

approach is very unlikely or even impossible.

Several recent models to solve the problems mentioned about have been proposed based

on fuzzy set theory. The fuzzy probabilities, the fuzzification of classical reliability

function, and the combination of fuzzy states and fuzzy probabilities were introduced

[82-84].

59

CHAPTER 3

PROBLEM FORMULATION

Network failures can arise in a couple of different ways. Failures may occur because the

routing algorithm is unable to detect a functional route, although one exists. Failures may

also happen if the flow control algorithm causes the network to be flooded with traffic,

resulting in network failure due to overload. Both events are caused by software control

of the network as protocols we usually mention, rather than by topological

considerations.

Failures at a topological level can result from actions by intentional attack, natural

disaster, or component wear-out. Intentional attack are purposefully selected to damage

and inflict the network operation, comparing natural disasters are not. Typically damages

on some portion of topology is in a small region but not in random. On the other hand,

component wear-out is a random process and failures of each component are

independent.

The network reliability and availability problem to be studied is focused on practical

networks integrated with component systems where the software and hardware

subsystems in nodes and hardware of transmission links are subject to independent

60

failures, additionally the 1:1 system redundancy initiatives deployed to improve the

network high availability are also considered.

The problem needs to be formulated before proposing the approach. A stochastic network

is a graph G = (V, E), where V and E are the sets of vertices (node, V) and edges (link, E)

of G. Each node, link, group, and the network is either operational or failed. Edge failures

are mutually independent of each other with assumed or known probabilities. Nodes are

mutually independent of each other with derivable probabilities. A node is operational if

and only if both its contained software and hardware operate as intended. When a node

fails, all links incident to the node also fail.

Usually nodes are subject to hardware and software failures while links are only related

to the hardware problems. In practice, software such as control and communication

protocols are stored in servers of the network. In some cases, hardware failures are

induced by software failures. In such a situation, we assume that the hardware and

software are in series inside a node, and fail independently. So the failure of a node

results from the failure of the hardware part or the software part, or both. Software debug

is assumed to be perfect, that is, debugging does not introduce new faults.

Notations are defined as following:

s, t source, terminal nodes of node pair

n, m number of nodes, links in the network

Vi , Ej node i, link j in the network, where i = 1, 2, …n, j = 1, 2, …m

61

αi , βj operational probability of node i, link j

αih operational probability of hardware part in node i

αis probability of software part in node i functions as designed

εi utilization of software inside node i

h(ti) hazard function during the time ti, between the (i-1)st and ith failure

Si, Fi event i which is successful, failed

|S|, |F| number of successful events, failed events

Ni, Ki number of failed, operational links directed into node i

Si j , Fi, j links with terminal node j are operational, failed as specified by event i

R node-pair reliability from s to t

62

CHAPTER 4

APPROACHES FOR CALCULATING NETWORK RELIABILITY

4.1 Probabilistic and Deterministic Networks

A network G = (V, E) consists of a set V of nodes together with a set E of edges,

representing pairs of nodes. At any instant the elements of the network (nodes and/or

edges) will be in either of two possible states, working or failed. In a deterministic

network, it is considered that an adversary can successfully attack working elements,

resulting their failure or inactivation. The failure of an edge means that it is removed

from the network; while the failure of a node means that the node and all its incident

edges are removed from the network.

In deterministic network models, the focus is typically on evaluating the worst-case

performance of the network, in which the adversary intelligently chooses certain elements

to render inactive, that would result in the maximum damage to the network. This type of

network thus provides a conservative assessment of performance, and it would be

partially appropriate in the design of robust systems.

On the other hand, it is assumed in probabilistic networks that, at any instant, elements

fail randomly and independently of one another, according to certain known probabilities.

63

Specifically, each node i has an associated reliability pi indicating the probability that it is

operational, and each edge k has a reliability pk which is the probability that it is

operational. Thus at any instant the elements of the network fail independently with

probabilities qi = 1- pi and qk = 1- pk, respectively.

In these circumstances, one would be interested in assessing the average performance of

the network, under the assumption of random (as opposed to malevolent) failures. It is

also possible to allow for dependent failure modes, at the expense of added data-

gathering requirements and increased subsequent computation. For example, the edges

incident with a given node might be subject to certain common influences (such as

weather, interference, or jamming), and these edges might therefore tend to fail together,

rather than independently; or the failure of one edge might place additional stress on the

other operating incident edges, making them more likely to fail.

Graph theory plays a key role in the analysis and design of reliable or invulnerable

networks. According to Boesch [23], one can use a deterministic model that is called

network vulnerability, contrasting to the usual probabilistic model for network reliability.

Many different vulnerability criteria and the related synthesis results were reviewed.

These synthesis problems are all graph external questions. Certain reliability synthesis

problems can be converted to a vulnerability question. He distinguished between two

types of models, summarized the relevant graph theoretic notions and then summarized

the major results corresponding to each model.

64

4.2 Network Operations

Network reliability is concerned with the ability of a network to carry out a desired

network operation. Therefore, an important first step is to identify necessary network

operations.

The most common network operation is maintaining some connections or links between a

source node s to a target node t. Two-terminal reliability is defined as the probability that

there exists at least an s-t path in a probabilistic graph G. In the directed case, the

problem is usually called s-t connectedness.

The second most common operation in networks is broadcasting. We define the all-

terminal reliability to be the probability that for every pair of nodes there is at least a path

between. This is equivalent to the probability that there is at least one spanning tree in the

graph. In a directed case, the reachability is the probability that there are paths from the

source node to every other node.

The third and final one involves pair-wise communication of k specified nodes, 2 ≤ k ≤ n.

the k-terminal reliability is the probability that for k specified target nodes, the graph

contains paths between each pair of the k nodes. The directed analogue is called s-t

connectedness.

65

4.3 General Approaches for Calculating the Reliability of Probabilistic Networks

There are several types of general approaches for calculating the reliability of

probabilistic networks. Suppose that G = (N, E) is a directed network, having a

distinguishable source node s and distinguishable destination node t. The nodes of G are

assumed to be perfect, whereas the edges k∈E are assumed to fail in a statistically

independent fashion with known probabilities qk = 1 – pk . We will illustrate the general

approaches with the two-terminal reliability Rst(G) which is the probability of that there

is a path of operative edges from s to t in G.

4.3.1 State-space Enumeration

The most fundamental method of calculating Rst(G) uses state-space enumeration and

dates back to Moore and Shannon [19]. It is a simple strategy that enumerates all states

(all possible subgraphs), determines which are pathsets, and sums the occurrence

probabilities of each pathset. Determining whether a state is a pathset is accomplished in

general by using the supplied pathset recognition algorithm which employs standard

path-finding or spanning tree methods.

Since each of the m = | E | edges of G assumes one of two states, working or failed, the

state of the network can be represented using 0-1 vector δ = (δ1, δ2, … δm). The kth

component of δ equals 1 if edge k is working and is 0 if failed. Assuming edges fail

independently, the probability of a given state δ is

 =p)δ ∏
=

−−
m

k
kk

kk pp
1

1)1((δδ

66

Define the 0-1 variable Ist(δ), which equals 1 precisely when the sub-network of

operational edges k (having δk = 1) contains an s-t path. Then the two-terminal reliability

is given by

 (4.1) ∑
=

=
D

stst PIGR
δ

δδ)()()(

where D is the set of all network states. Even though it’s conceptually simple, the state-

space approach is impractical because |D| = 2m and the computation time and cost

increase exponentially with the network size.

We now illustrate the approach in a network with four nodes and five edges shown in

Figure 4.1.

 X

 1 4

 s 3 t

 2 5

 Y

 Figure 4.1 A Sample Bridge Network

It is obvious that the network contains a s-t path if at most one edge fails, or any two

edges other than {1, 2}, {1, 5}, {4, 5} fail. On the other hand, for three or more edge

failures, the network fails unless the failed edges are {1, 3, 4} or {2, 3, 5}. Thus the two-

terminal reliability can be given as

67

 Rst(G) = p1p2p3p4p5 + q1p2p3p4p5 + p1q2p3p4p5 + p1p2q3p4p5 + p1p2p3q4q5 +

 p1p2p3p4q5 + q1p2q3p4p5 + q1p2p3q4p5 + p1q2q3p4p5 + p1q2p3q4p5 +

 p1q2p3p4q5 + p1p2q3q4p5 + p1p2q3p4q5 + q1p2q3q4p5 + p1q2q3p4q5

Substituting qk = 1 – pk into the above equation, and simplifying, we get,

 Rst(G) = p1p2p3p4p5 - p1p2p3p5 - p1p2p4p5 - p1p3p4p5 + p1p3p5 + p1p4 + p2p5

Although as many as 55 terms could have resulted from performing these substitutions, a

good deal of cancellation occurred in producing the above expression.

Since only states δ with Ist(δ) = 1 contribute to Equation (4.1), it is unnecessary to

examine all states of D, except for those containing the above expressions. It is therefore

appropriate to focus directly on the simple s-t paths {P1, P2, …, Pk} of G.

Define Ei as the event that all edges in path Pi operate. Then the two-terminal reliability is

the probability that at least one such event occurs, or

 Rst(G) = P(E1 U E2 U…U Ek) (4.2)

The two-terminal network reliability can be alternatively formulated using the minimal s-

t edge disconnecting sets, or cutsets of G. An s-t edge disconnecting set is minimal if it

does not contain any other edge disconnecting set separating s and t. Indeed, suppose that

the s-t cutsets are {C1, C2, …, Cr} and let Fj be the event that all edges in cutset Cj fail.

Then the two-terminal unreliability Ust(G) is given by

68

 Ust(G) = 1- Rst(G) = P(F1 U F2 U…U Fr) (4.3)

The events Ei in Equation (4.2) are not in general disjoint, nor are the events Fi in

Equation (4.3). However, there are other standard methods for evaluating the probability

of the union of the events.

Another way of viewing state-space enumeration emerges from the binary nature of the

states assumed by each edge. Rather than fully specifying the states of all m edges at

once, we can instead select a particular edge e∈E and condition on the status of e, either

perfect (pe = 1) or failed (pe = 0). We obtain a new system denoted G/e in which edge e is

perfect in the first case, and another new system G – e in which e is failed for the second

case. This produces the pivotal decomposition formula:

 Rst(G) = peRst(G/e) + (1 – pe)Rst(G - e) (4.4)

This formula shows how reliability calculations for a given network can be decomposed

into those for two smaller networks, G/e and G – e. While conditioning, or factoring, in

turn every possible edge just reproduces state-space enumeration, there are circumstances

in which not all edges need to be considered for factoring. In fact, by judiciously

selecting the edges for factoring, substantial computational saving can be achieved.

4.3.2 Inclusion-Exclusion

Using the principle of inclusion and exclusion, equation (4.2) can be expanded as

69

)...()1(...)()()()(21
1

k
k

lj
i ji lji

ijiist EEEPEEEPEEPEPGR +

< <<

−+−+−= ∑ ∑ ∑

The intersection of event A and B is indicated by the juxtaposition of AB. Each term in

this expansion is easy to calculate base on the independence assumption. However, there

are 2k – 1 terms to appear, hence the computation time increases exponentially with the

number of given paths.

For the sample network in Figure 4.1, there are three simple s-t paths.

 P1: 1-4 P2: 2-5 P3: 1-3-5

Thus, P(E1) = p1p4, P(E2) = p2p5, P(E3) = p1p3p5, P(E1E2) = p1p2p4p5, P(E1E3) = p1p3p4p5,

P(E2E3) = p1p2p3p5, P(E1E2E3) = p1p2p3p4p5.

Application of the inclusion-exclusion method then produces the expression as follows,

Rst(G) = P(E1) + P(E2) + P(E3) - P(E1E2) - P(E1E3) - P(E2E3) + P(E1E2E3)

 = p1p4 + p2p5 + p1p3p5 - p1p2p4p5 - p1p3p4p5 - p1p2p3p5 + p1p2p3p4p5

The topological formula of Satyanarayana and Prabhakar [34] is the most efficient

method based on the inclusion-exclusion approach, although the number of terms in the

reduced expression can still grow rapidly with the problem size. A reduced inclusion-

exclusion formula for RK(G) holds in directed networks. Boesch et al. [35] discussed

various combinatorial interpretations of the formula for RK(G).

