Integrated Reliability and Availability Aanalysis of Networks With Software Failures and

Hardware Failures

Wei Hou

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
Department of Industrial and Management Systems Engineering
College of Engineering
University of South Florida

Major Professor: O. Geoffrey Okogbaa, Ph.D.
Tapas Das, Ph.D.
A.N. Rao, Ph.D.
Sudeep Sarkar, Ph.D.
Michael Weng, Ph.D.

Date of Approval:
March 17, 2003

Keywords: performance evaluation, distributed systems, system redundancy, end-to-end
solution modeling, event tree, application tool

© Copyright 2003 , Wei Hou

DEDICATION

To My Parents

fikehs ety 52

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my major professor Dr. O. Geoffrey

Okogbaa for his academic guidance and financial support to my doctorate research.

I have been indebted to Dr. Tapas Das, Dr. Michael Weng, Dr. Sudeep Sakar, and Dr.
A.N. Rao, for the services in my dissertation committee and their precious advice. [am
also very thankful to Dr. Rajan Sen for serving as my defense chairperson and Dr. Peter

Maurer for his partial service in my committee.

It would be impossible to complete my Ph.D. education, without the support of the
Department of Industrial and Management Systems Engineering and its people. I greatly
appreciate the help from Dr. William Miller, Dr. Anita Callahan, Ms. Marsha Brett, and

Ms. Gloria Hanshaw.

Finally, I am highly grateful of the co-sponsoring of NSF (National Science Foundation)

to my dissertation research.

TABLE OF CONTENTS

LIST OF TABLES ... e, v
LIST OF FIGURES ... o e v
ABSTRACGT ..o e viii
CHAPTER 1 INTRODUCTION ..ottt 1
LI.1 BacKround..........coooiiiiiiiieiiieecee ettt et e s 1
1.2 Objectives Of RESEAICHcouiiuiiiiiiiiiiiiiiicce e 4
1.3 Motivation of ReS€archccccceiiiviininininiiiiicccccce e 5
1.4 Overview of Researchooouiiiiiiiiiiiiee e 8
CHAPTER 2 LITERATURE REVIEW _.......occooiiiiiiiiiiiiieeeeee e 10
2.1 Reliability Studies for Networks with Unreliable Links and Perfect Nodes....... 13
2.2 Reliability Studies for Networks with Unreliable Nodes and Perfect Links....... 13
2.2.1 Residual Node Connectivity Model..........ccceviiiiniininiiniininiinicecicen 13
2.2.2 Coherent Modelcocoeiiiiiiiiiiiinineneeeeeeee et 16

2.3 Reliability Studies for Networks with Unreliable Links and Unreliable Nodes . 18
231 AGM MEthOd....c..oouiiiiiiiiiiiiieiceeeee et 19
2.3.2 NPR/T Method......cooiiiiiiiieiee e 20
233 ENR/KW MethOdcooiiiiiiiiiiiiiiiincccceecneeeeeeee e 21

2.4 Software MOEIS.......oouiiiiiiiiieiieeee et 21
2.4.1 Software Relabilitycccuieviiiiiiiiiiciieiiceeeecce e 21
2.4.2 Software Reliability MOdelSccoceeviriiiniiniiiiiiciecicecececeee 24
2.4.2.1 Time Between Failures Models.........cccceceviininiinienieiiiienecee 24
2.42.2 Failure Count Models.........coouiiiiiniiiiiiiieeiieeeeee e 28
2.4.2.3 Fault Seeding Models..........cccuieiiiriiiiiiiiieieeie e 32
2424 Input Domain Based Models.........cccoruiiiiiiniiiiiiniieieciceeseee e 33

2.5 Petri Nets in Reliability Analysis of Integrated Networksccccceeevvervienennne. 34
2.5.1 Introduction of Petri NEts........ccoouiiiiiiiiiiieieeieee e 34

2.5.1.1 Evolution of Petri Net MOdELS ...oooovviiiieiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeen 35

2.5.1.2 Definitions of Petri Nets.......cccooouiiiiiiiiiiiiiiiieieeeeeeeceee e 39
2.5.1.3 Timed Petri Nets (TPN) .ooccviiiiieceeeeeeeeee e 42

2.5.2 Colored Petri NEts.....coiiuieiiiiiieiie ettt 44
2.5.2.1 Advantages of Colored Petri Nets........ccccceevieriiieiieniiiieeieeieeeeeiene 46

2.5.3 Tools for Petri Nets ApplICationsc..ccceveeeriieeriieeriie e 49
2.54 PN _RAIN APPIOaCh...cccceiiiiiiiiiiiiiieiieeieeite ettt 50
2.54.1 Construction of PN RAIN Models........cccceeviieeiiiiiiieeieeceeeeee e 52

2.6 Possibilistic Reliability Functions and Fuzzy Sets Theoryc.cccocvevvienennen. 58
CHAPTER 3 PROBLEM FORMULATION.........coooiiiiiiiiiiiteeee et 60

CHAPTER 4 PROACHES FOR CALCULATING NETWORK

RELTABILITY ...ttt ettt ettt et st e b et eneesbeensesneens 63
4.1 Probabilistic and Deterministic NetWorks..........ccccevieviiiiniiniiieniiiiieieeiee 63
4.2 NetWOrk OPerationsS........cceevieriuierieeiieriieeieesieeeiteesseeeseesseesseesseessseenseessseesseessns 65
4.3 General Approaches for Calculating the Reliability of Probabilistic Networks . 66

4.3.1 State-space ENUMEIation...........cceevuieeiieriieniienieeiieeieeiee e eeeeeveesaee e eenes 66
4.3.2 Inclusion-EXCIUSIONccciiiiiiiiiiiiiiiieecee e 69
4.3.3 DiSjoint PrOAUCEccoiiiiieiiiieiieiiecieeieeeee ettt 71
i B S O To1 101 & |1 L OO OUSUPROP ST 72
4.3.5 Fault Tree ANalySiS.....cccecciieiiierieiiieniieeieeite et eriee et e sere v saeeesseeenes 75
4.4 Computational Complexity of Reliability Analysisccccecevvvireeneniicnienennns 78

CHAPTER 5 MODELING RELIABILITY OF INTEGRATED NETWORKS

(MIORIN).....coioeeeeeee ettt sttt et et e et esae e s e esaeesee s e essesseenseenaesseenseensesseenns 80
5.1 MORIN MeEthOdcoouiiiiiiiiieiesieeeeeeee et 80
CHAPTER 6 SIMPLIFIED NETWORK AVAILABILITY MODELING 86
0.1 INtrOAUCLION ..ot sttt 86
6.2 Problem DeSCIIPtiONccccuiieiiieeiiieeciee ettt see et e e e e seveeseaeeesaeeeneees 89
6.3 Methodologies and TOOISccceeiieriiiiiiiieie e 91
6.3.1 Common MethodOolOZIESc..eevuiiiriiiieiieecie et 91
6.3.2 Commonly-used TOOISccccuieiiiriiiiieeie e 92
6.3.3 SAMOT TOOL ..ottt 92
CHAPTER 7 COMPUTATIONAL EXPERIMENTSccciiiiiiiieieeeeeee e 99
7.1 MORIN EXAMPIES ...oeecuiiiiiiiiiiieeiieeeiee et et eeete e et e staeessvaeesnseeesnaee s 99
7.1.1 Sample NetWork L......cccoiiiiiiiiiiieiecee e 99
7.1.2 Sample NetWOTK 2....c..oiiiiiiieiieeeeeee et 104

7.2 SAMOT Experiment ReSults.........ccccoeriiiiiiiiiiiieiieeieeeeee e 106
7.2.1 Practical NetWOTKScoiiiiiiiiiiiiiiiie e 107

7.2.2 SAMOT Modeling ReSultsccoieviiiriiiiiieiiecieeiiece e 109

7.2.2.1 System Availability........ccccoecvieiiiiieiiiecie e 109
7.2.2.2 Availability of 1:1 Redundant Systemsccceevueerieeciienieniiennens 111
7.2.2.3 Network Path Availability.........ccccoeeeviiiieiiiiieciie e 114
CHAPTER 8 CONCLUSIONS AND FUTURE RESEARCHcccccccoveiinennnn. 115
REFERENCES.........cooiiieeee ettt sttt sttt et 118
APPENDICES ...ttt sttt e s e e e sseenseenaenseeneas 127
Appendix I SAMOT MOAUIEScceeeiiiriiiiieciieieecte ettt 128
Appendix 2 Markov Analysis TOOLccccueiiiiiiiiiiiieeeee e 138
Appendix 3 MORIN AIZOTIthIMccueeviiiiiiiiiieiiecieeeece et 142
ABOUT THE AUTHOR ... End Page

i1

Table 1.1

Table 7.1

Table 7.2

Table 7.3

Table 7.4

Table 7.5

Table 7.6

Table 7.7

LIST OF TABLES

Probabilities of Operational Outage Caused by Various Sources 7
Availability Metrics of Aggregation Device ..., 109
Availability Metrics of Core Router ... 110
Availability Metrics of SoftSwitch ..., 110
Availability Metrics of LAN Switchccoooooiiiiiiii, 110
Availability Metrics of Edge Server 1 ... 111

Comparisons of Availability Modeling Results on Unplanned
Outages of 1:1 Redundant System by SAMOT and Markov 112
Availability of Signaling Path and Bearer Path of the Sample

N O W OTK - 114

v

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure 2.10
Figure 2.11
Figure 2.12
Figure 2.13
Figure 4.1
Figure 4.2
Figure 4.3
Figure 6.1

Figure 6.2

LIST OF FIGURES

Residual Node Connectedness Reliability Model 15
Modified Reliability for A Directed Networkccoooooiiiiiiiinnnnn, 19
Modified Reliability for A Undirected Networkoooooeeiiiinnin. 19
A Typical Plot of Z(¢,) for the JM Model (N =100, ® =0.02) 25
A Typical Plot of Z(#,) for the SW Model (N =150, ® =0.02) 26
Input and Output Places of A Transitioncoeeeiiiiiieiiineeniinnns. 40
The Delayed Switching of A Transitionc.coeveiiiiieiiiineeniin.., 41
Replacing A Multigraph by A Graph With Weighted Edges 41
Sample Concurrent EVENtsccooooiiiiiiiiiiiiiiiii e 50
States Transition of A Node in An Integrated Network 51
A Sample Bridge Network (Figure 4.1) With Node States 52
PT-net Describing the Processes in An Integrated Network 54
CPN Describing the Failure Modes in the Integrated Network 56
A Sample Bridge Networkcooooooiiiiiii 67
Probabilistic Rules of Reductionccooooii 73
Contraction of an Edge in Fig 4.1, Using (a) e =3 and (b)e=1 74
Segments of A Typical VoIP Solutionccoooiiiiiiinii, 90
Reliability Block Diagram of A Sample Systemcccoeviivnnn... 91

Figure 6.3
Figure 6.4

Figure 6.5

Figure 7.1

Figure 7.2

Figure 7.3

Figure 7.4

Figure 7.5
Figure 7.6
Figure 7.7

Figure 7.8

Figure 7.9

Figures 7.10

Figures 8.1

Figure A-1.1
Figure A-1.2
Figure A-1.3
Figure A-1.4

Figure A-1.5

Interactive Modules in SAMOT ..o, 94
IRBD for 1:1 R in SAMOT’s Redundancy Module 94
Markov Diagram for Failure Mode Transitions of 1:1

Software-Hardware System Redundancyccooooei 96
Sample Network 1 ... 100
Event-Tree Generated by the MORIN Algorithm for Sample

NEIWOTK 1 oo 100
Sample NetWork 2oooiiiiiiiiiii e 104

Event-Tree Generated by the MORIN Algorithm for Sample

NEtWOrk 2 ..o 105
Architecture of A Sample Network with Redundancy 107
Block Diagram of A Sample Baseline Networkcoon 107
Modeling Flowchart for A Baseline Networkccccooooiiiiiiiin, 107

Block Diagram of A Sample Network with 1:1 System
Redundancy ... 108

Modeling Flowchart for A Network with 1:1 System Redundancy 108

Discrepancy of SAMOT & Markov Modeling Results 113
Complementary Relationship Between MORIN and SAMOT 117
SAMOT-Main Module: Solution Architectural Scenarios 128
SMOT-Main Module: End-to-End Availability Worksheet 129
SAMOT-Main Module: Aggregation Devicecoooeeeieiiiiiin.. 130
SAMOT-Main Module: Core Router ..., 131
SAMOT-Main Module: Softswitch System ..., 132

vi

Figure A-1.6 SAMOT-Main Module: LAN Switchcccoooooiiiii, 133

Figure A-1.7 SAMOT-Main Module: Edge Server 1cccciiii 134
Figure A-1.8 SAMOT-1:1 Redundancy Module: SoftSwitch 135
Figure A-1.9 SAMOT-1:1 Redundancy Module: LAN Switchccccooooeiiiiiiin 136
Figure A-1.10 SAMOT-1:1 Redundancy Module: Edge Server 1 137
Figure A-2.1 Markov Analysis Summary Democccoceeiiiiiiiiini e 138

vil

INTEGRATED RELIABILITY AND AVAILABILITY ANALYSIS OF NETWORKS

WITH SOFTWARE FAILURES AND HARDWARE FAILURES

Wei Hou

ABSTRACT

This dissertation research attempts to explore efficient algorithms and engineering
methodologies of analyzing the overall reliability and availability of networks integrated
with software failures and hardware failures. Node failures, link failures, and software
failures are concurrently and dynamically considered in networks with complex
topologies. MORIN (MOdeling Reliability for Integrated Networks) method is proposed
and discussed as an approach for analyzing reliability of integrated networks. A
Simplified Availability Modeling Tool (SAMOT) is developed and introduced to
evaluate and analyze the availability of networks consisting of software and hardware
component systems with architectural redundancy. In this dissertation, relevant research
efforts in analyzing network reliability and availability are reviewed and discussed,
experimental data results of proposed MORIN methodology and SAMOT application are
provided, and recommendations for future researches in the network reliability study are

summarized as well.

viil

CHAPTER 1

INTRODUCTION

1.1 Background

The focus of reliability theory studies is the overall performance of a system comprising
failure-prone elements. Typically, the components of the system are not perfect with
respect to their operation, and their underlying failure structure is assumed to follow
certain probabilistic distributions. It is therefore important to characterize the behavior of

the system in terms of the stochastic behavior of its components.

The reliability of a network is its ability to maintain operational over a period of time .
formally, the reliability R(¢) of a network is

R(t) = Pr (the network is operational in [0, #]}
Another measure often used for the analysis of networks is availability. The availability
of a network is often expressed as the instantaneous availability A(t) and/or the steady-
state availability (i.e., lim,,A(?)). The A(¢) is defined as the probability that a system is
operational at time ¢. It allows one or more failures to have occurred during the interval
[0, £]. If a system is not repairable (e.g., a spaceship), the definition of 4(¢) is equivalent
to R(?). Dependability is used as a catch-call phrase for various measures such as

reliability, availability etc.

Network reliability is concerned with the interconnectivity of various elements in the
form of network, or graph, as exemplified by telecommunication, distribution, and
computer networks. For example, the nodes of a computer communication network might
represent the physical computers (servers, switches, routers, etc.) and the edges of such a
network might represent existing communication links between these nodes. Each node,
or edge, or group, or the network can be either operational or failed. Operational in this
case means that a specific sender and specific receiver are able to communicate over

certain network links, while failure means no complete transmission path is available.

Not only are the reliabilities of individual components of importance, but also the manner
in which they are arranged can have a significant effect on the overall dependability
performance of the system. For instance, Moore and Shannon [19] configured unreliable

components through the use of redundancy to obtain a reliable (high available) system.

The challenge of determining the reliability of a complex system, whose components are
subject to failures, has received considerable attention in the engineering, operations
research, and statistical literature. Networks have become widely used for modeling

complex systems that are subject to component failures.

The earliest use of the stochastic network model was related to analyzing the effects of
component or module redundancy in a variety of electronic and mechanical systems [23].
More general networks were analyzed later to determine the effect of blocking in circuit-

switched telephone systems. The study of computer communications systems generated

2

interest in networks with both node and link failures, in both undirected and directed

networks, and in measures of reliability more complex than the 2-terminal system.

In the case of probabilistic networks (where nodes and /or edges fail randomly and
independently with known probabilities), a number of measures have been explored.
Suppose a network G is directed, with s and ¢ being distinguished nodes of G. The 2-
terminal reliability Ry(G) is the probability that there exists at least one path of operating
edges in G between s and 7. The all-terminal reliability is the probability that for every
pair of nodes there is at least one path between them; equivalently, this is the probability
that the graph contains at least one spanning tree. The k-ferminal reliability of the
network is the probability that for k specified target nodes, the graph contains paths

between each pair of the £ nodes.

The study of network reliability can be categorized into analysis and synthesis. Typical
concern about analysis is the computational complexities. It has been shown that network
reliability problems with respect to a network with general structure are all NP-hard, for
k-terminal, 2-terminal, all-terminal in undirected networks, and all-terminal in directed
networks [4, 17]. Synthesis problem focuses on finding a network topology that satisfies

certain deterministic or probabilistic criteria.

Past research in the network reliability field [3, 8-10, 27-30] has focused mainly on
networks with perfect nodes and unreliable links. Some of the literatures [2, 5-7, 13-16]

have also discussed situations where nodes are subject to failures. However, very few

3

publications on network reliability field have been found developing the concomitant

analysis of both software failures and hardware failures in network nodes [31-32].

1.2 Objectives of Research

This dissertation aims to develop efficient approaches to analyze the reliability and
availability of networks integrated with node failures, link failures, and software failures.
Modeling Reliability for Integrated Networks (MORIN) approach will be proposed and

illustrated in Chapter 5 and 7.

Designing handy modeling tools to facilitate the reliability and availability analysis and
synthesis is also one of the research objectives to tackle practical network availability
problems where integrated systems are subject to hardware failures and software failures,
and architectural redundancies are usually deployed at the board level, system level. A
Simplified Availability Modeling Tool (SAMOT), which incorporates Markov Analysis
and Reliability Block Diagram (RBD) methodologies, is to be developed to address

practical network reliability and availability issues, as described in Chapter 6 and 7.

The most common software failure models (such as Jelinski and Moranda model) are to

be discussed and applied in computational experiments of the proposed approaches.

1.3 Motivation of Research

The study of network reliability is of singular importance due to its clear applicability to
computer networks, communication systems, and distribution systems. In certain
situations, improving network reliability and availability can be more important than
reducing the system cost, especially for mission-critical systems. Reliability analysis can
be applied to a variety of practical systems, ranging from large-scale telecommunication

system, transportation system, and mechanical system, to integrated circuit boards.

Network reliability is characterized by success of at least one path between two specified
nodes. Most of the available researches assume that the nodes of the network are
perfectly reliable. However, in a practical communication network or computer network,
nodes are also subject to failures with certain probabilities thus under such circumstance
reliability evaluation that assumes perfect nodes is not realistic. The evaluation procedure
or results are quite complicated and expensive, even for moderately sized networks. So it

is quite necessary to develop some simple and efficient approaches.

Major network failures are essentially of three types:

e Node failure due to equipment breakdown or equipment damage resulting from an
event such as an accidental fire, flood, or earthquake; as a result, all or some of
the communication links terminating on the affected node may fail.

e Link failure due to inadvertent fiber cable cut; despite increased network care and
maintenance efforts, the link between one telecommunication office or computer

server and the other still fails frequently due to ubiquitous construction activities.

5

e Software failure that can impact a large portion of the given network, and is, in

general, hard to identify and recover from.

Network failures may arise because the routing algorithm is unable to detect a functional
route, although one exists. Failures may also arise because the flow control algorithm
causes the network to be flooded with traffic, resulting in network failure due to overload.
Both events are caused by software control to the network, rather than by topological
considerations. In modern information age, software failures, which are shown as traffic
congestion, protocol deadlock etc, are very common. Nowadays, software is carrying
various types of information and performs more functions, and software reliability is
becoming the dominant driver of reliability for complex systems. In a large portion of
computer and telecommunication networks, software failures cause more down time than
hardware failures do. Software driven outages have been reported to exceed hardware
outages by a factor of 10 [11]. Software errors often manifest themselves as network
congestion that is quite different from the congestion that arises from hardware failures or
traffic overloads. For instance, hardware failures cause congestion by decreasing the
number of resources in the network. On the other hand, software errors dramatically

decrease the efficiency of network resources used.

During the network operation, failures or errors can also be resulted from changes in the
physical state or damage to hardware. Physical changes may be triggered by
environmental factors such as fluctuations in temperature or power supply voltage, static

discharge. Transient states can be caused by design errors in hardware or software. The

6

outages of network operation were reported being relatively evenly distributed among
hardware, software, maintenance actions, operations, and environment. Table 1.1 depicts

the distribution of outages from six different studies [75].

Table 1.1 Probabilities of Operational Outages by Various Causes

AT&T Japanese
Causes Switching Systems Bellcore Commercial ~ Tandem Nortel Mainframe
of Outages [Toy, 1978] [Ali, 1986] Users [Gray, 1987] Networks Users
Hardware 0.20 0.26 0.25 0.19 0.19 0.45
Software 0.15 0.30 0.25 0.43 0.19 0.20
Maintenance --- - 0.25 0.13 - 0.05
Operations 0.65 0.44 0.12 0.13 0.33 0.15
Environment --- --- 0.13 0.12 0.28 0.15

Note: Dashes indicate that no separate value was reported for that category in the cited study

A lot of research has focused on hardware reliability and software reliability studies.
Hardware reliability has reached a nearly mature status and various well-developed
hardware reliability techniques have been widely and successfully applied. In the area of
software, considerable advances have been made in software reliability modeling,
software defect avoidance, software fault-tolerance, and software defect removal
(testing). However, this does not solve the reliability problem for network with hardware
failures and software failures in a comprehensive way nor does it reveal their inherent
relationships. Hence a logic step is to develop appropriate approaches for systems with
integrated hardware and software reliability. A number of efforts [78-80] have helped to

preliminarily understand the combined hardware-software system reliability.

Analyzing the hardware and software separately by simplifying the system without
failures due to interface software might lead to inaccurate estimate of the system
reliability [33]. A stochastic process is a mathematical model for description of a
probabilistic nature as a function of a parameter that usually has the meaning of time. The
set of possible values of the function is the state space of the random variable. The
property of a Markov process defines a stochastic process for which the behavior in the
future depends only on the present situation, not on the past history. Markov processes
with a discrete state space are called Markov chains. Markov chains are accurate, but the
state space will explore for large sized networks. Fault tree models can help making
accurate analysis, but it is hard to deploy in a real network due to the complex topological

relationship between numerous nodes and links.

A comprehensive approach for network reliability analysis has to be developed for
practical networks with unreliable components, where link hardware failures, node

hardware failures, and node software failures coexist.

14 Overview of Research

This dissertation consists of eight chapters. Chapter 2 reviews past relevant researches in
the area of network reliability, including the application of Petri net (PN) and Colored
Petri nets (CPN) in modeling and analyzing the network reliability. Chapter 3 defines and
formulates the problem. The most common used approaches for calculating network

reliability are introduced in Chapter 4. The proposed approach, namely, MORIN

(MOdeling Reliability for Integrated Networks) is discussed in Chapter 5. Chapter 6
introduces the Simplified Availability Modeling Tool (SAMOT), which incorporates the
Markov analysis and RBD methodologies, to model reliability and availability for end-to-
end network with system redundancies. Chapter 7 illustrates the MORIN methodology
and SAMOT with some examples and numerical experiment results of practical network
reliability problems. Chapter 8 summarizes the research and provides recommendations

for future researches in the network reliability and availability area.

CHAPTER 2

LITERATURE REVIEW

Network reliability and availability researches have made remarkable progress and
development in both academic researches and industrial applications. The development
of telecommunication systems dates back to the last century with the development of
telegraph, telephone, and the transmission, switching and signaling systems supporting
them. The forerunner of the internet, the computer communication network ARPAnet
was originated in 1969 when the US Department of Defense Advanced Research Projects
Agency (ARPA) initiated experiments in resource sharing. Convergence of the two
technologies has now occurred with the development of integrated digital networks to
support multimedia applications involving voice, data, images and video. The application
area covers a vast range of systems embodying traditional telecommunication systems
and computer networks, is of utmost importance in the development of new and advanced

information systems and services, while maintain or achieve high network availability.

Reliability and availability for integrated networks are becoming vitally important to the

global economy. The consequences of failure of the information infrastructure range from

minor annoyance to major disruption. It is therefore very important to design and

10

engineer high available integrated networks according to efficient algorithms, optimized
methodologies, rigorous standards, and customer requirements.

Any communication network, computer network, or distributed systems can be modeled
as a graph, wherein each node is a switch, computer, or processing entity with its own
memory and peripherals, and links are communication lines between nodes. Such a
system graph is used in reliability analysis. Moreover, a fault-tree or reliability logic
diagram of the system has also been considered. Fault-tree basically translates a physical
system into a structured logic diagram and is constructed using the event and logic
symbols. In a fault tree, pre-specified causes lead to certain top events of interest. Top
events are obtained from a preliminary hazard analysis and usually are undesired system

states that could occur as a result of subsystem functional faults.

The reliability block diagram (RBD), on the other hand, shows the functional
relationships among resources and indicates which system elements must operate to
accomplish the intended function successfully. It should be noted that the RBD is
different from the system graph that simply depicts the physical relationship of the
system elements. In logic diagrams, if two components must simultaneously function to
achieve system success, the blocks representing these corresponding components are

shown in series, whereas parallel blocks represent functionally redundant components.

In network analysis, the reliability graph and the system graph could be used

interchangeably. Nonetheless, the reliability graph has a probability of operation

11

associated with each node and with each link. Usually the following basic assumptions
are used for the reliability analysis:
e All the elements (nodes and/or links) are always in active mode (no standby or
switched redundancy) except stated
e Each element can be represented as a two-terminal device
e The state of each element and of the network is either good (operating) or bad
(failed)
e The states of all elements are statistically independent
e The network is free from directed cycles and self-loops, as the success or failure
of branches in a directed cycle or self-loop do not alter the terminal reliability

These assumptions are helpful in making the model tractable.

Computer communication networks have evolved in recent years to cope with a massive
demand for the information transmission. The interconnection of severs or terminals is
achieved by a backbone network. Failures of a LAN (local access network) will affect
communications for only a few terminals or end-users, which is not catastrophic.
However, backbone failure is usually interpreted as a catastrophic event. Thus most
researches in reliability assessment have focused on the synthesis and analysis of reliable

backbone network.

12

2.1 Reliability Studies for Networks with Unreliable Links and Perfect Nodes

Most mathematical models for network reliability assume that the network is represented
by a graph whose nodes are perfectly reliable and whose edges fail according to some
known probabilistic model. There are some traditional approaches to calculate the

reliability of networks with unreliable links only [1, 17], as described in Chapter 4.

2.2 Reliability Studies for Networks with Unreliable Nodes and Perfect Links

2.2.1 Residual Node Connectivity Model
The oldest and most extensively studied model dealing with the case where nodes fail but
links are perfectly reliable is the “residual node connectivity model”- first introduced by
Frank [43-45]. The network is represented by a simple (no self-loops or parallel links)
undirected graph G with node set V and link set E containing 2-element subsets of V. If
some sets of nodes fail, these nodes and their incident links are removed from G. The
remaining sub-graph is induced by the surviving nodes W, and is denoted by <W>. The
links of <W> are those links from E having both endpoints in W. If <W> is connected,
the network is operational, and W is an operating state. A reliability function, residual
node connectedness reliability, is

R,(G, p) = P(network is operational)
Where p is the vector of p,. If for all nodes, p, = p, then use R,(G, p) or R,. If in additional

all nodes operate s-independently of each other, then

R(G.p)= Y 8,p (1 p)" @.1)

i=1
Where S; is the number of connected induced sub-graphs of G having exactly i nodes.

13

There is an immediate analogy of R, to the traditional link-failure model where a
reliability function for equal link-probabilities is expressed similarly to (2.1) in terms of
the number of spanning connected sub-graphs having exactly 7 links. The coefficients of
the link and node reliability functions can also be defined in terms of link cuts or node
cuts respectively. It has been determined that calculating R, is NP-Hard for link failures.
However, there are special classes of graphs that admit efficient algorithms for

determining R, [46].

With regard to the synthesis of optimal networks, an important concept is a uniformly
optimal network, which has a reliability function that is maximal for all values of p over
all networks with the same number of nodes and links. In both the link and node cases,
uniformly optimal networks do not always exist [47-51]. Furthermore, some results have
been found regarding networks that are optimal for sufficiently small or sufficiently large

values of p, paralleling results for the link case [47].

Unfortunately the analogy between the link reliability model and the residual node

connectedness model is not complete. Indeed the node model has some disturbing

properties not shared by the link model.

The model defining R, assumes that every connected residual graph is acceptable

regardless of its size. Figure 2.1 shows an example that is an unusual graph.

