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A Framework for Robust Measurement-Based
Admission Control
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Abstract—Measurement-based admission control (MBAC) is

Relying on measured quantities for admission control raises

an attractive mechanism to concurrently offer quality of service g number of issues that have to be understood in order to

(QoS) to users, without requiring a priori traffic specification
and on-line policing. However, several aspects of such a system
need to be clearly understood in order to devise robust MBAC
schemes, i.e., schemes that can match a given QoS target despite
the inherent measurement uncertainty, and without the tuning of
external system parameters. We study the impact of measurement
uncertainty, flow arrival, departure dynamics, and of estimation
memory on the performance of a generic MBAC system in a
common analytical framework. We show that acertainty equiv-
alenceassumption, i.e., assuming that the measured parameters
are the real ones, can grossly compromise the target performance
of the system. We quantify the improvement in performance
as a function of the length of the estimation window and an
adjustment of the target QoS. We demonstrate the existence of a
critical time scaleover which the impact of admissin decisions
persists. Our results yield new insights into the performance
of MBAC schemes, and represent quantitative and qualitative
guidelines for the design of robust schemes.

I. INTRODUCTION

HE traditional approach to admission control requires an

a priori traffic descriptor in terms of the parameters of

develop robust schemes.

« Estimation error: There is the possibility of making
errors associated with any estimation procedure. In the
context of MBAC, the estimation errors can translate
into erroneous flow admission decisions. The effect of
these decision errors has to be carefully studied, because
they add another level of uncertainty to the system, the
first level being the stochastic nature of the traffic itself.
Assumingcertainty equivalenceip front, i.e., assuming
that the estimated parameters are the real parameters, is
dangerous, as we simply ignore its impact on the QoS.

* Dynamics and separation of time scaldn MBAC is
a dynamical system with flow arrivals and departures
and parameter estimates that vary with time. Since the
estimation process measures the in-flow burst statistics,
while the admission decisions are made for each arriving
flow, MBAC inherently links the flow and burst time-
scale dynamics. Thus, the question of impact of flow
arrivals and departures on QoS arises. Intuitively, each

flow arrival carries the potential of making a wrong
decision. We therefore expect a high flow-arrival rate
to have a negative effect on performance. On the other

a deterministic or stochastic model. However, it is generally
hard or even impossible for the user or the application to
come up with a tight traffic descriptor before establishing a
flow. Measurement-based admission contfIBAC) avoids hand, the impact of a wrong flow admission decision
this problem by shifting the task of traffic characterization from  on performance also depends on how long it takes until
the user to the network, so that admission decisions are based this error can be corrected—that is, on flow departure
on traffic measurements instead of an explicit specification dynamics.

(cf. Fig. 1). This approach has several important advantagess Memory: The quality of the estimators can be improved
First, the user-specified traffic descriptor can be trivially simple by using more past information about the flows present in
(e.g., peak rate). Second, an overly conservative specification the system. However, memory in the estimation process
does not result in an overallocation of resources for the entire adds another component to the dynamics of a MBAC.
duration of the session. Third, when traffic from different For example, it introduces more correlation between
flows are multiplexed, the quality of service (QoS) experienced successive flow admission decisions. Moreover, using too
depends often on theimggregatebehavior, the statistics of large a memory window will reduce the adaptability of
which are easier to estimate than those of an individual flow. MBAC to nonstationarities in the statistics. A key issue
This is a consequence of the law of the large numbers. Itis thus is therefore to determine an appropriate memory window
easier to predict aggregate behavior rather than the behavior size to use. For this, a clear understanding of the impact
of an individual flow. of memory on both estimation errors and flow dynamics
iS necessary.

Because of the complex interplay of all these aspects of
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Fig. 1. Traditional admission control makes decisions based oratpgori traffic descriptors of the existing and the new flow. MBAC only uses the
new flow’s traffic descriptor, but estimates the behavior of the existing flows.

schemes which can make QoS guarantees in the presence [I. IMPULSIVE LOAD MODEL

of measurement uncertainty, without requiring the tuning of the network resource considered is a bufferless single link
external system parameters. with capacity c. Flows arrive over time and, if admitted,

Due to the complexity of the problem, approximations argay for a random holding time (cf. Fig. 1). The bandwidth

made in the performance analysis of the MBAC schem&gq irements of a flow fluctuate over time while in the system.

These approximations are justified by limit theorems in thge assume that the statistics of the bandwidth fluctuations of
heavy traffic regimewhere the system size is large and whe

v _ : WN€Bach flow are identical, stationary and independent of each
scaling up the size of the system, we exploit the additiongfher \ith a mean bandwidth requirement;ofind variance

statis_tical regularity by increasin_g the_system utilization whilgz  ap, important system parameter is the normalized capacity
keeping the QoS constant. This is in contrast to ke ,, ._ (./,) which measures the system size in terms of the
deviations regimewhere the system utilization is asympnean pandwidth of the flows. Resource overload occurs when
totically constant, but where the QoS requirement is scal instantaneous aggregate bandwidth demand exceeds the

with the system sizé,Th_e heavy traffic regime allows US|ini capacity, and the QoS is measured by the steady-state
to use Gaussian approximations and compute the quantiies,fiow probabilityp; (see Fig. 1).

of interest in terms of first and second-order statistics of the-|-0 study the various issues outlined in the introduction, we

traffic processes. _ _ will first analyze a simpler variation of this model, in which an
The rest of the paper is organized as follows. We analygginite burst of flows arrives at time 0 and admission control
theimpulsive load modeh Section Il and theontinuous l0ad  yeisions are made then, based on the initial bandwidths of
model in Section Ill. In Section IV, we apply the insightSy,e fiows, After time 0, no more flows are accepted, and
gained in the analysis to study the problem of choosingisiing flows stay in the system forever. We call this the
the appropriate memory window size of the estimators. |g,,isive loadmodel. This model permits us to study the
Section V, we comment on some of the assumptions madeifhact of the measurement errors on the number of admitted
our analysis. In Section VI, we discuss how our results rela§g\ s and on the overflow probability, without the need to

to previous work in measurement-based admission control. \¥8,r, ahout flow dynamics. In the next section, we will extend

conclude the paper in Section VII. our analysis to the fully dynamical model, where new flows
arrive continuously.
The number of admissible flows.* is the largest integer

1A large-deviations analysis of a related measurement-based admission such that
control problem can be found in [21]. In general, one would expect the
large deviations approximations to be more accurate if the QoS target is very
stringent (say,10~° to 10~?) and the utilization low, and the%heavy tzaﬁic m
regime to be reasonable when the QoS target is larger {$ay; to 10~ -
and the utilization high. It is particularly appropriate when the numger of Pr {Z Ai(t) > C} < Pq (1)
multiplexing flows is large. i=1
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whereX;(¢) is the bandwidth of théth flow at timet. (Recall parameters. Also, the scheme considered here is an example
thatc := nu is the total capacity of the link.) For large systenof amemoryles$IBAC, since the admission control decisions
sizen, the number of admissible calls will be large, and bare made based on the current bandwidths only.