70

4.3.3 Disjoint Product

Another way to calculate the probability of the union of events in Equation (4.2) is to

decompose E1 U E2 U…U Ek into a union of events that are disjoint. Specifically we can

express

 Rst(G) = P(E1 U E2 U…U Ek)

 = P)...... 1321321211 kk EEEEEEEEEE −UUU(EU

where iE denotes the complement of event Ei. Since the compound events above are

pairwise disjoint,

)...(...)()()()(1321321211 kkst EEEEEPEEEPEEPEPGR −++++=

This disjoint-products method involves adding only k probabilities. However, the

calculation of each constituent probability is generally involved. It is also important to

emphasize that the efficacy of this method can be highly dependent on the specific

ordering given to the events Ei.

A number of methods [36-37] have been proposed to carry out the disjoint-products

method, varying in their specific details but following the overall strategy. Typically the

paths Pi are first ordered by non-decreasing length and then processed in turn to generate

a number of terms disjoint with one another and those previously generated. In general,

the number of generated terms can grow rapidly with the number of given paths k. In

particular, the disjoint-products method can be carried out efficiently, in terms of k, for

the all-terminal reliability problem in directed networks (a nondenenerate linear system).

No such efficient method is known for calculating the two-terminal reliability problem.

71

4.3.4 Factoring

The inclusion-exclusion and disjoint-products techniques are based on a given

enumeration of the s-t paths. The factoring method does not require knowledge of these

paths but instead concentrates on the state of an individual edge. Application of the

pivotal decomposition Equation (4.4) creates two sub-problems with smaller size. If the

decomposition were simply reapplied to each such sub-problem, the approach would not

be better than state-enumeration. Crucial to this approach is the possibility that certain of

generated sub-problems might be reduced in size using simple probabilistic rules.

Some basic rules of reduction are presented now. Two edges e = (i, k) and f = (i, k)

joining the same two nodes in a directed network G are called parallel edges. A parallel

reduction replaces two parallel edges, having probabilities pe and pf, by a single edge

having probability 1 – (1 – pe)(1 – pf) = pe + pf - pepf. Two edges e = (i, j) and f = (j, k) are

called series edges if these are the only two edges incident with node j. If j ≠ s, t then a

series reduction replaces the two series edges by a single edge having reliability pepf.

Figure 4.2 illustrates these two reliability-preserving reductions, which are valid in view

of the independence of edge failures. Also illustrated is a more general two-neighbor

reduction, applicable if j ≠ s, t.

72

 pe
 i k i k (a)
 pf pe + pf - pepf

 i j k i k (b)
 pe pf pe pf

 pe pf pe pf

 i j k i k (c)
 pg ph pg ph

Figure 4.2. Probabilistic Rules of Reduction

A network G is two-terminal series parallel if it can be reduced to a single edge (s, t) by

repeatedly applying series and parallel reductions. In such a case, the two-terminal

reliability is simply the reliability appearing on the final edge, and efficient algorithms

exist for identifying and carrying out the appropriate reductions. More generally, the

application of series and parallel reductions to G will leave a network more complex than

a single edge. At this point, an edge can be selected for conditioning and the pivotal

decomposition formula can be applied, yielding two new sub-problems. Series and

parallel reductions are applied to these sub-problems for as long as possible, at which

point pivotal decomposition can again be invoked. This alternating strategy of pivotal and

applying reliability-preserving reductions constitutes the factoring algorithm.

For a directed network G, factoring on an edge e out of s, or into t, is especially helpful.

The system G/e will have a topological interpretation, since it is the network obtained

from G by deleting edge e and merging its endpoints. While Equation (4.4) remains valid

for any edge, unless the choice of edge for factoring is suitably restricted, G/e will not

necessarily be equivalent to the network obtained from G by contracting the edge. This is

73

clearly seen in the network of Figure 4.1, since contraction of edge 3 would produce the

spurious path 2-4 in Figure 4.3(a). On the other hand, contraction of edge 1 produces the

series-parallel network shown in Figure 2.3(b) and its reliability is easily calculated as

 Rst(G) = (p2p5 + p3p5 - p2p3p5) + p4 - (p2p5 + p3p5 -p2p3p5) p4

 s
 4
 1 4
 s t 2 3 t
 2 5
 5

(a) (b)

Figure 4.3. Contraction of an Edge in Fig 4.1, Using (a) e = 3 and (b) e = 1

Also G - e is accurately represented by the network of Figure 4.1 with edge 1 removed.

Since edge 3 and 4 are then irrelevant, they can be removed and Rst(G - e) = p2p5. As a

result of factoring on a single edge the two-terminal reliability of G is determined as

 Rst(G) = p2 Rst(G/e) + (1 - p1)Rst(G - e)

 = p1p4 + p2 p5 + p1p3p5 - p1p2p3p5- p1p2p4p5- p1p3p4p5 + p1p2p3p4p5

The factoring approach was first applied to directed networks by Nazakawa [38].

Reliability algorithms for directed networks that incorporate factoring, together with

probabilistic reduction rules, were implemented [39-40]. Johnson [41] and Wood [42]

discussed the application of the factoring approach to a variety of network reliability

74

problems, in particular the k-terminal and all-terminal reliability problems for undirected

networks.

4.3.5 Fault Tree Analysis

The technique of Fault Tree Analysis (FTA) for the estimation of the frequency of

occurrence of an event was formalized in 1962 at Bell Laboratories.

FTA is a very useful and popular method for analyzing complex system reliability. The

fault tree itself is a graphic representation of the Boolean failure logic associated with the

development of a particular system failure (the TOP event) to basic failures (primary

events). For example, the TOP event could be the failure of a nuclear power plant

guidance control system during its operation with the primary events being the failures of

individual guidance control system components.

FTA can be a valuable design tool. It can identify potential accidents in a system design

and can help eliminate costly design changes and retrofits. FTA can also be a diagnostic

tool. One can predict with it the most likely causes of system failures in the case of

system breakdown.

The fault trees are a special case of decision trees and contain logical gates, (for example,

AND, OR, NOT, NOR, NAND, k-out-of-n) and symbols of top end primary events. The

goal of fault tree construction is to model the system conditions that can result in the

undesired event. Before construction of the fault tree, a thorough understanding of the

system is acquired. In fact, a system description should be a part of the analysis

75

documentation. The analyst must carefully define the undesired event under

consideration, called the "top event".

FTA can involve the following steps:

• System definition

• Fault tree construction

• Qualitative analysis

• Quantitative analysis

System definition combines the analysis objectives with information about the systems.

The analysis objectives guide the selection of TOP events. Boundary conditions define

physical and analytical bounds associated with a TOP event and, together with a

statement of the TOP event, constitute a problem definition.

Fault trees are constructed for each of the TOP events based on the system definition

step. Operator failures are included in the fault trees. The potential for operator acts of

commission is not explicitly included in the fault trees but is indicated in the appropriate

basic component failures.

The qualitative analysis includes determining system failure modes-called minimal cut

sets-for each fault tree. The minimal cut sets are used as input to the quantitative analysis,

and they provide structural importance information about basic events (component and

human failures). The most structurally important basic events are those that are one-event

76

cut sets; the next most important basic events are those in the largest number of two-

event cut sets, and so forth.

In many instances, it is not necessary to determine all minimal cut sets for a TOP event.

If there are many low-order minimal cut sets (cut sets containing small numbers of basic

events), these cut sets will usually dominate the system failure probability, and higher-

order cut sets do not need to be determined.

The quantitative analysis step includes determining TOP event reliability characteristics

from the minimal cut sets and the component failure characteristics assuming that all-

component failures and repairs are independent. Four quantitative reliability

characteristics were of interest in the utility system study:

• System unavailability

• Expected number of system failures

• Average system downtime

• Component importance

The system unavailability at a given time is the probability that the system is in the failed

state at that time. The expected number of system failures is the expected number of

times that a system failure will occur over a time interval. The average system downtime

(for repairable systems) is the quotient of system unavailability and system failure rate.

component importance estimates the fraction of time that a component failure is

contributing to system failure, given the system is failed.

77

4.4 Computational Complexity of Reliability Analysis

Reliability analysis problems are more closely aligned with counting problems where the

objective is to determine the number of configurations of a particular type. The minimum

cardinality pathset problem associated with the k-terminal problem is the problem of

finding a minimum cardinality Steiner Tree. Rosenthal [24] firstly showed that reliability

analysis for k-terminal networks are all NP-hard. The minimum cardinality pathset

problem associated with the 2-terminal problem is the problem of finding a shortest (s, t)

path. It was first proved by Valiant [25] that the functional, rational, and point estimate

reliability analysis problems are all NP-hard for the 2-terminal networks. For all-terminal

measure it is necessary to analyze direct and undirected networks separately. The

minimum cardinality cutset problem is the problem of finding a minimum cardinality s-

directed cut. Provan and Ball [26] proved that the reliability analysis problems for the

directed and undirected all-terminal measure are NP-hard.

A standard source for information on the computational complexity of algorithms is the

book of Garey and Johnson [74]. More specific information on the complexity of network

reliability problems and NP-complete problems can be found from [4, 24-25].

The usual definition of NP employs a model of nondeterministic computation, the

nondeterministic Turing machine. Turing machines that halt either accept or reject their

input; however, there may be a number of different nondeterministic choices that would

lead to acceptance. For this reason, Valiant [76, 77] explored the extension to counting

Turing machines, which act just like nondeterministic Turing machines, but upon

78

acceptance print the number of different computations which would lead to acceptance.

Then #P (read "sharp P" or "number P") is the class of functions which can be computed

by counting Turing machines in polynomial time. Naturally the counting version of any

problem in NP is in #P; however, the counting Turing machine is apparently a nontrivial

extension of the nondeterministic Turing machine, as there is no obvious way to produce

the number of accepting computations just knowing the existence of one.

Complexity results can be obtained by transforming known NP-complete problem and

#P-complete problems into the reliability problems.

79

CHAPTER 5

MODELING RELIABILITY OF INTEGRATED NETWORKS (MORIN)

5.1 MORIN Method

AGM has been rigorously proved as a corollary of the general theorem on complex

system decomposition. Some other self-proclaimed more efficient algorithms are derived

from it. The AGM method may be extended to solve problems in integrated systems

where the software in a node has a constant failure rate [2]. However the computational

time increases exponentially with the number of links. Another explicit method namely

NPR/T [7], which was derived from AGM, is much simpler and more direct, and the

computational time increases linearly with the number of links. But this method can yield

incorrect results in some cases involving undirected networks [6]. At any rate, neither

method covers network reliability problems when software failure follows different

distributions.

The AGM method considers each link in the network (with failure-prone links and nodes)

as a series combination of a perfect node and the link with modified reliability. However,

the computing time increases exponentially with the number of links.

80

The approach for MOdeling Reliability for Integrated Networks (MORIN) adopts the

strategy of replacing a network having unreliable nodes with an equivalent network

having completely reliable nodes except the source node s. Considering link i and its

terminal node j, the link in the equivalent network has a modified reliability αjβi. In the

equivalent network, the failures of all links are not necessarily s-independent, but failures

of a link and other links that are connected to uncommon terminal nodes are still

independent. For each node j (in event Si) except the source node s, group its incoming

directed links, and then compute R without Boolean simplification.

∏
−

=

=
1

1
, }{){

n

j
jissshi SPSP αα (5.1)

where Si,j is operational links 1, 2, … Kj directed into node j on event tree i, then

 (5.2) ∏
=

=
jK

i
ijsjhjiSP

1
,){ βαα

If there are no links directed into node j specified by Si, then P{Si, j}=1. Let links 1, 2,

…Nj directed into node j be specified as failed and links Nj+1, Nj+2, … Nj+Kj be

specified as operational, then

∏ ∏
=

+

+=

−=
j jj

j

N

i

KN

Ni
iijsjhjiSP

1 1
,)1(){ ββαα for Kj ≥1 (5.3)

Let Kj = 0, then links 1, 2, … Nj have failed in the equivalent network if and only if node j

has failed and all Nj links are operational, or all Nj links have failed and node j is

operational, or both node j and all Nj links failed. Since the probability expression for
81

node j does not reflect the fact that the failure of this node thereafter brings with its

failures of links incident to this node, then:

 for K∏
=

−+−=
jN

i
ijsjhjsjhjiSP

1
,)1(1){ βαααα j = 0 (5.4)

Since the Si are mutually exclusive events, the node-pair reliability is the summation of

the probabilities of all success disjoint events, thus

∑
=

=
||

1
}{

S

i
iSPR (5.5)

As showed above, the MORIN approach can be summarized as follows

• Find all mutual exclusive disjointed path set from the source node to sink

node of the corresponding network, denoted as event trees {S1, S2, …Si}

• On each event tree Si, for each node j except the source node s, group its

incoming directed links specified by Si,j

• Denote Si,j as operational links 1, 2, … Kj directed into node j, then

 ∏
−

=

=
1

1
, }{){

n

j
jissshi SPSP αα

• Compute the P{Si, j} by considering failed and operational links for node j

• Combine above four steps and the Equation (5.1)(5.3)(5.4)(5.5) to get the

reliability of entire network.