14

The reliability function is not monotone. Making each individual node more reliable can
make the network less reliable. Non-monotone behavior is not presented in the link
reliability model. Consider any system consisting of a set E of elements and a collection
of subsets of E called operating states. If every superset of an operating state is also an
operating state, then the system is coherent. Any coherent system has (by definition) a
monotone reliability function. The system that defines R, is not coherent, and is easily
verified. Consider G in Figure 2.1, the sub-graph G-u-v is an operating state. Let node v,
which was previously failed, be operating. The new resulting induced sub-graph, G-u, is

disconnected since v is isolated. Thus G-u-v is an operating state but G-u is not.

e Ifboth u and v fail, the state is operating

\ o If only u fails, the state is failure (not
coherent)

o Ifall nodes except u and v fail, the state

G is operating

Figure 2.1 Residual Node Connectedness Reliability Model

The above approach is traditional in the sense that it models network inoperability due to
node failure as being caused by node-cuts. This is the direct analog of the link-failure
model that uses link-cuts. A few other probabilistic models for studying network
vulnerability due to node failure have been introduced. The concept of using the s-
expected number of node pairs that are connected by a path as a measure of
invulnerability was introduced by Amin et al/ [52-53]. This serves as a reasonable
approach to the study of graceful and catastrophic degradation of a multiprocessor

network. Since this measure is not a probability and thus not reliability, it is difficult to
15

understand how the results of this approach can be evaluated from the perspective of

reliability theory.

An important reliability measure introduced by Fotoh and Colbourn [54-55] contains
many results regarding its properties from both synthesis and analysis points of view. It is
shown that it is coherent and does not suffer from any of the defects of the residual node
connectedness reliability discussed in the foregoing. However, Fotoh and Colbourn
described a scenario for their model that a specified set K of nodes (k-terminal) are the
perfectly reliable hosts or targets that communicate via switching nodes with known
probabilities of operating. This important theory, which covers situations like radio
frequency (RF) broadcast networks, does not apply to the study of graceful and
catastrophic degradation of a multiprocessor network, because in many such networks all

nodes are subject to failures.

2.2.2 Coherent Model

As the residual node connectedness reliability model has two grievous faults, one might
initially consider that an appropriate model could be obtained by a revision of the residual
node connectedness reliability model in which only connected sub-graphs of order of at
least k are defined as operating states. Such a revision corrects the fault that small-
connected sub-graphs are considered to be operating states. However, there are two
obvious objections to the adoption of this particular revision: a). It is still not coherent in
general; b). More importantly, from the standpoint of multiprocessor networks, there is

no need to require that every collection of more that £ nodes induce a connected sub-

16

graph. The reasonable requirement is to insist that the sub-graph induced by surviving

nodes contain a component having at least k£ nodes.

Boesch et al [23] proposed a new coherent model for the problem of obtaining
appropriate models for network reliability when the nodes rather than the links are
subject to failure. For the application of reliability theory to multiprocessor networks, an
operating state is defined as any collection of surviving nodes that induces a sub-graph
that contains at least 1 component having k or more nodes. The properties of this model
are considered under the additional probabilistic assumption that the nodes fail s-
independently of each other, all with probability p. This is the k&-node operating

component reliability and denoted by, as appropriate Ro. (G, p), Roc(G), Roe®.

The model properties can be observed as,
Roc(l)(Ga p)=1-(1-p)

for every G and all p, and is trivial. Thus they concentrate on Ro."(G, p) for k> 2.

Re™(G,p)=> 4" (G)p' (1-p)"

i=1
A,(k)(G) = number of j node induced sub-graphs of G which contain a
component having at least k£ nodes.

49(G) =0 forj <k,
Oy = |7 -
4;7(G) = (_j, for j > max(k, n-k(G) + 1)
J

A5(G) = SG), ()

17

AP(G) = S(G), fork+1<j<n
The equation (*) shows that the computation of the k£ node operating component
reliability is NP-hard. Indeed if polynomial algorithms exist to calculate R,.(G) for each
1 <k <nandeach 0 <p < 1, then each 4,”(G) can be calculated in polynomial time.
However, this means each Si(G) and therefore R,(G) can be calculated on polynomial
time. But the computation of R,(G) is NP-hard, hence the calculation of Roc™(G) for all

NP-hard.

23 Reliability Studies for Networks with Unreliable Links and Unreliable Nodes

In a practical telecommunication or computer network, each component of the network is
subject to failure. There have been a few approaches proposed to analyze and evaluate

the network reliability, considering the node failures [2, 6-10, 13-15].

The methods to evaluate reliability of this type of networks can be classified as explicit or
implicit. The explicit has two steps: firstly a symbolic reliability expression presuming
perfect nodes is derived, then a special method such as AGM [2] or NPR/T [7] is applied
explicitly to the resultant expression to compensate for unreliable nodes. With implicit
method, it is unnecessary to apply a special method to account for node failures; the
procedure for computing the effect of unreliable nodes is directly embedded into the
algorithm and hence it directly computes the reliability expression with unreliable nodes.
For instance, ENR/KW [6], TPR/NF [13] and KHR [14] are typical implicit methods to

directly obtain the reliability of networks with node failures.

18

2.3.1 AGM Method

To account for node failures, the first and most commonly used method is presented by
Aggarwal, Gupta, Misra (AGM). AGM approach has been rigorously proved as a
corollary of the general theorem on complex system decomposition. There are some other
more efficient algorithms derived from it. However, the computational time of this

method increases exponentially with the number of links.

The AGM method considers each link in the network (with link-failure and node-failure
probability) as a series combination of a perfect node and the link with modified

reliability, as shown in the following figure,

O L |
Vi E

Figure 2.2 Modified Reliability for A Directed Network

In a directed network showed above, the reliability for node i is o, the reliability for link

J 1s B, the modified reliability for link j is B" = ;8.

O——1_ 0

Vi E; Vi

Figure 2.3 Modified Reliability for An Undirected Network

In the interconnecting network, a link can be traversed in both directions. The reliability
for node i is ¢, the reliability for node & is o, the reliability for link j is £, the modified

reliability for link j is B = aiouf53,.

19

As a result of the substitution, a particular ¢; could appear in a product term more than

once. It is necessary to apply an operator to each of these product terms as
C. ¢
Iles" I =[I1ex]
I I

where ¢; is the multiplicity of ;. After the traversing, all the nodes can be regarded as
perfectly reliable and any algorithms for perfect node networks can be used to derive the
reliability.

The AGM method expands each term of the reliability expression derived from perfect
nodes and replaces the variables by functions of nodes and link variables. After this
substitution, Boolean simplification might be needed. Unfortunately the computing time
and cost increase exponentially with the number of links. Furthermore, the use of
symbolic calculations rather than direct numerical ones can require prohibitively large

storage.

2.3.2 NPR/T Method

Torrieri [7] proposed the NPR/T method for calculation of Node-Pair Reliability for large
networks with unreliable nodes. In general, NPR/T is much simpler, more direct, and
more rigorously derived than AGM, and can compute the same algorithms as AGM. With
NPR/T, a set of definite concise formulas is used to capture the relationships between a
node and its associated directed links. Therefore the cost of this method rises linearly

with the number of links.

20

For undirected networks, NPR/T should transform the original undirected network into an
equivalent directed network wherein each undirected link is replaced with two directed
links in anti-parallel; however, such transformation generates s-dependent events in the
reliability computation formula and hence, can yield incorrect results for some undirected

cascs.

2.3.3 ENR/KW Method

Based on the concept of network partition, Ke and Wang [6] explored some simple
efficient techniques to handle the unreliable nodes, for directly computing the network
reliability instead of using any compensating method. The basic idea of ENR/KW is to
partition the network directly into a set of smaller disjoint subnetworks by only
considering link elements as if all nodes are perfect. Each disjoint subnetwork is
generated by maintaining a specific directed graph structure to consider the effect of
imperfect nodes. Therefore, the reliability expression for imperfect nodes can be obtained

directly from the disjoint subnetwork and the specific directed graph.

2.4 Software Models

2.4.1 Software Reliability
An important quality attribute of a network is the degrees to which it can be relied on
perform its intended function. Until 1960’s, attention was almost solely on the hardware

related research. In the early 1970’s software started becoming a matter of concern,

21

primarily due to a continuing increase in the cost of software relative to hardware, in both

development and the operation phases of the system.

Since software is produced by human beings in a large extent, the finished product is
often imperfect in the sense that a discrepancy exists between what the software can do
versus that the user or the environment wants it to do. The computing environment refers
to the physical machine, operating system, compiler and translator utilities, etc. These
discrepancies are called software faults. Basically, software faults can be attributed to
ignorance of the user requirements, to ignorance of rules of the computing environment,
to poor communication of software requirements between the user and the programmer,
or poor documentation of the software by the programmer. Even if we know that

software contains faults, we generally do not know their exact identity.

There are two approaches to indicate the existence of software faults: program proving
and program testing. Program proving is formal and mathematical while program testing
is more practical and heuristic. The approach taken in program proving is to construct a
finite sequence of logical statements ending in the statement, usually the output
specification statement, to be proved. Each of the logical statements is an axiom or is a
statement derived from earlier statements by the application of an inference rule. Program
proving by using inference rules is known as the inductive assertion method [56]. Other
work on program proving is on the symbolic execution method that is the basis of some

automatic program verifiers. Despite the formalism and mathematical exactness, program

22

proving is still imperfect tool for verifying program correctness. It is showed several
programs that were proved to be correct but still contained faults [57].
However the faults were due to failures in defining what exactly to prove and were not

failures of the mechanics of the proof itself.

Program testing is the symbolic or physical execution of a set of test cases with the intent
of exposing embedded faults in the program. A given testing strategy may be good for
exposing certain kinds of faults but not for all possible kinds of faults in a program. An
advantage of testing is that it can provide useful information about a program’s actual
behavior in its intended computing environment, while proving is limited to conclusions

about the program’s behavior in a postulated environment.

In practice neither proving nor testing can guarantee complete confidence in the
correctness of a program. Each has its advantages and limitations and should not be
viewed as completing tools. Thus a metric is needed to reflect the degree of program
correctness and plan and control additional resources needed for enhancing software
quality. One such quantifiable metric of quality is called software reliability. A
commonly used approach for measuring software reliability is via an analytical model
whose parameters are generally estimated form available measures are then computed

from the fitted model.

23

2.4.2 Software Reliability Models
A number of analytical models have been proposed to address the problem of software
reliability measurement. These approaches are based mainly on the failure history of

software and can be classified according to the nature of the failure process.

24.2.1 Time Between Failures Models
This is one of the earliest classes of models proposed for software reliability assessment.
When the interest is in modeling times between failures, it is expected that the successive

failure times will get longer as faults are removed from the software system.

A number of models have been proposed to describe such failures. The most common
approach is to denote the time between the (i-1)st and the ith failures with a random
variable 7;. Basically the models assume that 7; follows a known distribution whose
parameters depend on the number of faults remaining in the system after the (i-1)st
failure. The assumed distribution is supposed to reflect the improvement in software
quality as faults are detected and removed from the system. Another approach is to treat
the failure times as realizations of a stochastic process and use an appropriate time-series
model to describe the underlying failure process. The key models in this class are

described below.

e Jelinski and Moranda (JM) De-Eutrophication Model
This is one of the earliest and probably the most commonly used model for assessing

software reliability. It assumes that there are N software faults at the start of testing, each

24

is independent of each other and is equally likely to cause a failure during testing. A
detected fault is removed with certainty in a negligible time and no new faults are
introduced during the debugging process. The software failure rate, or the hazard
function, at any time is assumed to be proportional to the current fault content of the
program, which is,

Z(t) = AN - (i-1)]
Where @ is a proportionality constant. This hazard function is constant between failures
but decreases in steps of size @ following the removal of each fault. A typical plot of the

hazard function for N =100 and @= 0.02 is shown in Figure 2.4.

1.0

0.98—

0.96]

) | <>

0.94)
0.92[ly

| | | |
0.90

Cumulative Time

Figure 2.4 A Typical Plot of Z(#;) for the J]M Model (N = 100, ® = 0.02)

A variation of the above model was proposed by Moranda [58] to describe those testing
situations where faults are not removed until the occurrence of a fatal one at which time
the accumulated group of faults is removed. In such a situation, the hazard function after
a restart can be assumed to be a fraction of the rate that attained when the system crashed.
For this model, called the geometric de-eutrophication model, the hazard function during

the ith testing interval is given by
25

Z(t;) = DK™

Where D is the fault detection rate during the first interval and £ is a constant (0 < £ <1).

e Schick and Wolverton (SW) Model
This model is based on the same assumptions as the JM model that except the hazard
function is assumed to be proportional to the current fault content of the program as well
as to the time elapsed since the last failure. The hazard function is given by

Z(t) = O{N- (- D]}t

The above hazard rate is linear with time within each failure interval, returns to zero at
the occurrence of a failure and increases linearly again but at a reduced slope, the
decrease in slope being proportional to @. A typical behavior of Z(¢;) for N = 150 and

@=0.02 is shown in follow Figure 2.5.

75
50
()
23
t —= —> 4 y
V2V | | |
0 20 40 60 80 100

Cumulative Time

Figure 2.5 A Typical Plot of Z(#;) for the SW Model (N = 150, @=0.02)

A modification of the above model was proposed by Schick and Wolverton [59] whereby
the hazard function is assumed to be parabolic in test time and is given by

26

Z(t) = DIN— (i — D](-ati + b t; +¢)
Where a, b, ¢ are constants and the other quantities are as defined as above. This function
consists of two components. The first is basically the hazard function of the JM model
and the superimposition of the second term indicates that the likelihood of a failure
occurring increases rapidly as the test time accumulates within a testing interval. At

failure times (¢; = 0), the hazard function is proportional to that of the JM model.

¢ Goel and Okumoto Imperfect Debugging Model
The above models assume that the faults are removed with certainty when detected.
However that is not always true. Goel and Okumoto [60-61] proposed an imperfect
debugging model which is basically an extension of the JM model. In this model, the
number of faults in the system at time #-X() is treated as a Markov process whose
transition probabilities are governed by the probability of imperfect debugging. Times
between the transition of X(7) are taken to be exponentially distributed with rates
dependent on the current fault content of the system. The hazard function during the

interval between the (i-1)st and the ith failures is given by

Z(t) = [N—-p(i-1)]4
Where N is the initial fault content of the system, p is the probability of imperfect

debugging, and A is the failure rate per fault.

27

e Littlewood-Verrall Bayesian Model
Littlewood and Verall [62-63] took a different approach to the development of a model
for times between failures. They argued that software reliability should NOT be specified
in terms of number of errors in the program. Specifically they assumed the times between
failures follows an exponential distribution but the parameter of this distribution is treated

as a random variable with a gamma distribution, which is:

v (D12, e
INa

f(t, [2,) =A™ and f(4, |a,p()) =

where y(i) describes the quality of the programmer and the difficulty of the programming
task. It is claimed that the failure phenomena in different environments can be explained

by this model by taking different forms for the parameter yAi).

2422 Failure Count Models

This class of models is concerned with modeling the number of failures seen or faults
detected in given testing intervals. As faults are removed from the system, it is expected
that the observed number of failures per unit time will decrease. If this is so, then the
graph of the cumulative number of failures versus time will eventually level off. The time
interval may be fixed a priori and the observed number of failures in each interval is

treated as a random variable.

Several models have been suggested to describe such failure phenomena. The basic idea
behind most of these models is that of a Poisson distribution whose parameter takes on

different forms for different models. It should be noted that Poisson distribution has been
28

found to be an excellent model in many fields of application where interest is in the

number of occurrences.

e Goel-Okumoto Nonhomogeneous Poisson Process Model
Goel and Okumoto [64] assumed that a software system is subject to failures at random
times caused by faults present in the system. Letting N(¢) be the cumulative number of
failures observed by time ¢, they proposed that N(¢) can be modeled as a nonhomoge-
neous Poisson process, i.e., as a Poisson process with a time dependent failure rate. Based

on their study of actual failure data from many systems, they proposed the model as

P{N(t)=y} = (m(y—?)ye‘"’“) y=0,1,2, ...

where mt)=a(l—e™) and A{l)=m'(t)=abe™

m(?) is the expected number of failures observed by time ¢ and the failure rate. a is the
expected number of failures to be observed eventually and b is the fault detection rate per
fault. This is a fundamental departure from the other models which treat the number of

faults to be a fixed unknown constant.

e Goel Generalized Nonhomogeneous Poisson Process Model
Most of the times between failures and failure count models assume that a software
system exhibits a decreasing failure rate pattern during testing. In other words, they
assume that software quality continues to improve as testing progresses. In practice, it has

been observed that in many testing situations, the failure rate first increases and then

29

decreases. In order to model this increasing/decreasing failure rate process, Goel [65-66]

proposed the following generalization of the Goel-Okumoto NHPP model.

PNy =y =m0 12,

m(t)=a(l—e™)
where a is expected number of faults to be eventually detected, and b and ¢ are constants

that reflect the quality of testing. The failure rate for the model is given by
A(t) =m'= abce™ t
e Musa Execution Time Model
In this model Musa [67] makes assumptions that are similar to those of JM model except

that the process modeled is the number of failures in specified execution time intervals.

The hazard function for this model is given by

z(7) = Of(N — n.)
where 7is the execution time utilized in executing the program up to the present, fis the
linear execution frequency (average instruction execution rate divided by the number of
instruction in the program), @ is a proportionality constant, which is a fault exposure
ratio that relates fault exposure frequency to the linear execution frequency, and 7. is the

number of faults corrected during (0, 7).

30

One of the main features of this model is that it explicitly emphasizes the dependence of
the hazard function on execution time. Musa also provides a systematic approach for

converting the model so that it can be applicable for calendar time as well.

e Shooman Exponential Model
This model is essentially similar to the JM model. For this model the hazard function is

of the following form
N
z(t) = k[7 —n.(7)]

Where ¢ is the operating time of the system measured from its initial activation, / is the
total number of instructions in the program, 7 is the debugging time since the start of
system integration, n.(7) is the total number of faults corrected during 7, normalized with

respect to 7, and & is a proportionality constant.

e Generalized Poisson Model
This is a variation of the NHPP model of Goel and Okumoto and assumes a mean value
function of the following form,
m(t;) = AN - M; 1) 1"
where M;_; is the total number of faults removed up to the end of the (i — 1)st debugging

interval, @ is a constant of proportionality, and « is a constant used to rescale time .

e [BM Binomial and Poisson Models

31

Brooks and Motley [68] consider the fault detection process during software testing to be
a discrete process, following a binomial or a Poisson distribution. The software system is
assumed to be developed and tested incrementally. They claim that both models can be

applied at the module or the system level.

2423 Fault Seeding Models

In fault seeding models, a known number of faults is seeded (planted) in the program.
The number of exposed seeded and indigenous faults is counted after testing. Using
combinatorics and maximum likelihood estimation, the number of indigenous faults in

the program and the reliability of the software can be estimated.

e Mills Seeding Model
The most popular and most basic fault seeding model is Mills’ Hypergeometric model
[69]. This model requires that a number of known faults are randomly seeded in the
program to be tested. The program is then tested for some amount of time. The number of
original indigenous faults can be estimated from the number of indigenous and seeded

faults uncovered during the test by using the hypergeometric distribution.

Lipow [70] modified this problem by considering probability of finding a fault, of either
kind, in any test of the software. Then for statistically independent tests, the probability
of finding given numbers of indigenous and seeded faults can be calculated. In another
modification, Basin [71] suggested a two stage procedure with the use of two

programmers to estimate the number of indigenous faults in the program.

32

2424 Input Domain Based Models

The basic approach in the input domain based models is to generate a set of test cases
from an input (operational) distribution. Because of the difficulty in estimating the input
distribution, the various models in this group partition the input domain into a set of
equivalence classes. An equivalence class is usually associated with a program path. The
reliability measure is calculated from the number of failures observed during symbolic or

physical execution of the sampled test cases.

e Nelson Model
In this input domain based model [72], the reliability of the software is measured by
running the software for a sample of # inputs. The n inputs are randomly chosen from the
input domain set £ = (E;: i =1, ..., N) where each E; is the set of data values needed to
make a run. The random sampling of # inputs is done according to a probability
distribution P;; the set (P;: i = 1, ...N) is the operational profile or simply the user input

distribution. If n, is the number of inputs that resulted in execution failures, then an

. . = n .
unbiased estimate of software reliability R =1——=. The test set used during the
n

verification phase may not be representative of the expected operational usage.

¢ Ramamoorthy and Bastani Model
Ramamoorthy and Bastani [73] concerned the reliability of critical, real-time, process
control programs where no failures should be detected during the reliability estimation

phase, so that the reliability estimate is 1. Thus the important metric of concern is the

33

confidence in the reliability estimate. This model provides an estimate of the conditional
probability that the program is correct for all possible inputs given that it is correct for a
specified set of inputs. The basic assumption is that the outcome of each test case
provides at least some stochastic information about the behavior of the program for other

points that are close to the test points. A main result of this model is

P{program is correct for all points in [a, a + V]

| it is correct for test cases having successive distances x;,j =1, ... , n-1}

n—1
v 2

—Ax.
=1 1+e g

=€
where A is a parameter which is deduced from some measure of the complexity of the

source code.

Unlike other sampling models, this approach allows any test case selection strategy to be
used. Hence, the testing effort can be minimized by choosing test cases which exercise
error-prone constructs. However, the model concerning the parameter A needs to be

validated experimentally.

2.5 Petri Nets in Reliability Analysis of Integrated Networks

2.5.1 Introduction of Petri Nets
Petri nets were originally introduced by C.A. Petri in his seminal PhD thesis in 1964, for

the study of the qualitative properties of systems exhibiting concurrency and

34

synchronization characteristics. Although many other models of concurrent and
distributed systems have been developed since then, Petri nets are still a central model for
concurrent systems with respect to both the theory and applications. They are often used
as a yardstick for other models of concurrency. The performance evaluation of
communication systems and flexible manufacturing systems, resource allocation
problems in information processing systems, communication protocols, production
control and process synchronization can be cited as examples of Petri nets applications.
This diversity of application has encouraged the study of Petri net theory and both the

theory and the applications of this model have been flourishing [90-96] in last decade.

One of the main attractions of Petri nets is the way in which the basic aspects of
concurrent systems are identified both conceptually and mathematically. The ease of
conceptual modeling (based also on a natural graphical notation) makes Petri nets the
model of choice in many applications. The natural way in which Petri nets allow to
formally capture many of the basic notions and issues of concurrent systems contributed

greatly to the development of a rich theory of concurrent systems based on Petri nets.

2.5.1.1 Evolution of Petri Net Models
The first nets were called Condition/Event Nets (CE-nets). This net model allows each
place to contain at most one token — because the place is considered to represent a
Boolean condition, which can be either true or false. In the following years a large

number of people contributed to the development of new net models, basic concepts, and

35

analysis methods. One of the most notable results was the development of Place/

Transition nets (PT-nets). This net model allows a place to contain several tokens.

For theoretical considerations, CE-nets are more tractable than PT-nets, and much of the
theoretical work concerning the definition of basic concepts and analysis methods has
been performed on CE-nets. A new net model called Elementary Nets (EN-nets) was
proposed later. The basic ideas of this net model are very close to those of CE-nets — but
EN-nets avoid some of the technical problems that turned out to be presented in the

original definition of CE-nets.

PT-nets were used for practical applications. But this net model was often too low-level
to cope with the real-world applications in a manageable way, and different researchers
started to develop their own extensions of PT-nets — adding concepts such as priority
between transitions, time delays, global variables to be tested and updated by transitions,
zero testing of places etc. In this way a large number of different net models were
defined. However, most of these net models were designed with a single, and often very
narrow application area in mind. Although some of the net models could be used to give
adequate descriptions of certain systems, most of the net models possessed almost no
analytic power. The main reason was the large variety of different net models. So it is a
difficult task to translate an analysis method developed for one net model to another.
The breakthrough with respect to this problem came when Predicate/Transition Nets
(PrT-nets) were presented. PrT-nets were the first kind of high-level nets which were

constructed without any particular application area in mind. PrT-nets form a

36

generalization of PT-nets and CE-nets and can be related to PT-nets and CE-nets in a
formal way. This makes it possible to generalize most of the basic concepts and analysis

methods that have been developed for these net models.

However, PrT-nets present some technical problems when the analysis methods of place
invariants and transition invariants are generalized. It is possible to calculate inviriants
for PrT-nets, but the interpretations of the invariants is difficult and must be done with
great care to avoid erroneous results. The problem arises because of the variables which
appear in the arc expressions of PrT-nets. These variables also appear in the invariants,
and to interpret the invariants it is necessary to bind the variables, via a complex set of
substitution rules. The first version of Colored Petri Nets (CPN') was defined to
overcome this problem. The main ideas of this net model are directly inspired by PrT-
nets, but the relation between a binding element and the token colors involved in the
occurrence is now defined by functions and not by expressions as in PrT-nets. This

removes the variables, and invariants can be interpreted without problems.

Colored Petri nets (CP-nets) have two different representations. The expression
representation use arc expressions and guards, while the function representation use
linear functions between multi-sets. Moreover, there are formal translations between the
two representations. The expression representation is nearly identical to PrT-nets, while
the function representation is nearly identical to CPN. Most of the practical applications
of Petri nets use either PrT-nets or CP-nets although several other kinds of high-level nets

have been proposed. The main difference between PrT-nets and CP-nets are hidden

37

inside the methods to calculate and interpret place and transition invariants. So PrT-nets
and CP-nets are viewed as two slightly different dialects of the same language due to

very little difference between them.

Several other classes of high-level nets include algebraic nets, CP-nets with algebraic
specifications, many sorted high-level nets, numerical Petri nets, OBJSA nets, PrE-nets
with algebraic specifications, Petri nets with structured tokens and relation nets. All these
net classes are quite similar to CP-nets but use different inscription languages. The
functional programming language Standard ML has been developed at Edinburgh
University and is used for the inscriptions of CP-nets. It is also one of the programming

languages used in the implementation of the CPN tools described in section 2.5.3.

“Petri nets” is a generic name for a whole class of models that can be divided into three
main layers. The first layer is the most fundamental and is especially well suited for a
thorough investigation of foundational issues of concurrent systems. The basic model is
that of elementary net systems or EN-nets [110-112]. For modeling real-life systems of
nontrivial size, elementary net systems may explode in size and become much too large
to be managed effectively. The second layer allows one to collapse the repetitive features
of elementary net systems in order to get more compact representations. The basic model
here is place/transition systems or PT-nets [113-114]. Finally, the third layer is that of
high level nets, where one uses essentially algebra and logic to yield compact nets
suitable for real-life applications. Colored Petri nets [103] and predicate/transition nets
(PrT-nets) [115] are the best known high-level models.

38

In the framework of EN systems, a concurrent system is seen as consisting of local states,
local transitions (between local states), and the neighborhood relationship between the
local transitions and the local states. The global state of a system (its configuration) is
simply the collection of all local states that concurrently hold. The extent of change
caused by a (local) transition is fixed and is restricted to the neighborhood of the
transition; it does not depend on the part of the global state that is outside the
neighborhood. This simple and elegant setup lends itself to a nice graphical

representation of both the static structure of the system and its dynamic behavior.

The EN system model has resulted from a number of modifications of the basic system
model called Condition/Event Systems, or CE-nets. The most significant difference is
that CE-nets transitions can also be reserved, recovering in this way the history of the

system. An EN system can also be viewed as a special case of a PT-net.

For many practical applications, the execution time and/or stochastic processes need to be

considered. This leads to timed and stochastic Petri nets.

25.1.2 Definitions of Petri Nets
Petri net definitions have a “static” part and a “dynamic” part. The former describes net
topology and a momentary marking. The latter describes the movement of tokens in time

via a switching (or firing) rule.

39

A Petri net is a bipartite directed graph. It consists of two types of nodes: places (drawn
as circles), which can be marked with tokens (drawn as bold face dots), and transitions
(drawn as squares), which are marked by the (random or deterministic) time, D by which
they delay the output of tokens. If D = 0, the transition is called immediate; otherwise it is
called timed. The movement of tokens is governed by so-called firing rule. If all input
places of a transition are marked by at least one token each, then this transition is called
enabled; and after a delay D > 0 this transition switches or fires, i.e., it removes one token
from each of its input places and adds one to each of its output places. See Figure 2.6,

where place 3 (p3) is at the same time an input and an output of transition 1, ¢.

successor) places of t;

———a

Figure 2.6 Input and Output Places of A Transition

The number of tokens in a Petri net is not necessarily a constant. Tokens move along (or
through) edges at infinite speed. Figure 2.7 shows an example of a transition with 3 input

places and 2 output places.

40

[

(O ’@ g O—12 ()
| |
@ (b) Q

Figure 2.7 The Delayed Switching of A Transition; (a) prior to, (b) after switching

(a)

If a PN is initially a multigraph as shown in Figure 2.8, then it is replaced by a graph with
weighted edges where the default value is 1. The transition of Figure 2.8 is not enabled,

since p; has only one token but needs at least 2 for firing.

L9
, O . O

Figure 2.8 Replacing A Multigraph by A Graph With Weighted Edges

41

2.5.1.3 Timed Petri Nets (TPN)
One of the main attractions of Petri nets is the way in which the basic aspects of
concurrent systems are identified both conceptually and mathematically. The ease of
conceptual modeling (based also on a natural graphic notation) makes Petri nets the

model of choice in many applications.