the central limit theorem We now want to approximate the average overflow prob-
1 m ability
- Z X;(t) — mu] ~ N(0,1). Mo
T/ ¢
i=1 py = Pr {Z Xi(t) > c}
Thus, if the parameterg ands? are knowna priori, then the i=1
number of flowsm* to accept should satisfy in steady state (i.e., farlarge) and compare it to the targst
— To do this, we first find an approximation for the distribution
n—m*u .
Q{i} = pq (2) of My, the number of flows admitted.
ovm*

For large capacities, by the law of large numbers, the
whereQ(-) is the ccdf of aV(0, 1) Gaussian random variable. estimated meam will be close to the true meap, and the
Because the AC has perfect knowledge of the statistics, #gtimated variance? will be close to the true variance®. A

actual steady-state overflow probability more precise approximation of the deviation of these estimated
e guantities from the true values is given by the central limit
psi= Pr {Z Xi(t) > c} theorem
i=1 1 < 1)1 &
e . == X;(0)=p+—< — X;(0) —np
satisfies the QoS requirement. For reasonably large capacities, 7 ; (©) \/7_1{ v [; © ] }
it follows from solving (2) thatm* is well approximated by oYy 1
oo et <7) (6)

m*=n— fﬁ—l—o(ﬁ) 3 " "

for large n. Here, Yy ~ N(0,1) and can be interpreted as

wherea, := Q~1(p,) ando(/n) denotes a term which growsthe scaled aggregate bandwidth fluctuation at time 0 around
slower than,/n. Note thatn is the number of flows that can bethe mean. Similarly, the estimated standard deviation can be
carried on the link if each has constant bandwidtihus, the written as
term (oo, /p)y/n in the above expression can be interpreted Zo 1
as the safety margin left to cater for the (known) burstiness d=0+—+ <—>
of the traffic. v v

Now consider the situation when a MBAC does not knew where Z, is Gaussian. These two approximations imply that
ando a priori, but relies on an estimation of these parametetise deviation of the estimates from the respective true quan-
from the initial bandwidth of the flows and uses the estimatéities is of order1l/y/n. Now, as mentioned earlier, if the
in a certainty equivalenfashion. Invoking again the centralestimates wereexactly equal to their true values, then the
limit approximation for large systems, the number of flowsumber of flows admittedZ, would be preciselyn*. This

(7)

M, the MBAC admits should satisfy suggests that we can approximate the distributionAdf
N by a linearization of the relationship (4) around a nominal
np— Mofi | . . . . . .
Q{i} =pq (4) operating point(m*,u,o) (i.e., the operating point under
oV Mo perfect knowledge)
where
oy,
n n 1/2 np— (m* + Dpr) <IH‘ —0>
=YX, o= | D) - ) 1,
= = (o+ 2o )i+ am
(5) vn

The criterion (4) is the same as (2), but with the true meakpanding the left-hand side, using (2), we get
i and standard deviatiom replaced by thestimatedmeanj:

and standard deviatioh, respectively? Note that the number Av + EYO =o(1)

of flows M, admitted under the MBAC is now random, vnooop

depending on the random bandwidths of the flows at timgd, hence

0. This is a consequence of the fact that the admission control P

decisions are made based on measurements, rather than known Mo =m" - " Yov/n + o(v/n). (8)

2Note that here, as in the sequel, we are ignoring the factstifais an : : ;
integer and therefore (2) cannot be satisfied exactly in general. In the regi’r\nt/ghus’ we see that the effect of estimation error is an order

of large capacities, however, the approximation is good and the discrepandpr Gaussian fluctuation around*, the number of sources
can be ignored. admitted under perfect knowledge (cf. top part of Fig. 2). Note

30bserve here that the estimation is basedroitows. In a more precise also that the randomness in the number of flows admitted is
model, the estimation should be based bfy flows, the number to be d inl h . . . h h h
admitted. However, in a large system/, will be close ton and the ue mainly to the error in estimating the me(é(f()) rather than

discrepancy in replacingZy by n in the estimators are small. the error in estimating the standard deviatidfy ).
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Fig. 2. Uncertainty due to fluctuation in the number of flows (a) and in the aggregate bandwidth (b) for an admission controller with perfect knowledge
(left)y and for an MBAC (right).

Substituting (3) into (8), we getdy in terms of the system  Applying this lemma, the aggregate load at timmean be
sizen approximated by

Mo =n— = (Yo +ag)Vn+o(v/n). 9) My
H Spi= Y Xi(t) = Mop + oYiv/n + o(v/n). (10)
=1

A precise statement of the result is as follows. The proof (of
Theorem 111.1) can be found in Appendix Il.

Proposition 11.1: Let Mé") be the random number of flows
admitted under the MBAC when the capacitynig. Then the
sequence of random variabléMé") — n/+/n} converges in 1 ~
distribution to the random variable- (o /1) (Yo + cv,). on Z Xi(t) —np|. (11)

We now proceed with an explicit approximation of the =1
overflow probability. The randomness in the aggregate traffiatuitively, (10) means that the fluctuation of the aggregate
load at some future time is due both to the randomness in flhad is approximately the linear superposition of two effects:
number of flows admitted, as well as the randomness in ttiee random number of flows, together with the random band-
bandwidth demands of those flows. This can be approximateitith fluctuation around the mean. Substituting (9) into (10),
with the help of the following lemma, which is an extensionwe get
of the central limit theorem for a sum of a random number
of random variables:

Here,Y; ~ N(0,1) and can be interpreted as an approximation
for the scaled aggregate bandwidth fluctuation at ttme

Si =np+ oYy — Yo — ay)vV/n+ o(v/n).

Lemma I1.2—[3, p. 369, problem 27.14]:Let X, Xo, -+ Thus, for largen, the overflow probability at time is
be independent and identically distributed (i.i.d.) random vari-
ables with meam. and variancer2, and for each positive, let Pr{S; > nu} =~ Pr{Y; — Yo > g}

V.. be a random variable assuming positive integers as valu
it need not be independent of t#&,,’s. Let W,, = X, X;.
Suppose a® — oo, (V,,/n) converges to 1 almost surely.
Then asn — o