82

The pseudo-codes of MORIN can be presented as follows:

1. MORIN_Events (G, s, t)

// find all event trees {S1, S2, …Si}

// where source node is s, sink node is t and G = (V, E)

a. Initialize the network model

d(s) ← 0 : π(s) ← NIL // node s is the source node

S(i) ← {s} // Each event tree i includes source node s

Path_Set(i) ← NIL // Path-set is empty in event i

Q ← {s}

For each node u ∈ V[G] – s

 Do d(u) ← ∞ // d(u) is the distance from u to s

 π(u) ← NIL // π(u) is the predecessor node of u

 color(u) ← white // node u has the not been discovered

b. Iterations

While Q ≠ NIL

 Do u ← Head(Q)

 For each v ∈ Adj(u)

 Do if color(v) = white

 then Path_Finding(v)

 if π(t) = v // A s-t path is found

83

 then S(i) ← S(i) + v

 Path(i) ← Path_Set(i)

 i ← i + 1

Path_Finding(v)

color(v) = gray

 d(v) ← d(u) + 1

 π(v) ← u

 Path_Set(i) ← Path_Set(i) + (u, v)

 for each w ∈ Adj(v)

Do if color(w) = white

 then π(w) ← v

 Path_Set(i) ← Path_Set(i) + (u, v)

 Path_Finding(w)

Color(v) = black

Q ← ENQUEUE(Q, v) //Add v to head of the Queue

2. Event_RCal [S(i)]

// Calculate the network reliability R based on generated event trees/path sets and

// reliability of each node and link along the event paths.

R = 0

for each path of path_set (i) on event tree S(i)

84

 Si, j ← group incoming directed links of node j on event i

P(Si, j) = 1 // if Si, j does not specify any links directed into node j

While node Queue of Si ≠ NIL

 For all operational links into node j

 Po(Si, j) = ∏
=

jK

i
ij

1

βα

For all failed links into node j

 Pf(Si, j) = (∏
=

−+−
jn

i
ijj

1

)1()1 βαα

 P(Si) =)()(,, jifjios SPSPα

DEQUEUE (Q, j) // remove node j from the node queue of event S(i)

 R ← R + P(Si)

Prior to designing or evaluating the reliability/availability a network or an end-to-end

solution, it is essential to model the reliability/availability of corresponding systems that

normally comprise of hardware subsystems and software subsystems and are usually

configured under a complex architecture. Additionally, redundancies at various levels

(such as chipset level, board level, system box-level) are typically deployed in complex

systems to achieve high availability (HA) in industry to meet practical application

demands and requirements. This type of issues can be addressed by the simplified

methodology and modeling tool (SAMOT) introduced in Chapter 6.

85

CHAPTER 6

SIMPLIFIED NETWORK AVAILABILITY MODELING

This chapter proposes a simplified methodology that incorporates Markov analysis and

Reliability Block Diagram methodologies to model and analyze the availability of a

typical end-to-end solution consisting of multiple complex component systems, where the

failure of each component system is attributed to software failures and hardware failures.

The methodology and computational tool - Simplified Availability Modeling Tool

(SAMOT) is introduced. The application of SAMOT to 1:1 system redundancy, which is

common in the networking industry, is the focus of this study. The end-to-end availability

is modeled and computed based on the corresponding signaling path and bearer path

since the paths can transverse through different component systems. It is observed that

SAMOT is very accurate (compared with the Markov analysis) when applied to 1:1

redundant systems under various system parameter sets with high switchover coverage.

6.1 Introduction

High availability (HA) with its attendant higher requirements for system performance has

increasingly become an important feature for suppliers of computer network equipment

to communication service providers. Usually system failures are attributed to its hardware

components or/and software components. The algorithms and approaches of modeling

86

and analyzing the availability of a communication network comprised of numerous,

complex topology systems is the subject of much research [119]. However, very few HA

modeling tools for complex networks are commonly accepted and applied in industry. A

number of vendors have provided some commercial software applications (Relex1,

SelfReliant2, MEADEP3, SHARPE4, RealSoft5, etc.) for reliability modeling and analysis

of complex systems. But adequate training and relevant experience in corresponding

fields are required, in addition to the software license fee or purchase cost.

This chapter introduces a simplified interactive modeling tool that integrates Markov

analysis and Reliability Block Diagram (RBD) methodologies for computing the

availability of a typical end-to-end network solution where a 1:1 system-level redundancy

is installed in some component systems. The Markov analysis is approximated by the

Defect Per Million (DPM) model [116], and the RBD method is implemented by SHARC

[117].

Definitions

DPM (defects per million): the number of calls lost per million calls attempted. It consists

of two elements – call-blocked DPM and call-dropped DPM. To complete a

communication transaction, the network must establish some paths (not necessarily

physical circuits), e.g. a signaling path and a bearer path for voice packets, a signaling

1 Relex is the registered trademark of Relex Software Corporation.
2 SelfReliant is the registered trademark of GoAhead Software Inc.
3 MEADEP is the registered trademark of SoHaR Inc.
4 SHARP is the registered trademark of

87
5 RealSoft is the registered trademark of RealSoft Pte Ltd.

path and a data path for data packets. Usually when a call is blocked, subscribers cannot

make new calls due to the fact that there is at least one failure along the signaling path;

whereas when an existing call is dropped, at least one failure occurs along the bearer path

of the network.

DPM = (1 - Availability) x 106

Total DPM = DPMcall-blocked + DPMcall-dropped

attemptedcallsofNumber
droppedcallsofNumberblockedcallsofNumber 610)(×+

=

End-to-end availability: the probability that a customer can complete the communication

to its destination. Since a signaling path and a voice path as well as a data path may pass

through different network components, the end-to-end availability for each type of path

can vary and therefore needs to be identified and studied at the path level.

1:1 Redundancy: there is one redundant unit for every unit that is required for full

operation. Redundancy can improve availability by orders of magnitude while keeping

the MTBF and MTTR of each unit the same. The effectiveness of redundancy is highly

dependent on the switchover coverage and switchover time.

Switchover Coverage: the probability that a failure is success-fully detected, isolated, and

recovered by a higher-level fault-management mechanism. In case of active/standby

88

redundancy, switchover coverage is dependent on the fault detection on the active side,

the fault detection on the standby side, and the reliability of the switching mechanism.

Switchover coverage = Active fault coverage × Standby fault coverage

where active fault coverage is the probability of detecting a fault on the active side as

well as having the switching mechanism operational at the same time; standby fault

coverage is the probability of detecting a fault on the standby side. In the case of load-

sharing redundancy, the switchover coverage is dependent upon only one fault-detection

coverage because there is no inactive standby side.

Switchover Time: the time from when a failure is detected in an operating component to

the time when the affected traffic is switched over to the redundant component.

More detailed definitions can be obtained in [116, 118].

6.2 Problem Description

A typical voice-over-internet protocol (VoIP) solution includes different functional

segments -- access equipment, aggregation device, core router, LAN switch, edge system,

etc. -- as shown in Figure 6.1. Each segment can encompass one or more systems. The

end-to-end (signaling, voice, or data) traffic has to pass through most (if not all) segments

to complete the transmission. The customer premium equipment (CPE) is usually located

at customer side and its availability is affected by many non-system-reliability factors

89

(such as, process-related failures, human errors); thus, it is not considered in the end-to-

end availability.

Figure 6.1. Segments of A Typical VoIP Solution

The end-to-end availability is determined by availabilities of component systems and

network links along a given path. Furthermore, the system availability is attributed to the

availability of system hardware and software, configuration, fault management

mechanisms, and operation, administration and maintenance (OA&M). System hardware

usually consists of an egress line card, an ingress line card, a chassis, processor card, dual

power supply, and some other feature cards. System software normally includes the

operation system software running on server platform or processor card and application

software running on processor card or feature cards, depending on the specific system

configuration. The fault management function can be performed by the monitoring/alarm

system, online diagnosis system, etc. The planned outage comprises of software upgrades

and hardware upgrades in this discussion.

Board-level and system-level redundancy can be deployed to improve the system and

network availability. The system redundancy effectiveness [116] is mainly determined by

90

the redundancy type (active/standby or load-sharing), 1:1 or 1:N redundancy, switchover

coverage, and switchover time.

Figure 6.2 illustrates the RBD of a sample system.

Ingress
Card Chassis

Control
Card

Control
Card

Feature
Card 1

Feature
Card 1

Feature
Card 2

Feature
Card 2

Power

Power

Software Software
Upgrade

Egress
Card

Figure 6.2. Reliability Block Diagram of A Sample System

The proposed modeling tool is to depict and predict the availability for the signaling path

and bearer path of a typical network solution comprised of software-hardware systems

with 1:1 redundancy at the box-level, considering both un-scheduled outages and

scheduled outages.

6.3 Methodologies and Tools

6.3.1 Common Methodologies

The Markov modeling method is advantageous in terms of capturing the component

failover behavior and fault coverage probability with states and state transitions. However

the Markov modeling tool may be difficult to apply in the field. It can be complicated and

computationally intractable when a system or network has a complex topology. RBD is

one of the most commonly used methods in modeling serial-parallel system reliability.

But it does not have the power to handle large networks with a complex topology.

91

6.3.2 Commonly-used Tools

The DPM model and SHARC are two practical tools for modeling system and network

availability in industry. The DPM model was originally created to approximate the

Markov method for calculating the availability of a network with a serial-parallel

topology. Since software and hardware components of the redundant systems can have

very different availability metrics such as MTBF, MTTR, switchover time and planned

outages, the DPM modeling tool is not capable of taking the system box level redundancy

schemes into consideration. The SHARC [117] applies the RBD method to compute the

availability metric of a simplex system, however it is not capable of identifying the

unavailability (downtime) contributed by the switchover time and imperfect switchover

coverage for a redundant system. So an improved reliability block diagram (IRBD) is

created, where several blocks are added to describe the switchover coverage and

switchover time for active/standby redundant systems.

6.3.3 SAMOT Tool

The SAMOT calibrates and integrates the above two methodologies/tools (Markov/DPM

and RBD/SHARC) and incorporates the availability design parameters into two inter-

active modules [119] to model the end-to-end network availability. A sample network

solution architecture (as shown in Figure 7.5), where each Super POP element deploys

the 1:1 system redundancy, will be studied in Section 7.2.

92

The SAMOT interactive tool consists of a Main module and a Redundancy module. Each

module is a separate spreadsheet file, which provides some input and act as output of the

other file. The Main module models the availability of all component systems of the

network, with each system on one sheet. If there is redundancy involved, the availability

of the redundant systems is computed on the same sheet with input data categorized into

planned outage and unplanned outage from the Redundancy module. The Main module

calculates the availability of various end-to-end network paths as well.

The Redundancy module models the 1:1 redundant system availability by approximating

the unplanned and planned outages resulted from major hardware and software failures.

The output of the Redundancy module is the input of the Main module when calculating

the availability of redundant systems. The Main module calculates the unplanned outage

of hardware and software, and the planned outage of hardware and software of a single

system as the input of the Redundancy module when corresponding system redundancy is

involved. Figure 6.3 illustrates the interactive relationship between the two modules.

93

Planned
Outage

Hardware
Failures

Software
Failures

Unplanned Outage

Availability for
Single System

Availability for
1:1 Redundant

System

Planned
Outage for

1:1 R

Unplanned
Outage for

1:1 R

Main Module Redundancy Module

S
y
s
t
e
m

C
o
m
p
o
n
e
n
t
s

Figure 6.3. Interactive Modules in SAMOT

Since the hardware and software usually have quite different MTBF and MTTR

availability attributes, their failures need to be considered separately. The IRBD in Figure

6.4 captures the major failure modes of the 1:1 redundant hardware-software systems.

Those failure modes and parameters need to be preliminarily determined by design

engineers or users of the tool before being applied in the SAMOT tool.

HW
switchover

time

HW active
coverage

fails

HW
standby
coverage

fails

P(HW)

S(HW)

SW
switchover

time

SW active
coverage

fails

SW
standby
coverage

fails

P(SW)

S(SW)

Figure 6.4. IRBD for 1:1 R in SAMOT’s Redundancy Module

In Figure 6.4, the first four blocks illustrate the hardware failure modes for the 1:1

redundant systems.

94

• The “HW switchover time” block reflects the short duration outage that results

from the switchover.