Petri nets (PN) were originally developed and used for the study of the qualitative
properties of systems exhibiting concurrency and synchronization characteristics. The use
of PN-based techniques for the quantitative analysis of systems requires the introduction
of temporal specifications within the basic, untimed models. This fact leads to several

different proposals for the introduction of temporal specifications in PN.

The main alternatives that characterize the different proposals concern
e The PN elements associated with timing (normally either places or transitions,
but some also looked into the possibility of defining timed arcs or tokens),
e The firing semantics in the case of timed transitions (either atomic firing or
firing in three phases),
e The nature of the temporal specification (either deterministic or probabilistic),

e The conflict resolution policy.

We consider PN models that are augmented with a temporal specification by associating
a (possibly null) firing delay with transitions. The transition firing operation is assumed

to be atomic, i.e., tokens are removed from input places and put into output places with a

42

single, indivisible operation, after the transition firing delay has elapsed. The
specification of the firing delay of timed transitions is of probabilistic nature, so that
either the probability density function (pdf) or the cumulative distribution function (cdf)
of the delay associated with a transition needs to be specified. Such functions may be
general, or even degenerate, thus allowing the definition of constant (possibly null)
delays. We refer to this type of timed Petri nets as Generally Distributed Times

Transitions Stochastic Petri Nets (GDTT _SPN).

The class of TPN is however too wide to allow a simple solution of any GDTT SPN
model; so special attention are paid to two special subclasses of GDTT SPN, that have
nice property of permitting a reasonably simple representation metrics:
e Stochastic Petri Nets (SPN), where all transition firing delays are non-null and
have negative exponential pdf.
e Generalized SPN (GSPN), where immediate (null-delay) transitions are freely
mixed with timed transitions associated with exponentially distributed non-

null random firing delays.

A SPN is a GDTT_SPN in which the W function assigns to each transition an
exponential pdf. Since the exponential distribution is fully characterized by its mean
value (or by its inverse, the rate), and its memory-less characteristics makes inessential.
The definition of a SPN is SPN = (P, T, I, O, H, M,, W)

Where - (P, T, I, O, H, My) is the underlying PN system, as for GDTT SPN,

43

W: T — R is a weight function; w(t) is the rate of the exponential distribution

associated with transition t. w(t) is also called the firing rate of transition t.

The key factor that limits the applicability of SPN models is the complexity of their
analysis. The possibly very large number of reachable markings is by far the most critical
reason among many other reasons. Other aspects may however add to the model solution
complexity. One of these is due to the presence in one model of activities that take place
on a much faster (or slower) time scale than the one relating to the events that play a
critical role on the overall performance. This results in systems of linear equations which
are difficult to solve with an acceptable degree of accuracy by means of the usual
numerical techniques. On the other hand, neglecting the “fast” (or “slow”) activities may

result in models which are logically incorrect.

GSPN models comprise two types of transitions:
e Timed transitions, which are associated with random, exponentially
distributed firing delays, as in SPN, and
e Immediate transitions, firing in zero time with priority over timed transitions.
Furthermore, different priority levels of immediate transitions can be used, and weights

are associated with immediate transitions.

2.5.2 Colored Petri Nets
A Colored Petri Net (CPN) model of a system describes the states a system can get into,

and shows events which can occur and the states which will result if an event occurs for

44

each state. A CPN state is broken into a number of component states, each component
being determined by tokens in a place. Tokens can have arbitrary values determined by
their type or color. Each distinct token value can be thought of as a different colored or
shaped piece on a board game. The places are like the parts of a game board where you
can put pieces. Events are represented by transitions. They are connected to some of the
places by arcs next to which are expressions that determine the redistribution of tokens

that occurs when the event occurs.

High level Petri nets, such as CPN and SPN have the particular feature of presenting
concise and easy to understand graphical models that visualize the interactions between
the different communicating and cooperating entities of the system. The applications of
high level Petri Nets to the modeling and simulation of communication protocol has

increased in recent years [97-103].

CPNss, and especially Hierarchical CPN (HCPN)[103], are the response to the first
requirement, as they have means for modeling and specifying very large scale systems,
with their colored tokens and hierarchy constructs, folding the system description into
very compact forms. While SPNs (with its extensions, GSPNs and Deterministic SPNs)
constitute an answer to the second requirement, as they can be useful in modeling

complex system with a very high level of abstraction.

45

2.5.2.1 Advantages of Colored Petri Nets
There are three different reasons to use CPN models. First of all, a CPN model is a
description of the modeled system, and it can be used as a specification (of a system
which we want to build) or as a presentation (of a system which we want to explain). By
creating a model we can investigate a new system before constructing it. This is in
particular for networks where design errors may jeopardize reliability or be expensive to
maintain. Secondly, the behavior of a CPN model can be analyzed, either by means of
simulation (which is equivalent to program execution and program debugging) or by
means of more formal analysis methods (which are equivalent to program verification).
Finally, the process of creating the description and performing the analysis usually gives

the modeler a dramatically improved understanding of the modeled system.

There exist many different modeling languages that it would be very difficult and time
consuming to make an explicit comparison with all of them. Instead we can make an
implicit comparison by listing twelve of those properties which make CPN a valuable
language for the design, specification and analysis of many different types of systems.
Most of the advantages of CPN are subjective by nature and cannot be proved in any
formal way. Jensen [94] presented the general list of CPN advantages.

e CPNs have a graphical presentation. The graphic form is intuitively appealing.
CPN diagrams resemble many of the informal drawings which designers and
engineers make while they construct and analyze a system.

e CPNs have a well-defined semantics which unambiguously defines the behavior

of each CPN. It is the presence of the semantics which makes it possible to

46

implement simulators for CPNs, and it is also the semantics which forms the
foundation for the formal analysis methods.

e CPNs are very general and can be used to describe a large variety of different
systems. The CPN applications range from informal systems (e.g. the description
of work processes) to formal systems (e.g. communication protocols), from
software systems (e.g. distributed algorithms) to hardware systems (e.g. VLSI
chips), finally from systems with a lot of concurrent processes (e.g. flexible
manufacturing) to systems with no concurrency (e.g. sequential algorithms).

e CPNs have very few, but powerful, primitives. The definition of CPNs is rather
short and it builds upon standard concepts which many system modelers already
know from mathematics and programming languages. This means that it is
relatively easy to learn to use CPNs. However, the small number of primitives
also means that it is much easier to develop strong analysis methods.

e CPNs have an explicit description of both states and actions. This is in contrast to
most system description languages which describe either the states or the actions
but not both. At some instances it may be convenient to concentrate on the states
while at other instances it may be more convenient to concentrate on the actions.

e CPNs have a semantics which builds upon true concurrency, instead of
interleaving. The notions of conflict, concurrency and casual dependency can be
defined in a very natural and straightforward way. In an interleaving semantics it
is impossible to have two actions in the same step, and thus concurrency only

means that the actions can occur after each other, in any order.

47

e CPNs offer hierarchical descriptions. This means that we can construct a large
CPN by relating smaller CPNs to each other, in a well-defined way. The
hierarchy constructs of CPNs play a role similar to that of subroutines,
procedures and modules of programming languages, and it is the existence of
hierarchical CPNs which makes it possible to model very large systems in a
manageable and modular way.

e CPNs integrate the description of control and synchronization with the
description of data manipulation. This means that it can be seen what the
environment, enabling conditions and effects of an action are. Many other
graphical description languages work with graphs which only describe the
environment of an action — while the detailed behavior is specified separately.

e CPNs are stable towards minor changes of the modeled system. This is proved by
many practical experiences and it means that small modifications of the modeled
system do not completely change the structure of the CPN.

e CPNs offer interactive simulations where the results are presented directly on the
CPN diagram. The simulation makes it possible to debug a large model while it
is being constructed — analogously to a good programmer debugging the
individual parts of a program as he finishes them.

e CPNs have a large number of formal analysis methods by which properties of
CPNs can be proved. There are four basic classes of formal analysis methods:
construction of occurrence graphs (representing all reachable markings),
calculation and interpretations of system invariants (called place and transition

invariants), reductions (which shrink the net without changing a certain selected

48

set of properties) and checking of structural properties (which guarantee certain
behavioral properties).

e CPNs have computer tools supporting their drawing, simulation and formal
analysis. This makes it possible to handle even large nets without drowning in
details and without making trivial calculation errors. The existence of such

computer tools is extremely important for the practical use of CPNs.

Many of above listed advantages of CPNs are also valid for other kinds of high-level
nets, P/T nets, and other kinds of modeling languages. Thus CPNs must be used together
with other kinds of modeling languages to describe different aspects of the system, then

the resulting set of descriptions should be considered as complementary, not alternatives.

2.5.3 Tools for Petri Nets Applications

There have been a lot of tools for Petri Nets (PN) applications, with the development of
Petri Nets theory. The simplest PN tool shows the typical changes of state, sometimes
interpretable as the wandering of tokens and the waiting times in between. This is often
done in connection with a graphical display of the PN. Some other tools include:

e SHARPE [105]

Great SPN [106]

ESP [107]

Ultra SAN [108]

SPNP [109]

49

2.54 PN _RAIN Approach
A practical network is usually subject to node failures, link failures, and software failures,
where node failures and link failures here are viewed as failures on hardware aspect.

Each type of failure can occur concurrently, as in Figure 2.9.

e e

Figure 2.9 Sample Concurrent Events

The failure events e; and e, can occur concurrently, in the sense that they both have
concession and are independent in not having any pre or post conditions in common.
Reflecting to the network under study (refer to Chapter 3), that means node failures, link
failures, and software failures can occur concurrently in general, but two failures can not

occur at the same time among a node and its incident links.

Taking the networks described in Chapter 3 as the research object, an approach of Petri

Nets in Reliability Analysis of Integrated Networks (PN RAIN) will be introduced.

50

/ / \
{ Link failure | Node (HW) failure |
\ \ / /

\ ’ /

N / 4
'~ HW failures.__ Node(HIW/SW) failures -~

-

_-

f— .— - -

¢ : token for link failure e: token for software failure ~ #: token for node (HW) failure

Figure 2.10 States Transition of A Node in An Integrated Network

Generally there are three types of failure processes, initiated by link failures, node
failures, and software failures. Link failures represent failures associated with links
incident to the node. The three failure processes are independent and concurrent. In
Figure 2.10, there are three different colors of tokens representing three types of failures.
Each of Dy, D,, and D5 represents the firing delay of each type of token correspondingly.
In a practical network, each type of firing delay follows the stochastic distribution of link

failures, or node (hardware) failure, or software failures. Figure 2.10 represents a node in

51

an integrated network. There are four nodes in Figure 4.1, thus the node state in Figure

2.10 can replicate four times, as shown in Figure 2.11.

Figure 2.11 A Sample Bridge Network (Figure 4.1) With Node States

2.54.1 Construction of PN_RAIN Models
For all modeling languages, it takes a considerable amount of experience to become a

good and efficient CPN modeler. The construction of CPN models usually follows:

e Identify some of the most important components of the modeled system.

e Consider the purpose of the model and determine an adequate level of detail.

e Try to find good mnemonic names for objects, processes, states and actions.

e Do not attempt to cover all aspects of the considered system in the first
version of the model.

e Choose one of the processes in the modeled system and try to make an
isolated net for this process.

e Use the net structure to model control and the net inscriptions to model data

manipulations.

52

¢ Distinguish between different kinds of tokens.

e Use different kinds of color sets.

e Augment the process net by describing how the process communicates/
interacts with other processes.

e Investigate whether there are classes of similar processes.

e Combine the subnets of the individual process to a large model.

Assume we have two types of processes, N-processes (for node) and L-processes (for
link). There are four N-processes and five L-processes in a network depicted by Figure
2.11. A N-process is subject to the node (hardware) failures and software failures. Since
the failure of either hardware or software of a node will bring its incident links down, a
L-process is subject to failures of its incident nodes and link itself. Obviously node
failures, software failures and link failures follow different stochastic distributions, but
we assume same type of failure follows the same stochastic distribution in different
processes. There is only one token in each place, which means one type of failure can
only occur once among the corresponding node and its links. When any failure (by nodes

or links) transition is enabled and fired, the state of the system changes.

53

N-processes Al L-processes

(HW/SW)

D,
Dy

Dy
Dg Qg
|%/© Dy

Figure 2.12 PT-net Describing the Processes in An Integrated Network

In Figure 2.12 we have to represent the two kinds of processes by two separate subnets —
even though the N-process and L-process encounter failures in a similar way. This kind
of problem is annoying for small problem, and it may be catastrophic for the description
of a large network. Practical systems often contain components which are similar but not
identical. Using PT-nets, these components must be represented by disjoint subnets with
a nearly identical structure. So the practical use of PT-nets to describe real-world systems

has demonstrated a need for more powerful net types to describe complex systems in a

54

manageable way. The development of high level Petri nets constitutes a very significant
improvement in this respect. CP-nets (CPN) belong to the class of high-level nets.

The more compact representation has been achieved by equipping each token with an
attached data value — token color. For a given place all tokens must have token colors that
belong to a specified type. This type is called the color set of the place. The use of color

sets in CPN is analogous to the use of types in programming languages.

A CPN consists of three different parts: the net structure (i.e. the places, transitions and
arcs), the declarations and the net inscriptions (i.e., the various text strings which are
attached to the elements of the net structure). CPN ML language is used for declarations

in our study.

Now the system described in Figure 2.13 can be represented in a compact way by CPN as
in Figure 2.14. A distribution of tokens on the places is called a marking. The initial
marking is determined by evaluating the initialization expressions, i.e., the underlined
expressions next to the places. In the initial marking (Figure 2.6) there is one (L, 0)
tokens on A, B and C, while D has no tokens. Moreover, each of Fi, Fy, Fs has one
token. The marking of each place is a multi-set over the color set attached to the place.
Multi-sets allow two or more tokens to have identical token colors. We shall also allow
initialization expressions which evaluate to a single color ¢, and interpret this as if the

value was 1’c (i.e., the multi-set contains one appearance of c).

55

1’(L. 0)
P @ 1I°(L, 0)
A

(x, 1)

Color U= with N | L;
Color I = int;

Color P = product U*I;
Color E = with e; [x=L] If x=L

Var x: U; Dy Then 1°(L, i+1)
Vari: I (x, 1) Else empty

0
B Ifx=N Then I’(N,i+l)
(x, 1) Else empty

(If x=L then I’e
Else empty)

(Casexof N=>1’e|L=> 1)

Figure 2.13 CPN Describing the Failure Modes in the Integrated Network

There are some arc expressions around transitions in Figure 2.13. These expressions have
two variables, x and i, and from the declarations it can be seen that x has type U while i
has type I, e is an element of the color set E while N and L are elements of U. x and i
need to be bound to colors of the corresponding types (i.e., elements of the color sets U
and I). One possibility is to bind x to N and i to zero: then we get the binding b; = <x =
N, i = 0>. For each binding we can check whether the transition with that binding is

enabled in the current marking. For the binding b; the two input arc expressions evaluate

56

to (N, 0) and 1’e, respectively. Thus we conclude that b, is enabled. CPN contains both
case expressions and if-expressions to illustrate different possibilities, such as

“case x of N => 1’e | L => [’e”. Expressions in Figure 2.6 with an italic style are just to
show the choice functions, no special meaning in the specific system. More CPN ML

knowledge can be referred to [94, 97].

From the above experiment, it is observed that the benefits achieved by using CPN
instead of PT-nets, are very similar to those achieved by using high-level programming
languages instead of assembly languages.

e Description and analysis become more compact and manageable because the
complexity is divided between the net structure, the declarations and the net
inscriptions.

e It becomes possible to describe simple data manipulations in a much more
direct way by using arc expressions instead of a complex set of places,
transitions and arcs.

e It becomes easier to see similarities and differences between similar system
parts because they are represented by the same subnet.

e The description is more redundant and this means that there will be less errors.

Some kinds of errors become impossible or at least unlikely, e.g., it is difficult to add an
extra state for the N-processes without considering whether the same should be done for
the L-processes. It is possible to create hierarchical descriptions, i.e., structure a large

description as a set of smaller CPN with a well-defined relationship.

57

2.6 Possibilistic Reliability Functions and Fuzzy Sets Theory

Classically, reliability theory has been based upon binary structure functions and
probability theory. A binary structure function represents the deterministic relation
between the component states and the system states, while probability theory is applied to

develop the notion reliability of both components and systems.

Some obvious problems arise while applying this theory. A binary structure function
allows only two states: a perfect functioning or a complete failure. The binary structure
functions are too restrictive to model real life situations, since the concepts of failure or
functioning are not always well defined or since a binary approach is too restrictive [81].
Hence, intermediate states must be allowed to describe the more complex systems. This
is the topic of multistate structure functions that is closely related to fuzzy set theory

since many real life problems simply cannot be represented by a dichotomous model.

By allowing intermediate states, we must extend the classical notion of reliability based
on the probability of failure or functioning of a component or system. Some research

showed that probability theory is not the only possible way of representing imprecision
and uncertainty. Possibility theory and fuzzy set theory, e.g., provide useful alternatives

to the probabilistic approach of reliability.

In classical reliability, probability theory is considered as the unifying model to represent
uncertainty since classical reliability theory was developed at the early 30s and mainly

after the WWII as an application of probability theory and quality control. Later on, the
58

reliability theory became a new, mainly a probabilistic field of interest. At that time, non-
probabilistic uncertainty models were not available or at least not very popular. The
confidence that the system will function properly at a certain level is classically defined
in a probabilistic way, and leads to the well-known definition that the reliability of a

system is the probability that the system functions during a certain time period.

On the other hand, some important deficiencies of the probabilistic approach became
apparent in the early 60s. NASA developed alternative models to analyze the reliability
aspects of the Saturnus V missile, since a classical approach failed. There were some
reasons why a probabilistic approach was not successful. There was, e.g., an
accumulation of errors due to the lack of sufficient statistical information about the
failure aspects of the components, hence, there was an overestimation of the probability
of failure. A qualitative approach was more appropriate. Since the introduction of fuzzy
sets and possibility theory, new tools became available to model uncertainty. They are
more qualitative by nature and can therefore be applied to situations where a quantitative

approach is very unlikely or even impossible.

Several recent models to solve the problems mentioned about have been proposed based
on fuzzy set theory. The fuzzy probabilities, the fuzzification of classical reliability
function, and the combination of fuzzy states and fuzzy probabilities were introduced

[82-84].

59

CHAPTER 3

PROBLEM FORMULATION

Network failures can arise in a couple of different ways. Failures may occur because the
routing algorithm is unable to detect a functional route, although one exists. Failures may
also happen if the flow control algorithm causes the network to be flooded with traffic,
resulting in network failure due to overload. Both events are caused by software control
of the network as protocols we usually mention, rather than by topological

considerations.

Failures at a topological level can result from actions by intentional attack, natural
disaster, or component wear-out. Intentional attack are purposefully selected to damage
and inflict the network operation, comparing natural disasters are not. Typically damages
on some portion of topology is in a small region but not in random. On the other hand,
component wear-out is a random process and failures of each component are

independent.

The network reliability and availability problem to be studied is focused on practical
networks integrated with component systems where the software and hardware

subsystems in nodes and hardware of transmission links are subject to independent

60

failures, additionally the 1:1 system redundancy initiatives deployed to improve the

network high availability are also considered.

The problem needs to be formulated before proposing the approach. A stochastic network
is a graph G = (V, E), where J and E are the sets of vertices (node, V) and edges (link, E)
of G. Each node, link, group, and the network is either operational or failed. Edge failures
are mutually independent of each other with assumed or known probabilities. Nodes are
mutually independent of each other with derivable probabilities. A node is operational if
and only if both its contained software and hardware operate as intended. When a node

fails, all links incident to the node also fail.

Usually nodes are subject to hardware and software failures while links are only related
to the hardware problems. In practice, software such as control and communication
protocols are stored in servers of the network. In some cases, hardware failures are
induced by software failures. In such a situation, we assume that the hardware and
software are in series inside a node, and fail independently. So the failure of a node
results from the failure of the hardware part or the software part, or both. Software debug

is assumed to be perfect, that is, debugging does not introduce new faults.

Notations are defined as following:

s, 1 source, terminal nodes of node pair
n, m number of nodes, links in the network
Vi, E node i, link ; in the network, where i =1,2, ...n, j=1,2,...m

61

o, f operational probability of node i, link ;

i operational probability of hardware part in node i

s probability of software part in node i functions as designed

g utilization of software inside node i

h(t) hazard function during the time t;, between the (i-1)st and ith failure

Si. Fi event i which is successful, failed

S|, |F| number of successful events, failed events

N, K; number of failed, operational links directed into node i

Sii, Fij links with terminal node j are operational, failed as specified by event i
R node-pair reliability from s to ¢

62

CHAPTER 4

APPROACHES FOR CALCULATING NETWORK RELIABILITY

4.1 Probabilistic and Deterministic Networks

A network G = (V, E) consists of a set V' of nodes together with a set £ of edges,
representing pairs of nodes. At any instant the elements of the network (nodes and/or
edges) will be in either of two possible states, working or failed. In a deterministic
network, it is considered that an adversary can successfully attack working elements,
resulting their failure or inactivation. The failure of an edge means that it is removed
from the network; while the failure of a node means that the node and all its incident

edges are removed from the network.

In deterministic network models, the focus is typically on evaluating the worst-case
performance of the network, in which the adversary intelligently chooses certain elements
to render inactive, that would result in the maximum damage to the network. This type of
network thus provides a conservative assessment of performance, and it would be

partially appropriate in the design of robust systems.

On the other hand, it is assumed in probabilistic networks that, at any instant, elements

fail randomly and independently of one another, according to certain known probabilities.

63

Specifically, each node i has an associated reliability p; indicating the probability that it is
operational, and each edge £ has a reliability p; which is the probability that it is
operational. Thus at any instant the elements of the network fail independently with

probabilities g; = 1- p; and g;= 1- py, respectively.

In these circumstances, one would be interested in assessing the average performance of
the network, under the assumption of random (as opposed to malevolent) failures. It is
also possible to allow for dependent failure modes, at the expense of added data-
gathering requirements and increased subsequent computation. For example, the edges
incident with a given node might be subject to certain common influences (such as
weather, interference, or jamming), and these edges might therefore tend to fail together,
rather than independently; or the failure of one edge might place additional stress on the

other operating incident edges, making them more likely to fail.

Graph theory plays a key role in the analysis and design of reliable or invulnerable
networks. According to Boesch [23], one can use a deterministic model that is called
network vulnerability, contrasting to the usual probabilistic model for network reliability.
Many different vulnerability criteria and the related synthesis results were reviewed.
These synthesis problems are all graph external questions. Certain reliability synthesis
problems can be converted to a vulnerability question. He distinguished between two
types of models, summarized the relevant graph theoretic notions and then summarized

the major results corresponding to each model.

64

4.2 Network Operations

Network reliability is concerned with the ability of a network to carry out a desired
network operation. Therefore, an important first step is to identify necessary network

operations.

The most common network operation is maintaining some connections or links between a
source node s to a target node t. Two-terminal reliability is defined as the probability that
there exists at least an s-t path in a probabilistic graph G. In the directed case, the

problem is usually called s-¢ connectedness.

The second most common operation in networks is broadcasting. We define the al/-
terminal reliability to be the probability that for every pair of nodes there is at least a path
between. This is equivalent to the probability that there is at least one spanning tree in the
graph. In a directed case, the reachability is the probability that there are paths from the

source node to every other node.

The third and final one involves pair-wise communication of & specified nodes, 2 < k < n.
the k-terminal reliability is the probability that for & specified target nodes, the graph
contains paths between each pair of the k£ nodes. The directed analogue is called s-¢

connectedness.

65

4.3 General Approaches for Calculating the Reliability of Probabilistic Networks

There are several types of general approaches for calculating the reliability of
probabilistic networks. Suppose that G = (N, E) is a directed network, having a
distinguishable source node s and distinguishable destination node ¢. The nodes of G are
assumed to be perfect, whereas the edges keE are assumed to fail in a statistically
independent fashion with known probabilities gx = 1 — p,. We will illustrate the general
approaches with the two-terminal reliability Ry(G) which is the probability of that there

is a path of operative edges from s to ¢ in G.

4.3.1 State-space Enumeration

The most fundamental method of calculating R(G) uses state-space enumeration and
dates back to Moore and Shannon [19]. It is a simple strategy that enumerates all states
(all possible subgraphs), determines which are pathsets, and sums the occurrence
probabilities of each pathset. Determining whether a state is a pathset is accomplished in
general by using the supplied pathset recognition algorithm which employs standard

path-finding or spanning tree methods.

Since each of the m = | E | edges of G assumes one of two states, working or failed, the
state of the network can be represented using 0-1 vector 8 = (81, 32, ... O,). The kth
component of & equals 1 if edge & is working and is O if failed. Assuming edges fail

independently, the probability of a given state d is

p@®) =[] p" - p)

k=1

66

Define the 0-1 variable I;(3), which equals 1 precisely when the sub-network of
operational edges k (having & = 1) contains an s-f path. Then the two-terminal reliability

is given by

R,(G)= 3 1,(5)P(S) @

where D is the set of all network states. Even though it’s conceptually simple, the state-
space approach is impractical because |D| = 2" and the computation time and cost

increase exponentially with the network size.

We now illustrate the approach in a network with four nodes and five edges shown in

Figure 4.1.

Figure 4.1 A Sample Bridge Network

It is obvious that the network contains a s-¢ path if at most one edge fails, or any two
edges other than {1, 2}, {1, 5}, {4, 5} fail. On the other hand, for three or more edge
failures, the network fails unless the failed edges are {1, 3, 4} or {2, 3, 5}. Thus the two-

terminal reliability can be given as

67

R(G) = p1papspaps + qipapspaps + piqap3paps + pip2qspaps + pipap3qaqs +
P1Pap3paqs + qip2q3paps + qipapsqaps t pi1gaq3paps + pigapsqaps +

P192p3paqs + pip2q3qaps + pip2qspaqs + qip2q3qaps + pi1g2q3paqs

Substituting ¢x = 1 — py into the above equation, and simplifying, we get,

R(Q) = p1pap3paps - prpap3aps - Pipapaps - PiP3Paps + pipaps + pipa + paps

Although as many as 55 terms could have resulted from performing these substitutions, a

good deal of cancellation occurred in producing the above expression.

Since only states 8 with /;(0) = 1 contribute to Equation (4.1), it is unnecessary to
examine all states of D, except for those containing the above expressions. It is therefore

appropriate to focus directly on the simple s-t paths {P;, P,, ..., Px} of G.

Define E; as the event that all edges in path P; operate. Then the two-terminal reliability is

the probability that at least one such event occurs, or

R«(G)=P(E; UE>U..UEp (4.2)

The two-terminal network reliability can be alternatively formulated using the minimal s-
t edge disconnecting sets, or cutsets of G. An s-¢ edge disconnecting set is minimal if it
does not contain any other edge disconnecting set separating s and ¢. Indeed, suppose that
the s-¢ cutsets are {C), C», ..., C;} and let F; be the event that all edges in cutset C; fail.

Then the two-terminal unreliability Us(G) is given by
68

Ust(G) = 1' Rst(G) = P(FI U F2 UU Fr) (43)

The events E; in Equation (4.2) are not in general disjoint, nor are the events F; in
Equation (4.3). However, there are other standard methods for evaluating the probability

of the union of the events.

Another way of viewing state-space enumeration emerges from the binary nature of the
states assumed by each edge. Rather than fully specifying the states of all m edges at
once, we can instead select a particular edge e £ and condition on the status of e, either
perfect (p.= 1) or failed (p.= 0). We obtain a new system denoted G/e in which edge e is
perfect in the first case, and another new system G — e in which e is failed for the second
case. This produces the pivotal decomposition formula:

R(G) = peRo(G/e) + (1 — p)R(G - e) (4.4)

This formula shows how reliability calculations for a given network can be decomposed
into those for two smaller networks, G/e and G — e. While conditioning, or factoring, in
turn every possible edge just reproduces state-space enumeration, there are circumstances
in which not all edges need to be considered for factoring. In fact, by judiciously

selecting the edges for factoring, substantial computational saving can be achieved.

4.3.2 Inclusion-Exclusion

Using the principle of inclusion and exclusion, equation (4.2) can be expanded as

69

R,(G)=DY_P(E)-Y> P(EE))+ Y P(EE,E)~-..+(-1)"P(E,E,..E,)

i<j i<j<l
The intersection of event A and B is indicated by the juxtaposition of AB. Each term in
this expansion is easy to calculate base on the independence assumption. However, there
are 2* — 1 terms to appear, hence the computation time increases exponentially with the

number of given paths.

For the sample network in Figure 4.1, there are three simple s-7 paths.
Pll 1-4 Pz: 2-5 P3Z 1-3-5
Thus, P(E1) = pipa, P(E2) = paps, P(E3) = pipsps, P(E\E2) = p\papaps, P(E\E3) = pip3paps,

P(E>E3) = pipapsps, P(E1E2E3) = pipapipaps.