This expression gives us an interpretation of how overflow
occurs in a MBAC system: it is a combination of an aggregate
bandwidth estimation error at admission ting®;) and a
fluctuation of the aggregate bandwid(l;) at time ¢ after
W — Vap the flows have been accepted. Contrast this with the case with
oyv/n perfect knowledge, where the overflow probability at titrie
converges in distribution to & (0, 1) random variable. simply Pr{Y; > «,}, due to bandwidth fluctuation at time
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To get the overflow probability in steady state, we setoes not vanish as the system size becomes large, even though
t = oo, in which cas€Y,, is independent of;,. Therefore, the the estimates become more and more accurate. Fourth, for a
differenceY,, — Yy is a Gaussian random variable with meafarge system, the degradation in performance of the certainty
0 and varianc&s?%. The overflow probability is therefore  equivalent scheme is due mainly to the estimation error in the
o mean. of the bandwidth distribution and not to that in the
Py Q<—q> (12) standard deviatior.
V2 To get more insight into the last two phenomena, let us
We summarize this result more formally in the followingP€rform the following deterministic sensitivity analysis. Define

proposition: the following function:
Proposition 11.3: Suppose the target overflow probability
QoS is;_a?. Let _pgc") be the aptual average steady-state overf!ow prlp,o,m) = Q [c _\/TZN }
probability using the certainty equivalent MBAC for capacity gvim
np. Then as the system size grows which is the overflow probability when there ane flows in
] -1 the system each with mean rateand variances?. Suppose
(n) Q™ (pg)
,}EEC py =@ NoAA first that we measure only, but thato is known exactly.

The number of flows admittedh(/i) depends on the measured

Note that for the AC with perfect knowledge, the overyalue /i and is given by the certainty-equivalent admission
flow probability is exactlyp,. This is because the aggregat@yiterion [compare with (4)]

bandwidth fluctuation stems only from the fluctuation of the

individual flow bandwidths (cf. lower left part of Fig. 2). On psfr,o,m(jr)) = pg. (14)

the other hand, in the measurement-based case, the variance

of the aggregate bandwidth is doubled because the numbgite that theactual overflow probabilityp ; for a givenm(j)

of flows also fluctuates due to measurement error (cf. lowrp (s, 0, m(j1)). The sensitivityof the overflow probability

right part of Fig. 2). They2 factor is, therefore, the effectwith respect to the measurgdis the deviation of; from its

of measurement error, and has quite a tremendous impactt@yet valuep, if /i deviates slightly from its target valuye.

the overflow probabilityp;. For example, ifp, = 1.0e — 5, For small deviations, we can simply use the derivativey pf

then the actual performance in the MBAC system would hgith respect toj:

py ~ 1.3e — 3, a difference of two orders of magnitude. In

other words, if we want to achieyg = p, using a MBAC in ,__ i -
L X . Sp = ~ pf(uv a, m(u))

this impulsive load model, then we have to adjust the target af

overflow probability under certainty equivalence

Py IQ(\@%) or al:=Q 7' (py) = V2a,.  (13)

f=p

Using (14), this derivative can be computed as

Using the approximatior}(z) =~ ($(x)/x) for small Q(z), N o

where ¢ is the pdf of N(0, 1), we see that
¢ P 0, 1), Similarly, the sensitivity with respect to measuedassuming

! u known, is given by

(8%
Py~ 2\;7? P2

Thus, we see that to achieve a targgtn this setting, we need Sp = —M.
to setp; roughly to be the square of the target probability. This g
conservatism leads to a loss in systetilization compared  Now observe that the sensitivity of the system performance
to the scheme with perfect knowledge of the statistics. Th the knowledge of the standard deviatigndoes not depend
average utilization (in terms of bandwidth) for the certaintyn the system size. Therefore, increasing the system size—and
equivalent scheme using parameggrinstead ofp, is given therefore improving the quality of the estimai#rresults in
by E(Mo)p, or c — oay/n, as implied by (8). The averagea diminishingnet impact on the overflow probability. On the
utilization for the perfect knowledge scheme, on the othether hand, the sensitivity, increaseswith the system size,
hand, is given bym* or ¢ — oay+/n, as inferred from (3). approximately as,/n, while the variance of the estimatgr
Thus, if we picke/, to be v/2a,, this translates to a loss ofdecreases approximately ag\/n. This suggests that the net
utilization of (v/2 — 1)oag/n. impact of the uncertainty in the mean bandwidth estimate does

Proposition 1.3 has several surprising aspects. First, it i®t diminish as the system size grows, and also explains why
a universal result in the sense that the performance of thiee deviation frony, from the target overflow probability,
certainty equivalent scheme does not depend on the stationarasymptotically independent af. both effects cancel out.
distribution of the flow nor its mean and variance. Second@he increased sensitivity to the mean estimate arises because
although the estimators are unbiased, the net impact on thieen there are more flows in the system and, therefore,
performance of the system is negative. Thus, there is arore statistical regularity in the aggregate bandwidth, the
inherent asymmetry between the effects of over-estimatisgstem is driven closer to full utilization, which makes it more
and underestimation. Third, the impact of the estimation errsusceptible to admission mistakes.
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Ill. THE CONTINUOUS LOAD MODEL too many flows in the system

In the impulsive load model, arrivals only occur at time O /\
and admitted flows do not depart from the system. We sha
now consider a dynamical model, where flows arrivan- : i} ilactmlid of fiows
tinuously over time and stay for an exponentially distributedo(\n) S SO R 1 m*: target
holding time with mear¥},. We assume a worst-case scenario 3 R~ #flows
where the effective arrival rate is infinite, i.e., there are alway
flows waiting to be admitted into the network. Thus, admissiot
control decisions are made continuously at all times. Clearly
the performance of any admission control algorithm under : ~
finite arrival rate will be no worse than its performance in this :  Critical time-scale T,
model. Another advantage of this model is that we need nc — ‘ =
worry about the specific flow arrival process which may be B time

hard to model in practice. Furthermore, we [€t) denote a Fig. 3. The relationship between the current estimate of admissible number
flow’s autocorrelation function, where of flows M; and the actual number of flowd;. The time scal€l}, is the
typical time for the system to recover from admission errors.
o) = BIG(0) = (Xitt) = )]

o2

existing flows leaving

new flows rejected

M i estimated # of flows

flows admied ‘ "repair” complete

Hence, if we letD[s,t] be the number of flows departed in
A. Memoryless MBAC time interval[s, ¢], then

We first look at a memoryless scheme that only bases N N
admission decisions on estimates of the mean and variance Ni= Ny = DIs™, 1] = M. — D[s",1]. (18)
based on the current bandwidths of the flows. Assume tr@ﬁ the other hand, for any < ¢
the system starts at time 0. Our goal is to find the overflow ' -
probability at an arbitrary time, particularly att = co which  n, — N, + Als,t] — D[s,t] > N, — D[s,t] > M, — DJ[s, t]
yields the steady-state overflow probability. We do this by first (19)
analyzing the dynamics of the number of flows in the systefyhere A[s, #] is the number of flowsadmitted during [s, ¢].