• The “HW active coverage fails” block depicts the system outage when the system

fails to detect hardware failure on the active side or successfully detects the

hardware failure on the active side but fails to switch over to the standby side.

• The “HW standby coverage fails” block describes the outage when an active side

hardware failure is detected and traffic is being switched to the standby side, but

the standby side hardware has failed and remained undetected.

• The parallel “P(HW)” and “S(HW)” blocks are to model the hardware system in

the primary unit and secondary unit (sometimes called active and standby unit)

with perfect coverage and Zero switchover time. The system outage happens

when hardware on both sides fail.

Note: The standby coverage failure may not bring network outage immediately, should

be in the protection path with S(HW) block. SAMOT adopts the IRBD in Figure 6.4 to

simplify the approximated computation.

The software failure modes are taken into account similarly.

The manual failover tests can be considered to reduce outage from the standby coverage

failure and improve the redundancy effectiveness. The impact of this change is trivial

under the following experimental availability parameter settings.

95

Markov analysis is capable of exhaustively enumerating the failure states and their

transitions; it is used to verify the correctness and accuracy of the Redundancy module of

SAMOT for modeling the availability of a 1:1 R system.

Figure 6.5 is the Markov failure state transition diagram for the 1:1 redundant system.

Among the 13 major states of the 1:1 redundant system, State 2, 4, 5, 6, 10, and 11

(double circled) represent failure modes. The symbol on each arc connecting one node to

the other is the transition probability between the two states.

1

3
8

C1λΗ

βΗ µ1Η C2λΗ

λ s

µ 2s

C1λs

9

7

β s

C2λs

µ1s

λ s
λH

λH

µ2H

(1-C1)λΗ

µ2Η

µ2s

(1-C1)λs

(1-C2)λs

13 12

(1-C2)λH

λH

λH

λ s

λ s

µ1Η
µ1s

λ s λ s
λH

λH

2

5

6

4

1110

Figure 6.5. Markov Diagram for Failure Mode Transitions of 1:1 Software-hardware System Redundancy

96

Variables

c1 = Coverage factor for active unit

c2 = Coverage factor for standby unit

λH = Hardware failure rate of individual unit

λs = Software failure rate of individual unit

βH = Hardware switchover rate from active to standby

βs = Software switchover rate from active to standby

µ1H = Hardware repair rate of non-service-affecting failures

µ1s = Software repair rate of non-service-affecting failures

µ2H = Hardware repair rate of service-affecting failures

µ2s = Software repair rate of service-affecting failures

State Descriptions

1 All hardware work

2 Hardware of the active unit failed, detected

3 Hardware of the standby unit has taken over

4 Hardware of 2nd unit failed while recovering the failed unit

5 Software of 2nd unit failed while recovering the failed unit

6 Software of the active unit failed, detected

7 Software of the standby unit has taken over

8 Hardware of the standby unit failed, detected

9 Software of the standby unit failed, detected

97

10 Hardware of the active unit failed, can not switch to standby

11 Software of the active unit failed, can not switch to standby

12 Hardware of the standby unit failed, undetected

13 Software of the standby unit failed, undetected

98

CHAPTER 7

COMPUTATIONAL EXPERIMENTS

To demonstrate the applications of the proposed MORIN and SAMOT approaches and

techniques for reliability and availability analysis of integrated networks, this chapter

contains some computational experiments and results.

7.1 MORIN Examples

The two-terminal communication (e.g. communicating from a source node to a target

node) is the most common network operation. The k-terminal reliability and all-terminal

reliability problems can be derived from the two-terminal reliability problems. To

demonstrate the MORIN approach, two-terminal reliability examples are used.

7.1.1 Sample Network 1

Figure 7.1 is an example of a typical directed bridge network. Nodes 1 and 4 are the

source and terminal nodes respectively. The two black dots inside each node represent the

corresponding hardware component and software component of the node.

99

 2

 5 8

 (s) 1 7 4 (t)

 6 9

 3

Figure 7.1 Sample Network 1

The s-t reliability can be obtained with the 4 success events, as shown in Figure 7.2:

98765,9856,695,58 4321 ==== SSSS ,

S1=58

S2=569

5 5

6

9

8

6

8

6

6

9

7 7

S3=5689

9 9

S4=56789

9 9

5 8

6 9

5

6 9

5

8

6 9

5 8
7

Figure 7.2. Event-Tree Generated by the MORIN Algorithm for Sample Network 1

Thus the symbolic expression of the reliability can be presented as,

 (7.1) ∑ ∏∑ ==
= ==

4

1

4

2
,

4

1
1 }{}{

i j
ji

i
i SPSPR α

 = α1{(α2β5)(α4β8) + [(1-α2) + α2β5](α3β6)(α4β9) + (α2β5)(α3β6)[(1-α4)

100

 + α4β8](α4β9) + (α2β5)[(1-α3) + α3β6](α3β7)[(1-α4)+ α4β8](α4β9)}

 = α1α2β5α4β8 + α1α3β6α4β9 (1-α2 + α2β5) + α1α2β5α3β6α4β9(1-α4 + α4β8)

 + α1α2β5α3β7α4β9(1-α3 + α3β6)(1-α4 + α4β8)

 = α1α2α4β5β8 + α1α2α3α4β5β6β9 + α1α3α4β6β9 - α1α2α3α4β6β9

 + α1α2α3α4β5β6β8β9 + α1α2α3α4β5β6β7β9(1-α4 + α4β8)

 = α1α2α4β5β8 + α1α3α4β6β9 + α1α2α3α4β5β6β9 -α1α2α3α4β6β9

 + α1α2α3α4β5β6β8β9 + α1α2α3α4β5β6β7β8β9

 = α1α2α4β5β8 + α1α3α4β6β9 + α1α2α3α4β6β9(β5 –1 + β5β8 + β5β7β8)

A number of analytical models have been proposed to address the problem of software

reliability measurement. According to the nature of the failure process and based on the

failure history of the software, these approaches can be classified as Time Between

Failures (TBF) Models, Failure Count Model, Fault Seeding Models, and Input Domain

Based Models [18]. The most common TBF model assumes that the time between the

(i-1)st failure and ith failure independently follows a distribution whose parameters depend

on the number of faults remaining in the program during the interval, embedded faults are

independent and of equal probability of exposure, faults are removed immediately after

each occurrence, no new faults are introduced during correction. Unlike in a regular

manufacturing system, where hardware failure rate increases with time and maintenance,

it is expected that the successive failure times will get longer as faults are removed from

the node software system.

101

Since software fail only when they are executed, the calendar time doesn’t represent the

time during which the software could fail. The utilization of the software inside node j ---

εj is used to compensate for the difference in the time domain.

We will analyze the reliability and availability of networks integrated with software

failures and imperfect nodes based on MORIN [31], where the times between software

failures follow the TBF models. The directed bridge network as shown in Figure 7.1 is

used as the example. Hardware failures in each node are assumed to follow Poisson

process with the same rate λ1. Failure of each link also presumably follows the Poisson

distribution with the same rate λ2. Jelinski Moranda (JM) De-Eutrophication Model is

adopted as the software failure model. The software in each node of the integrated

network is assumed to have the same utilization ε and follow the same stochastic failure

process.

JM De-Eutrophication Model is one of the earliest and probably the most commonly used

model for assessing software reliability. It assumes that there are N software faults at the

start of testing, and that each fault is independent of the others and equally likely to cause

a failure during testing. A detected fault is removed with certainty in negligible time and

no new faults are introduced during the debugging process. The software failure rate or

the hazard function is assumed to be proportional to the current fault content of the

program. It is expected that the successive failure times would become longer as faults

are removed from the software system. Hence the hazard function during ti, the time

between the (i-1)st and ith failure, is given by

102

 hs(ti) = Φ[N-(i-1)] ε, where Φ is a proportionality constant, ε is the software

utilization coefficient.

Thus Rs(t) = = e
∫−
t

s dh

e 0

)(δδ
-Φ(N -i+1)ε t

tiN
dh

ssss eiNethtRthtf

t

s
εφ

δδ
)1(

)(

)1()()()()(0 +−−
−

+−Φ=
∫

==

In the bridge network, for the node software, based on the utilization ε, the operational

probability is:

 α1s= α2s= α3s= α4s= Rs(t) = e-Φ(N -i+1)εt

For the node hardware, the operational probability is:

 α1h = α2h = α3h = α4h = e t1λ−

For the links, the operational probability is:

 β5 = β6 = β7 = β8 = β9 = te 2λ−

The terminal reliability from s to t between the (i-1)st and ith software failure is thus:

 Rs-t = α1α2α4β5β8 + α1α3α4β6β9 + α1α2α3α4β6β9(β5 –1 + β5β8 + β5β7β8)

 = α1sα1hα2sα2hα4sα4h β5β8 + α1sα1hα3sα3hα4sα4h β6β9

+ α1sα1hα2sα2hα3sα3hα4sα4h (β5 + β5β8 + β5β7β8 -1)

 = ete 13λ− -3Φ(N-i+1)εt te 22λ− + ete 13λ− -3Φ(N-i+1)εt te 22λ−

+ ete 14λ− -4Φ(N-i+1)εt (+ e + e -1) te 2λ− t22λ− t23 λ−

 = 2 ete 13λ− -3Φ(N-i+1)εt te 22λ− + ete 14λ− -4Φ(N-i+1)εt (e + e + -1) t2λ− t22λ− te 23 λ−

103

Denote θ = -[λ1 + Φε(N - i + 1)]t, after the symbolic simplification,

 Rs-t = 2 e + (e + e + -1) tiN)]1([3 1 −−+− φελ te 22λ− tiNe)]1([4 1 −−+− φελ t2λ− t22λ− te 23 λ−

 = 2e3θ te 22λ− + e4θ te 2λ− + e4θ te 22λ− + e4θ e - et23λ− 4θ

From the above symbolic expression, it can be concluded that the reliability of the

studied network follows a multivariate distribution that is usually used to describe a

system consisting of multiple components with different failure distributions.

Furthermore, the network reliability depends on the software utilization, software failure

rate and hardware failure rate inside a node, the failure rate of a link, and the total fault

number in the software in each node.

7.1.2 Sample Network 2

Figure 7.3 shows the other sample network where only source node s, sink node t, and

links are labeled.

s t

1

9

5

2

8

6

4

3 7

Figure 7.3 Sample Network 2

As illustrated in Figure 7.4, there are seven mutual exclusive successful events generated

by MORIN method:
104

 S1 = 148 S2 = 2691 S3 = 789261 S4 = 58621

 S5 = 36941 S6 = 7893641 S7 = 586341

1 1

24

6

4

3

2

6

5 5

S4, S7

8 8

S1

8 8

3

9 9

77
S2, S5

S3, S6

8 8

Figure 7.4. Event-Tree Generated by the MORIN Algorithm for Sample Network 2

Similarly as in Sample network 1, the network reliability can be calculated through the

symbolic computations following the proposed MORIN method.

105

7.2 SAMOT Experiment Results

To demonstrate the SAMOT tool, some experiments are conducted with following basic

important assumptions.

• Operation, administration and maintenance (OA&M), as well as procedural

errors, are not considered in the system and end-to-end availability modeling.

• The data path availability is not demonstrated in the experiments since typical

data does not require real time transmission, the HA requirements are lower.

• Customer premium equipment (CPE) failures are not considered in the

experiments. CPE is usually located on the customer side and is often mostly

affected by non-product-quality-related failures in practice.

• Link failures are negligible in the experiments due to the extremely high

reliability of links (fiber trunk or cooper cable).

• The end-to-end path does not include the Public Switch Telephone Network

(PSTN) or other segments that the servers are connected to. In this sense, the end-

to-end path is semi-end to end.

• To simplify the experiments, the operating system (OS) software and application

software are integrated into a single software block in Redundancy Module (if not

specified) albeit the OS software and application software usually fail with

different distributions and should be considered separately when applicable.

106

 All experimental metrics showed in this section are intended as an illustration of the SAMOT tool only,
and do not represent or imply actual reliability/availability configuration design and/or field performance of
any product of any company.

7.2.1 Practical Networks

The architecture of a practical network (as in Figure 7.5) and the corresponding modeling

flowchart are illustrated in Figure 7.6 and 7.7 respectively. Figure 7.8 shows the signaling

path and bearer path transverses different component systems in the sample network.