Application of the inclusion-exclusion method then produces the expression as follows,
R(G) =P(E)) + P(E2) + P(E3) - P(E1E2) - P(E\E3) - P(EXES) + P(ELEXES)

= P1P4 T paps + pipaps - pipapaps - PIP3PAPs - P1P2pP3Ps T Pipap3paps

The topological formula of Satyanarayana and Prabhakar [34] is the most efficient
method based on the inclusion-exclusion approach, although the number of terms in the
reduced expression can still grow rapidly with the problem size. A reduced inclusion-
exclusion formula for Rx(G) holds in directed networks. Boesch et al. [35] discussed

various combinatorial interpretations of the formula for Rx(G).

70

4.3.3 Disjoint Product
Another way to calculate the probability of the union of events in Equation (4.2) is to
decompose E; U E> U...U Ej into a union of events that are disjoint. Specifically we can

express

R«(G) =P(E;UEU..UEp

-P(E,UEE,UEE,E,U..UEE,E,..E_E,)

where E, denotes the complement of event E;. Since the compound events above are
pairwise disjoint,

R,(G)=P(E,)+ P(E\E,)+ P(E\E,E;) +...+ P(E\E,E,..E,_|E,)
This disjoint-products method involves adding only & probabilities. However, the
calculation of each constituent probability is generally involved. It is also important to

emphasize that the efficacy of this method can be highly dependent on the specific

ordering given to the events E;.

A number of methods [36-37] have been proposed to carry out the disjoint-products
method, varying in their specific details but following the overall strategy. Typically the
paths P; are first ordered by non-decreasing length and then processed in turn to generate
a number of terms disjoint with one another and those previously generated. In general,
the number of generated terms can grow rapidly with the number of given paths . In
particular, the disjoint-products method can be carried out efficiently, in terms of &, for
the all-terminal reliability problem in directed networks (a nondenenerate linear system).

No such efficient method is known for calculating the two-terminal reliability problem.

71

4.3.4 Factoring

The inclusion-exclusion and disjoint-products techniques are based on a given
enumeration of the s-¢ paths. The factoring method does not require knowledge of these
paths but instead concentrates on the state of an individual edge. Application of the
pivotal decomposition Equation (4.4) creates two sub-problems with smaller size. If the
decomposition were simply reapplied to each such sub-problem, the approach would not
be better than state-enumeration. Crucial to this approach is the possibility that certain of

generated sub-problems might be reduced in size using simple probabilistic rules.

Some basic rules of reduction are presented now. Two edges e = (i, k) and = (i, k)
joining the same two nodes in a directed network G are called parallel edges. A parallel
reduction replaces two parallel edges, having probabilities p. and py, by a single edge
having probability 1 — (1 — p.)(1 — py) = pe + pr- pepr. Two edges e = (i, j) and = (j, k) are
called series edges if these are the only two edges incident with node j. Ifj #s, fthen a
series reduction replaces the two series edges by a single edge having reliability p.p,.
Figure 4.2 illustrates these two reliability-preserving reductions, which are valid in view
of the independence of edge failures. Also illustrated is a more general two-neighbor

reduction, applicable if j # s, ¢.

72

@j:t@@o NOR®

Pe F Pr-Pely

O—=0—>0 — O—F—0 o

Pe Py

p. P pep
OV ™= Qe—/—® o
Pg Ph

PgPh

Figure 4.2. Probabilistic Rules of Reduction

A network G is two-terminal series parallel if it can be reduced to a single edge (s,) by
repeatedly applying series and parallel reductions. In such a case, the two-terminal
reliability is simply the reliability appearing on the final edge, and efficient algorithms
exist for identifying and carrying out the appropriate reductions. More generally, the
application of series and parallel reductions to G will leave a network more complex than
a single edge. At this point, an edge can be selected for conditioning and the pivotal
decomposition formula can be applied, yielding two new sub-problems. Series and
parallel reductions are applied to these sub-problems for as long as possible, at which
point pivotal decomposition can again be invoked. This alternating strategy of pivotal and

applying reliability-preserving reductions constitutes the factoring algorithm.

For a directed network G, factoring on an edge e out of s, or into ¢, is especially helpful.
The system G/e will have a topological interpretation, since it is the network obtained
from G by deleting edge e and merging its endpoints. While Equation (4.4) remains valid
for any edge, unless the choice of edge for factoring is suitably restricted, G/e will not

necessarily be equivalent to the network obtained from G by contracting the edge. This is

73

clearly seen in the network of Figure 4.1, since contraction of edge 3 would produce the
spurious path 2-4 in Figure 4.3(a). On the other hand, contraction of edge 1 produces the

series-parallel network shown in Figure 2.3(b) and its reliability is easily calculated as

R(G) = (paps + p3ps - pap3ps) + P4 - (D205 + P3P5 -PaD3Ds) P4

1 4

0+ 0 2@3/@

(a) (b)

Figure 4.3. Contraction of an Edge in Fig 4.1, Using (a) e =3 and (b) e =1

Also G - e is accurately represented by the network of Figure 4.1 with edge 1 removed.

Since edge 3 and 4 are then irrelevant, they can be removed and R,(G - e) = pops. As a

result of factoring on a single edge the two-terminal reliability of G is determined as
R(G) =p:2 Rl G/e) + (1 - p)R(G - e)

=Ppip+ T p2ps T Pip3Ps- Pipap3Ps- PIP2P4Ps- PIP3P4Ps T Pip2p3P4ps

The factoring approach was first applied to directed networks by Nazakawa [38].
Reliability algorithms for directed networks that incorporate factoring, together with
probabilistic reduction rules, were implemented [39-40]. Johnson [41] and Wood [42]

discussed the application of the factoring approach to a variety of network reliability

74

problems, in particular the k-terminal and all-terminal reliability problems for undirected
networks.

4.3.5 Fault Tree Analysis

The technique of Fault Tree Analysis (FTA) for the estimation of the frequency of

occurrence of an event was formalized in 1962 at Bell Laboratories.

FTA is a very useful and popular method for analyzing complex system reliability. The
fault tree itself is a graphic representation of the Boolean failure logic associated with the
development of a particular system failure (the TOP event) to basic failures (primary
events). For example, the TOP event could be the failure of a nuclear power plant
guidance control system during its operation with the primary events being the failures of

individual guidance control system components.

FTA can be a valuable design tool. It can identify potential accidents in a system design
and can help eliminate costly design changes and retrofits. FTA can also be a diagnostic
tool. One can predict with it the most likely causes of system failures in the case of

system breakdown.

The fault trees are a special case of decision trees and contain logical gates, (for example,
AND, OR, NOT, NOR, NAND, k-out-of-n) and symbols of top end primary events. The
goal of fault tree construction is to model the system conditions that can result in the
undesired event. Before construction of the fault tree, a thorough understanding of the

system is acquired. In fact, a system description should be a part of the analysis

75

documentation. The analyst must carefully define the undesired event under
consideration, called the "top event".
FTA can involve the following steps:

e System definition

e Fault tree construction

e Qualitative analysis

¢ (Quantitative analysis

System definition combines the analysis objectives with information about the systems.
The analysis objectives guide the selection of TOP events. Boundary conditions define
physical and analytical bounds associated with a TOP event and, together with a

statement of the TOP event, constitute a problem definition.

Fault trees are constructed for each of the TOP events based on the system definition
step. Operator failures are included in the fault trees. The potential for operator acts of
commission is not explicitly included in the fault trees but is indicated in the appropriate

basic component failures.

The qualitative analysis includes determining system failure modes-called minimal cut
sets-for each fault tree. The minimal cut sets are used as input to the quantitative analysis,
and they provide structural importance information about basic events (component and

human failures). The most structurally important basic events are those that are one-event

76

cut sets; the next most important basic events are those in the largest number of two-

event cut sets, and so forth.

In many instances, it is not necessary to determine all minimal cut sets for a TOP event.
If there are many low-order minimal cut sets (cut sets containing small numbers of basic
events), these cut sets will usually dominate the system failure probability, and higher-

order cut sets do not need to be determined.

The quantitative analysis step includes determining TOP event reliability characteristics
from the minimal cut sets and the component failure characteristics assuming that all-
component failures and repairs are independent. Four quantitative reliability
characteristics were of interest in the utility system study:

e System unavailability

e Expected number of system failures

e Average system downtime

e Component importance

The system unavailability at a given time is the probability that the system is in the failed
state at that time. The expected number of system failures is the expected number of
times that a system failure will occur over a time interval. The average system downtime
(for repairable systems) is the quotient of system unavailability and system failure rate.
component importance estimates the fraction of time that a component failure is

contributing to system failure, given the system is failed.

77

4.4 Computational Complexity of Reliability Analysis

Reliability analysis problems are more closely aligned with counting problems where the
objective is to determine the number of configurations of a particular type. The minimum
cardinality pathset problem associated with the k-terminal problem is the problem of
finding a minimum cardinality Steiner Tree. Rosenthal [24] firstly showed that reliability
analysis for k-terminal networks are all NP-hard. The minimum cardinality pathset
problem associated with the 2-terminal problem is the problem of finding a shortest (s, 7)
path. It was first proved by Valiant [25] that the functional, rational, and point estimate
reliability analysis problems are all NP-hard for the 2-terminal networks. For all-terminal
measure it is necessary to analyze direct and undirected networks separately. The
minimum cardinality cutset problem is the problem of finding a minimum cardinality s-
directed cut. Provan and Ball [26] proved that the reliability analysis problems for the

directed and undirected all-terminal measure are NP-hard.

A standard source for information on the computational complexity of algorithms is the
book of Garey and Johnson [74]. More specific information on the complexity of network

reliability problems and NP-complete problems can be found from [4, 24-25].

The usual definition of NP employs a model of nondeterministic computation, the
nondeterministic Turing machine. Turing machines that halt either accept or reject their
input; however, there may be a number of different nondeterministic choices that would
lead to acceptance. For this reason, Valiant [76, 77] explored the extension to counting

Turing machines, which act just like nondeterministic Turing machines, but upon

78

acceptance print the number of different computations which would lead to acceptance.
Then #P (read "sharp P" or "number P") is the class of functions which can be computed
by counting Turing machines in polynomial time. Naturally the counting version of any
problem in NP is in #P; however, the counting Turing machine is apparently a nontrivial
extension of the nondeterministic Turing machine, as there is no obvious way to produce

the number of accepting computations just knowing the existence of one.

Complexity results can be obtained by transforming known NP-complete problem and

#P-complete problems into the reliability problems.

79

CHAPTER 5

MODELING RELIABILITY OF INTEGRATED NETWORKS (MORIN)

5.1 MORIN Method

AGM has been rigorously proved as a corollary of the general theorem on complex
system decomposition. Some other self-proclaimed more efficient algorithms are derived
from it. The AGM method may be extended to solve problems in integrated systems
where the software in a node has a constant failure rate [2]. However the computational
time increases exponentially with the number of links. Another explicit method namely
NPR/T [7], which was derived from AGM, is much simpler and more direct, and the
computational time increases linearly with the number of links. But this method can yield
incorrect results in some cases involving undirected networks [6]. At any rate, neither
method covers network reliability problems when software failure follows different

distributions.

The AGM method considers each link in the network (with failure-prone links and nodes)

as a series combination of a perfect node and the link with modified reliability. However,

the computing time increases exponentially with the number of links.

80

The approach for MOdeling Reliability for Integrated Networks (MORIN) adopts the
strategy of replacing a network having unreliable nodes with an equivalent network
having completely reliable nodes except the source node s. Considering link i and its
terminal node j, the link in the equivalent network has a modified reliability ¢;f;. In the
equivalent network, the failures of all links are not necessarily s-independent, but failures
of a link and other links that are connected to uncommon terminal nodes are still
independent. For each node j (in event S;) except the source node s, group its incoming

directed links, and then compute R without Boolean simplification.

n-1
P{Sz) = ashassHP{Si,j} (51)
j=1

where S;; is operational links 1, 2, ... K directed into node j on event tree i, then

Kj
P{S, =a, a5 (5.2)
i=1

If there are no links directed into node j specified by S;, then P{S; ;}=1. Let links 1, 2,
...N; directed into node j be specified as failed and links Ni+1, N+2, ... N+K; be

specified as operational, then

N;+K;

Pis =, JT0-A) 1A forkzl (53)

i=N;+1

Let K;= 0, then links 1, 2, ... N; have failed in the equivalent network if and only if node ;
has failed and all N; links are operational, or all NV, links have failed and node j is

operational, or both node ; and all N, links failed. Since the probability expression for
81

node j does not reflect the fact that the failure of this node thereafter brings with its

failures of links incident to this node, then:

N;
P{S, Y=1-a,a, +a,a, [[0-5) forK;=0 (5.4)
i=1

Since the S; are mutually exclusive events, the node-pair reliability is the summation of

the probabilities of all success disjoint events, thus

[S]

R =) P{S;} (5.5)

As showed above, the MORIN approach can be summarized as follows
¢ Find all mutual exclusive disjointed path set from the source node to sink
node of the corresponding network, denoted as event trees {S;, S,, ...S;}
e On each event tree S;, for each node j except the source node s, group its
incoming directed links specified by S;;

e Denote Sj; as operational links 1, 2, ... Kj directed into node j, then
n—1
P{S;) = ashassH P{Si,j}
j=1

e Compute the P{S; ;} by considering failed and operational links for node j
¢ Combine above four steps and the Equation (5.1)(5.3)(5.4)(5.5) to get the

reliability of entire network.

82

The pseudo-codes of MORIN can be presented as follows:

1. MORIN_Events (G, s, ?)
// find all event trees {S;, S, ...Si}
// where source node is s, sink node is t and G = (V, E)

a. Initialize the network model

d(s) <~ 0 : m(s) «<— NIL /I node s is the source node

S(@@) « {s} // Each event tree i includes source node s
Path Set(i) <~ NIL // Path-set is empty in event i

Q« {s}

For each node u € V[G] —s

Do d(u) < o /I d(u) is the distance from u to s
m(u) <— NIL /I m(u) is the predecessor node of u
color(u) <— white // node u has the not been discovered

b. Iterations
While Q = NIL
Do u < Head(Q)
For each v € Adj(u)
Do if color(v) = white
then Path Finding(v)

if n(t)=v /I A s-t path is found

83

then S(i) « S(i) +v
Path(7) < Path_Set(7)

i<—i+1

Path Finding(v)

color(v) = gray

d(v) « d(u)+1

(V) < u

Path Set(i) <~ Path_Set(i) + (u, v)

for each w € Adj(v)

Do if color(w) = white

then m(w)<« v

Path _Set(i) <~ Path_Set(i) + (u, v)
Path Finding(w)

Color(v) = black

Q <« ENQUEUE(Q, v) //Add v to head of the Queue

2. Event RCal [S(i)]

// Calculate the network reliability R based on generated event trees/path sets and
// reliability of each node and link along the event paths.

R=0

for each path of path_set (i) on event tree S(i)

84

S;,j < group incoming directed links of node j on event i

P(S;) =1 /1'1f S; j does not specify any links directed into node j

While node Queue of S; # NIL

For all operational links into node j
K/
P(Si)=o,[]5
i=1
For all failed links into node j
P(S;)) = (1-a)+a,][0~ 5)
i=l1

P(S) = a,F(S,)P, (S,)

DEQUEUE (Q,) // remove node j from the node queue of event S(i)

R < R +P(S)

Prior to designing or evaluating the reliability/availability a network or an end-to-end

solution, it is essential to model the reliability/availability of corresponding systems that

normally comprise of hardware subsystems and software subsystems and are usually

configured under a complex architecture. Additionally, redundancies at various levels

(such as chipset level, board level, system box-level) are typically deployed in complex

systems to achieve high availability (HA) in industry to meet practical application

demands and requirements. This type of issues can be addressed by the simplified

methodology and modeling tool (SAMOT) introduced in Chapter 6.

85

CHAPTER 6

SIMPLIFIED NETWORK AVAILABILITY MODELING

This chapter proposes a simplified methodology that incorporates Markov analysis and
Reliability Block Diagram methodologies to model and analyze the availability of a
typical end-to-end solution consisting of multiple complex component systems, where the
failure of each component system is attributed to software failures and hardware failures.
The methodology and computational tool - Simplified Availability Modeling Tool
(SAMOT) is introduced. The application of SAMOT to 1:1 system redundancy, which is
common in the networking industry, is the focus of this study. The end-to-end availability
is modeled and computed based on the corresponding signaling path and bearer path
since the paths can transverse through different component systems. It is observed that
SAMOT is very accurate (compared with the Markov analysis) when applied to 1:1

redundant systems under various system parameter sets with high switchover coverage.

6.1 Introduction

High availability (HA) with its attendant higher requirements for system performance has
increasingly become an important feature for suppliers of computer network equipment
to communication service providers. Usually system failures are attributed to its hardware

components or/and software components. The algorithms and approaches of modeling

86

and analyzing the availability of a communication network comprised of numerous,
complex topology systems is the subject of much research [119]. However, very few HA
modeling tools for complex networks are commonly accepted and applied in industry. A
number of vendors have provided some commercial software applications (Relex',
SelfReliant’, MEADEP®, SHARPE®, RealSoft’, etc.) for reliability modeling and analysis
of complex systems. But adequate training and relevant experience in corresponding

fields are required, in addition to the software license fee or purchase cost.

This chapter introduces a simplified interactive modeling tool that integrates Markov
analysis and Reliability Block Diagram (RBD) methodologies for computing the
availability of a typical end-to-end network solution where a 1:1 system-level redundancy
is installed in some component systems. The Markov analysis is approximated by the
Defect Per Million (DPM) model [116], and the RBD method is implemented by SHARC

[117].

Definitions

DPM (defects per million): the number of calls lost per million calls attempted. It consists
of two elements — call-blocked DPM and call-dropped DPM. To complete a
communication transaction, the network must establish some paths (not necessarily

physical circuits), e.g. a signaling path and a bearer path for voice packets, a signaling

! Relex is the registered trademark of Relex Software Corporation.
? SelfReliant is the registered trademark of GoAhead Software Inc.
> MEADERP is the registered trademark of SoHaR Inc.

* SHARP is the registered trademark of

> RealSoft is the registered trademark of RealSoft Pte Ltd.

87

path and a data path for data packets. Usually when a call is blocked, subscribers cannot
make new calls due to the fact that there is at least one failure along the signaling path;
whereas when an existing call is dropped, at least one failure occurs along the bearer path

of the network.

DPM = (1 - Availability) x 10°

Total DPM = DPMcall—blocked + DPMcall—dropped

_ (Number of calls blocked + Number of calls dropped)x1 0°
Number of calls attempted

End-to-end availability: the probability that a customer can complete the communication
to its destination. Since a signaling path and a voice path as well as a data path may pass
through different network components, the end-to-end availability for each type of path

can vary and therefore needs to be identified and studied at the path level.

1:1 Redundancy: there is one redundant unit for every unit that is required for full
operation. Redundancy can improve availability by orders of magnitude while keeping
the MTBF and MTTR of each unit the same. The effectiveness of redundancy is highly

dependent on the switchover coverage and switchover time.

Switchover Coverage: the probability that a failure is success-fully detected, isolated, and

recovered by a higher-level fault-management mechanism. In case of active/standby

88

redundancy, switchover coverage is dependent on the fault detection on the active side,
the fault detection on the standby side, and the reliability of the switching mechanism.
Switchover coverage = Active fault coverage x Standby fault coverage

where active fault coverage is the probability of detecting a fault on the active side as
well as having the switching mechanism operational at the same time; standby fault
coverage is the probability of detecting a fault on the standby side. In the case of load-
sharing redundancy, the switchover coverage is dependent upon only one fault-detection

coverage because there is no inactive standby side.

Switchover Time: the time from when a failure is detected in an operating component to

the time when the affected traffic is switched over to the redundant component.

More detailed definitions can be obtained in [116, 118].

6.2 Problem Description

A typical voice-over-internet protocol (VoIP) solution includes different functional
segments -- access equipment, aggregation device, core router, LAN switch, edge system,
etc. -- as shown in Figure 6.1. Each segment can encompass one or more systems. The
end-to-end (signaling, voice, or data) traffic has to pass through most (if not all) segments
to complete the transmission. The customer premium equipment (CPE) is usually located

at customer side and its availability is affected by many non-system-reliability factors

89

(such as, process-related failures, human errors); thus, it is not considered in the end-to-

end availability.

Aggregation Coare M ultilayer Super POP
i i Device R outer LAMN Switch Servers

End to End Solution

Figure 6.1. Segments of A Typical VoIP Solution

The end-to-end availability is determined by availabilities of component systems and
network links along a given path. Furthermore, the system availability is attributed to the
availability of system hardware and software, configuration, fault management
mechanisms, and operation, administration and maintenance (OA&M). System hardware
usually consists of an egress line card, an ingress line card, a chassis, processor card, dual
power supply, and some other feature cards. System software normally includes the
operation system software running on server platform or processor card and application
software running on processor card or feature cards, depending on the specific system
configuration. The fault management function can be performed by the monitoring/alarm
system, online diagnosis system, etc. The planned outage comprises of software upgrades

and hardware upgrades in this discussion.

Board-level and system-level redundancy can be deployed to improve the system and

network availability. The system redundancy effectiveness [116] is mainly determined by

90

the redundancy type (active/standby or load-sharing), 1:1 or 1:N redundancy, switchover

coverage, and switchover time.

Figure 6.2 illustrates the RBD of a sample system.

Control Feature Feature
Card Card 1 Card 2 Power
| Ingress | | Chassis Software I Software Egress |
Card Upgrade Card
Control Feature Feature p
Card Card 1 Card 2 ower

Figure 6.2. Reliability Block Diagram of A Sample System

The proposed modeling tool is to depict and predict the availability for the signaling path
and bearer path of a typical network solution comprised of software-hardware systems
with 1:1 redundancy at the box-level, considering both un-scheduled outages and

scheduled outages.

6.3 Methodologies and Tools

6.3.1 Common Methodologies

The Markov modeling method is advantageous in terms of capturing the component
failover behavior and fault coverage probability with states and state transitions. However
the Markov modeling tool may be difficult to apply in the field. It can be complicated and
computationally intractable when a system or network has a complex topology. RBD is
one of the most commonly used methods in modeling serial-parallel system reliability.

But it does not have the power to handle large networks with a complex topology.

91

6.3.2 Commonly-used Tools

The DPM model and SHARC are two practical tools for modeling system and network
availability in industry. The DPM model was originally created to approximate the
Markov method for calculating the availability of a network with a serial-parallel
topology. Since software and hardware components of the redundant systems can have
very different availability metrics such as MTBF, MTTR, switchover time and planned
outages, the DPM modeling tool is not capable of taking the system box level redundancy
schemes into consideration. The SHARC [117] applies the RBD method to compute the
availability metric of a simplex system, however it is not capable of identifying the
unavailability (downtime) contributed by the switchover time and imperfect switchover
coverage for a redundant system. So an improved reliability block diagram (IRBD) is
created, where several blocks are added to describe the switchover coverage and

switchover time for active/standby redundant systems.

6.3.3 SAMOT Tool

The SAMOT calibrates and integrates the above two methodologies/tools (Markov/DPM
and RBD/SHARC) and incorporates the availability design parameters into two inter-
active modules [119] to model the end-to-end network availability. A sample network
solution architecture (as shown in Figure 7.5), where each Super POP element deploys

the 1:1 system redundancy, will be studied in Section 7.2.

92

The SAMOT interactive tool consists of a Main module and a Redundancy module. Each
module is a separate spreadsheet file, which provides some input and act as output of the
other file. The Main module models the availability of all component systems of the
network, with each system on one sheet. If there is redundancy involved, the availability
of the redundant systems is computed on the same sheet with input data categorized into
planned outage and unplanned outage from the Redundancy module. The Main module

calculates the availability of various end-to-end network paths as well.

The Redundancy module models the 1:1 redundant system availability by approximating
the unplanned and planned outages resulted from major hardware and software failures.
The output of the Redundancy module is the input of the Main module when calculating
the availability of redundant systems. The Main module calculates the unplanned outage
of hardware and software, and the planned outage of hardware and software of a single
system as the input of the Redundancy module when corresponding system redundancy is

involved. Figure 6.3 illustrates the interactive relationship between the two modules.

93

Main Module Redundancy Module

I Planned Planned
: Outage for
| Outage fage.
S .
y I
s /ﬁ
t
e Availability for
m Single System
| |)
I I '
' | | Hardware | |
S | : Failures | —
m | | Availability for
P | 1:1 Redundant
o : | System \\
n ;J
e |
n | :
t |
| |
° ! Software | | Unplanned
| Failures | Outage for
! : | 1:1R
|

Unplanned Outage

Figure 6.3. Interactive Modules in SAMOT

Since the hardware and software usually have quite different MTBF and MTTR
availability attributes, their failures need to be considered separately. The IRBD in Figure
6.4 captures the major failure modes of the 1:1 redundant hardware-software systems.
Those failure modes and parameters need to be preliminarily determined by design

engineers or users of the tool before being applied in the SAMOT tool.

HWV HW active 4 i v SWadt Sw RS
. standby ve stancby
Switchover | — CORIBge | e switchover | coverage —
time fails ! i il coverage
feils SHY) m as fails SEW

Figure 6.4. IRBD for 1:1 R in SAMOT’s Redundancy Module

In Figure 6.4, the first four blocks illustrate the hardware failure modes for the 1:1

redundant systems.

94

e The “HW switchover time” block reflects the short duration outage that results
from the switchover.

e The “HW active coverage fails” block depicts the system outage when the system
fails to detect hardware failure on the active side or successfully detects the
hardware failure on the active side but fails to switch over to the standby side.

e The “HW standby coverage fails” block describes the outage when an active side
hardware failure is detected and traffic is being switched to the standby side, but
the standby side hardware has failed and remained undetected.

e The parallel “P(HW)” and “S(HW)” blocks are to model the hardware system in
the primary unit and secondary unit (sometimes called active and standby unit)
with perfect coverage and Zero switchover time. The system outage happens
when hardware on both sides fail.

Note: The standby coverage failure may not bring network outage immediately, should
be in the protection path with S(HW) block. SAMOT adopts the IRBD in Figure 6.4 to

simplify the approximated computation.

The software failure modes are taken into account similarly.

The manual failover tests can be considered to reduce outage from the standby coverage

failure and improve the redundancy effectiveness. The impact of this change is trivial

under the following experimental availability parameter settings.

95

Markov analysis is capable of exhaustively enumerating the failure states and their
transitions; it is used to verify the correctness and accuracy of the Redundancy module of

SAMOT for modeling the availability of a 1:1 R system.

Figure 6.5 is the Markov failure state transition diagram for the 1:1 redundant system.
Among the 13 major states of the 1:1 redundant system, State 2, 4, 5, 6, 10, and 11
(double circled) represent failure modes. The symbol on each arc connecting one node to

the other is the transition probability between the two states.

(2

Lo (1-C1)As

(1-C1)An

(1-C2)4s @7(;%#’

Figure 6.5. Markov Diagram for Failure Mode Transitions of 1:1 Software-hardware System Redundancy

96

Variables

C
C2
Au
As
Bu
Bs
Hin
Mis
Han

H2s

= Coverage factor for active unit

= Coverage factor for standby unit

= Hardware failure rate of individual unit

= Software failure rate of individual unit

= Hardware switchover rate from active to standby

= Software switchover rate from active to standby

= Hardware repair rate of non-service-affecting failures
= Software repair rate of non-service-affecting failures
= Hardware repair rate of service-affecting failures

= Software repair rate of service-affecting failures

State Descriptions

1

2

All hardware work

Hardware of the active unit failed, detected

Hardware of the standby unit has taken over

Hardware of 2nd unit failed while recovering the failed unit
Software of 2nd unit failed while recovering the failed unit
Software of the active unit failed, detected

Software of the standby unit has taken over

Hardware of the standby unit failed, detected

Software of the standby unit failed, detected

97

10

11

12

13

Hardware of the active unit failed, can not switch to standby
Software of the active unit failed, can not switch to standby
Hardware of the standby unit failed, undetected

Software of the standby unit failed, undetected

98

CHAPTER 7

COMPUTATIONAL EXPERIMENTS

To demonstrate the applications of the proposed MORIN and SAMOT approaches and
techniques for reliability and availability analysis of integrated networks, this chapter

contains some computational experiments and results.

7.1 MORIN Examples

The two-terminal communication (e.g. communicating from a source node to a target
node) is the most common network operation. The k-terminal reliability and all-terminal
reliability problems can be derived from the two-terminal reliability problems. To

demonstrate the MORIN approach, two-terminal reliability examples are used.

7.1.1 Sample Network 1
Figure 7.1 is an example of a typical directed bridge network. Nodes 1 and 4 are the
source and terminal nodes respectively. The two black dots inside each node represent the

corresponding hardware component and software component of the node.