At any timet, the MBAC estimates the admissible numbethys, we conclude from (18) and (19) that
of flows M;. As in (4), M, is given by

np — Myi(®)] Ne= sup {M, = Dls#]}. (20)
oS ) = (15) oo

It is clear from Fig. 3 and (20) that flow departures have a
repair effect to past mistakes made by the MBAC. Equation
() = 1 Z X(#) (17) tells us that the the fluctuations of the estimated number of

’ admissible flowsM; around the perfect knowledge operating
. N 1/2 point m* is of the order of\/n. Thus, it takes of the order
aray v a2 of /n flows to depart to rectify past errors in accepting too
o(t) = l Z (Xi(t) — () ] ' (16) many flows. How much time on the average is needed for this

to occur? Since the flow departure rate is of the order /f,,

Observe thatV; is random and depends only on the Curre%- u S _
, ; L T is “repair time” is on the order of/n/(n/T) = Ti.//n.
bandwidths.X;(#)'s of the flows. An approximation is given We call this thecritical time scal€l;, of the dynamical system:

by (8) admission errors at time have little influence on the future
M, =n— e (Y, + ag)v/n + o(+/n) (17) much beyonds+17},, as many flows would have been departed
M by then to repair the errors. Thus, is the natural time scale
where {Y;} is a stationary zero-mean Gaussian process wid analyze the full dynamics of the system. To make such
unit variance and autocorrelation functigrit) (that of an analysis more convienent, let us scale the flow holding time
individual flow), and can be interpreted as the scaled aggreg#ie= 7.1/, so that the critical time scalé, can be viewed
bandwidth fluctuation of the flows around the mean. as fixed as» grows large! Under this scaling, the number of
The actual number of flowsX, in the system at time flows departed in timeD[s,¢] can be approximated as
is no less thanM;, since there are always flows waiting to i s
be admitted. On the other hand], can be strictly greater D[s,t] = ——+/n + o(+/n). (21)
than M,, as flows that were admitted earlier stay for a certain w
duration and thusV, cannot perfectly track the fluctuations of , _ _ _ _
M, (see Fig. 3). To computd,, first observe that i&* is the ﬂov\l,triggiu,:d ?e e?phas'?eg thatén rtea“tyt’ the SyStemt ﬁ'mfhthe a\f-erage
g timeT}, are independent system parameters. The scalifig, of
last time at or before timethat flows were admitted, then theas./= is done solely to enable us to studgththe effect of traffic fluctuation

number of flows in the system at tin3& is precisely the same and flow departures in the asymptotic analysis. If the holding tirpevere
b f 1 dmissibl . N =M fixed asn grows, the critical time scale would approach zero, leading to an
as number of flows admissible at ti ) 1€, Ngr = s*+ asymptotic model where any admission errors can be immediately restored by

Between times* and time¢, no new flows were admitted. flow departures.

where
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Such linearization is valid for large:, such that we are process{Y_, — Yy} on a moving boundary = 7 + «4.
focusing on the time scale during which only a small fractiowhile there is no known closed-form solution to this problem,
(order1/+/n ) of the flows depart from the system. an approximation can be obtained by applying results due to
Combining (17), (20), and (21) yields an approximation foBraker [13], [14] on hitting probabilities of locally stationary
the number of flowsV, in the system at timé. The following Gaussian processes, extending the results by [7] for stationary
limit theorem makes such an approximation precise. processes. Define
Theorem III.1: Let {N™} be the process describing the 02(t) := E[(Y_t — Y0)?] = 2[1 — p(#)]

evolution of the number of flows in the system. Assumteo be the variance of Yo (recall thaty, has zero mean
condition B.6 is satisfied. A& — oc, for eacht, (N — van 0 g z

R and unit variance). Assume the single-sided derivativeggf
n/y/n) converges in distribution to att = 0 exist and are finite, let™(0) be the right derivative
2 sup {—YS )] — 5) _ o } of the functiono?(¢) att = 0.°> Then an approximation to the
1 oo<a<t oy, ! hitting probability is given by

where{Y;} is defined as above. p v Yo _ g

The proof uses the machinery wfeak convergencand is ** fgg{ —t = Yo - fti>aq
given in Appendlx B. Cc_)nd_m_on B.6 contains mild techni- 1™ a8t [ag+ Bt
cal assumptions on the individual flow processes; these are ~ 3 v7(0) 50 ¢ ; dt (24)
also stated in the appendix. These assumptions hold for a ) 0 o3(t) - o ) )
very broad class of models. For example, they hold if ea¥fere¢(x) is the N(0, 1) probability density function. The
individual flow is a Markov-modulated fluid integrand above can be viewed as an approximation to the first
time ¢ and, hence, the steady-state overflow probabjity N the sense that as, — oo, the ratio of the left-hand and
using the same argument as for the impulsive load model. Fhe right-hand sujes approaches 1. Hence, this approximation

Proposition 111.2: Let S be the aggregate load at time 'S 900d whenp, is small.

andpgc")(t) be the overflow probability at time As n — oo, Wh||le this yields an apprOX|mat|on that can be computed
(n) ST numerically for general autocorrelation functions, we would
(5;" — npu/ov/n) converges in distribution to

like to get more analytical insights. To that end, consider the

sup {Yt Ly m P g aq} specific autocorrelation function
0<s<t oy, i
) p(t) = exp -7 ) (25)
and the overflow probability;’(¢) converges to c
" With this choice of the autocorrelation functiodY;} is
Pr{ sup {Yt -Y,— — (t- 3)} > aq}. the well-known Ornstein—Uhlenbeck process. The parameter
Osest L _ UT’L_ T. governs the exponential drop-off rate of the correlation
For brevity, we will define the important parameter function, and is a naturatorrelation time scaldor the burst
8= S (22) dynamics of the traffic. Substituting this into the approximation
aly, (24) and rescaling the time variable, we get
The steady-state overflow probability can then be approx- /oo (ag + 1)
i i = i iti ing Pr~=7o
|maFed py takingt oo in Proposition IIl.2 and using Pf o [2(1— exp(—yt))P/2
stationarity of{¥;} to get
" O +1 dt (26)
ps=~Pr {S‘ifo) {Yo - Y, + Bs} > O‘q}- (23) 2(1 — exp(—~1))
Interestingly, one can interpret the limiting overflow proba/Nere
bility at time ¢ as that of the length of a certagueueat timet 1 T o
exceedingxy,. The queue is one which has a constant service = AT =T o
rate of 3, with the amount of work arriving in time interval ¢ ¢
[s,t] given by Y, — Y. One can think ofy as the separation between the flow and burst

scales, although note tha, is the scaled holding time. If we

. . make a time-scale separation assumption, 4.€s 1, then
B. Analysis of Overflow Probability P P k

_ o T lagt+t)  fagtt
Our next step is to analyze the approximation to the over- py %’7/ 23/2 </)< NG ) dt
flow probability given by (23). Since the proceg%;} is 0 1
stationary and symmetrically distributed around 0, we can :Lexp <__a§> 27)
rewrite (23) as 2Vm 4
Note that the first approximation is viexp(—~t) = 0 for
pf%Pr{ig}(’)) {Y_t—Yo—ﬁt}>aq}. v o> 1

This can be interpreted as théting probability of a Gaussian  S5That is, v (0) := lim, 4+ (62(t) — 62(0)/1).
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. C. MBAC with Estimation Memory
A Te Tet Tm overload We see that the memoryless scheme suffers from two
problems. First, the estimation error at a specific admission
with memory time instant is large, and in fact has impact which is of
N—" the same order of magnitude as that due to the statistical

fluctuations of the bandwidths when the correct number of

flows are admitted. Second, the correlation time scale of the
memoryless estimation errors is the same as that of the traffic itself; thus,

in the regime when the flow holding time is much larger than
= the traffic correlation time scaléfh > T.), the probability
of having a large underestimation of mean bandwidtbaae
time during the time scald, is high. A strategy which, as we
will see, counters both these difficulties is to use more memory
in the mean and variance estimators.