0

Sample Network with Redundancy

36xx

24xx

CAT 65xx

OptiCall

M13

M13

24xx

24xx

24xx

24xx

10xxx 12xxx

36xx

SS7

72xx

SONET/DS3DS3

DS3

DS1

DS1

GE

LANLAN

“POP/Aggregation”“Customer
Premise”

“Super POP/Switching/Trunking”

Operator
911 Services

Announcements

P
S

T
N

 T
ru

n
ksS

ub
sc

ri
b

er
s

S
ub

sc
ri

b
er

s

Internet Service
Providers “ISP”

Access Gateway
Aggregation

Access Gateways

Trunk
Gateway

-Call Agent
-Feature Server
-Signaling Gateway S

S
7

N
et

w
o

rk

��������
����������������

Cisco

Messaging
uOneASxxxx

FE

FE FE FE FE
FE

FE

FE

FE FE

FE
FE

GE

Figure 7.5. Architecture of A Sample Network with Redundancy

Figure 7.6. Block Diagram of A Sample Baseline Network

Figure 7.7. Modeling Flowchart for A Baseline Network

107

To improve the availability of the end-to-end path, while considering the cost factor, 1:1

box-level redundancy can be implemented in the critical SoftSwitch and less expensive

LAN Switch and edge servers, as showed in Figure 7.8.

A dynamic protocol such as hot standby router protocol (HSRP) or ICMP router

discovery protocol (IRDP) runs between the redundant SoftSwitches in order to quickly

populate the routing table to the standby unit when a network failure occurs [120].

Figure 7.8. Block Diagram of A Sample Network with 1:1 System Redundancy

Figure 7.9 is the flowchart of modeling availability of a network with 1:1 redundancy.

Figure 7.9. Modeling Flowchart for A Network with 1:1 System Redundancy

108

7.2.2 SAMOT Modeling Results

7.2.2.1 System Availability

We first apply the SAMOT tool to calculate the availability metrics of each individual

system based on its internal system configuration and subsystem reliability.

MTBF and MTTR of each subsystem are two basic availability parameters to compute

the corresponding system availability. Switchover coverage and switchover time are

another two important availability metrics if redundancies are involved. The first two

“hours” columns in Table 7.1-7.5 are inputs of the SAMOT tool in order to compute the

system availability and end-to-end network availability. MTBF is calculated according to

the Bellcore standards, MTTR is estimated based on the system HA configurations and

features as well as part staffing condition. The last four columns (from right of the table)

are system availability metrics output from SAMOT.

Table 7.1. Availability Metrics of Aggregation Device

Component Description MTBF (hr) MTTR (hr)
Annual

Downtime
(min)

A (%) DPM (B) DPM (D)

Aggre. Dev Chassis 674,310 4 3.235 99.9994 6.15 0.15

Processor, with 1:1 R 128,152 2 1.167 99.9998 2.22 0.43

CT3 Card 230,886 2 4.619 99.99912 8.79 0.47
COC12 Card 172,604 2 6.156 99.99883 11.71 0.54
Power, 1:1 load-sharing
redundancy 158,228 2 0.143 99.99997 0.27 0.013

OS Software 33,835 0.058 0.906 99.99983 1.724 1.478
SW upgrade 4,380 0.058 9.599 99.99817 18.26 17.12

Total Aggre. Device 61,097 3 25.825 99.99509 49.13 20.20
Note: DPM(B) is the DPM for blocked calls and DPM(D) is the DPM for dropped calls.

109

Table 7.2. Availability Metrics of Core Router

Component Description MTBF (hr) MTTR (hr)
Annual

Downtime
(min)

A (%) DPM (B) DPM (D)

Core Router Chassis 297,137 4 7.518 99.99857 14.30 0.336
Processor, w/ 1:1 R 108,304 2 2.283 99.99957 4.344 0.512
Feature Card 272,584 2 0.077 99.99999 0.147 0.004
Feature Card 422,115 2 0.050 99.99999 0.095 0.002
Alarm Card 845,123 2 1.244 99.99976 2.366 0.059
4OC3 Card 164,046 2 6.947 99.99868 13.22 1.783
4OC12 Card 124,440 2 8.987 99.99829 17.10 1.880

316,456 2 0.748 99.99999 0.142 0.006

OS Software 33,835 0.251 3.905 99.99926 7.430 1.478
SW upgrade 4,380 0.251 45.123 99.99142 85.85 17.12

Total Core Router 20,687 3 76.208 99.98550 145.0 23.18

Power, 1:1 load-sharing
redundancy

Table 7.3. Availability Metrics of SoftSwitch

Component Description MTBF (hr) MTTR (hr)
Annual

Downtime
(min)

A (%) DPM (B) DPM (D)

E-Switch HW, 1:1 box
Redundancy 164,528 2 0.776 99.99854 1.458 0.099

E-Switch IOS-R 18,039 0.108 0.111 99.99998 0.211 0.302
Fru Server (1:1 R) 51,810 2 2.304 99.99956 4.384 0.210
SoftSwitch Software 22,545 0.083 0.060 99.99999 0.114 0.302
SW upgrade 4,380 0.083 0.458 99.99991 0.871 1.244

Total SoftSwitch 428,568 3 3.700 99.99930 7.039 2.158
Note: Power is not considered in this SoftSwitch model due to using the Central Office power.

Table 7.4. Availability Metrics of LAN Switch

Component Description MTBF (hr) MTTR (hr)
Annual

Downtime
(min)

A (%) DPM (B) DPM (D)

LAN Switch Chassis 369,897 4 6.039 99.99885 11.49 0.270
Processor Engine 1:1R 41,988 2 3.825 99.99927 7.277 0.485
Switch Fabric Mod. 172,889 2 0.826 99.99984 1.571 0.071
OS Software 18,039 0.058 0.185 99.99996 0.353 0.302
Application Software 18,039 0.058 0.185 99.99996 0.353 0.302
SW Upgrade 4,380 0.367 1.925 99.99963 3.663 1.244
Power, w/ 1:1 Load-
Sharing R 316,456 2 0.075 99.99999 0.142 0.006

Line Card 93,457 2 12.947 99.99754 24.63 3.307
Connector 94,684 2 12.802 99.99756 24.36 3.299
9 Slot Fan w/ 1:1 Load
Sharing R 740,740 2 0.028 99.99999 0.054 0.001

Total LAN Switch 40,592 3 38.837 99.99261 73.89 9.289

110

Table 7.5. Availability Metrics of Edge Server 1

Component Description MTBF (hr) MTTR (hr)
Annual

Downtime
(min)

A (%) DPM (B) DPM (D)

Server1 Chassis 45,212 3 37.780 99.99281 71.88 2.212
DSP Module 594,126 2 3.430 99.99935 6.526 4.824
DMM Modem with
Feature Card 63,404 2 18.240 99.99653 34.70 5.528

OS Software 10,549 0.192 5.232 99.99901 9.953 4.740
Software Upgrade 4,380 0.350 29.399 99.99441 55.93 11.42
Power, with 1:1 Load
Sharing R 600,000 2 1.986 99.99962 3.778 0.250

Total Edge Server 1 16,408 3 96.066 99.98172 182.8 28.97

Further details of the model can be referred to Appendices.

7.2.2.2 Availability of 1:1 Redundant Systems

Inside a system box, it is difficult to deploy redundancy on the ingress card and egress

card to eliminate the single points of failure (SPF); the system chassis is always a SPF.

The effect of SPFs usually accumulates to be the bottleneck of achieving the carrier class

(five 9s) network availability. Thus to better improve the overall end-to-end availability

per customer’s HA requirements, 1:1 active/standby redundancies at the box-level is

usually suggested to some critical systems or inexpensive systems in addition to board-

level redundancy for key components in the system. SAMOT can accurately model the

availability of a complex hardware-software system with redundancy schemes.

Since a Markov model is capable of exhaustively enumerating the failure states and their

transitions, it is used here to verify the correctness and accuracy of the SAMOT tool for

calculating the availability of a 1:1 redundant system. The Bellcore Systems Reliability

111

Analysis Software (SRAS) Ver 2.2 (referring to Appendix) is used as the Markov

modeling tool in this chapter.

Table 7.6. Comparisons of Availability Modeling Results on Unplanned Outages of 1:1 Redundant System

by SAMOT and Markov

Systems A(Soft-S)
(%)

A(LAN-S)
(%)

A(Edge.)
(%)

SAMOT 99.999907 99.999316 99.998802
Markov 99.999909 99.999332 99.998830

Case 1: ASC = 0.99
 SSC = 0.90

 ST = 10 sec Discrepancy 0.000002 0.000016 0.000028
SAMOT 99.999878 99.999278 99.998737
Markov 99.999880 99.999294 99.998764

Case 3: ASC = 0.99
 SSC = 0.90

 ST = 30 sec Discrepancy 0.000002 0.000016 0.000027
SAMOT 99.999832 99.998676 99.997679
Markov 99.999852 99.998847 99.997979

Case 3: ASC = 0.99
 SSC = 0.80

 ST = 10 sec Discrepancy 0.000020 0.000171 0.000300
SAMOT 99.999807 99.998642 99.997621
Markov 99.999826 99.998812 99.997919

Case 4: ASC = 0.99
 SSC = 0.80

 ST = 30 sec Discrepancy 0.000019 0.000170 0.000298
SAMOT 99.999821 99.998597 99.997541
Markov 99.999796 99.998361 99.997129

Case 5: ASC = 0.90
 SSC = 0.80

 ST = 10 sec Discrepancy 0.000025 0.000236 0.000412
SAMOT 99.999798 99.998566 99.997488
Markov 99.999772 99.998330 99.997074

Case 6: ASC = 0.90
 SSC = 0.80

 ST = 30 sec Discrepancy 0.000026 0.000236 0.000414
SAMOT 99.999754 99.998014 99.996520
Markov 99.999752 99.997988 99.996475

Case 7: ASC = 0.90
 SSC = 0.70

 ST = 10 sec Discrepancy 0.000002 0.000026 0.000045
SAMOT 99.999734 99.997988 99.996474
Markov 99.999730 99.997959 99.996425

Case 8: ASC = 0.90
 SSC = 0.70

 ST = 30 sec Discrepancy 0.000004 0.000029 0.000049
Note: 1. Denote: ASC/SSC –Active/Standby Switchover Coverage, ST-Switchover Time

2. The MTBF numbers for unplanned hardware outage of Soft-S, LAN-S, and Edge are

respectively 513522, 47574, and 27130 hours.

3. A(Edge.)(%) is the availability of unplanned outage of Edge Server1

Results in Table 7.6 indicate that the availability value for a 1:1 redundant hardware-

software system derived by the SAMOT tool is extremely accurate, comparing to the

112

Markov analysis results. Under the above experimental parameter sets, SAMOT just has

a discrepancy from 0.000002% to 0.00045%.

Sensitivity analysis of the modeling results in Figure 7.10(a) shows that there is little

difference of results among different switchover time (10 seconds and 30 seconds) and

only 4 lines are visible, therefore the switchover time does not seem to be a significant

factor affecting SAMOT’s accuracy.

(a)

-0.000500

-0.000400

-0.000300

-0.000200

-0.000100

0.000000

0.000100

0.000200

0.000300

0.000400

A(SoftSW) A(LANS) A(EdgeS)

Systems

SA
M

O
T/

M
ar

ko
v

D
is

cr
ep

an
cy

(%
)

ASC=0.99, SSC=0.9, ST=10 sec ASC=0.99, SSC=0.9, ST=30 sec

ASC=0.99, SSC=0.8, ST=10 sec ASC=0.99, SSC=0.8, ST=30 sec

ASC=0.9, SSC=0.8, ST=10 sec ASC=0.9, SSC=0.8, ST=30 sec

ASC=0.9, SSC=0.7, ST=10 sec ASC=0.9, SSC=0.7, ST=30 sec

(b)

-0.000500

-0.000400

-0.000300

-0.000200

-0.000100

0.000000

0.000100

0.000200

0.000300

0.000400

1 2 3 4 5 6 7 8

Case number

SA
M

O
T/

M
ar

ko
v

D
is

cr
ep

an
cy

(%

)

Sys. MTBF = 513,522 Sys. MTBF = 47,574 Sys. MTBF = 27,130

Figures 7.10(a) & (b). Discrepancy of SAMOT & Markov Modeling Results

113

Figure 7.10(b) shows that the higher the switchover coverage is, the more accurate the

SAMOT will be; SAMOT accuracy becomes more sensitive to the switchover coverage

when the studied system is less reliable (i.e., with a lower MTBF).

7.2.2.3 Network Path Availability

Table 7.7 is the availability metrics of the paths in the sample network based on the

above network architecture, system configuration and subsystem availability parameters.