99

5 \
()1 7 @ 4 ()
Rl

3

Figure 7.1 Sample Network 1

The s-t reliability can be obtained with the 4 success events, as shown in Figure 7.2:

S, =58, S, =569, S;=5689, S,=56789,

5)9\§
<6\‘O/9;© <§\A6/9)

Figure 7.2. Event-Tree Generated by the MORIN Algorithm for Sample Network 1

Thus the symbolic expression of the reliability can be presented as,

4 4 4
R=2PiS=aX [l PIS; ;) (7.1)
i= i=1j=

= a{(afs)(aafs) + [(1-0) + afs](asBs)(auafo) + (cafs)(az Bo) (1-as)

100

+ oufi](auf) + (afs)(1-05) + asfsl(os) [(1-aa)t aufl(cufo)}

= aimfsaufls + oo feoufo (1-0n + anfis) + cionfsais focafo(1-au + aafk)
+ ayoafsosfrawfo(l-as + asfs)(1-ou+ ouff)

= aiaufs s + cnonczaufs P + cnazaufe o - oo ffo

+ oo asoufs oo + cncronoufis P B Po(1-aa + auf)

= aiomoufsf + arosoufs o + arcaonauBs Pefo - on oo oufs o

+ o oo s Bs B BB + on cnaesauBs Be B B o

= aiomoufsf+ arosaufs o+ aranosoufsPo(fs —1 + Bs s + Bs i)

A number of analytical models have been proposed to address the problem of software
reliability measurement. According to the nature of the failure process and based on the
failure history of the software, these approaches can be classified as Time Between
Failures (TBF) Models, Failure Count Model, Fault Seeding Models, and Input Domain
Based Models [18]. The most common TBF model assumes that the time between the
(i-1)* failure and i failure independently follows a distribution whose parameters depend
on the number of faults remaining in the program during the interval, embedded faults are
independent and of equal probability of exposure, faults are removed immediately after
each occurrence, no new faults are introduced during correction. Unlike in a regular
manufacturing system, where hardware failure rate increases with time and maintenance,
it is expected that the successive failure times will get longer as faults are removed from

the node software system.

101

Since software fail only when they are executed, the calendar time doesn’t represent the
time during which the software could fail. The utilization of the software inside node j ---

g; 1s used to compensate for the difference in the time domain.

We will analyze the reliability and availability of networks integrated with software
failures and imperfect nodes based on MORIN [31], where the times between software
failures follow the TBF models. The directed bridge network as shown in Figure 7.1 is
used as the example. Hardware failures in each node are assumed to follow Poisson
process with the same rate A,. Failure of each link also presumably follows the Poisson
distribution with the same rate A,. Jelinski Moranda (JM) De-Eutrophication Model is
adopted as the software failure model. The software in each node of the integrated
network is assumed to have the same utilization ¢ and follow the same stochastic failure

process.

JM De-Eutrophication Model is one of the earliest and probably the most commonly used
model for assessing software reliability. It assumes that there are N software faults at the
start of testing, and that each fault is independent of the others and equally likely to cause
a failure during testing. A detected fault is removed with certainty in negligible time and
no new faults are introduced during the debugging process. The software failure rate or
the hazard function is assumed to be proportional to the current fault content of the
program. It is expected that the successive failure times would become longer as faults
are removed from the software system. Hence the hazard function during t; the time

between the (i-1)st and ith failure, is given by
102

hy(t)) = @[N-(i-1)] &, where @ is a proportionality constant, € is the software

utilization coefficient.

—j.hs(ﬁ)dé' '
Thus Ry(t)=e¢ ° _ PN+
*l hy(6)dS 4
fs (t) = hs (t)RS (Z):hs (t)e ° =O(N—i+ l)e—¢(N—z+l)g

In the bridge network, for the node software, based on the utilization €, the operational
probability is:

1= Q= az= ag= Ry(t) = NV
For the node hardware, the operational probability is:
At

Oih= Cp =03, = Qgp = €

For the links, the operational probability is:

Bs=Ps=pr=Ps=Po=e

The terminal reliability from s to ¢ between the (i-1)* and i"™ software failure is thus:
Ry = avaouflsfs + cnazaufs o+ cronazaufsfo(fs —1 + Bs s + Bs 1)
= Q150005020 CasOlan Ps s + a1sQn Qs Qan QasOlan Bofo

+ a150n Q50 35030 QlusOuan (Ps + Ps s + Ps s -1)

— o e—3q)(N-i+1)€t672ﬂ,2t F oM e—3q)(N-i+1)€t672ﬂ,2t
- -4D(N-i+1)et - 22, -32,
+e4/llte (N-i+1) (e/lzt+ez/1_t+e3/1_t_l)

— 26—3llt e-3<1>(N—z+1)£te—zﬂzt + 6—4/111 e-4(l)(N—z+1)é:t (e—izt_’_e—ZAzt + e—312t _1)

103

Denote 6= -[1; + ®e(N - i + 1)]¢t, after the symbolic simplification,

R,, = 9 o b (N=i=Dlt 2ot A A+ge(N=i=D)t (e—,lzz+e—z,12z T+ oMt 1)

30 - 40 - 40 220 |, 40 - 40
= 26%0e Mt 4 0o ht 4 G0 4 10 0t g

From the above symbolic expression, it can be concluded that the reliability of the
studied network follows a multivariate distribution that is usually used to describe a
system consisting of multiple components with different failure distributions.
Furthermore, the network reliability depends on the software utilization, software failure
rate and hardware failure rate inside a node, the failure rate of a link, and the total fault

number in the software in each node.

7.1.2 Sample Network 2

Figure 7.3 shows the other sample network where only source node s, sink node ¢, and

SPEE
T

Figure 7.3 Sample Network 2

links are labeled.

As illustrated in Figure 7.4, there are seven mutual exclusive successful events generated

by MORIN method:
104

S, =148 S, = 1269 S;= 126978 Sy= 12658

Ss= 14369 S¢ = 1436978 S, = 143658

O
9 9 5 5
(O _ (s2ss) (O _ (O
7 7 8 8
e O) (sas7)
8 8
O

Figure 7.4. Event-Tree Generated by the MORIN Algorithm for Sample Network 2

Similarly as in Sample network 1, the network reliability can be calculated through the

symbolic computations following the proposed MORIN method.

105

7.2 SAMOT Experiment Results'

To demonstrate the SAMOT tool, some experiments are conducted with following basic
important assumptions.

e Operation, administration and maintenance (OA&M), as well as procedural
errors, are not considered in the system and end-to-end availability modeling.

e The data path availability is not demonstrated in the experiments since typical
data does not require real time transmission, the HA requirements are lower.

e Customer premium equipment (CPE) failures are not considered in the
experiments. CPE is usually located on the customer side and is often mostly
affected by non-product-quality-related failures in practice.

e Link failures are negligible in the experiments due to the extremely high
reliability of links (fiber trunk or cooper cable).

e The end-to-end path does not include the Public Switch Telephone Network
(PSTN) or other segments that the servers are connected to. In this sense, the end-
to-end path is semi-end to end.

e To simplify the experiments, the operating system (OS) software and application
software are integrated into a single software block in Redundancy Module (if not
specified) albeit the OS software and application software usually fail with

different distributions and should be considered separately when applicable.

' All experimental metrics showed in this section are intended as an illustration of the SAMOT tool only,
and do not represent or imply actual reliability/availability configuration design and/or field performance of
any product of any company.

106

7.2.1 Practical Networks
The architecture of a practical network (as in Figure 7.5) and the corresponding modeling
flowchart are illustrated in Figure 7.6 and 7.7 respectively. Figure 7.8 shows the signaling

path and bearer path transverses different component systems in the sample network.

Sample Network with Redundancy

“Customer “POP/Aggregation” “Super POP/Switching/Trunking”
Premise” OptiCall

Access Gateways Internet Service C
Providers “ISP” SS7

all Agent
eature Server
[ignaling Gateway

Access Gateway
Aggregation

SS87 Network

Subscribers
5
2

PSTN Trunks

Trunk
Gateway

Subscribers

uOne

Announcements Operator Messaging
911 Services

Figure 7.5. Architecture of A Sample Network with Redundancy

SoftSwitch
4{ Aggregation H Core Router H LAN Switch H Edge Server 1 ‘7

‘Edge Server 2 ‘ ‘ Edge Server 3 }—

Figure 7.6. Block Diagram of A Sample Baseline Network

System Config ‘ Metwork Architecture

Ha, 1 f
B Mmetrics o System Availability Metworks Avatlability ———

Subsystems Markow RED

Figure 7.7. Modeling Flowchart for A Baseline Network

107

To improve the availability of the end-to-end path, while considering the cost factor, 1:1
box-level redundancy can be implemented in the critical SoftSwitch and less expensive

LAN Switch and edge servers, as showed in Figure 7.8.

A dynamic protocol such as hot standby router protocol (HSRP) or ICMP router
discovery protocol (IRDP) runs between the redundant SoftSwitches in order to quickly

populate the routing table to the standby unit when a network failure occurs [120].

SoftSwitch

- —_———
4{ Aggregation H Core Router i—i LAN Switch |- Ew
I T t] [[
TN
I I

I3 v ;
Sigraling path ‘ Edge Server 2 u | Edge Server 3 u»
_— Bearer path |

Figure 7.8. Block Diagram of A Sample Network with 1:1 System Redundancy

Figure 7.9 is the flowchart of modeling availability of a network with 1:1 redundancy.

System Config Yerified by Markow MNetwork Architecture
HA metrics of : - N
s Metes @ System Availability I Redundant. HW W Network Availability ——
ubsystems | parkow rBo | System Availability RED

Figure 7.9. Modeling Flowchart for A Network with 1:1 System Redundancy

108

7.2.2 SAMOT Modeling Results

7.2.2.1 System Availability
We first apply the SAMOT tool to calculate the availability metrics of each individual
system based on its internal system configuration and subsystem reliability.
MTBF and MTTR of each subsystem are two basic availability parameters to compute
the corresponding system availability. Switchover coverage and switchover time are
another two important availability metrics if redundancies are involved. The first two
“hours” columns in Table 7.1-7.5 are inputs of the SAMOT tool in order to compute the
system availability and end-to-end network availability. MTBF is calculated according to
the Bellcore standards, MTTR is estimated based on the system HA configurations and
features as well as part staffing condition. The last four columns (from right of the table)

are system availability metrics output from SAMOT.

Table 7.1. Availability Metrics of Aggregation Device

Annual
Component Description ~ MTBF (hr) MTTR (hr) Downtime A (%) DPM (B) DPM (D)
(min)
Aggre. Dev Chassis 674,310 4 3.235 99.9994 6.15 0.15
Processor, with 1:1 R 128,152 2 1.167 99.9998 2.22 0.43
CT3 Card 230,886 2 4.619 99.99912 8.79 0.47
COCI2 Card 172,604 2 6.156 99.99883 11.71 0.54
Power, 1:1 load-sharing
redundancy 158,228 2 0.143 99.99997 0.27 0.013
OS Software 33,835 0.058 0.906 99.99983 1.724 1.478
SW upgrade 4,380 0.058 9.599 99.99817 18.26 17.12
Total Aggre. Device 61,097 3 25.825 99.99509 49.13 20.20

Note: DPM(B) is the DPM for blocked calls and DPM(D) is the DPM for dropped calls.

109

Table 7.2. Availability Metrics of Core Router

Annual
Component Description MTBF (hr) MTTR (hr) Downtime A (%) DPM (B) DPM (D)
(min)
Core Router Chassis 297,137 4 7.518 99.99857 14.30 0.336
Processor, w/ 1:1 R 108,304 2 2.283 99.99957 4.344 0.512
Feature Card 272,584 2 0.077 99.99999 0.147 0.004
Feature Card 422,115 2 0.050 99.99999 0.095 0.002
Alarm Card 845,123 2 1.244 99.99976 2.366 0.059
40C3 Card 164,046 2 6.947 99.99868 13.22 1.783
40C12 Card 124,440 2 8.987 99.99829 17.10 1.880
Power, I:1 load-sharing 316,456 2 0.748 99.99999 0.142 0.006
redundancy
OS Software 33,835 0.251 3.905 99.99926 7.430 1.478
SW upgrade 4,380 0.251 45.123 99.99142 85.85 17.12
Total Core Router 20,687 3 76.208 99.98550 145.0 23.18
Table 7.3. Availability Metrics of SoftSwitch
Annual
Component Description MTBF (hr) MTTR (hr) Downtime A (%) DPM (B) DPM (D)
(min)
E-Switch FIW, 1:1 box 164,528 2 0.776 99.99854 1.458 0.099
Redundancy
E-Switch IOS-R 18,039 0.108 0.111 99.99998 0.211 0.302
Fru Server (1:1 R) 51,810 2 2.304 99.99956 4.384 0.210
SoftSwitch Software 22,545 0.083 0.060 99.99999 0.114 0.302
SW upgrade 4,380 0.083 0.458 99.99991 0.871 1.244
Total SoftSwitch 428,568 3 3.700 99.99930 7.039 2.158
Note: Power is not considered in this SoftSwitch model due to using the Central Office power.
Table 7.4. Availability Metrics of LAN Switch
Annual
Component Description MTBEF (hr) MTTR (hr) Downtime A (%) DPM (B) DPM (D)
(min)
LAN Switch Chassis 369,897 4 6.039 99.99885 11.49 0.270
Processor Engine 1:1R 41,988 2 3.825 99.99927 7277 0.485
Switch Fabric Mod. 172,889 2 0.826 99.99984 1.571 0.071
OS Software 18,039 0.058 0.185 99.99996 0.353 0.302
Application Software 18,039 0.058 0.185 99.99996 0353 0.302
SW Upgrade 4,380 0.367 1.925 99.99963 3.663 1.244
Power, w 1:1 Load- 316,456 2 0.075 99.99999 0.142 0.006
Sharing R
Line Card 93,457 2 12.947 99.99754 24.63 3.307
Connector 94,684 2 12.802 99.99756 24.36 3.299
9 Slot Fanw/ 1:1 Load 740,740 2 0.028 99.99999 0.054 0.001
Sharing R
Total LAN Switch 40,592 3 38.837 99.99261 73.89 9.289

110

Table 7.5. Availability Metrics of Edge Server 1

Annual

Component Description ~ MTBF (hr) MTTR (hr) Downtime A (%) DPM (B) DPM (D)
(min)

Server] Chassis 45212 3 37.780 99.99281 71.88 2212
DSP Module 594,126 2 3.430 99.99935 6.526 4.824
DMM Modem with 63,404 2 18.240 99.99653 34.70 5.528
Feature Card
0S Software 10,549 0.192 5232 99.99901 9.953 4,740
Software Upgrade 4380 0.350 29.399 99.99441 55.93 11.42
Power, with 1:1 Load 600,000 2 1.986 99.99962 3.778 0.250
Sharing R
Total Edge Server 1 16,408 3 96.066 99.98172 182.8 28.97

Further details of the model can be referred to Appendices.

7.2.2.2 Availability of 1:1 Redundant Systems
Inside a system box, it is difficult to deploy redundancy on the ingress card and egress
card to eliminate the single points of failure (SPF); the system chassis is always a SPF.
The effect of SPFs usually accumulates to be the bottleneck of achieving the carrier class
(five 9s) network availability. Thus to better improve the overall end-to-end availability
per customer’s HA requirements, 1:1 active/standby redundancies at the box-level is
usually suggested to some critical systems or inexpensive systems in addition to board-
level redundancy for key components in the system. SAMOT can accurately model the

availability of a complex hardware-software system with redundancy schemes.

Since a Markov model is capable of exhaustively enumerating the failure states and their

transitions, it is used here to verify the correctness and accuracy of the SAMOT tool for

calculating the availability of a 1:1 redundant system. The Bellcore Systems Reliability

111

Analysis Software (SRAS) Ver 2.2 (referring to Appendix) is used as the Markov

modeling tool in this chapter.

Table 7.6. Comparisons of Availability Modeling Results on Unplanned Outages of 1:1 Redundant System

by SAMOT and Markov
Systems A(i‘;)f; S) A(L(/;SI S) A(l(’;if)g&)
Case 1: ASC = 0.99 SAMOT 99.999907 99.999316 99.998802
$SC=0.90 Markov 99.999909 99.999332 99.998830
ST =10 sec Discrepancy 0.000002 0.000016 0.000028
Case 3: ASC = 0,99 SAMOT 99.999878 99.999278 99.998737
SSC=0.90 Markov 99.999880 99.999294 99.998764
ST =30 sec Discrepancy 0.000002 0.000016 0.000027
Case 3: ASC = 0,99 SAMOT 99.999832 99.998676 99.997679
SSC =0.80 Markov 99.999852 99.998847 99.997979
ST=10sec Discrepancy 0.000020 0.000171 0.000300
Case 4: ASC = 0.99 SAMOT 99.999807 99.998642 99.997621
SSC =0.80 Markov 99.999826 99.998812 99.997919
ST =30 sec Discrepancy 0.000019 0.000170 0.000298
Case 5: ASC = 0.90 SAMOT 99.999821 99.998597 99.997541
SSC=0.80 Markov 99.999796 99.998361 99.997129
ST =10 sec Discrepancy 0.000025 0.000236 0.000412
Case 6: ASC = 0.90 SAMOT 99.999798 99.998566 99.997488
SSC=0.80 Markov 99.999772 99.998330 99.997074
ST =30 sec Discrepancy 0.000026 0.000236 0.000414
Case 7: ASC = 0.90 SAMOT 99.999754 99.998014 99.996520
SSC=0.70 Markov 99.999752 99.997988 99.996475
ST=10sec Discrepancy 0.000002 0.000026 0.000045
Case 8: ASC = 0.90 SAMOT 99.999734 99.997988 99.996474
SSC=0.70 Markov 99.999730 99.997959 99.996425
ST =30 sec Discrepancy 0.000004 0.000029 0.000049
Note: 1. Denote: ASC/SSC —Active/Standby Switchover Coverage, ST-Switchover Time
2. The MTBF numbers for unplanned hardware outage of Soft-S, LAN-S, and Edge are
respectively 513522, 47574, and 27130 hours.
3. A(Edge.)(%) is the availability of unplanned outage of Edge Serverl

Results in Table 7.6 indicate that the availability value for a 1:1 redundant hardware-

software system derived by the SAMOT tool is extremely accurate, comparing to the

112

Markov analysis results. Under the above experimental parameter sets, SAMOT just has

a discrepancy from 0.000002% to 0.00045%.

Sensitivity analysis of the modeling results in Figure 7.10(a) shows that there is little
difference of results among different switchover time (10 seconds and 30 seconds) and
only 4 lines are visible, therefore the switchover time does not seem to be a significant

factor affecting SAMOT’s accuracy.

0.000400
0.000300 -+
0.000200 +
0.000100 A
= 0.000000
>
~-0.000100 -
-0.000200 -
-0.000300 -
-0.000400 -
-0.000500

SAMOT/Markov Discrepancy

—&—ASC=0.99, SSC=0.9, ST=10 sec —®—ASC=0.99, SSC=0.9, ST=30 sec
ASC=0.99, SSC=0.8, ST=10 sec —&—ASC=0.99, SSC=0.8, ST=30 sec

—¥—ASC=0.9, $SC=0.8, ST=10 sec —@—ASC=0.9, SSC=0.8, ST=30 sec
—H—ASC=0.9, SSC=0.7, ST=10 sec —&—ASC=0.9, SSC=0.7, ST=30 sec

(a)

0.000400
0.000300 |
0.000200 |
0.000100 |
_0.000000 -
Spo00100 | 1T 2 3 4
-0.000200
-0.000300
-0.000400
-0.000500

SAMOT/Markov Discrepancy

Case number

\—Q—Sys. MTBF = 513,522 —fll— Sys. MTBF = 47,574 —&— Sys. MTBF = 27,130 \

(b)
Figures 7.10(a) & (b). Discrepancy of SAMOT & Markov Modeling Results
113

Figure 7.10(b) shows that the higher the switchover coverage is, the more accurate the
SAMOT will be; SAMOT accuracy becomes more sensitive to the switchover coverage

when the studied system is less reliable (i.e., with a lower MTBF).

7.2.2.3 Network Path Availability
Table 7.7 is the availability metrics of the paths in the sample network based on the

above network architecture, system configuration and subsystem availability parameters.

Table 7.7. Availability of Signaling Path and Bearer Path of the Sample Network

Network Path Annual Downtime (min) A (%) DPM (B) DPM (D)
Signaling Path 116.15 99.9779 220.98
Bearer Path 115.47 99.9780 76.60

Note: The above results are based on Case 1 parameter settings.

In general, the SAMOT tool is very accurate when applied on availability modeling and
analysis for a network comprised of redundant systems with high switchover coverage
and high system availability. The switchover time between the active and standby

systems does not seem to be a very significant factor affecting the SAMOT accuracy.

114

CHAPTER 8

CONCLUSIONS AND FUTURE RESEARCH

This dissertation aims to develop efficient approaches to analyze the reliability and
availability of networks integrated with link failures, node hardware failure and software
failures. The research methodologies and results are performed at the system level and
the network level. It will be the author’s great pleasure that this research has added some

valuable contributions in the network reliability and availability field:

- An efficient approach - MORIN is proposed and demonstrated.

- A simplified methodology and modeling tool for solution availability -
SAMOT is developed and illustrated for modeling the end-to-end availability
of a network comprised of 1:1 redundant hardware-software systems.
SAMOT requires the network architecture, system configurations, the MTBF,
MTTR of subsystems of each system along the path and the redundancy
availability parameters as inputs. SAMOT results are verified by Markov
analysis and can be validated by field collected availability data.

- Petri nets based techniques and efficient modeling tools for parallel and

concurrent systems are discussed and explored as well.

115

The major object of the research is s-¢ two terminal reliability and availability problems.
MORIN can identify the event trees and find the path and calculate the overall network
reliability, but short of capturing the scenarios when redundancies are involved in
complex component systems (nodes) that are subject to software and hardware failures.
On the other side, the SAMOT models the reliability and availability of complex systems,
and can also compute the end-to-end solution availability, given the network architecture
and solution path. The SAMOT Main Module can provide reliability of component

system to Event RCal Module of MORIN.

MORIN and SAMOT are very well complementary approaches that integrate into a
comprehensive solution package for modeling the reliability and availability of complex
networks. As illustrated in Figure 8.1, the package addressing the practical problems
comprises of two segments: the proposed MORIN firstly identifies the disjointed event
trees and path sets from source node s to sink node #; then the SAMOT is developed to
solve the path set problem by computing and approximating (with high accuracy) the
reliability and availability of practical end-to-end solutions consisting of integrated

hardware-software systems (with redundancies).

116

MORIN SAMOT

< MORIN_Events Path Set / Event Tre Main_Module >

-
-

S50 ¢ Sz

NG 0P32L 2§

Path Set/ Event Tree B2 g2%32s 32
1 g2 S|s5

) °843= g3

N v |

Q°°®
(@ \
Event_RCal Gedundancy_Modulta)

Figure 8.1 Complementary Relationship Between MORIN and SAMOT

Follow-up researches can be logically expanded to analyzing the network reliability of 4-
terminals and all-terminals. Future researches in reliability and availability analysis for
integrated networks can also address the different impact on the failure of its incidental
node from each (category of) software fault. Some extended models would be developed
based on empirical software failure data. Another research direction is the study of the

dependency of software failures and hardware failures that cause node failure.

It would be a very rewarding task to extend the SAMOT application to the end-to-end
path availability of a network with 1:N software-hardware system redundancy. Finally,
should more resource and efforts be available in applying the special programming
language and relevant software package, the sketchy PN-based methodologies would

have been better developed and verified.

117

10.

11.

REFERENCES

. R.D. Shier, Network Reliability and Algebraic Structures, Clarendon Press, Oxford,

1991.

K.K. Aggarwal, J.S. Gupta, K.B. Misra, A Simple Method for Reliability Evaluation
of a Communication System, /EEE Trans. Communications, May 1975, pp563-566.

. K.K. Aggarwal, K.B. Misra, J.S. Gupta, A Fast Algorithm for Reliability Evaluation,

IEEE Trans. Reliability, Vol.R-24, No.1, April 1975, pp83-85.

O.M. Ball, Computational Complexity of network Reliability Analysis: An Overview,
IEEE Trans. Reliability, Vol.R-35, No.3, August 1986, pp230-239

. K. Sutner, A. Satyanarayana, C. Suffel, The Complexity of the Residual Node

Connectedness Reliability Problem, SIAM Journal of Computing, Vol.20, No.1,
February 1991, pp.149-155.

W.J. Ke, S.D. Wang, Reliability Evaluation for Distributed Computing Networks
with Imperfect Nodes, IEEE Trans. Reliability, Vol.R-46, No.1, September 1997,
pp342-349.

D. Torrieri, Calculation of Node-pair Reliability in Large Networks with Unreliable
Nodes, IEEE Trans. Reliability, Vol.R-43, No.3, September 1994, pp375-377.

K.B. Misra, T.S.M. Rao, Reliability Analysis of Redundant Networks Using Flow
Graphs, IEEE Trans. Reliability, Vol.R-19, February 1970, pp19-24.

Y.H. Kim, K.E. Case, P.M. Ghare, A Method for Computing Complex System
Reliability, IEEE Trans. Reliability, Vol.R-21, November 1972, pp215-219.

K.K. Aggarwal, J.S. Gupta, K.B. Misra, A New Method for System Reliability
Evaluation, Microelectronic Reliability, Vol.12, No.5, November 1973, pp435-440.

W. Everett, S. Keene, A. Nikora, Applying Software Reliability Engineering in the
1990s, IEEE Trans. Reliability, Vol.47, No.3-SP, September 1998, pp372SP -378SP.

118

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

. M. Lipow, On Software Reliability: A Preface by the Guest Editor, /[EEE Trans.
Reliability, Vol.R-28, No.3, August 1979.

V.A. Nets, B.P. Filin, Consideration of Node Failures in the Network Reliability
Calculation, /EEFE Trans. Reliability, Vol.45, March 1996, pp127-128.

V.K.P. Kumar, S. Hariri, C.S. Raghavendra, Distributed Program Reliability
Analysis, IEEE Trans. Software Engineering, Vol.SE-12, January 1986, pp42-50.

Y .B. Yoo, N. Deo, A Comparison of Algorithms for Terminal pair Reliability, /EEE
Trans. Reliability, Vol. 37, June 1988, pp210-215.

S. Rai, A. Kumar, and E.V. Prasad, Computing Terminal Reliability of Computer
Networks, Reliability Engineering, Vol. 16, 1986, pp109-119.

C.J. Colbourn, the Combinatorics of Network Reliability, Oxford University Press,
New York, 1987.

R. Bhandari, Survivable Networks, Algorithms for Diverse Routing, Kluwer
Academic Publishers, 1999.

E.F. Moore, C.E. Shannon, Reliable Circuits Using Less Reliable Relays, Journal of
the Franklin Institute, Vol. 262, 191-208, 281-297.

L.R. Jorge, A.D. Kieron, Classifying Combined Hardware/Software R Models,
Proceedings of Annual Reliability and Maintainability Symposium, 1984, pp282-288.

A.L. Goel, Software Reliability Models: Assumption, Limitations, and Applicability,
IEEE Trans. Software Engineering, Vol. SE-11, No.12, December 1985, pp1411-
1423.

J.B. Bowles, V. Swaminathan, A Combined Hardware, Software and Usage Model of
Network Reliability and Availability, IEEE 9" Annual International Phoenix
Conference on Computers and Communications, 1990, pp649-654.

F.T. Boesch, Synthesis of Reliable Networks — A Survey, IEEE Trans. Reliability,
Vol. 35, August 1986, pp240-246.

A. Rosenthal, A Computer Scientist looks at Reliability Computations, SIAM J.
Computing, 1975, pp133-152.

L.G. Valiant, The Complexity of Enumeration and Reliability Problems, SIAM J.
Computing, Vol. 8, 1979, pp410-421.

119

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

J.S. Provan, M.O. Ball, The Complexity of Counting Cuts and Computing the
Probability that a Graph is Connected, SIAM J. Computing, Vol. 12, 1983, pp777-
788.

K.B. Misra, An Algorithm for Reliability Evaluation of Redundant Networks, /EEE
Trans. Reliability, Vo. R-19, November 1970, pp146-151.

E.V. Krishnamurphy, G. Komissar, Computer-aid Reliability Analysis of
Complicated Networks, IEEE Trans. Reliability, Vol. R-21, May 1972, pp86-89.

E. Hansler, A Procedure for Calculating the Reliability of a Communication Network,
Arch. Elek. Ubertragung, Vol. 25, 1971, pp573-575.

R.B. Hurley, Probability maps, IEEE Trans. Reliability, Vol. R-12, September 1963,
pp39-44.

W. Hou, O.G. Okogbaa, Reliability Analysis for Integrated Networks with Unreliable
Nodes and Software Failures in the Time Domain, Proceedings of Annual Reliability
and Maintainability Symposium, 2000, pp113-117.

K.K. Vemuri, J.B. Dugan, Reliability Analysis of Complex Hardware-Software
Systems, Proceedings of Annual Reliability and maintainability Symposium, 1999,
ppl178-182.

E. Froncrak, A Top-down Approach to High-Consequence Failure Analysis for
Software Systems, ISSRE, November 1997.

A. Satyanarayana, A. Prabhakar, New Topological Formula and Rapid Algorithm for
Reliability Analysis of Complex Networks, IEEE Trans. Reliability, Vol. R-27,
1978, pp82-100.