Fig. 4. For the memoryless estimator, the overflow probability depends °"To be more concrete. let us consider using the first-order
the ratio of the correlation time scalg. and of the critical time scaldy,. ’

An estimation memory window of lengttf,,, reduces the variance of the auto-regressive filter with impulse response
bandwidth estimator, and also smoothes its fluctuation to a time scale of
t
u(t)
Trn )

hly T 4 T, 1

roughly Te + h(t) := T exp <_
It is interesting to compare this overflow probability forto estimate both the mean and the variances. (Hef®, is

the continuous-load model with the corresponding result fgr, it step function.) Thus, in place of the mem(,)ryless

the impulsive load model under long flow durations, given ifgsimators in (16), the MBAC ,Would use

Proposition 11.3. To do this, we first use the approximation '

—

time

(¢(x)/x) =~ Q(z) and rewrite (27) in terms of the flow o0 n
parameters as fim(t) = /0 [% Z Xi(t - T)] h(r) dr
=1
TL o« « .00 n
Py~ lec TQQ<7§> (28) 521 = /0 l” i : > (Xit—7) - ﬂm(t))"’] h(r) dr.
=1

For the impulsive load model, the overflow probabilityN te that th timat btained b tial weidht
is approximaterQ(aq/\/i). Equation (28) tells us that in . ote that tne estimates are obtained by an exponential weight-

the regime of separation of time scales, the correspondiﬁ?\/Of the past bandwidths of the fiows. The paramélgy

overflow probability can be much worse in the continuougl®Verns how the past bandwu.jths.are yvelghted; it can be
load model. This is because while in the impulsive loai ought of as a measure of testimation window lengthThe

model estimation errors can occur only atsmgle point relationship betweef,..(t) and the memoryless estimajaft)
'Is simply /i,,, = 1 * h, wherex is the convolution operation.

. . . . k |

in time (time 0), whereas in the continuous load model; ) . :

estimatio(n error)s can occur up to roughly, before time Corresponding to Theorem 1ll.1 and Proposition 111.2 in the
: &{pemoryless case, we can show:

t to have a significant impact on the number of flows , (n)
Theorem I11.3: For the system of size, let {N,"} be the

time t. The shorter the traffic correlation time scalg, the > X .
faster the memoryless mean bandwidth estimates fluctuaf¥Qcess describing the evolution of the number of flows in the

and the larger the probability of having an underestimatictyStém- Assume ((;())ndlthOH B.6 is satisfied. If we scale the flow

at some time in the interval. Hence, the overflow probabilijolding time as7,™ = 7j,\/n, whereT; is a fixed constant,

in the continuous-load model increases with the separatiten asn — oo, for eacht, (N\™ — n//n) converges in

of time scale7},/T.. For example, note the multiple peakglistribution to

(underestimations of:) within the interval of lengthZ}, in (t—
etz

g
Fig. 4: each of these peaks could potentially cause overload L sup
0<s<t

- (30)
within the critical time scalel},. The lesson is that it is not o1
only important to consider the estimation error at a single timg, ore Z, = (h+Y), and{Y;} is a zero-mean unit-variance

instant, but also the chance of making error any time in thgsionary Gaussian process with autocorrelation function iden-
interval defined by the effective flow holding time scdlg.  icq) to that of an individual flow. The overflow probability
Note also that sinc#, decreases d&;,/+/n, whereT}, is the g(n)(t) at time ¢ converges to

$

actual mean holding time, the overflow probability decreas
roughly asl/\/n. "
We can also write the above approximation as (using again Pl‘{ sup {Yt —Zs— —= (t— S)} > %}-
0<s<t olp
(¢(z)/z) = Q(x))
. One can interpretZ; as the error in thdiltered estimate

~ _1n 7 ( /27raqpq)l/2. (29) of the mean bandwidth of a flow at time The steady-
state overflow probability under the MBAC with memory can
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therefore be approximated by the smaller pre—factdf”h/ \/ (T, +~Tm)(2Tc +T,»,) in the first
term of (33), replacing the factdr, /+/27. in the memoryless
pr =~ Pr {Sup (Z_—Yo—pt) > aq}. case. This can be interpreted as increasing the correlation time
>0

scale byT,,, the estimation window length.
This is again a hitting probability of a Gaussian process In the limit for largeZ;,,, we always have exactly the right
({Z_, — Yo}) on a moving boundary, and an approximatiomumber of flows in the system, and the overflow occurs due
of such a probability is given by [13], [14] only to the fluctuation of bandwidth requirements of flows in
the system, and not to the fluctuation of the number of flows
in the system. This is now given by the second term in (33).

T [e@)
mr i | e |
e am Jo %,,(%)} om< ) IV. ROBUST MBAC

3
In this section, we discuss how our results can be used to
+Q <a /1 + Tc) (31) make MBAC robust. We use simulations with synthetic and
q
Trn

actual traffic sources to verify these insights. The details of
the simulation setup are described in Appendix A.

where
afn<£> = El(Z_qm — Yo)?] A. Robust MBAC with Knowf,
p ’ In this section, we assume that the correlation time sfale
_ Mot Tm 2L exp(—t). is known to the MBAC. Our goal is to verify the validity of
To+Tn To+7T, the formulas presented in the previous section. Equation (33)
Now, under separation of time scales> 1, we have the can be used to choose the memory size and to adjust the target

approximation that overflow probabilitypﬁl in the MBAC, such that the overflow
; O, 4+ T probability meets the QoS requirement, i.e., chodseand
a2, </—3> ~ ﬁ py,, such thatp (7., ¢, p,) = py- The shorterl;,,, the more

conservative the choice of, has to be, resulting in a loss
in which case the above integral can be explicitly computed @k bandwidth. This loss of utilization can be quantified. The
T 1 average utilization (in terms of bandwidth) of the system is

B given by E[NV:], whereN, is the (stationary) number of flows

VT + 1)L + Tn) V21 in the system at time Equation (30) allows us to approximate

T.+Tn T. this whenp/, is used as the target overflow probability
exXp | — e | FQ | agy/ 1+ . (32)
2(2T(’ + Trn,) 1 Trn,

t—
pE[Ny] ~ mu+o/nE [sup {—Zs — MH
To compare this result to the memoryless case, let us first s<t aly,

use the approximatiod}(z) =~ (¢(z)/x) to rewrite (32) in —o Q™ (p))Vn.
terms ofp, and also the flow parameters

py =

Since the other terms do not depend ign we see that the
difference in utilization in using/, andp, is simply

- ovV/nlQ7H(py) — Q7 (py)]- (34)
-(\/ﬁaqpq)TfJ’Tm/QTchTwrQ<%\/ 1+ T,Z)' (33) This allows us to quantify the impact on the utilization on

using a more conservative target overflow probability.