Table 7.7. Availability of Signaling Path and Bearer Path of the Sample Network

Network Path Annual Downtime (min) A (%) DPM (B) DPM (D)

Signaling Path 116.15 99.9779 220.98

Bearer Path 115.47 99.9780 76.60

Note: The above results are based on Case 1 parameter settings.

In general, the SAMOT tool is very accurate when applied on availability modeling and

analysis for a network comprised of redundant systems with high switchover coverage

and high system availability. The switchover time between the active and standby

systems does not seem to be a very significant factor affecting the SAMOT accuracy.

114

CHAPTER 8

CONCLUSIONS AND FUTURE RESEARCH

This dissertation aims to develop efficient approaches to analyze the reliability and

availability of networks integrated with link failures, node hardware failure and software

failures. The research methodologies and results are performed at the system level and

the network level. It will be the author’s great pleasure that this research has added some

valuable contributions in the network reliability and availability field:

- An efficient approach - MORIN is proposed and demonstrated.

- A simplified methodology and modeling tool for solution availability -

SAMOT is developed and illustrated for modeling the end-to-end availability

of a network comprised of 1:1 redundant hardware-software systems.

SAMOT requires the network architecture, system configurations, the MTBF,

MTTR of subsystems of each system along the path and the redundancy

availability parameters as inputs. SAMOT results are verified by Markov

analysis and can be validated by field collected availability data.

- Petri nets based techniques and efficient modeling tools for parallel and

concurrent systems are discussed and explored as well.

115

The major object of the research is s-t two terminal reliability and availability problems.

MORIN can identify the event trees and find the path and calculate the overall network

reliability, but short of capturing the scenarios when redundancies are involved in

complex component systems (nodes) that are subject to software and hardware failures.

On the other side, the SAMOT models the reliability and availability of complex systems,

and can also compute the end-to-end solution availability, given the network architecture

and solution path. The SAMOT Main Module can provide reliability of component

system to Event_RCal Module of MORIN.

MORIN and SAMOT are very well complementary approaches that integrate into a

comprehensive solution package for modeling the reliability and availability of complex

networks. As illustrated in Figure 8.1, the package addressing the practical problems

comprises of two segments: the proposed MORIN firstly identifies the disjointed event

trees and path sets from source node s to sink node t; then the SAMOT is developed to

solve the path set problem by computing and approximating (with high accuracy) the

reliability and availability of practical end-to-end solutions consisting of integrated

hardware-software systems (with redundancies).

116

Event_RCal

MORIN_Events Main_Module

Redundancy_Module

Path Set / Event Tree

H
W

/SW
System

U
nplanned/
Planned
O

utage

Av
ai

la
bi

lit
y

of
R

ed
un

da
nc

y

Path Set / Event Tree

MORIN SAMOT

Relia
bili

ty
of

Com
po

ne
nt

Syst
em

s

Figure 8.1 Complementary Relationship Between MORIN and SAMOT

Follow-up researches can be logically expanded to analyzing the network reliability of k-

terminals and all-terminals. Future researches in reliability and availability analysis for

integrated networks can also address the different impact on the failure of its incidental

node from each (category of) software fault. Some extended models would be developed

based on empirical software failure data. Another research direction is the study of the

dependency of software failures and hardware failures that cause node failure.

It would be a very rewarding task to extend the SAMOT application to the end-to-end

path availability of a network with 1:N software-hardware system redundancy. Finally,

should more resource and efforts be available in applying the special programming

language and relevant software package, the sketchy PN-based methodologies would

have been better developed and verified.

117

REFERENCES

1. R.D. Shier, Network Reliability and Algebraic Structures, Clarendon Press, Oxford,
1991.

2. K.K. Aggarwal, J.S. Gupta, K.B. Misra, A Simple Method for Reliability Evaluation

of a Communication System, IEEE Trans. Communications, May 1975, pp563-566.

3. K.K. Aggarwal, K.B. Misra, J.S. Gupta, A Fast Algorithm for Reliability Evaluation,

IEEE Trans. Reliability, Vol.R-24, No.1, April 1975, pp83-85.

4. O.M. Ball, Computational Complexity of network Reliability Analysis: An Overview,

IEEE Trans. Reliability, Vol.R-35, No.3, August 1986, pp230-239

5. K. Sutner, A. Satyanarayana, C. Suffel, The Complexity of the Residual Node

Connectedness Reliability Problem, SIAM Journal of Computing, Vol.20, No.1,
February 1991, pp.149-155.

6. W.J. Ke, S.D. Wang, Reliability Evaluation for Distributed Computing Networks

with Imperfect Nodes, IEEE Trans. Reliability, Vol.R-46, No.1, September 1997,
pp342-349.

7. D. Torrieri, Calculation of Node-pair Reliability in Large Networks with Unreliable

Nodes, IEEE Trans. Reliability, Vol.R-43, No.3, September 1994, pp375-377.

8. K.B. Misra, T.S.M. Rao, Reliability Analysis of Redundant Networks Using Flow

Graphs, IEEE Trans. Reliability, Vol.R-19, February 1970, pp19-24.

9. Y.H. Kim, K.E. Case, P.M. Ghare, A Method for Computing Complex System

Reliability, IEEE Trans. Reliability, Vol.R-21, November 1972, pp215-219.

10. K.K. Aggarwal, J.S. Gupta, K.B. Misra, A New Method for System Reliability

Evaluation, Microelectronic Reliability, Vol.12, No.5, November 1973, pp435-440.

11. W. Everett, S. Keene, A. Nikora, Applying Software Reliability Engineering in the

1990s, IEEE Trans. Reliability, Vol.47, No.3-SP, September 1998, pp372SP -378SP.

118

12. M. Lipow, On Software Reliability: A Preface by the Guest Editor, IEEE Trans.
Reliability, Vol.R-28, No.3, August 1979.

13. V.A. Nets, B.P. Filin, Consideration of Node Failures in the Network Reliability

Calculation, IEEE Trans. Reliability, Vol.45, March 1996, pp127-128.

14. V.K.P. Kumar, S. Hariri, C.S. Raghavendra, Distributed Program Reliability

Analysis, IEEE Trans. Software Engineering, Vol.SE-12, January 1986, pp42-50.

15. Y.B. Yoo, N. Deo, A Comparison of Algorithms for Terminal pair Reliability, IEEE

Trans. Reliability, Vol. 37, June 1988, pp210-215.

16. S. Rai, A. Kumar, and E.V. Prasad, Computing Terminal Reliability of Computer

Networks, Reliability Engineering, Vol. 16, 1986, pp109-119.

17. C.J. Colbourn, the Combinatorics of Network Reliability, Oxford University Press,

New York, 1987.

18. R. Bhandari, Survivable Networks, Algorithms for Diverse Routing, Kluwer

Academic Publishers, 1999.

19. E.F. Moore, C.E. Shannon, Reliable Circuits Using Less Reliable Relays, Journal of

the Franklin Institute, Vol. 262, 191-208, 281-297.

20. L.R. Jorge, A.D. Kieron, Classifying Combined Hardware/Software R Models,

Proceedings of Annual Reliability and Maintainability Symposium, 1984, pp282-288.

21. A.L. Goel, Software Reliability Models: Assumption, Limitations, and Applicability,

IEEE Trans. Software Engineering, Vol. SE-11, No.12, December 1985, pp1411-
1423.

22. J.B. Bowles, V. Swaminathan, A Combined Hardware, Software and Usage Model of

Network Reliability and Availability, IEEE 9th Annual International Phoenix
Conference on Computers and Communications, 1990, pp649-654.

23. F.T. Boesch, Synthesis of Reliable Networks – A Survey, IEEE Trans. Reliability,

Vol. 35, August 1986, pp240-246.

24. A. Rosenthal, A Computer Scientist looks at Reliability Computations, SIAM J.

Computing, 1975, pp133-152.

25. L.G. Valiant, The Complexity of Enumeration and Reliability Problems, SIAM J.

Computing, Vol. 8, 1979, pp410-421.

119

26. J.S. Provan, M.O. Ball, The Complexity of Counting Cuts and Computing the
Probability that a Graph is Connected, SIAM J. Computing, Vol. 12, 1983, pp777-
788.

27. K.B. Misra, An Algorithm for Reliability Evaluation of Redundant Networks, IEEE

Trans. Reliability, Vo. R-19, November 1970, pp146-151.

28. E.V. Krishnamurphy, G. Komissar, Computer-aid Reliability Analysis of

Complicated Networks, IEEE Trans. Reliability, Vol. R-21, May 1972, pp86-89.

29. E. Hansler, A Procedure for Calculating the Reliability of a Communication Network,

Arch. Elek. Ubertragung, Vol. 25, 1971, pp573-575.

30. R.B. Hurley, Probability maps, IEEE Trans. Reliability, Vol. R-12, September 1963,

pp39-44.

31. W. Hou, O.G. Okogbaa, Reliability Analysis for Integrated Networks with Unreliable

Nodes and Software Failures in the Time Domain, Proceedings of Annual Reliability
and Maintainability Symposium, 2000, pp113-117.

32. K.K. Vemuri, J.B. Dugan, Reliability Analysis of Complex Hardware-Software

Systems, Proceedings of Annual Reliability and maintainability Symposium, 1999,
pp178-182.

33. E. Froncrak, A Top-down Approach to High-Consequence Failure Analysis for

Software Systems, ISSRE, November 1997.

34. A. Satyanarayana, A. Prabhakar, New Topological Formula and Rapid Algorithm for

Reliability Analysis of Complex Networks, IEEE Trans. Reliability, Vol. R-27,
1978, pp82-100.

35. F.T. Boesch, A. Satyanarayana, and C.L. Suffel, Some Alternate Characterizations of

Reliability Domination, Probability in the Engineering and Informational Science,
Vol. 4, 1990, 257-76.

36. M.O. Locks, Recursive Disjoint Products: A Review of Three Algorithms, IEEE

Trans. Reliability, Vol. R-31, 1982, pp33-35.

37. M.O. Locks, A Minimizing Algorithm for Sum of Disjoint Products, IEEE Trans.

Reliability, Vol. R-36, 1987, pp445-453.

38. H. Nakazawa, Bayesian Decomposition Method for Computing the Reliability of an

Oriented Network, IEEE Trans. Reliability, Vol. R-25, 1976, pp77-80.

120

39. M.O. Ball, E.P. Cameron, Experiments with Network Reliability Analysis
Algorithms, Proceedings of the 17th Annual Conference on Modeling and Simulation,
Pittsburgh, 1986, pp1799-1803.

40. L.B. Page, J.E. Perry, Reliability of Directed Networks Using the Factoring Theorem,

IEEE Trans. Reliability, Vol. R-38, 1989, pp556-562.
41. R. Johnson, Network Reliability and Acyclic Orientations, Networks, Vol. 14, 1984,

pp489-505.

42. R.K. Wood, Factoring Algorithms for Computing K-terminal Network Reliability,

IEEE Trans. Reliability, Vol. R-35, 1986, pp269-278.

43. H. Frank, Maximally Survival Node Vulnerable Networks, Memorandum for File,

Div. Emergency preparedness of Office of the President, Washington D.C., March
1969.

44. H. Frank, Maximally Reliable Node Weighted Graphs, Proceedings 3rd Annual

Conference Information Sciences and Systems, May 1969, pp1-6.

45. H. Frank, Some New Results in the Design of Survivable Networks, Proceedings of

12th Annual Midwest Circuit Theory Symposium, September 1969, ppI3.1-I3.8.

46. C. Colbourn, A. Satyanarayana, C. Suffel, K. Sutner, Computing the Residual Node

Connectedness Reliability Problem, SIAM J. Computing, Vol. 20, 1991, pp149-155.

47. C. Colbourn, A. Satyanarayana, C. Suffel, On Residual Connectedness Network

Reliability, DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, Vol. 5, 1991, pp51-59.

48. C. Suffel, C. Stivaros, Uniformly Optimal networks in the Residual Node

Connectedness Reliability Model, Congressus Numerantium, Vol. 81, March 1991,
pp51-64.

49. F.T. Boesch, X. Li, C. Suffel, On the Exsitence of Uniformly Optimally Reliable

Networks, Networks, Vol. 21, 1994, pp181-194.

50. O. Goldschmidt, P. Jaillet, R. LaSota, On Reliability of Graphs with Node Failures,

Networks, Vol. 24, 1994, pp251-259.

51. W. Myrvold, K. Cheung, L. Page, J. Perry, Uniformly Most Reliable Graphs Do Not

Always Exist, Networks, Vol. 21, 1991, pp417-419.

52. A. Amin, K. Siegrist, P. Slater, On the Nonexistence if Uniformly Optimal Graphs for

Pair-connected Reliability, Networks, Vol. 21, 1991, pp359-368.