F.T. Boesch, A. Satyanarayana, and C.L. Suffel, Some Alternate Characterizations of
Reliability Domination, Probability in the Engineering and Informational Science,

Vol. 4, 1990, 257-76.

M.O. Locks, Recursive Disjoint Products: A Review of Three Algorithms, /[EEE
Trans. Reliability, Vol. R-31, 1982, pp33-35.

M.O. Locks, A Minimizing Algorithm for Sum of Disjoint Products, /EEE Trans.
Reliability, Vol. R-36, 1987, pp445-453.

H. Nakazawa, Bayesian Decomposition Method for Computing the Reliability of an
Oriented Network, IEEE Trans. Reliability, Vol. R-25, 1976, pp77-80.

120

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

M.O. Ball, E.P. Cameron, Experiments with Network Reliability Analysis
Algorithms, Proceedings of the 17" Annual Conference on Modeling and Simulation,
Pittsburgh, 1986, pp1799-1803.

L.B. Page, J.E. Perry, Reliability of Directed Networks Using the Factoring Theorem,
IEEFE Trans. Reliability, Vol. R-38, 1989, pp556-562.

R. Johnson, Network Reliability and Acyclic Orientations, Networks, Vol. 14, 1984,
pp489-505.

R.K. Wood, Factoring Algorithms for Computing K-terminal Network Reliability,
IEEE Trans. Reliability, Vol. R-35, 1986, pp269-278.

H. Frank, Maximally Survival Node Vulnerable Networks, Memorandum for File,
Div. Emergency preparedness of Office of the President, Washington D.C., March
1969.

H. Frank, Maximally Reliable Node Weighted Graphs, Proceedings 3™ Annual
Conference Information Sciences and Systems, May 1969, pp1-6.

H. Frank, Some New Results in the Design of Survivable Networks, Proceedings of
12™ Annual Midwest Circuit Theory Symposium, September 1969, ppl3.1-13.8.

C. Colbourn, A. Satyanarayana, C. Suffel, K. Sutner, Computing the Residual Node
Connectedness Reliability Problem, SIAM J. Computing, Vol. 20, 1991, pp149-155.

C. Colbourn, A. Satyanarayana, C. Suffel, On Residual Connectedness Network
Reliability, DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, Vol. 5, 1991, pp51-59.

C. Suffel, C. Stivaros, Uniformly Optimal networks in the Residual Node
Connectedness Reliability Model, Congressus Numerantium, Vol. 81, March 1991,
ppS1-64.

F.T. Boesch, X. Li, C. Suffel, On the Exsitence of Uniformly Optimally Reliable
Networks, Networks, Vol. 21, 1994, pp181-194.

O. Goldschmidt, P. Jaillet, R. LaSota, On Reliability of Graphs with Node Failures,
Networks, Vol. 24, 1994, pp251-259.

W. Myrvold, K. Cheung, L. Page, J. Perry, Uniformly Most Reliable Graphs Do Not
Always Exist, Networks, Vol. 21, 1991, pp417-419.

A. Amin, K. Siegrist, P. Slater, On the Nonexistence if Uniformly Optimal Graphs for
Pair-connected Reliability, Networks, Vol. 21, 1991, pp359-368.

121

53

54.

55.

56.

57.

38.

59.

60.

61.

62.

63.

64.

65

66.

A. Amin, K. Siegrist, P. Slater, On Uniformly Optimally Reliable Graphs for Pair-
connected Reliability with Vertex Failures, Networks, Vol. 23, 1993, pp185-193.

H.A. Fotoh, C. Colbourn, Computing 2-terminal Reliability for Radio-broadcast
Networks, IEEE Trans. Reliability, Vol. R-38, December 1989, pp538-555.

H.A. Fotoh, C. Colbourn, Efficient Algorithms for Computing the Reliability of
Permutation and Interval Graphs, Networks, Vol. 20, 1990, pp883-898.

J. Reynolds, the Craft of Programming, Englewood Cliffs, NJ, Prentice Hall, 1981.

S. Gerhart, L. Yelowitz, Observations of Fallibility in Applications of Modern
Programming Methodologies, /IEEE Trans. Software Engineering, Vol. SE-2, May
1976, pp195-207.

P.B. Moranda, Prediction of Software Reliability During Debugging, Proceedings of
Annual Reliability and Maintenance Symposium, Washington DC, January 1975,
pp327-332.

G.J. Schick, R.W. Wolverton, An Analysis of Computing Software Reliability Model,
IEEE Trans. Software Engineering, Vol. SE-4, 1978, pp104-120.

A.L. Goel, K. Okumoto, An Analysis of Recurrent Software Failures in a Real-time
Control System, Proceedings of ACM Annual Technology Conference, Washington
DC, 1978, pp496-500.

A.L. Goel, K. Okumoto, A Markovian Model for Reliability and Other Performance
Measures of Software Systems, Proceedings of National Computing Conference,
New York, Vol. 48, 1979, pp769-774.

B. Littlewood, J.L. Verrall, A Bayesian Reliability Growth Model for Computer
Software, Application Statistics, Vol. 22, 1973, pp332-346.

B. Littlewood, Theories of Software Reliability: How Good Are They and How Can
They Be Improved? IEEE Trans. Sofiware Engineering, Vol. SE-6, 1980, pp489-500.

A.L. Goel, K. Okumoto, A Time Dependent Error Detection rate Model for Software
Reliability and Other Performance Measures, /IEEE Trans. Reliability, Vol. R-28,
1979, pp206-211.

. A.L. Goel, 4 Guidebook for Software Reliability Assessment, Rep. RADC-TR-83-

176, August 1982.

A.L. Goel, Software Reliability Modeling and Estimation Techniques, Rep. RADC-
TR-82-263, October 1982.

122

67.1.D. Musa, A Theory of Software Reliability and Its Application, /[EEE Trans.
Software Engineering, Vol. SE-1, 1971, pp312-327.

68. W.D. Brooks, R.W. Motley, Analysis of Discrete Software Reliability Models, Rep.
RADC-TR-80-84, April 1980.

69. H.D. Mills, On the Statistical Validation of Computer Programs, IBM Federal
System Division, Geithersburg, MD. 1975, Rep.72-6015.

70. M. Lipow, Estimation of Software packet Residual Errors, TRW, Redondo Beach,
CA, 1972, Software Series Rep. TRW SS-72-09.

71. S.L. Basin, Estimation of Software Error Rate Via Capture-recapture Sampling,
Science Applications Inc., Palo, Alto, CA, 1974.

72. E. Nelson, Estimating Software Reliability from Test Data, Microelectronic
Reliability, Vol. 17, 1978, pp67-74.

73. C.V. Ramamoorthy, F.B. Bastani, Software Reliability: Status and Perspectives, [EEE
Trans. Software Engineering, Vol. SE-8, July 1982, pp359-371.

74. M.R. Garey, D.S. Johnson, Computers and Intractability, A Guide to the Theory of
NP-Completeness, W.H. Freeman and Company, 1979.

75. D.P. Siewierek, R.S. Swarz, Reliable Computer Systems Design and Evaluation, 3™
edition, A K Peters Ltd., 1998.

76. L.G. Valiant, the Complexity of Computing the Permanent, Theoretical Computer
Science, Vol. 8, 1979, pp189-201.

77. L.G. Valiant, the Complexity of Enumeration and Reliability Problems, SIAM J.
Computing, Vol. 8, 1979, pp410-421.

78. U. Sumita, Y.Masuda, Analysis of Software Availability/Reliability Under the

Influence of Hardware Failures, /EEE Trans. On Software Engineering, Vol.SE-12,
No.1, 1986, pp32-41.

79. A.L. Geol, J. Soenjoto, Models for Hardware-Software System Operational-
performance Evaluation, I[EEE Trans. Reliability, Vol.R-31, No.3, 1981, pp232-239.

80. J.E. Angus, L.E. James, Combined Hardware/Software Reliability Models, Proc.
Annual Reliability and Maintainability Symposium, 1982, pp176-181.

81. B. Cappelle, E.E. Kerre, Issues in Possibilistic Reliability Theory, Reliability and
Safety Analyses under Fuzziness, Physica-Verlag, 1995, pp61-80.

123

82

83.

&4.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

. H. Tanaka, L.T. Fan, F.S. Lai, K. Toguchi, Fault Tree Analysis by Fuzzy
Probability, /[EEE Trans. Reliability, Vol.32, 1983, pp453-457.

D. Singer, A Fuzzy Set Approach to Fault Tree and Reliability Analysis, Fuzzy Sets
and Systems, Vol.34, 1990, pp145-155.

K. Cai, C. Wen, Street-lighting Lamp Replacement: a Fuzzy Viewpoint, Fuzzy Sets
and Systems , Vol.37, 1990, pp161-172.

M.A. Marsan, et. al., Introduction to Generalized Stochastic Petri Nets,
Microelectronic Reliability, v31 n 4 1991 p 699-725.

M.A. Marsan, et. al., On Petri Nets with Stochastic timing, International Workshop
on Time Petri Nets, IEEE Computer Society Press, 1985, pp80-87.

M.A. Holliday, M.K. Vernon, A Generalized Timed Petri Net Model for Performance
Analysis, International Workshop on Time Petri Nets, IEEE Computer Society Press,
1985, pp180-190.

O. Botti, F. De Cindio, Process and Resource Boxes: An Integrated PN Performance
Model for Applications and Architectures, I[EEE Proc. of the International
Conference on Systems, Man and Cybernetics, Le Toquet, France, 1993.

S. Donetelli, G. Franceschinis, The PRS methodology: Integrating Hardware and
Software Models, Lecture notes in Computer Science, Springer, 1997, pp133-151.

W. Reisig, Pertri Nets, An Introduction, Springer-Verlag, 1982.

W. Reisig, G. Rozenberg, Lectures on Petri Nets I: Basic Models, Advances in Petri
Nets, Springer-Verlag, 1998.

W. Reisig, G. Rozenberg, Lectures on Petri Nets I: Applications, Advances in Petri
Nets, Springer-Verlag, 1998.

M.A. Marsan, G. Balbo, K. Trivedi, International Workshop on Time Petri Nets,
IEEE Computer Society Press, 1985.

K. Jensen, Coloured Petri Nets, Basic Concepts, Analysis Methods and Practical Use,
Volume 1, 2" Edition, Springer-Verlag, 1996.

M. Balakrishnan, Stochastic Petri Nets for the Reliability Analysis of Communication

Network Applications with Alternate-routing, Reliability Engineering & System
Safety, Vol.52, n.3 Jun 1996, pp 243-259.

124

96. S.M. Koriem, Fault-tolerance Analysis of Hypercube Systems Using Petri Net
Theory, Journal of Systems and Software, Vol.21, n.1, April 1993. pp 71-88.

97. W.G. Schneeweiss, Petri Nets for Reliability Modeling (in the Fields of Engineering
Safety and Dependability), LiLoLe-Verlag GmbH (Publishing Co. Ltd), 1999.

98. A.D. Stefano, O. Mirabella, Evaluating the Fieldbus Data Link Layer by a Petri Net-
based Simulation, , [EEE Trans. Industrial Electronics, Vol.38, No.4, August 1991.

99. G. Juanole, Y. Atamna, Modeling Communications in the FIP (factory
instrumentation protocol) with the Stochastic Timed Petri Model, Proc. Of ETFA,
1992, pp336-341.

100. S. Christensen, L.O. Jepson, Modeling and Simulation of a Network Management
System Using Hierarchical Colored Petri Nets, Proc. Of 1991 Europe Simulation
Multi-Conference, Copenhagen, Society of Computer Simulation 1991, pp47-52.

101. L. Akyildiz, et al., Stochastic Petri Net Modeling of the FDDI Network Protocol,
in Protocol Specification, Testing and Verification, XI, Elsevier Science Publishers
B.V 1991 IFIP.

102. H. Clausen, P.R. Jensen, Validation and Performance Analysis of Network
Algorithms by Colored Petri Nets, In Petri Nets and Performance Models, Proc. Of
the 5™ International Workshop, Toulouse, France 1993, pp280-289.

103. K. Jensen, Coloured Petri Nets, Basic Concepts, Analysis Methods and Practical
Use, three volumes, Springer-Verlag 1992, 1994, and 1997.

104. G. Ciardo, et al., Modeling a Scalable High-speed Interconnect with Stochastic
Petri Nets, Proc. Of the 6™ International Workshop on Petri Nets and Performance
Models, Durham, North Carolina, October 1995.

105. R. Sahner, K. Trivedi, A. Puliafito, Performance and Reliability Analysis of
Computer Systems, Kluwer 1996.

106. G. Chiola, A Software Package for the Analysis of Generalized Petri Nets, Proc.
Of International Workshop on Timed Petri Nets, Torino, July 1985.

107. A. Bobbio, Petri Nets Generating Markov Reward Models for Performance/
Reliability Analysis of Degradable Systems, Modeling Techniques and Tools for
Computer Performance Evaluation, Plenum Press 1989, pp353-365.

108. J. Couvillion, et al., Performance Modeling with Ultra SAN, /EEE Trans.
Software, V.8, 1991, pp69-80.

125

109. G. Ciardo, J. Muppala, K. Trivedi, SPNP Stochastic Petri Nets Package, Proc.
International Workshop on Petri Nets & Performance Model, Kyoto, 1989, 142-150.

110. G. Rozenberg, P.S. Thiagarajan, Petri nets: Basic Notions, Structure, Behaviour,
in Current Trends in Concurrency, Lecture Notes in Computer Science 224, Springer-
Verlag, Berlin, 1986, pp.585-668.

111. P.S. Thiagarajan, Elementary Net Systems, Petri Nets: Central Models and Their
Properties, Lecture Notes in Computer Science 254, Springer-Verlag, Berlin, 1987,
pp26-59.

112. G. Rozenberg, Behaviour of Elementary Net Systems, Petri Nets: Central Models
and Their Properties, Lecture Notes in Computer Science 254, Springer-Verlag,
Berlin, 1987, pp60-94.

113. J.L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice-Hall,
Englewood Cliffs, 1981.

114. W. Reisig, Petri Nets, EATCS Monographs on Theoretical Computer Science,
Vol.4, Springer-Verlag, Berlin, 1982.

115. H.J. Genrich, Predicate/Transition Nets, Petri Nets: Central Models and Their
Properties, Lecture Notes in Computer Science 254, Springer-Verlag, Berlin, 1987,
pp207-247.

116. F. Lee and M. Marathe, Beyond Redundancy - A Guide to Designing High-
Availability Networks, Cisco EDCS # ENG-36854, 1999.

117. System Hardware Availability and Reliability Calculation Worksheet, Cisco
Internal Document #702073-0000, RevAO.

118. VolP Availability and Reliability Model for the PacketCable Architecture, Cable
Television Laboratories Inc., PKT-TR-VoIPAR-V01-001128, 2000.

119. W. Hou, G. Okogbaa, A Simplified Availability Modeling Tool for Networks
with 1:1 Redundant Software-Hardware Systems, Proceedings of Annual Reliability
and Maintainability Symposium (RAMS), 2002, pp569 - 576.

120. W. Hou, High Availability Analysis for Cactus Solution (1.0R), Cisco EDCS
#ENG-105749, 2001.

121. W. Hou, Cactus 1.0R End to End Availability Model, Cisco EDCS #ENG-
108451, 2001.

126

APPENDICES

127

SAMOT Modules

Appendix 1

Weer FADETS
L e e e e |

[»] / udess y pogoapuz f Tzbz ¥ zzTvasErzeddn

[doysaioud 290y 8] | yesoia - e0dinloarfpoq (@ |

ulew- MO NYS ﬂ —__ 1els ﬁ

Apeay

HLqL-omYs (R

WsE Y W53y nosssy EE Spzidan usb |23 ¥ 6059190 EEUBEUE/__A_ 4 v_v_

_ﬂ—_4_

noH 1aa, :Ag

— (2L ¥ed) LGre0L-9ONT

13po Alligelieay puj o} puj 10WvS

LErF T

dod

dod 1adng FBUIE|

asnuald
NETTL T)

Ehrnagrs mesy
IL=EE] . L EEIWAY %
RETIT 2E

LWBurunaBungoapmgy 404 Jedng, Luonefaubbivdod.,

Aouepunpay (°Z shpoen

Py B
ESHRE
oonok ¥es3

dod

dod 1adng |LIS|

E:Es_ c_ms_ |= 7 75

e | |2

7 - oxoaeﬁ_amﬁ B .C.C_@ﬂ_.ﬂm_ﬁﬂvﬂﬂ:

deH mopuiFi, BT SO0 JRuT4 Jesu] wRli Jp3 3Id ﬂ—

uiew- M HYS - [29%3 Yosoiony

Figure A-1.1. SAMOT-Main Module: Solution Architectural Scenarios

128

Appendix 1 (Continued)

wyilzl FEDEH

| mun] - devsorang aqopy 8] | iesain - 0l ookdpoq [|

L0 S (R

urew- MONYS

[|[eas g

e e e e | Apea
< | [v] / udeim ¥ puaoapua¥ T2z} zzivaTErzeHan gpzauan j usby 2D) e05alwD aunpmEugy N[4] r M
s £ POPY PELERE BE B9 595 L LZIBREEE B5'F a5
PLULE 6B ZO0EEEBE LR 22 PRy ARSIRE'BE AVEL 25
0E22 BEPR LPEZTERBE O¥LE HLS PLBS ALTIREBE 158 1 95
LIy bE BE LREE B 5P B0 FHS TEPRBE'EE 2z G5
FHEZ BEPR HISSER BE AL A0 PLBS AEHOPBEEE BOCHE +5
Ll 0PI OESLER B 2LTL 20 25684 FPOEREEE T0E £5
o (5 LLELLEL) 2p'L 000 LIk LLLLUEL) 29 25
0202 LVeR LE056E B £8'52 0L Lg0g ARG BE £294 15
i PR JaTEE g TG [P QI PR QIR TR AR GRS oz |
TR e e el
ZZIVAD TN i
H H H ZLAS1 = Tand =ang bid
— ZZRUAD WA oF
H B B % LT %
ZZIVAD A I+
ARL AVORT PEBOLE BE LL25E BL2Z FRLGEREE S¥PL " " H SESSY =3 0%
ZZIVAD A BE
AEL AT HELHLEBR S9T05 4 P22 INTIEREE 252 " " " H ADISES "3 RELE B bbb] a5
ZZIVAD A 28
£ "]] i o =3 9%
LUk FLEYE GG ELNETY S0 LI L) WEE ZZIVAD TR G
kL L x POSOLE B SPUESE S6°2R SOLSEEBE PESL " H] H] H] BESSY =3 o
SO°E0L ELILELEL) . [LuS1Y POCRS AROPERBR LR ZZIVAD TAIA £r
THLET HOZHLERE h Era E1Y [Lx23} LULEELE:) gL H " H H H ADE5ES " Fty
P [lE
NI PR DIE IR N
82
iz
]]] LELFEETY] az
S
+Z
H] " " " prsd
SRIZIAD VIR s
B SIEREE 0L SAFZIALD TR 12
9L FH0ELE R £5°5HE LELT EILELEL) s E] E] E] SRESSY "3 0z
032343 TR EL
IZRAERBR IUE Ll DB R L aL
2T ZRELERR kb Skek NZ56E6'GE LI+ H H H H AOSES "3 img aramrg F18
*93ZI4D 1A E18
5k
H H " " " ¥l
SHIZIAD T P
FOOLPZ ZHZELEBE AR PLSEH AZPIERBE SR SAFZIALD TR ZL
HEzZ BEFLLEBE 229k HLRO 2208 ER'EE 0Ly H " " H SRESSY =3 L
SRIZIAD VIR 118
POCERZ ABAELEBE . PLLZE 0L K NLEIEREE T8I SRFZIAAD TR [
oLz LRTELEBR V LU PLS0E AZPREREE #5755 " H " " " ADESES "3 2
.
AFIYTAY LT mIIE] | g
dmig v>-pey>Eg Ay mEuY §ZLAS] TROS PRESSY ADESES ADSNSE TERY R0 G4SH1YD NZIHSD NEIHSI eZLige g
L
3
2
duipqritay pug o3 pag g-g saaoe
= 1 S | [E] | [4] d [x] [T [[= =] E] 3 [a] fa] a o
hIUBPUNPA) HSE) PUE (43N J0) 45T (18isy = | L4
v+ | ==|=|7 PO @ ﬂNa @ . - M_ q
EXAEEEER P IR @~ o 3y oo | 2 Em/®Q

digH wopuipn BIEd SO0T JewiO4 JRsUT mRlR IpT 9)d _.

utew- M HYS - 3943 Jjosory

End-to-End Availability Worksheet

Figure A-1.2. SMOT-Main Module

129

B L MOpS [[Hoseim - 20 o0 fpog @ :_:Em B

urew- RS (5| |

Appendix 1. (Continued)

e e e e | Apea
J4 | v [/ udee ¥ puaoapua ¥ 1Ebe) ZZivADerE6Han HSD Y Ws3{_00255w Y 0585 Y 099) gpzawan f waby 2D engalvD Y ainpEugay L[4[k
= = raradyean ¥ T R
- w] o og
& = [upwr] gy dnBupg maneg |G
1 = [205] wwp aBeana oy xns piesou [Qo
oz = [295] 7wy werzaap ane) A0H | GG |
i = iwof od sopeiBdn 5 plesaur] | g
000002 = () 3904 Ml P |G|
S0 =[] s BEInG 3ukz [03030.d /3 pIESN | 26
S0 [unu) 2wy 2B 100g s piEson | |G
=0 = [upu] ww woR23op ANEY 40T PRSI | TG
) = ieait s zopribdn 201 | B |
sgect =(w)aguizon| ap |
z = {upa] sup sBeane suis joreread 301 | St |
SU g = USIN (|t dBriaat Y oy | A Sy swnsse, Soopn 996LFZ ODSJEEER SRIAEE IEIOL LS " = [upur] [pauneidun] sup 2Beane sooqaa 01| qp
i 02200 O2E 2CCEEEEE 004FE 3beamo pamwelg n] [pauueid] suy sBeane yooqaa 301 | G
U G = UOREING (| GBI Iy ST LI S SWNSSE , $GEE0 CRMGEL | GPOREEEE gocz0l dbtamo pawweiden owy nEnm| Yy [Ieise =0 = () 2y wenz2R e 301 | b
03 = [unu] o Buneoyzaianes L [rp
S G = USRI ([BB U CTHL LA T PWNGSE, 520170 AEME9 GPCERAE6 | LSTFE ISRl Ll EX = soaaey sEsnnoz spebdn iz | 7h
LS00 (99EFE $S95R6EG 0L0g) ¥Erame pawwelg S90 = deiasy wbeavacs TR A0S 301| LD
SUI = USIRING (|23 ERITAE Y g | 11N T PSS, RES0°0 \as0s \GIBEEEE | LEET) sbrano pauwejden f3wrpanpay 13| 0 = sBeinA0% plts AGPUSE | [
[mg)eBeane paunejduny Q2ED = sBavacs paes satoy | RE
(35110 SE60°L 956222 OLLAEEGE SL21°51 [mp)eEeine pauuepdsiocol & arn
OL¥E6EE £220°E 2698°0f £16966°66 LSTT I beng pruweidun M
S¥EE69 ¥OOTOC EFELEF 22056666 0STE ST Fou SZLI0IL-OY PeE =L 109-0Y "& |tac]| g
¥TLTST TFIET LE¥EEC SOLL66°66 TIFLLLE o5
009709 ¥I86'61L £T19°0F GL6S6666 LIFLIT W SZ1J0D-0¥ PR SZLI01L-0Y & =0l Hf
6¥ESEL 9085°T £¥00°LL 00626666 TLELS beng pruwejdun oty
LTL6°8F ££02°61 689T°6C £L0L66°66 SLELSI mepuspis SZLI0IL-AY PYE SZ1001-0Y & ri0) 7o
¥TSETTT ITBLT ¥09¥'6l F¥SOL6666 ¥ETT O beng pruwejdun L
TOFILS TSLE6L OSTLLE LTTI966°66 LETEG6I F3D-0Y¥ PET L 109-0Y & BI0L |5
R,
05480 (00ST0 |0S2LD | 996EEEEE | JSO0D 00000OL 0005 0OO00Z | S20D 0000 0000|000 ' LD IS M2301L-07 [A7
2210 PRODD |8JJLD | 29EEEEEE PCROD | LEEREED 2PPF 20522 000 0260 MopEel 02670 ' aedaifoanied fl ELTR L
999F0 2L8LE | IZLERERE 921UF 05480 (00SF0 |0S2LD | 99EEEEEE | JSO0D 0000OOL 00DS 000002 | S20D [Ty oo (0000 ' SR IS MIEEL09-07 | OF
980'e (99LF0 (22997 PLIEEEEE | GEGSF | LEEEEED | MCGF 99005T 00O [Ty WEpURE-uoU ' aedaifoInied d 210907 | 7
L6ES0 (MELLLL BTSEREDE | 655HY 0SLE0 (00SE0 |0SZLD | $96GE6E6 | AS0D 0000OOL 00DS 0OODOZ | SZOD [Ty 0oon |00in ' 4FEE IS | S INE-ZE 00407 | b7
290} J6SF0 L8SHh | MPESEAE6 | BOB0S SEEEEETD FALS FOSELL ODOE [Ty WEpURE-uo ' andoymaned | - IWE-ELI004 07 | 67
0SLE0 |D0SE0 |0SZHD $9EEE6EG LS00 0O00OOL 0ODS Q0O0OZ | SEOD [y oo |00in ' 4R S| - A IWE-EE 00010 | 77
£6¥Z0 200 ZERE0 ALEEEEBE 24210 2266660 FELS FOaZLl 000 6460 BEED Q260 3 Sedaagangey my - WE-2L2001L-0% | |7
05LE°0 00520 05210 2REEEEGE 4590°0 000a00° L 0005 00000z SZ0°0 o0oa oooa Q00 3 YR s MIE2E00L-0% | N7
ZRFLD S£00°0 20FL°0 GREEEEGE BEL0D SEEEEE'0 5158 FArPeT 000 0260 yrpee| Q260 3 Sedaagangey my IWWE-dIZ1001-0% | /L
az100 6LAZ0 LEEEE'EE BIFLOD 00000 00000 00000 000000 a0} Q000a 000a00° 1 02£9 ez2est 000a 0260 yrpee| Q260 3 4 PAED aL
£520°0 £900°0 06100 2EEEEEGE 00100 BEEEEE'0 02£9 ezgest 0aLa 0260 yrpee| Q260 3 dnBug sancy AL
£6520 £900°0 0E520 SLEEEEGE 0ELL'0 L2EEEE'0 02£9 ezgest 000 0260 yrpee| Q260 3 aedvagangey g | (Buueys-peof) g-gad-ow | gL
£2F1L0 L1 SECEEE'EE SPETE 99620 FRLO0D 2220 2LEEEE'GE 6ALLD 000000° 1 £2Fk 0LERLS 0aLa o0oa 000 Q00 3 dnbung saanoy SL
120009 LPA0D 0ZSE'S JOPEEE'EE 2JIL'G PEGEEED CoPL 0MERIG 0OOF 0000 0000|0000 ' b ysanie] Bl
VEELAL AP9TRL PLLGEERE |BEESE VOPEPL SEREG Q0BEY | OZEEEEE OOOZF ZEEEEED OZEGCL 00D 25070 [Ty 0oon (0000 ' £l speibdn g el
JAPSOE BCJEOL BGLTDL CJRCEERE GBECS OBEEEETD BJPSOZ \JAgy =] [Ty 0oon (0000 (BN speiBdn pigg ZL
SLAFL(MWELL STEGGERE | 2906 S0ZLL (ZALS0 FEO9D | OFEEEEE6 | BAITD GEEEED FRCOL bA99G 850D [Ty 0oon (0000 L | PR e e s Ll
ZLEOE (SO90 |90ZL) | $99E66'E6 OGS0 GGEGEETD MLZ6L FSO0ZS 850D [Ty 0oon (0000 ' FHPURY 42502 5 L
SEEFD |00ZEE BLGGEGE | 8991 OFSLT |0SFE0 |090FD GSEGEEE6 FSIZ0 000000L S0B. 2S4EEh &S00 TEED 4BED | 00BT ' A
28910 |ZEROD|S9TLD | S96EE6EG 599000 GEEREETD GORL ZSiEEh 0SKD TEED EET | 00RTD ' dnBupiq iney a
26247 ZEFOD 822971 FE2EEEGE 69220 FREEEED £02d gshez 000 z620 W EED Q0E'D 3 Sedaagangey iy di3d4-0% |}
ddoup-wdp ay; [ERTTERETTH P (ay) 331aaqg wonebaibby | g
1eae) - prddoag 3-pryzoig Ly =] ud “ASLM Y CHLLW O sRAg | > u.—-vaw I FANIY = FIPOW Fampiey mIyshs-qeg | H
S [8 [@ [a4 | o | W | w 1 A [1 [W [@ [4 [3 [a [3 E] I B
|= [« sd
wwB===|n7al- s- e @ x=x WY o0 BEYE FADU

digH MOpUFR, EIET SO0 3BwaD4 JEsu] maEln IPF 8| ﬁ—

ulew- MRS - [99%] 1Jos01iy

ion Device

Aggregat

Figure A-1.3. SAMOT-Main Module

130

] - doysoiond aqopy [

e e S

B L MapS (R [Heseim - g0 aerdped (@ | _ [11e15 B
Apeay

urew- Ay (5| |

Appendix 1. (Continued)