Comparing (32)—(27), we can explicitly see the effect of We now describe the simulations we have performed to
memory. Let us look at the first term in (32), which corverify that our formulas can be used to perform robust
responds to (29). The exponent B + T1,,/(21. + T,,,) measurement-based admission control. We proceed in two
which is 1/2 when there is no memory (as we had irsteps. First, we compare the overflow probabilifyobtained
the memoryless scheme), monotonically increasing @jth through simulation to the value predicted by theory. Second,
and reaching a value of 1 for infinite memory. This effeave invert (32) to obtain an adjusted target overflow probability
can be explained by the fact that the variance of the megf such thatp;(7,,.,1.,p}) = p,. We then simulate the
bandwidth estimateE[Z?] is 1./T. + 1,, and decreases system with this adjusted target overflow probability in order
monotonically to 0 with more memory. Thus, the inaccuradp check if the overflow probabilityp, really is close to
in the estimates and, hence, the inaccuracy in the numberttoé target overflow probabilityp, regardless of the other
flows accepted decreases (cf. Fig. 4). Furthermore, increaspagameters.
the amount of memory has an additional effectsofoothing Fig. 5 shows the overflow probability; as a function of
the mean bandwidth estimates; thus, not only aréntiiwidual the memory window sizel,,,. The most striking aspect of
bandwidth estimates more accurate, they also fluctuate lesshie figure is that for small memory window siZE,,, the
that the probability of having an underestimatiorsamme time overflow probability p; can be orders of magnitude larger
over an interval of lengthl}, is reduced. This is reflected inthan the target overflow probabiliy,. This confirms that the

Th a
\/(T(’ + Trn,)(2Tc + Trn,) \Y 27TN

by =




302 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 7, NO. 3, JUNE 1999

10 ¢ I : 1 ) 1
0 10 20 30 40 50 60 70 80 90 100

Tm

Fig. 5. The overflow probability ; as predicated by theory (32) and obtained by simulatibp = 1000, T. = 1.0, p; = 1.0e — 3).

oo % n=100, Th=1e3
o—=0 n=100, Th=1e4

: n=1000, Th=1e3
SO n=1000, Th=1e4

5 PR | . P |

10~ 10° 10 10

Tm

Fig. 6. The simulated overflow probability; for the synthetic traffic model using the adjusted target overflow probabijty

memory window sizel,, is a crucial parameter in achievinga longer memory window size has little additional benefit, is
a desired QoS target. If it is chosen too small, then theell matched. Fig. 6 demonstrates that our formulas can be
performance of the MBAC can degrade dramatically. Wased to perform robust measurement-based admission control.
observe that the overflow probability predicted by theory M/e see that with an adjusted overflow probability target, the
slightly conservative with respect to the simulated value. Waetual overflow probability is slightly smaller thag over the
attribute this offset to the assumptions in our model, such a$ole range of parameters (cf. Fig. 6). It is important to note
ignoring the discreteness of the number of flows. Howevehat for smallZ,,, the adjusted target overflow probability
the shape of the graphs correspond very well; in particular, thg can be very smal(<le — 10) with respect to the target
knee, corresponding to the value Bf, beyond which using overflow probabilityp, of le — 3.
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1 2 log10(T )

Tm/Th~

Fig. 7. The overflow probabilityy; obtained by numerical integration of (31), as a function of the normalized memory windomﬂ“sjié““h and of
the correlation time scal€.

B. Robust MBAC with Unknowf, parameterl, on the overflow probabilityp,; the fluctuation

So far, we have assumed that the correlation time-sc&f@€ scale of the mean estimator is determinedZhy alone
parametefT, and the flow holding timd;, are known to the (Cf- Fig. 4). _ _
MBAC algorithm so that an adjusted QoS paramefgrcan Next, let us consider the other extreme, wtignis much
be computed. In practice, it is not difficult to obtain a goo#Pnger tharilj,.. In this casery = (13./1:)(0 /i) < 1, and we
estimate of the average holding tiriig of flows. On the other have the approximation
hand, the correlation time scalg. and, more generally, the T

correlation structure of the traffic is hard to estimate reliably. ol (t)
TC + Trn

claim that this can be accomplished by choosing the memdhg integral, we get
T 2
—<—c> o
1, ¢
of 7.

Therefore, we would like to design the MBAC such that its
performance is good over a wide range of valuesFarWe Substituting this into the general formula (31) and evaluating
window lengthZ;,, on the order of the critical time scale
T},. For concreteness, let us pick the window siZg to be Py 1 Efexp
T;, and examine the performance of the system for a range V2 Ty, 1

First, assumeZ}, is small with respect tdl3,. This is the which definitely meets the target QoS, siriEes- T}, in this
separation of time-scale regime and formula (33) applies arggime. In contrast to the masking regime, the time scale of the
holds for allZ;,,. Using the fact thaff},, = 13, > T., we get estimator fluctuation is dominated . The memory window

the further approximation is effectively useless in this regime, as it does not reduce
oo estimation errors. However, the fluctuation of the estimators

Py <—‘1 + 1) Pq (35) around their mean is at a time scale longer than the critical

H time scale. This is precisely the regime where the repair effect

which is of the order ofp,. In this regime, the effect of makes overflow unlikely. Therefore, we call this the repair
the estimator memory effectively smoothes the fluctuatiomegime.

of the traffic and obtain a reliable estimate of the mean For 7. in between the two extremes, there is no closed-
traffic rate. Although this result is derived using the simpltorm expression for the overflow probability, and we resort
exponential autocorrelation function (25), it can be easilp a numerical integration of the formula (31) to study the
shown that in this regime, the detailed correlation structuperformance of the MBAC. This is shown in Fig. 7, where
is not relevant and a similar approximation holds for othave plot the overflow probability as a function @f, /73 and
autocorrelation functions. We call this the masking reginig.. We see that while for sma]fm/fh the performance is not
because the memory window size masks the impact of ttabust, the QoS is satisfied over a wide rangdobnce the
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y

log10(p,

1 2 log10(T )
Tm/Th~
Fig. 8. The simulatech; over the same parameter range as in Fig. 7.
memory window size is chosen to be a significant fraction of V. DISCUSSION
T;,. This is further corroborated by simulation results shown
in Fig. 8.