121

53. A. Amin, K. Siegrist, P. Slater, On Uniformly Optimally Reliable Graphs for Pair-
connected Reliability with Vertex Failures, Networks, Vol. 23, 1993, pp185-193.

54. H.A. Fotoh, C. Colbourn, Computing 2-terminal Reliability for Radio-broadcast

Networks, IEEE Trans. Reliability, Vol. R-38, December 1989, pp538-555.

55. H.A. Fotoh, C. Colbourn, Efficient Algorithms for Computing the Reliability of

Permutation and Interval Graphs, Networks, Vol. 20, 1990, pp883-898.

56. J. Reynolds, the Craft of Programming, Englewood Cliffs, NJ, Prentice Hall, 1981.

57. S. Gerhart, L. Yelowitz, Observations of Fallibility in Applications of Modern

Programming Methodologies, IEEE Trans. Software Engineering, Vol. SE-2, May
1976, pp195-207.

58. P.B. Moranda, Prediction of Software Reliability During Debugging, Proceedings of

Annual Reliability and Maintenance Symposium, Washington DC, January 1975,
pp327-332.

59. G.J. Schick, R.W. Wolverton, An Analysis of Computing Software Reliability Model,

IEEE Trans. Software Engineering, Vol. SE-4, 1978, pp104-120.

60. A.L. Goel, K. Okumoto, An Analysis of Recurrent Software Failures in a Real-time

Control System, Proceedings of ACM Annual Technology Conference, Washington
DC, 1978, pp496-500.

61. A.L. Goel, K. Okumoto, A Markovian Model for Reliability and Other Performance

Measures of Software Systems, Proceedings of National Computing Conference,
New York, Vol. 48, 1979, pp769-774.

62. B. Littlewood, J.L. Verrall, A Bayesian Reliability Growth Model for Computer

Software, Application Statistics, Vol. 22, 1973, pp332-346.

63. B. Littlewood, Theories of Software Reliability: How Good Are They and How Can

They Be Improved? IEEE Trans. Software Engineering, Vol. SE-6, 1980, pp489-500.

64. A.L. Goel, K. Okumoto, A Time Dependent Error Detection rate Model for Software

Reliability and Other Performance Measures, IEEE Trans. Reliability, Vol. R-28,
1979, pp206-211.

65. A.L. Goel, A Guidebook for Software Reliability Assessment, Rep. RADC-TR-83-

176, August 1982.

66. A.L. Goel, Software Reliability Modeling and Estimation Techniques, Rep. RADC-

TR-82-263, October 1982.

122

67. J.D. Musa, A Theory of Software Reliability and Its Application, IEEE Trans.
Software Engineering, Vol. SE-1, 1971, pp312-327.

68. W.D. Brooks, R.W. Motley, Analysis of Discrete Software Reliability Models, Rep.

RADC-TR-80-84, April 1980.

69. H.D. Mills, On the Statistical Validation of Computer Programs, IBM Federal

System Division, Geithersburg, MD. 1975, Rep.72-6015.

70. M. Lipow, Estimation of Software packet Residual Errors, TRW, Redondo Beach,

CA, 1972, Software Series Rep. TRW_SS-72-09.

71. S.L. Basin, Estimation of Software Error Rate Via Capture-recapture Sampling,

Science Applications Inc., Palo, Alto, CA, 1974.

72. E. Nelson, Estimating Software Reliability from Test Data, Microelectronic

Reliability, Vol. 17, 1978, pp67-74.

73. C.V. Ramamoorthy, F.B. Bastani, Software Reliability: Status and Perspectives, IEEE

Trans. Software Engineering, Vol. SE-8, July 1982, pp359-371.

74. M.R. Garey, D.S. Johnson, Computers and Intractability, A Guide to the Theory of

NP-Completeness, W.H. Freeman and Company, 1979.

75. D.P. Siewierek, R.S. Swarz, Reliable Computer Systems Design and Evaluation, 3rd

edition, A K Peters Ltd., 1998.

76. L.G. Valiant, the Complexity of Computing the Permanent, Theoretical Computer

Science, Vol. 8, 1979, pp189-201.

77. L.G. Valiant, the Complexity of Enumeration and Reliability Problems, SIAM J.

Computing, Vol. 8, 1979, pp410-421.

78. U. Sumita, Y.Masuda, Analysis of Software Availability/Reliability Under the

Influence of Hardware Failures, IEEE Trans. On Software Engineering, Vol.SE-12,
No.1, 1986, pp32-41.

79. A.L. Geol, J. Soenjoto, Models for Hardware-Software System Operational-

performance Evaluation, IEEE Trans. Reliability, Vol.R-31, No.3, 1981, pp232-239.

80. J.E. Angus, L.E. James, Combined Hardware/Software Reliability Models, Proc.

Annual Reliability and Maintainability Symposium, 1982, pp176-181.

81. B. Cappelle, E.E. Kerre, Issues in Possibilistic Reliability Theory, Reliability and

Safety Analyses under Fuzziness, Physica-Verlag, 1995, pp61-80.

123

82. H. Tanaka, L.T. Fan, F.S. Lai, K. Toguchi, Fault Tree Analysis by Fuzzy
Probability, IEEE Trans. Reliability, Vol.32, 1983, pp453-457.

83. D. Singer, A Fuzzy Set Approach to Fault Tree and Reliability Analysis, Fuzzy Sets

and Systems, Vol.34, 1990, pp145-155.

84. K. Cai, C. Wen, Street-lighting Lamp Replacement: a Fuzzy Viewpoint, Fuzzy Sets

and Systems , Vol.37, 1990, pp161-172.

85. M.A. Marsan, et. al., Introduction to Generalized Stochastic Petri Nets,

Microelectronic Reliability, v 31 n 4 1991 p 699-725.

86. M.A. Marsan, et. al., On Petri Nets with Stochastic timing, International Workshop

on Time Petri Nets, IEEE Computer Society Press, 1985, pp80-87.

87. M.A. Holliday, M.K. Vernon, A Generalized Timed Petri Net Model for Performance

Analysis, International Workshop on Time Petri Nets, IEEE Computer Society Press,
1985, pp180-190.

88. O. Botti, F. De Cindio, Process and Resource Boxes: An Integrated PN Performance

Model for Applications and Architectures, IEEE Proc. of the International
Conference on Systems, Man and Cybernetics, Le Toquet, France, 1993.

89. S. Donetelli, G. Franceschinis, The PRS methodology: Integrating Hardware and

Software Models, Lecture notes in Computer Science, Springer, 1997, pp133-151.

90. W. Reisig, Pertri Nets, An Introduction, Springer-Verlag, 1982.

91. W. Reisig, G. Rozenberg, Lectures on Petri Nets I: Basic Models, Advances in Petri

Nets, Springer-Verlag, 1998.

92. W. Reisig, G. Rozenberg, Lectures on Petri Nets I: Applications, Advances in Petri

Nets, Springer-Verlag, 1998.

93. M.A. Marsan, G. Balbo, K. Trivedi, International Workshop on Time Petri Nets,

IEEE Computer Society Press, 1985.

94. K. Jensen, Coloured Petri Nets, Basic Concepts, Analysis Methods and Practical Use,

Volume 1, 2nd Edition, Springer-Verlag, 1996.

95. M. Balakrishnan, Stochastic Petri Nets for the Reliability Analysis of Communication

Network Applications with Alternate-routing, Reliability Engineering & System
Safety, Vol.52, n.3 Jun 1996, pp 243-259.

124

96. S.M. Koriem, Fault-tolerance Analysis of Hypercube Systems Using Petri Net
Theory, Journal of Systems and Software, Vol.21, n.1, April 1993. pp 71-88.

97. W.G. Schneeweiss, Petri Nets for Reliability Modeling (in the Fields of Engineering

Safety and Dependability), LiLoLe-Verlag GmbH (Publishing Co. Ltd), 1999.

98. A.D. Stefano, O. Mirabella, Evaluating the Fieldbus Data Link Layer by a Petri Net-

based Simulation, , IEEE Trans. Industrial Electronics, Vol.38, No.4, August 1991.

99. G. Juanole, Y. Atamna, Modeling Communications in the FIP (factory

instrumentation protocol) with the Stochastic Timed Petri Model, Proc. Of ETFA,
1992, pp336-341.

100. S. Christensen, L.O. Jepson, Modeling and Simulation of a Network Management

System Using Hierarchical Colored Petri Nets, Proc. Of 1991 Europe Simulation
Multi-Conference, Copenhagen, Society of Computer Simulation 1991, pp47-52.

101. I. Akyildiz, et al., Stochastic Petri Net Modeling of the FDDI Network Protocol,

in Protocol Specification, Testing and Verification, XI, Elsevier Science Publishers
B.V 1991 IFIP.

102. H. Clausen, P.R. Jensen, Validation and Performance Analysis of Network

Algorithms by Colored Petri Nets, In Petri Nets and Performance Models, Proc. Of
the 5th International Workshop, Toulouse, France 1993, pp280-289.

103. K. Jensen, Coloured Petri Nets, Basic Concepts, Analysis Methods and Practical

Use, three volumes, Springer-Verlag 1992, 1994, and 1997.

104. G. Ciardo, et al., Modeling a Scalable High-speed Interconnect with Stochastic

Petri Nets, Proc. Of the 6th International Workshop on Petri Nets and Performance
Models, Durham, North Carolina, October 1995.

105. R. Sahner, K. Trivedi, A. Puliafito, Performance and Reliability Analysis of

Computer Systems, Kluwer 1996.

106. G. Chiola, A Software Package for the Analysis of Generalized Petri Nets, Proc.

Of International Workshop on Timed Petri Nets, Torino, July 1985.

107. A. Bobbio, Petri Nets Generating Markov Reward Models for Performance/

Reliability Analysis of Degradable Systems, Modeling Techniques and Tools for
Computer Performance Evaluation, Plenum Press 1989, pp353-365.

108. J. Couvillion, et al., Performance Modeling with Ultra SAN, IEEE Trans.

Software, V.8, 1991, pp69-80.

125

109. G. Ciardo, J. Muppala, K. Trivedi, SPNP Stochastic Petri Nets Package, Proc.
International Workshop on Petri Nets & Performance Model, Kyoto, 1989, 142-150.

110. G. Rozenberg, P.S. Thiagarajan, Petri nets: Basic Notions, Structure, Behaviour,

in Current Trends in Concurrency, Lecture Notes in Computer Science 224, Springer-
Verlag, Berlin, 1986, pp.585-668.

111. P.S. Thiagarajan, Elementary Net Systems, Petri Nets: Central Models and Their

Properties, Lecture Notes in Computer Science 254, Springer-Verlag, Berlin, 1987,
pp26-59.

112. G. Rozenberg, Behaviour of Elementary Net Systems, Petri Nets: Central Models

and Their Properties, Lecture Notes in Computer Science 254, Springer-Verlag,
Berlin, 1987, pp60-94.

113. J.L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice-Hall,

Englewood Cliffs, 1981.

114. W. Reisig, Petri Nets, EATCS Monographs on Theoretical Computer Science,

Vol.4, Springer-Verlag, Berlin, 1982.

115. H.J. Genrich, Predicate/Transition Nets, Petri Nets: Central Models and Their

Properties, Lecture Notes in Computer Science 254, Springer-Verlag, Berlin, 1987,
pp207-247.

116. F. Lee and M. Marathe, Beyond Redundancy - A Guide to Designing High-

Availability Networks, Cisco EDCS # ENG-36854, 1999.

117. System Hardware Availability and Reliability Calculation Worksheet, Cisco

Internal Document #702073-0000, RevA0.

118. VoIP Availability and Reliability Model for the PacketCable Architecture, Cable

Television Laboratories Inc., PKT-TR-VoIPAR-V01-001128, 2000.

119. W. Hou, G. Okogbaa, A Simplified Availability Modeling Tool for Networks

with 1:1 Redundant Software-Hardware Systems, Proceedings of Annual Reliability
and Maintainability Symposium (RAMS), 2002, pp569 - 576.

120. W. Hou, High Availability Analysis for Cactus Solution (1.0R), Cisco EDCS

#ENG-105749, 2001.

121. W. Hou, Cactus 1.0R End to End Availability Model, Cisco EDCS #ENG-

108451, 2001.