J+ | | v [/ udem ¥ puaopua ¥ 1Ebe) ZZivaDerE6Han 0055y ¥ 0585 Y 0992 9pzsuan ¥ jueby 20 Y a0salyD f suranaippig 4[4k M
- atL noauhs (gaoyoud 01| 05
g #BE9n0 100921 501 | G |
L I R L i g aB2ino 300991 501 | g |
97ZHLL (IGTSE | MSIEEEE 320 abeano pauuelg SEEEEEEE00 uoROSp ey 501 | [|
ZZBLS FTHLES 9UZ96EEE 15.96L aBeIno pauuepdup) aunaseq ui sasnenmu) yH (19154 [iE] s Bunooysaigna | [g
50 Se1an00 speBdn s | S |
Mgl S SWnEse, (ERLD (59093 BCIGEEEE 9625 =101 |} 550 1202 2in)iE) M3 501 | b |
S0 (59K S59GEEEE 0109} abeno pauuelg 1] 3e13n00 pies figpues | oy |
Mgl S SWnEse, (29800 | 0034S ZEYEEEEE |972L% abeno p 1dun 45T sulaseq 10y punpay |3} 360 bEianca piea snnog | 7 |
[A5)ebeno pauuejdupy L+
048215 6329} W0336F $E0SEEEE ¥10K3Z | [AHIeBEINO pauue|going P ot |
9202°G9 2090°9 ¥ZFI'G6S 9B0¥GEEE 2SB0TLE abeng) pauueidupy | BE|
SEEEE IZB1°EZ OZ66¥KL 10SGB6°66 ,£802°92 SED0F PUE SZ1D0F YUIA HST 12101 | 3C |
ZHSS 8 GLFLI £21FEI BSIE6666 GEOSIE abeang pauueiduny e
SEEEE S¥IZET BIITEKL FLIGE6E6 | 6IT6 1L S8¥I0 PUE SEDOF YIIA HSE 1810) | 5¢ |
OK0SZ BLAKL 29201 IGSBEEEE VBSS0 BEGEEET |9GG6Z G98CE SE0UD 0000 [MEpUnpa-uou L YSEIO MM S S033FI0| 5E |
25796 (GESW0 9MCEL 9903666 093101 L3GEEET [1M%6 20¥E0L 000 (0000 | WUEpURpa-udu L nedayainiiey mH | 25-45-504¢33400 | bE |
- OWOGE LAY 29201 IESEEEEE | PESG0 BEEEEET |GGGEZ GE8EE GEUD 0000 [WEpunpal-ucy L YSEID S S LALEL D01 -0 EE |
26GFEL (Z0GY0 (9BO0'BL BEIBEEEE SGOFE Z9GEEET |G00E 050K} (000 (0000 | WUEpURpa-udu L nedanainiiey mH wLA-ALEEL D010 ZE |
ETEY 086041 BZSEEEE (19368 OROGT BLMF) 29201 IESEEEEE | PESG0 BEEEEET |GGGEZ GE8EE GEUD 0000 [WEpunpal-ucy L YSEID S| IS SOELI0R| LS |
GELPRL (BI0W0 (12091 [TEESEEEE SAPFE BBGEEET [9C02 Obb¥Zl 000F (0000 | WUEpURpa-udu L nedayainiey mH | D5-dI-S04120 08| 0S|
52841 SLMEEL (B99EEEE EAPED OROGT BLMF) 29201 IESEEEEE | PESG0 BEEEEET |GGGEZ GE8EE GEUD 0000 [WEpunpal-ucy L YSEID g M5 S0HEI0% | BE |
S9EPZL BP0S0 (9LELEL [LBJBEEEE BJ0F9 B9GEEET |9609 ab0¥3L 000 (0000 | WUEpURpa-udu L nedayainiey mH | 35H1-S0HEI0F | 0T |
[T 29201 IE9EEEEE | PESG0 BEEEEETD |GGGEZ GEAEE GEUD 0000 [WEpUnpal-ucy L YSEID g MSES02L| AT |
V9ELEL (B28K0 ZELCBL BA0SEEEE 0LGIOL IBEEEED | JG96 $GGE0) 000 (0000 | WUEpURpa-udu L nedayain)iey iy als£s0z2) | Oz |
[T 29201 IE9EEEEE | PESG0 BEEEEETD |GGGEZ GEAEE GEUD 0000 [WEpUnpal-ucy L YSEID g MISESO3| GF |
£98L°8L Z8GH0 192081 M9196EEE SEE9E Z9GEEET [#9IE 0Z160) 000 (0000 | WUEpURpa-udu L nedayain)iey iy AWS£509 | 7 |
15747 [ZEGOD |G99EE S9JBEEEE BEFT SEEEEED E211 S71Gk2 000 (0000 | WUEpURpa-udu L nedayain)iey iy WHTF-21H58 | £F |
$2000 SbE0TD BGEEEEE |8EF0D 00000 (00000 00000 000000°00L 00000 |000000°L | 6952 GHIEZF 0000 (0860 MMSPEO| (0860 L Ianale pIED | ZZ |
ZLE00 [¥Z000 8PE0D \GEEEERE 96P00 | GRGEEED |E69EZ GHIEZF (0002 (0860 MMSPEO| 0860 L 235250 [17 |
L2000 29k10 (BGEEEEE (22200 00000 (00000 00000 000000°00L 00000 000000 | E9%E ¥8G242 0000 (0860 WMSPRO| 0860 L | 0Z |
GOGHD [Z£000 (89%LD GEEEEEEE 24400 |SEEEEED 69C ¥8G242 0002 (0860 WMSPRO| 0860 L 25321559 B |
£9000 22hL0 BGEEEEE |ERA00 00000 (00000 00000 000000°00L 00000 000000 | 094E 95+31E 0000 (0860 WMSPRO| 0860 L 130y pIE] al
05100 [2£000 (86100 9EEEEEEE 8O0 |BEEEEED 09LE 95491 (0520 (0850 WMSPRO| 0860 L dnfiung 1zinay AL
962H0 [2E000 #9210 IBEGEEEE G990 | BEEEEED 09LE 95491 (0002 (0860 WMSPRO| 0860 L nedayainiey mH | 20-2LHSE-HMAd| G|
53620 6202k MGOEEEE (9ALGY (900N [SBALD kL¥ED 9IEGEEEE Z2bF0 | BEEEEED | GILE i£1462 (0GZ0 (0000 (000D 000D L dnfiung 1zinay N
9629°C1 (8890 (GIOKEL [$GOSEEEE ¥GI0Y J9GEEET [G9fS iEViEZ(000F (0000 000D 0000 L nedayainiiey - EEE e
az2h4L S0GE'GE TRIBE'E ISZNGR GG09LG [S19GE RROCE 96SGRE'RE O¥29TZ JGRERET SERLLL ORES 15T (0000 0000|0000 Lo | siegapeafidn s | mps pressu - 501 £ |
LASENG B1STE BRO0STE BLIGEEEE 0BEFTIE JGRERET ZERLLL (DRSS ST (0000 0000|0000 Loh epeafdnpgs | mps pressu - 501 7 |
Bl S62FL STEEEEE (IGO0 AALVE [2AG0 p005E ObIEEEEE BISE ZEEEEED WREOL 12838 15T (0000 0000|0000 L pueiou yse ms ==
BEBLG [G09E0 #EIEF LIGEEEEE EBEGE GEEBEET 1126l $G02G 15T (0000 0000|0000 L | paipuey yse1a A s01[0l |
S2IE0 SERER MGEEREE DD82F BAMT [LLIFD 89902 SELGEEEE £980) SEEEEED | EETE ¥0EB0L 1GT0 (060 BEED 0080 L 180 PIED | E |
SEOS0 (30800 02520 GIEEEEEE DEELD | SEEEEED £5T6 ¥0£B0L (0GT0 (060 BEED 0080 L dnfiling 1zinay =N
Gk0Z (30500 B£E0E SELGEEEE BEA0) ZREEEED EETE FOEE0L (000F 0BE0 SSE0 00ED L nedaiaine) AH I
paddoup-wdp ayao)g-wdp ‘g-WNE UAOP-LIRE 13IN0Y 3107 =1
S
1e10) | paddoug a-payoolg (v =) 1e =) 114 CRECEIT KT waishs-qng| § |
Wda 1qeqs . QRS [ERPIAIPY [ERPIAIPY] [
Lz
L
[s [8w [o [4 [o [[T 1 [r [T v [9o

~ opon TN _ 1%

utew- M HYS - 3943 Jjosory

Core Router

Figure A-1.4. SAMOT-Main Module

131

Appendix 1. (Continued)

B L MapS (R [Heseim - g0 aerdped (@ | _ [11e15 B

e e e e | Apeay
<« | [v] [/ udesm ¥ pu3eipua f 1zkz f ZzivaTErzeHan 099%) 9bzsuan /yuaby 1ed e05alvD) =gy L[4[k M
=~ g = LU RO OO Sy ST IOET AT B
[= () (pauued) awy sBen0 00024 /S| 25 |
=] = (U] 2w UORIE3ER Jney S| LG |
03 = (U aw Augooysagnod] | os |
a0 = J0jaiy afesaacd apelBdn pws| B |
0 = J0jok) afelasnd alnie) s oF |
= afielannd pled Aqpuels| 2f |
= afigiannd pied aAly| o |
Ea
i=rels] uomnE_ QYMPUE | =004 ._..mx_/._ - —‘_/.: HNLE = YRS NEERT | R
G9ex¥Z209% {1 N1 *N).e-1]3(D-1] + Nl(ean-1 *N)aN - 1[50l = awnuaoq (enuuy Bupeys-peo| L |
G9£7+Z209% {NF(N.€-1)2(D-1) + NylleaN-1 +N)TN_E-L 130} = swnuaoQ [enuuy iqpueis;annay | 7 |
I
s oo woy] saddns|1amed 1spisucs yuan 0% |
g0 [Briaacs speifidn myg B |
sanuw| gy sbeino speibidn g o |
spugoas | g| aip apeibdn pys T
[T e 0L86EEEE £89°0 [ZLINEN spucass| g} AL 1BAOHNING E=
E3ET TR <1013 i) abElanog figpuelsg ==
FZIED BOEREEEE rauuedun) PO A0 IE|A] abiE1anoa g 210y | #E |
ZI0EE 1BA3T 12EED LOEBEEEE DBYD IBEEEEED 3L0TD abeano pauueiduny . leE]
G880 97760 99950 E9RGGRES 2600 9GGEGEGD GEOT afieano pauuejg T CEEIRE G U | gy
0280 ¥OI0 90 L9EBEEEE LALD (Ag)abeno pauueidun =
2518 [T ALFEEEEE LADE THEEEEED | aY | Ay | (AH)abeino pauuedupn =
kel OREED 82919 CHEEEEEE ZFEE abeano pauveidup [62 |
¥SHT O ERRTL DLEED SIEEEEEE 84F0 spy | fedge | abeino pauuelg IE4
261 8517 BE0E SETEEEEE 00T (LTS [
' [YE CIBEEEEE BGF0 EIZ0) AEFD 9BTED LIBEEEEE 9EF0 PIEEEEED £S00 0GEO0L 1GED 00FD |0BED | =iiey apeibidn mps EA
1R (3940 (GO0 JEEEEEEE 2200 JGEEEEED 00D O0EL M6E0 00ED 066D ' apeibdn g #peiBdn g | 7 |
2050 FHED GBEEEEEE 0300 LAk #0300 Z00k0 OBEGEEEE £50°0 VBEEEEED |S500 (S6M06 1ES0 (00E0 |0GED b [EIPuEY ou YRR g | #2 |
19570 (41620 ¥ELOD GEEGEEEE 2000 GEEEEEED SO0 G¥GEZ 16F0 00ED 0G0 | PRIPUEY YSEID f)S HIEs ¥ | G |
7z
5 iz
L i
0z FEEE ZHGEEEEE FOCT GOSEO EGOND £ELLD ZEEEEEEE 2600 PEEBEEED £S00 OIBIG 16ED 00D |0BED b | dnBung uoneisyios, [6]
WLER [ZG0b0 8s0TE GLGEEEEE 2hEE PISBEEED DOOE OMEIS 16ED 00D |0BED | nedanainiey aH | dureg ||
2050 HEn GLEGEEEE LU EIEND #0A00 BOELD LBEEEEEE EA0°0 S9EEEEED BOMO GELOE | 1BED 00FD |0BED b jEipUEY 0 eI S 21
£27E0 LIRE0 908070 ZEEEEEEE 2#00 SEEEEEED AMOD GKGIZMGED 00FD |0BED | [P S01$262 | 9L |
BE0D E! PESEEEEE 9940 90L0 IEE00 GO0 ZEEEEEEE | LFO0 SEEEEEED ALLD B2GPIL 1BED 00FD |0BED | 1aA0]E pIED EN
258000 MEE00 78500 FEEGEEEE B200 GEEEEEED £300 B79¥3F 16E0 00ED 066D ' dnButiq 1anay N
23551 MEE0D1GEE) L336EEEE 3690 3LGB6EE0 DOOE 829434 16E0 00ED DGO ' tedaipainiiey i yosg Y 7262 [£ |
[EuRg105] weby 1iET] ¢1 |
L
Wddd | wa0a W 10 110 2 paddnig [ea-payaold /] MIGRIEA \Op [ENUUY (AR [ENPIAIPU] MT HL LI MISE LI 2 IR13A0 | 0 Rqpi5 |2 2nndg | SIun Apail ainfie 4 waisEqng |
wanadwes [P wshs-qng 5 |
=]
* | " [w [4 [o [w [w [3 w [r [0 [H[o 3] 3a]lalo> a | [
(yanmsyos) waby g7 | [+ i

- o&omw@_ﬂmd w@_:c-c._@J_.Bm_qﬂvﬂ al

digH wopuipn BIEd SO0T JewiO4 JRsUT mRlR IpT 9)d ﬁ—

I
1]
il
=

uiew- M HYS - [39%7 1Josoidi

Softswitch System
132

Figure A-1.5. SAMOT-Main Module

uew- MONYS

M) - deyseiaud aqopy [B LA pYS [[1esomp - £0dnlae)-fpoq @ :_:Em B

LAN Switch

133

Appendix 1. (Continued)

e e e e | Apea
J4 | v [/ udee ¥ puaoapua f 1Ebe) ZZivADerE6Han w5 Y w53/ n0esey Y 0585 Y 0992) gpzawan f weby 2D Y e0s9LvdY ainpEuyay L[4[k
—] = afielanod pIEd anag | Of |
10joey oedun ogpue | =010y [ep - L] pLE = g ELIo 4

s9ex#zz09% {1 -Nhl(1-N).e-1]1s(0-1]) « nillezn- L *N]zn -1 120t = aumuaoq jenuuy Buneyg-peod| zf
59£2+Z209% INFIN.e-1)2(D-1) « pel(e=N-1 +N)zN. 2L JxD} = aun 0 jenuuy <6 stannov | | |
o)

a0 4 abelanod apeibidn pgg BE
seqnuw | g sBeno apelbidn myg 8g |
spugoas | | 2wy spelbdn s [|
L0667 (35Tl 129201 CIEREEEE BTG (LT spucaas | ol AL IBAOMNING [9g]

wolee? <= 1013 (1[4} abiElanog mn_ur_wum cc
59899 loegeEeE [pauuedun) POLELL ADYIEL BED alie1an00 SAOY 2107 3
BlE90L E2EEE G35 ALEREETEE BGE ZEEREEET BBOD sfyy abeano pauuejdup o eg]
LORERE GGLFLE WTFE SG9GEETEE MO S9EGEEET SIOD EES abeino pauuey D Souepunpa £059 11 . |
Z02EEL BAELE ¥ELLL CETREEEE 0ALE (A5) 2beno pauuejdun =
LTGEFY 996 LGG0EH PEITEEBE ZHLLD Y [AH] abeno pauuejdun og |
GTATEL FEROE V8ZE0L LABTEEEE ZIEEE abeno pauuejdup E4
LIEF FHET 299 PLIGEEEE |76 abeno pauue)y E4
LO31EE 38326 AL |L9ZEERE | dEEEC 110 |2 |
— ¥9E00 ¥IO0D 0¥500 GEEGEEEE 87010 £LEREEETD 000 0¥20F. 0360 MEPEQl (0360 | aedayainiey AH | =NY 4 LOTSEMI05M [9T |
S6EZ |Z9GEFT | POGIEEEE Z0REL GLO0G BMLLE LEETE LLBEERE (0041 296EEEETD | BG0D EL02L 0000 WEPURPaU-UaL | MSER IS | S G TH-BRZEN-S A | BT |
G05912 18250 ¥E211Z [288ME6ETEE 20L1L EE4B6EET0 0002 $89F6 0000 WEPURPA-UaL | nedanainiey aH | G TH-BFRIHEA | B |
BI08F |GEEPE | JEGIEEEE LRI GLO0G BLLLE LEETE LLGEETEE 0041 SOEGEEETD | BG0D B208L 0000 WEPURPI-USL | WSRO S| S DIEO-B0YER-SA | ET |
SYEELZ 0GEGD SEELLE DSBLEETEE BHTL S5466E6T0 000 2GFE6 000D WEPURPAI-UCU | nedanainiey aH | JNFD-B0PIAEA | TE |
£04Z0 (953Kl | MGESEEEE BSOS OLLEO ZEELD T ZEEGEEEE |GGED SEEGEEET | 0GZ0 Z6EE9E 000D 0000 0000 | dnBupg 1zanoy [z
BEFEDL ZEELD LEVEDL GLESEEEE | PB9G ZEEGEEET | 000F Z6EE9E 000D 0000 [T | nedanainiey AH 6053054 | O |
S90070 |ZZRL0 |98EEEEEE GA00 0000 0000 Q0000 000000°00F | 000D 0000000 | 0000 GFILE 086D myspeol 0360 | 1aA0]E pIED G|
0600 ZE000 25100 SEEGEEEE 8000 ZEEGEEETD 0SZ0 5GFIE 086D MEPEO] (0360 ' dnBiupg 1znoy EN
20 ZE000 #3210 LGEGEEEE 9900 LEEREEETD 0002 35F3LE 0860 MEPEO] (0360 ' tedaiainiiey i MIOEL-DTTSM | L) |
¥RRZZC39C [$EIGGEEE G2 3FLF (B46VD 3089 GCIBEEEE GBI S3966EED L350 05501 1650 0060 0660 | =gy apeibdn pys S0-Led+500] 9 |
0BGL0 992D PEIOD EEEGEEEE 2000 EEEGEEETN 4000 0052 1620 0060 0EED [N apedfidn g S0-Lwd+501] G|
1Z0£0 |GEGE0 GIEEEEEE G810 LEZTO 2500 #2210 986GEEEE (590D EOEEEEET BG0D O¥GIG 1620 0060 0EED || paIpUEL 10U YR S SOLed| Fh |
GEF0 FIELD 16220 LIEGEEEE 02LO GAEGEEET | BS0D 26442 1620 0060 0BE0 | PaIPUEY YSEI1D M5 SO0-Lwd| £
VZ0ED (GEGE0 GYEREEEE GELD LEZZT0 2500 ¥EZLD SEEGEEEE GO0 GEEGEEET | BG0D OFGIGHESD 000 0EED b | papueg U ysE s S0 Z1 |
GEITF0 LD 1BZZ0 LIEGEEEE |OZLD GLEGEEET 8GO0 26447 1ESD 0060 0EED | PaIpUEY YSE1D MgS T
204000 (90.5° |SVSEGEEE 920 RIE00 GIEOD 0000 000000°00F | 000D 00000007 4000 BRETLL | LESD B0 00§D | 1aA0]E{ pIED) oL
0609 EEE0D L6951 CREGEEEE |GEE0 PESEEEET 000 BREZLL #8950 0960 00§D | aedayainie) mH | 50053054 [6

SPEFD LAL3Y |TIZEEEEE GIEE LS3L0 91910 SRO0D 000000°00F | 2000 0000000 \JOOD @8ElF $98D 0960 00§D | 1aA0]E pIED g
SEIED 913D BL050 GIEGEEEE |STFD OFEGEEETD 0SE0 S86HF | ¥350 0960 00§D ' dnBiupg 1znoy £z

£9293 91340 L¥3F3 ¥SEREEEE |B6ST ¥TSREEETD 000Z A8EMk | ¥380 0960 00§10 ' tedaipainiiey i F e e i T]

m YOIAS zq.__ [

¥

w400 | a9 [10 |Ea0] | ||E2 paddoag (ea-payocig IQE(IEMY [MOP [ETUUY AE [ERPAPU Y] DL T3S LI 00 [E18a0 15 3AN9313 19 3N | S0 ApoL AInE 4 wEheqns | o
wauadiua s [FTTa) wshs-qng Iz |

L

> [8 [4 [o n [w 1 B r [u | o 4 [3 [a]o»> a | [
Yaums Wyl | = [+ o

G EH===|078- - pelz@- =My ~-cBE|ge/Eaag]

digH MOpUFR, EIET SO0 3BwaD4 JEsu] maEln IPF 8| ﬁ—

ulew- MRS - [99%] 1Jos01iy

Figure A-1.6. SAMOT-Main Module

Appendix 1. (Continued)

e e S

U] - dovscioyd 2qopy fjE]

_4_4 I

[] / udeis y pugmpus ¥ Tk) zzrvasmpzesan

wew-moWyS (5| HiaL-mOnwS (R [eso - endnoo-poa [| |[ueas g

Apeay

W50 ¥ WS3 Y 00ESSY Y, 0585 opzsuan el |23 Y s05oLeD /) aunpnsugy W4k M

1 Jawn sBenoeogal go| Ft
] | awn uono=ep e SOl | B |
09 wawn Buncoysagnal] | 74
a0 sbeizaco apeiBdn A0S | |1
580 BEaA0a SR IS S01| OF |
a0 sbe18000 pIED AQPUEIS | GE
] = sbe1an00 piEo sy | gE |
| LE |
| 9g |
‘uoyoe) oedwl ogs pUE | =0 10) [BRK - |+]HRLE = ¢ EUI0JDIsseg | GE
SOE*PZH09% {(1+NNICL+N).B- 110~ 1) + NIL(®*N- | +N)*N.2 - | %D} = swnuaoq) |enuuy BuleyS-peoT| g |
SOEXPZE00% {HIN.=- 1150~ 1) + NIL(=*N- |+H)EN.E- 1RDE = sunusog [enuuy dqpuengiaanoy | or |
g0 |#beizn0o apeibdn pmg $
a7 pnsBeino apeibdh g | OF |
spuocoEs |] s speibdn @ g [T
- 90PEE BBELL LODPSI 95p866'66 pOL'S | 110l |°) Spucass| 0| SR ISROYD MG | 82 |
==t =-loug 060 abelanoon _An_ﬁr_mum h_HW
0804711 OESRGEEE J9=1dun) POLISL IR] BE0 bR Ian00 ANy | 2900 a7 |
9585°8] 1£859 5286°l1 Z0BBEEEE 2089 08866660 1600 « abeno pauuejdup) .| GE
10PEFL SS5IP°LL 9PERE 9596EGEE L09'L 9956660 5100 g4y ebewno pauuelg I SRS e | ¥ |
SZEPOS BlZRl ELZ9I £LEBEE'EE6 (£S5 (AG)abeino pauuedup | ET |
POOEELL PEE'E 995°0LL EPEEOE'SE (S1195 fore | geids | [AH)e0EING pauueidun | EC |
GEEEpRl BESSLL IBER'9Z) SIELBE'EE L9399 abeno pauuejdup) LT |
L6PELD (Z51pLL SPEE'SS LOPPEE'EE |BEEEZ abeno pauue]d | 0 |
9zbL1 12 069682 9ELL'ZB| EZLI96'66 99096 =10 | B |
9255 EOL'PE DES9EE'GE ObZ'8l 96E2°L BEELP SESIE PEOEEEEE 19971 99EGGE6'0 £E0°0 6PSOL 0000 WEPUNpSI-Uou 1 HER IS |81 |
SIEEZE 988L0 BZPSIE 9PBOEE'G6 |GL5'9) SB95EG6°0 0002 POPES (0000 WEpUnpSI-uou 1 nedayaanEiMH L WWO9E- 1L-E5SY |) |
P8P 92579 LPEBGE'EE 0EP'E (9BGB°L BELLP |BESLE PRIGEGEE 19971 BOGGGG6°0 EE00 6PSOL QOO0 WEpUnpal-uUed I YRS MIE |91 |
POSPE ZPE00 E£B9EE £99B66'66 69L°) 99666660 000 |SZIPES 0000 MWEPUnpEi-led | AEday NI M | OX0A-E557 | G |
Sle'll PEE'SS LOPPEE'EE GEE'EZ |58Z5°0E | 19895F pZ9E'IE POBOGEEE 66L'9) 029BE6E0 0SE'0 DSE01 0000 IMEpUnpal-uou | 5=y SpeIbd)5 MISPEISUT+C0I| F] |
21280 (Z6P29 OZL6'EZ E09LGE'GE 009'Z) 09LE66GE°0 SL1'0 \D0OEL ooo'n WEpPURpSI-UoU [SpEIBdn Mg MISPE2SUT+ S0 £ |
oLt (ESEE SOOBGE'E6 ZE2'5 (18108 6959°1 26589 POEEEEEE | ZPE'E BEEEGEE0 Z61°0 ORIDE 0000 WEPUNpSI-Uou || PEIPHEYIoU YEES Mg salf 2l |
25499 B020C EPESE VPOEEE'GE (62271 POGEEGE'0 9500 62291 0000 WEpUnpal-uou I PEPHEY M= SIS SOl bl |
0520 |8lle CEOBGE'EE 98671 (LLII0D EEB00 |2LZ00 LEEEEE'EE |S510°0 00000001 LI0°0 (000009 (086°0 '45P=9| 0260 | SBROE| pIE] Ol |
00050 E£80°0 A81P70 95SEEEEEE 6120 9BEBEEE'0 0SZ2'0 000009 (0296°0 M45PEC| 0260 | dnifiung 13inoy | B |
L91¢E EEB00 EEEEE L99B6E'EE (25471 (L9BBEEE'0 000'Z (000009 (026°0 M4SPEO| 0260 | AedayaangiEy My | did-0-E55W | 8 |
L1122 (IBLE'IL ZIBZEE'E6 0BLLE |PSE9E BS0L° (SEES'S LPPEEEEE 9067 SPEEEEE0 052'0 215k 0000 000°0 0000 1 dnfiung 1ainoy N
S550°L9 85011 ABPE'SS SOEEEE'EE ELSPE (LEEEEGED 000E (Z1Z5¢ 0000 0000 0000 1 tedanaingiey iy ODESSY) 4
1 | 1amag abpl) §
Wdd-0 | Wd0-9 [l 1a |F1e | [paddeiq Fo-paqaaig) AIIqE|iEnYy 2 [Enudy v (BRI MTHL LW M) 43 11 22 IF1800 Brnaay3 |2 snnay | sidn SPOW SN 4 waEisgng | g |
usuodwas [Washs-qng i
L
4 | o [4 o [n [w | 7 H r I [H][o 4] 3 [ala E | v
| Janag 8bp3 | [+ oy

- o&oam@_ﬂmd w@_:c-c._@J_.Bm_qﬂvﬂ al

digH wopuipn BIEd SO0T JewiO4 JRsUT mRlR IpT 9)d ﬁ—

uiew- M HYS - [39%7 1Josoidi

Edge Server 1

Figure A-1.7. SAMOT-Main Module

134

Appendix 1. (Continued)