The above analysis and simulations are based on a traffic Critical Time Scale

model with correlation at a single time scale. In practice, oyr analysis has demonstrated the fundamental importance
traffic fluctuations may occur at multiple time scales. I8¢ the critical time scalel}, as the time scale over which
particular, several studies of various types of network traffige effect of admission decisions persisthis insight leads
have found phenomenon of long-range dependence (LR{g) two important principles for the design of robust and
(18], [8], [1]. [6]. However, based on the intuition gainedsfficient MBAC schemes. First, traffic fluctuations on a time
from the single time-scale model, we expect that a memog¢ale longer than the critical time scale fall into trepair
window size on the order of;, is again appropriate here.regime these fluctuations should be tracked by the MBAC
As before, flow departures dictate a critical time scdle so that they can be compensated for by flow admissions and
over which the statistics of the future behavior of the traffigsjections. Second, spare link bandwidth should be set aside
has to be predicted. A memory window @, allows the to absorb fluctuations at a time scale shorter thianas these
simultaneousmoothingof the fluctuations faster thafy, for fluctuations are too fast to be compensated for by the repair
reliable estimation and thegacking of fluctuations at a time effect. A consequence is that a robust MBAC shopitedict
scale larger thaff},. The statistics of the long-term fluctuationghe fluctuation statistics over a time scale®f, rather than
of LRD is therefore irrelevant. estimatethe long-term statistics of the traffic. In this context,
To provide some support for this hypothesis, we preseifitdoes not matter whether or not the traffic is stationary or
simulation results on an actual traffic trace. Figs. 9 and Ht over a time scale much longer thdp, or if the traffic
show the overflow probability when the flow is a piecewisexhibits LRD.
CBR version of the MPEG-1 encoded Starwars movie [10]. By setting the measurement window size to Hg our
This particular trace has been shown to exhibit LRD [8]. Wecheme implicitly embodies the first principle: effective track-
vary the average flow holding time and plot the overflowng of traffic fluctuations slower thaff;,. On the other hand,
probability as a function ofl/7;. As with the synthetic the scheme sets aside spare bandwidth of the orgler. Since
traffic above, we see that the performance is not robust und€ris the long-term variance of a flow, this leads to an over-
memoryless estimation. Wheh, is large (corresponding to conservative spare bandwidth allocation when much of the
small 7. in Fig. 7), the performance misses the target bijuctuation is actually slower thaff},. (This can be seen in
one or two orders of magnitude. On the other hand, we ndty. 7, where the actual overflow probability drops rapidly
that with the choice of memory window siZE, = Tj,, the with increasing traffic correlation time scal.) In a sequel
MBAC is robust (cf. Fig. 10). Apparently, the strong long-ternto this paper [12], we propose a novel MBAC design which
fluctuations of this traffic do not degrade the performance gbes one step further. By appropriate filtering of the traffic
the MBAC. measurements, the MBAC scheme simultaneously tracks slow
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Fig. 10. The overflow probability for Starwars sources with, = T}.

fluctuations and estimates the variance of fast fluctuations,lead fluctuates. We express this operating point in terms of
that the appropriate amount of spare bandwidth can be g® number of admissible flows:*. However, when flow

aside. statistics are heterogeneous, the operating point should be
thought of as atarget utilization levelof m*u. This level
B. Heterogeneous Flows depends on the statistics of the individual floardly through

Although the results in this paper are derived under tfiBe statistics of the aggregate traffic (mean and variance in the
ideal assumption of identical traffic statistics across flowsentral-limit framework). Moreover, as long as there are many
many of the ideas are in fact extensible to a heterogenedodependent flows in the system and no single flow dominates
environment. The key concept behind our approach is ttee entire link, the traffic fluctuations can be well approximated
existence of an appropriate operating point about which the Gaussian, even in the heterogeneous case. In [12], we extend
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the framework developed here to analyze the performancevdthout a priori assuming time-scale separation, allows us
the MBAC design under heterogeneous flows. to evaluate the performance as a function of the amount of
memory used. We believe the appropriate use of memory is

a natural and effective strategy, particularly when no reliable
VI. RELATED WORK prior exists.

Past work on measurement-based admission control [5]0ur approach of abstracting away enough details of the
[19], [15] has either ignored measurement errors or assunfégasurement and admission decision process in order to focus
a static situation where calls do not arrive or depart tH# the fundamental issues of measurement uncertainty and
system and there is an arbitrarily long time to make accurat¥stem dynamics is corroborated by recent work by Jamin
measurements. Here, we discuss three more recent pagé@é Shenker [17]. They simulate several specific MBAC
which are closer in spirit to our work. algorithms that have been proposed in the literature, and find

Jamin et al. [16] presented a specific algorithm forthem to be essentially equivalent with appropriate tuning of
measurement-based admission control of predictive traffic, apptem parameters. In our work, we attempt to study, in a
evaluated its performance through simulation. The algorith¢nse, the common denominator of these proposed schemes,
relies on measurements of the maximum delay and maxim@#d focus on how the “performance-tuning knobs,” such as
bandwidth over a measurement interval. There are sevelgmory window size and degree of conservativeness, should
tuning parameters in the algorithm (sampling window sfze be set to achieve robustness.
measurement window siZg, utilization target, back-off factor
A) that are found to have a significant impact on performance. VII. CONCLUSION
We believe that our work offers some insight into the impact | this paper, we have presented a framework for studying
of these system parameters. In particular, the measuremgRt performance of admission control schemes under mea-
window sizeT" is very similar to our measurement time scalgyrement uncertainty and flow dynamics. Using heavy-traffic
Ty Also, A is a parameter that controls averestimation approximations, the analysis of the resulting dynamical system
of the actual measured delay—in other words, it controj simplified via linearization around a nominal operating point
conservativeness, which in our work is represented througRq by Gaussian approximations of the statistics via central
the parametep. limit theorems. The insights gained include:

T_he MBAC.: algorithm proposed by Casedt Efll‘ [4] rec- » quantification of the impact of estimation errors on the
ognizes the importance of the measurement window size as a QoS performance of MBAC schemes:

system parameter. The aythors.propose_ an ada_ptive.algorithrp identification of acritical time scalefor which the effect

'to determine an appro.pnate _wmdow size. While th|§ is an ¢ o dmission decisions persist:

Improvement over the f|xed window length parameter in [16]. . gemonstration of precisely how the memory time scale of
the adaptive algorithm itself has external tuning parameters. It . o iotors affects performance and what the appro-