126

APPENDICES

127

Appendix 1 SAMOT Modules

Figure A-1.1. SAMOT-Main Module: Solution Architectural Scenarios

128

Appendix 1 (Continued)

Figure A-1.2. SMOT-Main Module: End-to-End Availability Worksheet

129

Appendix 1. (Continued)

Figure A-1.3. SAMOT-Main Module: Aggregation Device

130

Appendix 1. (Continued)

Figure A-1.4. SAMOT-Main Module: Core Router

131

Appendix 1. (Continued)

Figure A-1.5. SAMOT-Main Module: Softswitch System

132

Appendix 1. (Continued)

Figure A-1.6. SAMOT-Main Module: LAN Switch

133

Appendix 1. (Continued)

Figure A-1.7. SAMOT-Main Module: Edge Server 1

134

Appendix 1. (Continued)

135
Figure A-1.8. SAMOT-1:1 Redundancy Module: SoftSwitch

Appendix 1. (Continued)

Figure A-1.9. SAMOT-1:1 Redundancy Module: LAN Switch

136

Appendix 1. (Continued)

Figure A-1.10. SAMOT-1:1 Redundancy Module: Edge Server 1

137

Appendix 2 Markov Analysis Tool

Figure A-2.1. Markov Analysis Summary Demo
138

Appendix 2. (Continued)

Appendix 2.1. Markov Analysis Input File

Input File Name: sample1.txt
======================
1:1 Active/Standby Hardware + Software Redundancy
Variables: FIT rates, MTTR, coverage factors, switch time

states = 13
failed = 2,4,5,6,10,11

Parameters:

MTTFH = 47574 # HW Mean Time To Failure (hr)
MTTFS = 18039 # SW Mean Time To Failure (hr)
lambdaH = 1/MTTFH # HW Failure rate of active unit
lambdaS = 1/MTTFS # SW Failure rate of standby unit
SwitchTimeH = 10 # HW Switchover time to standby (sec)
SwitchTimeS = 10 # SW Switchover time to standby (sec)
betaH = 1/(SwitchTimeH/3600) # HW Switchover rate
betaS = 1/(SwitchTimeS/3600) # SW Switchover rate
MTTR1H = 10/60/60 # MTTR of HW unit non-service failures (hr)
MTTR1S = 10/60/60 # MTTR of SW unit non-service failures (hr)
MTTR2H = 3 # MTTR of HW unit service failures (hr)
MTTR2S = 2/60 # MTTR of SW unit service failures (hr)
mu1H = 1/MTTR1H # Mean HW repair rate for non-service affecting failures
mu1S = 1/MTTR1S # Mean SW repair rate for non-service affecting failures
mu2H = 1/MTTR2H # Mean HW repair rate for service affecting failures
mu2S = 1/MTTR2S # Mean SW repair rate for service affecting failures
c1 = 0.99 # Coverage factor of active unit
c2 = 0.90 # Coverage factor of standby unit

Transitions:

States for detected failures
1 2 c1*lambdaH
2 3 betaH
3 1 mu1H
3 4 lambdaH
4 1 mu2H
3 5 lambdaS
5 1 mu2S
1 6 c1*lambdaS
6 7 betaS
7 1 mu1S
7 4 lambdaH
7 5 lambdaS
1 8 c2*lambdaH
8 1 mu1H
8 4 lambdaH

139

Appendix 2. (Continued)

8 5 lambdaS
1 9 c2*lambdaS
9 1 mu1S
9 4 lambdaH
9 5 lambdaS

States for undetected failures
1 10 (1-c1)*lambdaH
10 1 mu2H
1 11 (1-c1)*lambdaS
11 1 mu2S
1 12 (1-c2)*lambdaH
12 4 lambdaH
12 5 lambdaS
1 13 (1-c2)*lambdaS
13 4 lambdaH
13 5 lambdaS

140

Appendix 2. (Continued)

Appendix 2.2. Markov Analysis Output File

MARKOV MODEL SOLUTION FOR STEADY STATE AVAILABILITY, (V 2.2) JULY 1986
 BELL COMMUNICATIONS RESEARCH, INC.

MODEL PARAMETERS :

 MTTFH = 47574
 MTTFS = 18039
 lambdaH = 2.101988E-005
 lambdaS = 5.543545E-005
 SwitchTimeH = 10
 SwitchTimeS = 10
 betaH = 360
 betaS = 360
 MTTR1H = 0.002778
 MTTR1S = 0.002778
 MTTR2H = 3
 MTTR2S = 0.033333
 mu1H = 360
 mu1S = 360
 mu2H = 0.333333
 mu2S = 30
 c1 = 0.99
 c2 = 0.9

STATE PROBABILITIES :

 STATE PROBABILITY MINUTES/YR
 ----- ---------------- ------------
 1 0.909084503 4.77815E+005
 2 5.254934172E-008 0.02762 * FAILED STATE
 3 5.254933056E-008 0.02762
 4 5.732678471E-006 3.0131 * FAILED STATE
 5 1.679856888E-007 0.08829 * FAILED STATE
 6 1.385876370E-007 0.07284 * FAILED STATE
 7 1.385876075E-007 0.07284
 8 4.777211869E-008 0.02511
 9 1.259887341E-007 0.06622
 10 5.732655461E-007 0.30131 * FAILED STATE
 11 1.679850145E-008 0.00883 * FAILED STATE
 12 0.024993485 13136.57574
 13 0.065914965 34644.90573

STEADY STATE RELIABILITY MEASURES:

 AVAILABILITY = 0.9999933181
 UNAVAILABILITY = 6.6818651859E-006
 DOWNTIME = 3.5119883417 MINUTES PER YEAR
 MTBF = 1.4930973523 YEARS
 FAILURE RATE = 76455.3302348351 FITS

141

Appendix 3 MORIN Algorithm

Here are codes implementing the MORIN reliability calculation.

/* *** *
 * *
 * MORIN_RCal.c *
 * *
* This program is to to calculate the network reliability based *
* on the reliability of each node and link along the event trees. *

 * This program is designed to run on sunblast.eng.usf.edu *
 * *
 * Code designed and created by W. Hou *
 * ** */

#include <stdio.h>
#include <string.h>
#include <iostream.h>
#include <sys/types.h>
#include <netdb.h>

#define node_number 4
#define link_number 5

main() /* calculate network reliability based on generated event trees */

{

char event_tree[]; /* the event tree path sets */
char node, link; /* the node index, link index */
char link; /* the link index */
double R_node[]; /* the node reliability */
double RM_node[]; /* the node’s modified reliability */
double RMo_node[]; /* the node’s modified reliability with operational incoming links */
double RMf_node[]; /* the node’s modified reliability with failed incoming links */
double R_link[]; /* the link reliability */
double R_source[]; /* source node reliability */
double R_event_tree[]; /* event tree reliability */
double R /* overall network reliability */
double Rh_node[]; /* the node hardware reliability */
double Rh_link[]; /* the link hardware reliability */
double Rh_source[]; /* source node hardware reliability */
double Rs_node[]; /* the node software reliability */
double Rs_source[]; /* source node software reliability */
double R = 1; /* the initial network reliability */
double RMo_node = 1; /* the initial modified node reliability with

 operational incoming links */
double RMf_node = 1; /* the initial modified node reliability with failed incoming links */
int i, j, k; /* node j and link k on event tree i */

142

Appendix 3. (Continued)

while ((event_tree = getchar()) != EOF)

 for (i = 0; i < event_tree number; ++i)

 {

for (j = 0; j < node number on the event tree; ++j)

 {

 for (k = 0; k < adjacent links to node j; ++k)

 if (link[k]_adjacent = OPERATIONAL)
 RMo_node [j] = R_node[i] * R_link[k];

 else
 RMf_node [j] = (1-R_node [j]) + R_node[j] * (1 - R_link[k]) ;

 R_event_tree[i] = R_source * RMo_node [j] * RMf_node [j];
}

Printf(“reliability of event tree i is :”, R_event_tree[i]);
}

R *= R_event_tree[i];

 }
Printf(“overall reliability is :”, R)

}

/* codes for ET generating and other modules are available upon NDA */

143

ABOUT THE AUTHOR

Wei Hou received a BS degree (1989) in Telecommunication Management Engineering

and a MS (1992) in Systems Engineering both from Beijing University of Posts and

Telecommunications, China. After his Master's graduation, Mr. Hou served the Ministry

of Information Industry of China as a research staff before he joined Ericsson as a system

engineer. He led a six-month consulting project at Quality Assurance of GE Medical

Systems Information Technology in 1996 shortly after his arrival at USA and co-oped as

an IT engineer at the Availability Management Center of Verizon in 1997 and 1998. Mr.

Hou has worked as an availability analyst at Systems and Solutions Engineering of Cisco

Systems from 2000 to 2001 and since then he has been with Sun Microsystems as a

hardware member of technical staff.

During his doctorate research co-sponsored by National Science Foundation (Award #

DMII 9500289) and Department of Industrial and Management Systems Engineering at

USF, Wei Hou has presented and published a number of papers and tutorials in

international symposiums and conferences. He has also authored over a dozen of

technical reports for GE, Verizon, Cisco, and Sun Microsystems. He was a student

member of IIE and INFORMS, a member of IEEE Reliability Society, a member of

International WHO’S WHO.

	TABLE OF CONTENTS
	LIST OF TABLES ….……………………………………………………………………………..…. iv
	LIST OF FIGURES ………………….……………………………………………………………..… v
	ABSTRACT ………….………………………………………...……………………………………. viii
	ABOUT THE AUTHOR ……………………………………….………………………… End Page

	ABOUT THE AUTHOR ……………………………………….………………………… End Page
	CHAPTER 1 INTRODUCTION
	INTRODUCTION
	1.1 Background
	1.2 Objectives of Research
	1.3 Motivation of Research
	1.4 Overview of Research

	CHAPTER 2
	LITERATURE REVIEW
	2.1 Reliability Studies for Networks with Unreliable Links and Perfect Nodes
	2.2 Reliability Studies for Networks with Unreliable Nodes and Perfect Links
	2.2.1 Residual Node Connectivity Model
	2.2.2 Coherent Model

	2.3 Reliability Studies for Networks with Unreliable Links and Unreliable Nodes
	2.3.1 AGM Method
	2.3.2 NPR/T Method
	2.3.3 ENR/KW Method

	2.4 Software Models
	2.4.1 Software Reliability
	2.4.2 Software Reliability Models
	2.4.2.1 Time Between Failures Models
	2.4.2.2 Failure Count Models
	2.4.2.3 Fault Seeding Models
	2.4.2.4 Input Domain Based Models

	2.5 Petri Nets in Reliability Analysis of Integrated Networks
	2.5.1 Introduction of Petri Nets
	2.5.1.1 Evolution of Petri Net Models
	2.5.1.2 Definitions of Petri Nets
	2.5.1.3 Timed Petri Nets (TPN)

	2.5.2 Colored Petri Nets
	2.5.2.1 Advantages of Colored Petri Nets

	2.5.3 Tools for Petri Nets Applications
	2.5.4 PN_RAIN Approach
	2.5.4.1 Construction of PN_RAIN Models

	2.6 Possibilistic Reliability Functions and Fuzzy Sets Theory

	CHAPTER 3
	PROBLEM FORMULATION
	CHAPTER 4
	APPROACHES FOR CALCULATING NETWORK RELIABILITY
	4.1 Probabilistic and Deterministic Networks
	4.2 Network Operations
	4.3 General Approaches for Calculating the Reliability of Probabilistic Networks
	4.3.1 State-space Enumeration
	4.3.2 Inclusion-Exclusion
	4.3.3 Disjoint Product
	4.3.4 Factoring
	4.3.5 Fault Tree Analysis

	4.4 Computational Complexity of Reliability Analysis

	CHAPTER 5 MODELING RELIABILITY OF INTEGRATED NETWORKS (MORIN)
	CHAPTER 6
	SIMPLIFIED NETWORK AVAILABILITY MODELING
	6.1 Introduction
	6.2 Problem Description
	6.3 Methodologies and Tools
	6.3.1 Common Methodologies
	6.3.2 Commonly-used Tools
	6.3.3 SAMOT Tool

	CHAPTER 7
	COMPUTATIONAL EXPERIMENTS
	7.1 MORIN Examples
	7.1.1 Sample Network 1
	7.1.2 Sample Network 2

	7.2 SAMOT Experiment Results(
	7.2.1 Practical Networks
	7.2.2 SAMOT Modeling Results
	7.2.2.1 System Availability
	7.2.2.2 Availability of 1:1 Redundant Systems
	7.2.2.3 Network Path Availability

	CHAPTER 8
	CONCLUSIONS AND FUTURE RESEARCH
	REFERENCES
	APPENDICES
	Appendix 1 SAMOT Modules
	Appendix 2 Markov Analysis Tool
	Appendix 3 MORIN Algorithm