SAMDW-1by1R
| Fie Edit Wiew Insert Format Tools Data Window Help =& %]
IDEES(SB B@(v- o |@ = g 8 |fsr -6 3 m -1 o
G1 | = | SAMOT Availability and Reliability Calculation YWorksheet
SAMOT Availability and Reliability Calculatiori Worksheet!(‘!:'r R G =
For Series-Parallel Configurations ENG-108451 (panzez) I~
System Description: [Cactus - 1:1 Call Agent Active/standby Redundancy (Unplanned) Prepared by: ‘WeiHou
Date: 18-Sep-00
System Availability % = 99.99990679% The fraction of time the system is operational Sci. Notation
System Unavailahility % 0.00009321% Equalto 1-Avail., and is the fraction of time the system is non-operational 9.32068E-07 System Unavailz
Annual Downtime (Min.) = 0.5 Equalto System Unavailsbility times 525,960 minutes per year
System MTBF (Hrs.) 17,427 The meantime to gafrom an operational to a non-operational state. 1.74260E+04 System MTBF (H
System MTBPR (Hrs. 5,809 The meantime between any part restoration (including the time ta repair].
System MTTR (Hrs.) = 0.0 The mean time ta repait the system, or the mean ime o go fram 2 3.85208E-01 Anmual Unreliab
non-operational to an operational state.
Move to Far right For scientifie notation 3 Sci. Notation
Combined Combined
n m Pant MTBF Part MTTR Part Combined | Combined Part Combined
Pan Description (QTY) | (No Req.) (hrs.) (hrs.) Availability Part MTTR | Part MTBF Unavailability | Part MTBF
T Hwlsuccesshul failure
detection and switchover) 1 1 576,344 [99.99999952:< | 99.99999952: 0.0 576,344 4.51986E-09 | 5.7B344E+05
2 | Hi [failed active coverage) 1 1 51,352,222 1 99.99999805:< | 99.99999505: 1.0 51,352,222 1.94736E-08 | 5.13522E+07
3| HWisucoesstul active
coverage & failed standby
coverage] 1 1 5.187.093 3] 99.99994216% | 99.99994216 30 5.187.093 5. 78358E-07 5.18709E+06
4 Hiw [perfect
detection!suitchouer) z 1 513,522 3 99.99941580:< | 100000000003 15 43,851,358,725 J41Z87E-11 | 4.39514E+10
S| Swisuccesshlfailue
detection and switchover) 1 1 20,246] 99.99998625: | 98999986254 0.0 20,246 1.37203E-07 | 2.02458E+04
6 | S [Failed antive coverage) 1 1 1.503.900 0 99.99999908:% | 99.99999908x 0.0 1,503,900 9.23924E-09 | 1.80390E+05
7 S [successhul active
coverage & failed standby |
coverage) 1 1 182,212] 99.999981 712 | 99.99998171 0.0 182,212 1.82937E-07 | 1.BZZ1ZE+05
8 S [perfect
detection!suitchover) z 1 18,039] 99.99951522:4 | 1000000000034 0.0 4,551,100,854 3.41480E-12 | 4.88110E+09
9
10
11
1z
13
14
15
16
17 -
1« [4] [pi['_Cat6509(Unplanned) [Cat6S03(Flanned) 3 Call Agent{Unplanned) { Call dgert(Planned) /{ 7246(Unplanned) / 7246(Flanned) /£ 3660(Unplanned) 4 3660(Flanr | 4 | ﬂJJ
Ready 1] 5 o |

body-toc_uy03 - Mictosaf...|[E] SAMOW-by1R & 58M0W-main | B adobe Photashop - Uik, |

AMODW-1by1R
J@ File Edit W¥iew Insert Format Tools Data Window Help

Deda/g|Bio-c-[@ = & s jlae - @ 2 s B
G1 = =[SAMOT Availability and Reliability Calculation Yorksheet
SAMOT Awvailability and Reliability Calculatio) Worksheet!p’:f y Modwie) Confi i =
For Series-Parallel Configurations Fier. A-d I—

System Description: [Cactus Call Agent Active/standby Redundancy (Planned, Prepared by: ‘weiHou
D.

ate: 15-Sep-00
Systemn Availability % = 99.99996342% The fraction of time the system is operational. Sci. Hotation

System Unavailability % 0.00003658% Equalto 1-Avail, and is the fraction of time the system is non-operational. 3.65841E-07 Systemn Unavailability
Arnual Downtime (Min.) = 0.2 Equalto System Unawailability times 525 960 minutes per year,
System MTBF (Hrs.) = 95,670 The me.antime to ga from an operational ta 2 non-operationsl state. 9 55609E+04 System MTBF (Hrs.)
Systermn MTBPR (Hrs. 95,670 The mean time between any part restoration (including the time to repair]
Systemn MTTR (Hrs. 0.0 The mean time ta repair the system, of the mean time ta go from a B.75951E-02 Ankarai Unreliability
non-opetational to an operational state.
Move to Far right For cciestific sotation Sci. Hotation
ombine om
n m Pan MTBF Pan MTTR Pant Part Combined Combined Combined
Pant Description | (QTY) | (No. Req.) fhrs.) fhrs.) Availability | Avai y | Pan MTTR | Part MTBF | | Unavailab Part MTBF
T Sinfrw are uparads 1 1 158,450 1] 999999952 F> | 99.999995265 oo 158,450 1.74Z10E-08 | 1.58450E+035
2| Software unsuccesshil
uparade 1 1 239,175 a 99999965165 | 99.999965165 a1 238,175 3.48420E-07 | 2.39175E+05

3
4
L]

Comments: ‘

[« [4[» [pi[" Caté50a(Unplanned) [Cat6S09(Flanned) # Call Agent{Unplanned) 4 Call Agent{Planned) / 724&{Unplanned) [7z46(Flanned) { 3660(Unplanned) 3660(Flanr (<] | ﬂj_‘
Ready Il - - - - 1 |

iﬂStall”J @body—toc_iuly% - Microsof I SAMDW-I bylR SAMDW—main | EAdobe Phatoshap | %@ﬁ{‘s 349 PM

Figure A-1.8. SAMOT-1:1 Redundancy Module: SoftSwitch
135

Appendix 1. (Continued)

Ed soft Excel - SAMOW-1bylR [
| Eile Edit Wiew Insert Format Iools Data Window Help — 1= x|
DEeMs| S md|w- - |[@ = & 2@l - @ 2 R
5 Ll =| Cactus - 1:1 Catalyst 6509 Active/standby Redundancy (Planned)
SAMOT Availability and Reliability Calculation Weorksheet (7:7 Ci F =1
For Series-Parallel Configurations Fiew. At I—
System Descriminn:"camus l 1:1 Catalyst 6509 Acth Planned | Prepared by: 'weitHou
Date: 15-Sep-00
System Availability % = 99.999657514% The fraction of time the system is aperatianal Sci. Notation
Systemn Unavailability 0.00034246% Equalte 1-Avail, and is the fraction of time the system is non-eperational 3.42455E-06 Systemn Unavaile

Annual Downtime (M 1.8 Egualto Systemn Unavailabilivy imes 525,960 minutes per year.

System MTBF (Hrs. 4,380 The meantim= to go from an opsrational to s nen-opsrational stats. 4.38000E+03 System MTBF (H
System MTBPR (Hrs. 4,380 The mean time betw sen any part restaration (ncluding the time to repair).
System MTTR (Hrs. 0.0 The mean time to repair the system, or the mean time ta go fram 2 2.64850E-01 Amsaf Unreliab

ror-eperationalta an operational state.
Move to Far right for i ifie notation —» Sci. i

Combined Combined

Par Combined Combined Part Combined

v Availal v Part MTTR Part MTBF Unavailability Part MTBF

n m Part MTBF Part MTTR Pa
Part Description (QTY) | (No. Req.) [hrs.) (hrs.) Availal

1 Software suscesshl
upgrade 1 1 7.300 o 99.99996195:% | 99.99995195:% an 7.300 380S17E-07 | 7.30000E+03

2| Sobware unsuccessiul
upgrade 1 1 10,950 o 99.99959559:% | 99.99969559% oo 10.950 3.0d4413E-06 1.095S00E+04

3 -
14| 4[> [#I[5 CateS09(Unplanned) 3 Cat6509(Planned) ¢ Call Agent{Unplanned) 4 Call AgentiPlanned) 4 7246(Unplanned) 4 7e46(Flanned) 4 3660(Unplanned) 4 Ssc0(Flant [<] | »|
Ready | ﬁlil*lili!ilil*

|| B bodytoc_ k03 - Micrasoit_|[ETsaAMOw-1by1R SAMOW main |

soft Excel - SAM byvlR
Eile Edit View Insert Format Tools Dats Window Help

DE2ES SR (B] v-c-|& = %2 me -0

”JAr\a\ - 14 v”?.l g|

ca J —| Cactus - 1:1 Catalyst 6509 Active/standby Redundancy (Unplanned)
SAMOT Availability and Reliability Calculatioh Worksheet (: 7R & i =
For Series-Parallel Configurations ENG-108451 (Panzem =
System Description: [Cactus Catalyst 6509 Active/standby Redundancy {Unplanned) Prepared by: ‘WeiHou
Date: 18-Sep-00
System Availability % = 99.99931615% The fraction of time the sustem iz operational. Sci. Notation
System Unavailability % = 0.00068385% Equal o 1-Avail.. andis the fraction of time the sustem is non-operational. 6.83847E-06 System Unavailz
Annual Downtime (Mi 3.6 Equalto System Unavailability imes 525,950 minutes per year.
System MTBF {Hrs.) = 13,079 The mean time to go from an aperational to a non-operational state. 1.30790E+04 System MTBF (H
System MTBPR (Hrs.. 4,360 The mean time between any part restaration lincluding the time to repair).
System MTTR {Hrs., 0.1 The mean time ta repair the system, of the mean time to go from a 4.88410E-01 Annuaf Unreliab
non-operstional to an operational state.
Maove to Far righ tation -» Sci. Notation
Combined
n m Pant MTBF Pat MTTR Pant Combined Combined Pant Combined
Part Description (QTY) | (No Req] (hrs.) hrs.) Availability Availability | Part MTTR Part MTBF Unavailability | Part MTBF
1 H! [successhal failure
detection snd switchover) 1 1 53,394] 99.99999450: | 99.99999480:; oo 53,394 5.20242E-08 | 5.33940E+04
2 | Hiw [failed active coverage] 1 1 4,757,402 1 99,09997898% | 9999997895 1.0 4,757,402 2.10225E-07 | 4.75740E+06
3 Hif [sucoessful active
coverage & failed standby
coverage) 1 1 480,546 3 99.99937571% | 9999937571 30 480,546 6.24286E-06 | 4.80546E+05
4 Hi/ [perfect
detectionizwitchover] 2 1 47,574 3 99.9936944 3 | 99.99999960:; 1.8 377,262,076 3.97602E-09 | 3.7T262E+05
5 S [successhul failure
detection snd switchover) 1 1 20,246] 99.99995628% | 99.99998628: 0o 20,246 1.37203E-07 | 2.02458E+04
6 | St [Failed active coverage) 1 1 1,803,900 1] 99,09999905% | 9999999908 oo 1,803,900 9.23931E-09 | 1.B0390E+06
7 S [sucoessful active
coverage & failed standby |
coverage) 1 1 182.212 1] 99.099995171% | 9999998171 oo 162,212 1.82937E-07 | 1.82212E+05
8 S (perfect
detectionizwitchover] 2 1 18,039 1] 99,99981522% | 100000000003 oo 4,681,100,854 3.41460E-12 | 4.88110E+09
9
10
1
12
13
14
15
16
17 -
1 [4 » [M[' Catés09(unplanned) 4 Cates0o(Planned) /£ Call Agent(Unplanned) # Call Agent{Flanned) 4 7246(Unplanned) 4 7246(Flanned) 4 36e0(Unplanned) 4 seeniplan || | LlJJ
Ready e [o [[

St | |j B body-toc_julyD3 - Microsoit. | [E] SAMOW- 1by 1R] 5AMDW-main

Figure A-1.9. SAMOT-1:1 Redundancy Module: LAN Switch

136

Appendix 1. (Continued)

zoft Excel - SAM byvlR
J@ Eile Edit Wiew Insert Format Tools Dats Window Help
JDEE\§@.|\E\ | R s A AL s - @ 7
j = | Cactus - 1:1 Edge Server 1 Active/standby Redundancy (Unplanned)
SAMOT Availability and Reliability Calculation Worksheet (: 7R [i =
For Series-Parallel Configurations ENG-108451 (Panze =
Systern Description:|[Cactus Edge Server 1 Active/standby Redundancy (Unplanned) Prepared by: 'weiHou
Date: 15-Sep-00
System Availability % = 99.99963369% The fraction of time the system is operational. Sci. Notation
System Unavailability % = 0.00036631% Equalta 1-Avail., and is the fraction of time the system is non-operational 3.66307E-06 System Unawvaile
Annual Downtime (Mi 1.9 Equal to System Unavailabiliy times 525,960 minutes per year.
System MTBF (Hrs. 15,105 The mean time to go from an operational to a non-operational state. 1.51046E+04 System MTBF (H
Systern MTBPR {(Hrs., 5,035 The mean time between any pan restaration lincluding the time to repairl.
Systermn MTTR (Hrs.. 0.1 The mean time to repair the system, of the mean time to go from = 4.40300E-01 Anruaf Unreliab
non-operational to an operational state.
Moue to Far righ tation - Sci. Notation
Combined
n m Pan MTBF Pant MTTR Pan Combined Combined Part Combined
QTY]) | (No. Reg.] lhrs.] lhrs.] Availability Part MTTR Part MTBF Unavailal vy | Pant MTBF
1 Hiw' [suceesstul failure
detection and switchouer) 1 1 104,222 o 99.99999733 | 99.99999733K oo 104,222 2.6B526E-08 1.04222E+05
2 | Hw! [failed active coverage) 1 1 9,286,145 1 99.99993523 | 9999995923 1.0 9,286,145 1.07594E-07 9.26614E+06
3 Hief [successful active
coversge & failed standby
coverage] 1 1 937,984 3 9999965017 | 99.99965017:< 3n 937,954 3.19330E-06 9.37994E+05
4 Hivl [pefet
detectioniswitchaver] 2 1 52 861 3 99 99676545 | 99999999505 15 1437300893 1.04362E-09 1.43730E+09
B S [sucoesshul tailure
detection and switchover) 1 1 20,246] 99.99995628: | 99.99998625:4 oo 20,246 1.37203E-07 | 2.02458E+04
B | S'% [failed active coverage) 1 1 1,803,900 o 99.999998052: | 99.99999908 oo 1,803,900 9.23931E-08 1.80390E+06
7 S [sucoessful active
ooverage B failed standby |
couerage] 1 1 182212 o 99.999981 71> | 99.99995171 oo 18z.212 1.82937E-07 1.82212E+05
g Sl [perfact
detectionizwitchauer] 4 1 18,039 o 99.99931522> | 100.00000000: () 4,581,100,854 3.41460E-12 4.82110E+09
9
1o
1
12
13
14
15
16
17 =
14 |4 [» [w]{ Call Agent{Unplanned; Call Agent(Planned 7246{Unplanned 7246(Planned)) 3660(Unplanned) / 3660(Planned) Sa50(Unplanned) £ Saso(Planned) 4 4] | L|J_‘
Ready | [o o o [

‘ﬂSlall”J body-tuciiulym-Microsoft. I =] SAMOW-1by1R -SAMDW-main
zoft Excel - SAMOW-1by1R
[File Edit View Insert Formab Tools Dats Window Help
D& SR\ o- - |& = s 2l |ise - @ 2 =i H[felz o
C5 _| —| Cactus - 1:1 Edge Server 1 Active/standby Redundancy (Planned)

SAMOT Availability and Reliability Calculation Worksheet (7:7 Ci g =1
For Series-Parallel Configurations Rev. A4 =

System Description: [Cactus | 1:1 Eage server 1 actr (Planned) | Prepared by: weitou
Date: 18-Sep-00

System Availability % = 99.99965754% The fraction of time the system is operational. Sci. Notation
System Unavailabili 0.00034246% Equalta |-Ausil.. sndis the fraction of tmea the system is nan-oparational 3.42465E-06 System Unavailz
Annual Downtime {Mi 1.8 Equalte System Unavailability times 525,950 minutes per year.

System MTBF (Hrs. 4,380 The mean time to 9o from an sperational to nen-operstional state. 4. 38000E+03 System MTBF (H

System MTBPR (Hrs.]
System MTTR (Hrs.

4,380 The mean time between any pan restoration lincluding the time 1o repairl.
0.0 The mean time to repair the system, of the mean time to 9o from a 9.64250E-01 Anmual Unreliab
Ron-operational ta an operatianal state.

tation —» Sci.

Combined
Combined Combined Part Combined
Part MTTR Part MTBF Unavailability | Part MTBF

Move to Far righ

n m Pan MTBF Pant MTTR Pan
(QTY) | (No. Req.) [hrs_) (hrs) A ailal

Y

1 Software successhul
1 1 7.300 o 99.99996195:2 | 99.99998195:2 oo 7.300 3.80S17E-07 | 7.30000E+03

z Seoftw are unsuccessful
upgrade 1 1 10,950 o 99.99969559: | 99.99969559:1 oo 10,950 3.04413E-06 | 1.09S00E+04

23
14 |4 [» Ml call Agent{Unplanned) Call Agent{Flanned) £ 7e4s(Unplanned) 4 7z4s(Planned) £ see0(Unplanned)) 3660{Planned) / S&so(Unplanned) £ Seso(Flanned) 4 [« | Llj_l
Ready I o o [[e

g stant ||| B bodytos uiy03 - Miciosort..|[E]sAMOW-1by1R SAMOW-main

Figure A-1.10. SAMOT-1:1 Redundancy Module: Edge Server 1

137

Markov Analysis Tool

Appendix 2

5LId TSEBFPEZHAEE™ SS5F9L HIUH HHNTIUA

SHUHA ECSELGAELGE T d49 1MW

HUdA HAd SHINNIW LTPERBBGTIS E HW T INMOO
99A-H 4658159818979 ALITTIHYTIHNUNN

TBTEELLGLGE™H ALITIHYTIUNY

: SHUNSUAW ALITIHWITHH HIULIS AQUHLS
3x3-duay : HTI4d HOd AHUMMWNS

"afed af3T] U0 SUDTRITJAREAA AJdejarJdadodad aag
ATUQ SJUATTH PAETJ0InNY pue aJ0ITTag — OHdejaradoag

pandasay sIYETY TTY
"IaU] “Yyoadeasay SUoTeITunuuog TT2g Aq 984T AYBTaLAdon 0
(aden] Jos STEATeU? AJTTTIQETITad SWalshis)

Z°F UOLSJd3ap a-1em3 308 JUWI 2J00TT2g

¥ |
[t |
—

-
(]

Aoy1ew - paysin 4 Y]

Markov Analysis Summary Demo

Figure A-2.1.

138

Appendix 2. (Continued)

Appendix 2.1. Markov Analysis Input File

Input File Name: sample1.txt

1:1 Active/Standby Hardware + Software Redundancy
Variables: FIT rates, MTTR, coverage factors, switch time

states = 13
failed = 2,4,5,6,10,11

Parameters:

MTTFH = 47574
MTTFS = 18039
lambdaH = 1/MTTFH
lambdaS = 1/MTTFS

HW Mean Time To Failure (hr)
SW Mean Time To Failure (hr)
HW Failure rate of active unit

SW Failure rate of standby unit

SwitchTimeH = 10 # HW Switchover time to standby (sec)

SwitchTimeS =10 # SW Switchover time to standby (sec)

betaH = 1/(SwitchTimeH/3600) # HW Switchover rate

betaS = 1/(SwitchTimeS/3600) # SW Switchover rate

MTTR1H = 10/60/60 # MTTR of HW unit non-service failures (hr)

MTTR1S = 10/60/60 # MTTR of SW unit non-service failures (hr)

MTTR2H = 3 # MTTR of HW unit service failures (hr)

MTTR2S = 2/60 # MTTR of SW unit service failures (hr)

mu1H = 1/MTTR1H # Mean HW repair rate for non-service affecting failures
mu1S = 1/MTTR1S # Mean SW repair rate for non-service affecting failures
mu2H = 1/MTTR2H # Mean HW repair rate for service affecting failures
mu2S = 1/MTTR2S # Mean SW repair rate for service affecting failures
c1=0.99 # Coverage factor of active unit

c2=0.90 # Coverage factor of standby unit

Transitions:

States for detected failures

1 2 c1*lambdaH
2 3 betaH

3 1 mu1H

3 4 lambdaH

4 1 mu2H

3 5 lambdaS

5 1 mu2S

1 6 c1*lambdaS
6 7 betaS

7 1 mu1S

7 4 lambdaH

7 5 lambdaS

1 8 c2*lambdaH
8 1 mu1H

8 4 lambdaH

139

Appendix 2. (Continued)

O© OO0

abh-200

lambdaS
c2*lambdaS
mu1S
lambdaH
lambda$S

#t States for undetected failures

1
10
1
11
1
12
12
1
13
13

10
1
1
1
12
4
5
13
4
5

(1-c1)*lambdaH
mu2H
(1-c1)*lambdaS
mu2S
(1-c2)*lambdaH
lambdaH
lambdaS
(1-c2)*lambdaS
lambdaH
lambdaS

140

Appendix 2. (Continued)

Appendix 2.2. Markov Analysis Output File

MARKOV MODEL SOLUTION FOR STEADY STATE AVAILABILITY, (V 2.2) JULY 1986
BELL COMMUNICATIONS RESEARCH, INC.

MODEL PARAMETERS :

MTTFH = 47574

MTTFS = 18039
lambdaH =2.101988E-005
lambdaS = 5.543545E-005
SwitchTimeH =10
SwitchTimeS =10

betaH =360

betaS =360

MTTR1H =0.002778
MTTR1S =0.002778
MTTR2H =3

MTTR2S =0.033333
mu1H =360

mu1S =360

mu2H =0.333333
mu2S =30

c1 =0.99

c2 =0.9

STATE PROBABILITIES :

STATE PROBABILITY MINUTES/YR

1 0.909084503 4.77815E+005

2 5.254934172E-008 0.02762 * FAILED STATE
3 5.254933056E-008 0.02762

4 5.732678471E-006 3.0131 * FAILED STATE
5 1.679856888E-007 0.08829 * FAILED STATE
6 1.385876370E-007 0.07284 * FAILED STATE
7 1.385876075E-007 0.07284

8 4.777211869E-008 0.02511

9 1.259887341E-007 0.06622

10 5.732655461E-007 0.30131 * FAILED STATE
11 1.679850145E-008 0.00883 * FAILED STATE
12 0.024993485 13136.57574

13 0.065914965 34644.90573

STEADY STATE RELIABILITY MEASURES:

AVAILABILITY = 0.9999933181

UNAVAILABILITY = 6.6818651859E-006

DOWNTIME = 3.5119883417 MINUTES PER YEAR
MTBF =1.4930973523 YEARS

FAILURE RATE = 76455.3302348351 FITS

141

Appendix 3 MORIN Algorithm

Here are codes implementing the MORIN reliability calculation.

MORIN_RCal.c

* This program is to to calculate the network reliability based
* on the reliability of each node and link along the event trees.
* This program is designed to run on sunblast.eng.usf.edu

F R R S S R

Code designed and created by W. Hou

*hkkkkkkkkkkkkhkkhkkkhkkhkhkkkkhkkhkkhkkhkhhkhkhkhkkkhkkhkkhkhhhkhkhkhkkhkkhkkhkhkhhkhkhkhkkhkkhkkhkkhhhhkhkkkkkhkkhkhhhkhkhkkkxkx */

#include <stdio.h>
#include <string.h>
#include <iostream.h>
#include <sys/types.h>
#include <netdb.h>

#define node_number 4
#define link_number 5

main() /* calculate network reliability based on generated event trees */
{

char event_tree[]; /* the event tree path sets */

char node, link; [* the node index, link index */

char link; /* the link index */

double R_node[]; /* the node reliability */

double RM_node[]; /* the node’s modified reliability */
double RMo_node[]; /* the node’s modified reliability with operational incoming links */

double RMf_node[]; /* the node’s modified reliability with failed incoming links */
double R_link[]; /* the link reliability */

double R_source[]; [* source node reliability */

double R_event_tree[]; /* event tree reliability */

double R [* overall network reliability — */

double Rh_node[]; /* the node hardware reliability */
double Rh_Iink[]; [* the link hardware reliability */
double Rh_source[]; [* source node hardware reliability */
double Rs_node][]; /* the node software reliability */
double Rs_sourcel[]; /* source node software reliability */
double R=1; [* the initial network reliability */

double RMo_node = 1; /* the initial modified node reliability with

operational incoming links */
double RMf_node = 1; /* the initial modified node reliability with failed incoming links */
inti, j, k; /* node j and link k on event tree i */

142

Appendix 3. (Continued)

while ((event_tree = getchar()) != EOF)

for (i = 0; i < event_tree number; ++i)

{
for (j = 0; j < node number on the event tree; ++j)
{
for (k = 0; k < adjacent links to node j; ++k)
if (link[k]_adjacent = OPERATIONAL)
RMo_node [j] = R_nodeli] * R_link[k];
else
RMf_node [j] = (1-R_node [j]) + R_node[j] * (1 - R_link[k]) ;
}R_event_tree[i] = R_source * RMo_node [j] * RMf_node [j];
;:’rintf(“reliability of eventtreeiis :”, R_event_treeli]);

R *= R _event_tree]i];

Printf(“overall reliability is :”, R)

/* codes for ET generating and other modules are available upon NDA */

143

ABOUT THE AUTHOR

Wei Hou received a BS degree (1989) in Telecommunication Management Engineering
and a MS (1992) in Systems Engineering both from Beijing University of Posts and
Telecommunications, China. After his Master's graduation, Mr. Hou served the Ministry
of Information Industry of China as a research staff before he joined Ericsson as a system
engineer. He led a six-month consulting project at Quality Assurance of GE Medical
Systems Information Technology in 1996 shortly after his arrival at USA and co-oped as
an IT engineer at the Availability Management Center of Verizon in 1997 and 1998. Mr.
Hou has worked as an availability analyst at Systems and Solutions Engineering of Cisco
Systems from 2000 to 2001 and since then he has been with Sun Microsystems as a

hardware member of technical staff.

During his doctorate research co-sponsored by National Science Foundation (Award #
DMII 9500289) and Department of Industrial and Management Systems Engineering at
USF, Wei Hou has presented and published a number of papers and tutorials in
international symposiums and conferences. He has also authored over a dozen of
technical reports for GE, Verizon, Cisco, and Sun Microsystems. He was a student
member of IIE and INFORMS, a member of IEEE Reliability Society, a member of

International WHO’S WHO.

	TABLE OF CONTENTS
	LIST OF TABLES ….……………………………………………………………………………..…. iv
	LIST OF FIGURES ………………….……………………………………………………………..… v
	ABSTRACT ………….………………………………………...……………………………………. viii
	ABOUT THE AUTHOR ……………………………………….………………………… End Page

	ABOUT THE AUTHOR ……………………………………….………………………… End Page
	CHAPTER 1 INTRODUCTION
	INTRODUCTION
	1.1 Background
	1.2 Objectives of Research
	1.3 Motivation of Research
	1.4 Overview of Research

	CHAPTER 2
	LITERATURE REVIEW
	2.1 Reliability Studies for Networks with Unreliable Links and Perfect Nodes
	2.2 Reliability Studies for Networks with Unreliable Nodes and Perfect Links
	2.2.1 Residual Node Connectivity Model
	2.2.2 Coherent Model

	2.3 Reliability Studies for Networks with Unreliable Links and Unreliable Nodes
	2.3.1 AGM Method
	2.3.2 NPR/T Method
	2.3.3 ENR/KW Method

	2.4 Software Models
	2.4.1 Software Reliability
	2.4.2 Software Reliability Models
	2.4.2.1 Time Between Failures Models
	2.4.2.2 Failure Count Models
	2.4.2.3 Fault Seeding Models
	2.4.2.4 Input Domain Based Models

	2.5 Petri Nets in Reliability Analysis of Integrated Networks
	2.5.1 Introduction of Petri Nets
	2.5.1.1 Evolution of Petri Net Models
	2.5.1.2 Definitions of Petri Nets
	2.5.1.3 Timed Petri Nets (TPN)

	2.5.2 Colored Petri Nets
	2.5.2.1 Advantages of Colored Petri Nets

	2.5.3 Tools for Petri Nets Applications
	2.5.4 PN_RAIN Approach
	2.5.4.1 Construction of PN_RAIN Models

	2.6 Possibilistic Reliability Functions and Fuzzy Sets Theory

	CHAPTER 3
	PROBLEM FORMULATION
	CHAPTER 4
	APPROACHES FOR CALCULATING NETWORK RELIABILITY
	4.1 Probabilistic and Deterministic Networks
	4.2 Network Operations
	4.3 General Approaches for Calculating the Reliability of Probabilistic Networks
	4.3.1 State-space Enumeration
	4.3.2 Inclusion-Exclusion
	4.3.3 Disjoint Product
	4.3.4 Factoring
	4.3.5 Fault Tree Analysis

	4.4 Computational Complexity of Reliability Analysis

	CHAPTER 5 MODELING RELIABILITY OF INTEGRATED NETWORKS (MORIN)
	CHAPTER 6
	SIMPLIFIED NETWORK AVAILABILITY MODELING
	6.1 Introduction
	6.2 Problem Description
	6.3 Methodologies and Tools
	6.3.1 Common Methodologies
	6.3.2 Commonly-used Tools
	6.3.3 SAMOT Tool

	CHAPTER 7
	COMPUTATIONAL EXPERIMENTS
	7.1 MORIN Examples
	7.1.1 Sample Network 1
	7.1.2 Sample Network 2

	7.2 SAMOT Experiment Results(
	7.2.1 Practical Networks
	7.2.2 SAMOT Modeling Results
	7.2.2.1 System Availability
	7.2.2.2 Availability of 1:1 Redundant Systems
	7.2.2.3 Network Path Availability

	CHAPTER 8
	CONCLUSIONS AND FUTURE RESEARCH
	REFERENCES
	APPENDICES
	Appendix 1 SAMOT Modules
	Appendix 2 Markov Analysis Tool
	Appendix 3 MORIN Algorithm