IS th clear if the overal_l system Is easier to tune. priate choice of memory time scale is to achieve robust
Gibbenset al. [9] studied memorylessneasurement-based performance

admission control in a decision-theoretic framework. Their Th insiaht directl licable to the desi f robust

work takes into account the impact of measurement errors o A(e:se |hnS|g S gre hlre(;] y appdlca ?ho et esllgn 0 r? us |

performance and also considers the call dynamics. Howevetr,. schemes. such schemes do not have fo rely on externa
Juning parameters to achieve the desired performance despite

there are some significant differences between their and ih ¢ A taint d th licated
work. First, a perfect time-scale separation is explicitly buifpe inherent measurement unhcertainty an € complicate
':Bg/stem dynamics.

into their model by assuming that the network states seen
successive call arrivals are independent. This makes it difficult
to evaluate the performance of MBAC schemes with memory
and also the effect of traffic correlation on a system with very
high call-arrival rates. Indeed, they only focusedroemory- ~ We simulate the admission controller under infinite load
lessschemes. Moreover, our results show that the conditiamd we measure the resulting overflow probability on a

for time-scale separation is rather subtle, as it depends, amdwdferless link of capacity:. We describe the details of the
others parameters, on the system size. Second, while they aisoulation setup.

observed that a memoryless certainty equivalent scheme cakiVe model traffic flows as fluid flows, i.e., we do not simulate
perform poorly, their remedy is quite different. They relied oindividual packets. In particular, we use a piecewise constant-
essentially two mechanisms: the use of a Bayesian prior e traffic model, where the fluid rate only changes at certain
the call statistics and network state-independent call rejectigruints in time, and remains constant between these points [10].
The first mechanism serves to smooth out the fluctuatidie advantage of this traffic model is that it lends itself to
in successive memoryless estimates, as the observationsvery efficient simulation.

weighted by a fixed prior. The second mechanism countersWe use two types of flows. The first type is based on
very high call-arrival rates, by not accepting calls until ona stochastic model. Each flow is the realization of an i.i.d.
has left the system. In contrast, we propose the use of stationary fluid process. This fluid process is modulated by
appropriate amount of memory in the estimator, which as ve@ underlying renewal process; the fluid rate is constant on
have seen, deals with both these problems. Our framewadtthe time interval between two consecutive renewals. The fluid

APPENDIX |
SIMULATION SETUP
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rate in each interval is chosen independently according to theTheorem B.3:A sequence of processe{sZt(")} converges
marginal rate distribution, which in this case is Gaussian witheakly to{Z,} if all finite-dimensional distributions converge
o/ = 0.3. The renewal time distribution is exponential withgnd {Zt<">} is tight, i.e.,

meanTc_, which |mpI|es_that th_e autocqrrelatlon function of 1) For everyy > 0, there exists am > 0, such that

the traffic rate process is precisely as in (25).

The second flow type is based on an actual video trace,
namely a two-hour MPEG-1 encoded version of the Starwars
movie [8]. We use the smoothing algorithm described in
[10] to transform this trace into a piecewise constant-rate2) For everyl' >0, e, > 0, there exists & € (0,1) and
flow. For this flow model,o/px = 0.33. Each flow is a an integerng, such that
subsequence of the trace (with wrap-around at the end of
the trace) with a randomly chosen starting point. Note that
this trace exhibits the LRD property, i.e., its autocorrelation
function decreases subexponentially [8]; also, its empirical
marginal rate distribution is not Gaussian. For both traffic

models, the flow holding time is exponentially distributed with Theorem B.4 (continuous mapping theorem for processes):

mean1;,. (n)
We periodically sample the empirical overflow probabilityl‘et 12, “} be a sequence of processes whose sample paths

py over intervals of lengtt® - max(Th,Tm,Tc). This sample are(nl)n Dl[jo’oo]' It h: D[O’O?J)_) 5[0’ oc] is continuous and
period is long enough to give approximately independeﬁtZt b= {Z}, theng({2,}) = g({Z:})-
samples, as the only “memory” in the system is due to Theorem B.5:Let (W} and {Z}'s be processes
flow dynamics, estimation memory, and traffic correlatiorflefined on the same probability space, andD[0,oc] x
By chosing a multiple of the maximum of their respectivé®[0, cc] — DI0, o] is continuous. If{Wt(")} z {W,} and
time scales, we are assured that consecutive samples repre{sgfrt)} converges weakly to a deterministic process;},
essentially independent observations of the system. then g({Wt("’)}, {Zt(")}) A g({Wy}, 1Z,)).

After each sample period, we compute the (two-sided) 95%ye need the following technical conditions on the flow
confidence interval around the estimated valuepef We processes.
terminate simulations when: 1) the 95% confidence imervalAssumptions B.6:
is less than 20% of the estimated value (i.e., we are confident_L) The sample paths of the individual flow processes
that the estimateg, is close enough to the actup}) or 2) {X;(£)} are inD[0,oc].

the estimated value plus the (one-sided) confidence interval'isz) The mean bandwidth estimatﬁ%s(")} converges weakly
at least two orders of magnitude below the target overflo% the constant process. .

probability (i.e., we are confident that the estimaged is 3) The standard deviation estimate{s?(")} converges
considerably lower than the target overflow probability). ?
. - . . eakly to the constant process
We also discard all initial samples until the simulated MBA )
4) If we define
has reached steady state.

Pr{|Z(()n)| >a}<n  VYn.

Pr sup |Zt(ln)—Zt(2n)| >e <y VYn >no.
[t1—t2|<6,0<ty ta<T

We will use the following theorems [2].

n IR
Y = o 2 ) —
APPENDIX Il i=1

WEAK CONVERGENCE RESULTS FOR o
HEAVY -TRAEEIC APPROXIMATION to be the scaled and centered sum of the individual flows,

. . . - then asn — oo, {Yt(")} converges weakly tdY;}, which

. In thls.appgnd.lx, we will prove Thgorem “l'.l’ gving g 5 stationary zero-mean Gaussian process with unit variance
rigorous justification of the heavy traffic approximations W&nd autocorrelation functiop(¢) (that of an individual flow).
used. The fourth condition says that the aggregation of the individ-

Definition .B'l: The spaceD[0, ] is the space of all re_al- ual flows satisfies a functional central limit theorem. It holds
valued functions o0, o) that are continuous from the right,

d h imits f he left. Th . i (Skoroh é)r a very broad class of models for the individual sources.
and have |_m|ts rom the left. There IS a metric (Skoroho or example, it can be shown [20] that the condition holds if
metric) defined onD[0, ], such that it is complete and

{X,(¢)} is a K-state continuous-time Markov fluid, in which
separ._slt_)l_e. (n) case the limiting proceskY; } is a linear functional of & —1
Definition B.2: Let {Z,"'} be a sequence of processegimensional diffusion pfocéss.
whose sample paths are i®[0,0c]. {Z™} is said to o prove the main theorem, we need the following lemma,
converges weaklyo {Z,} if for every continuous function which can be viewed as a functional law of large number for
f: D0, 00] — R, E[f({Z{ )] — EIf({Z:})- the process describing the evolution of the number of flows
With a slight abuse of notation, we will us® to denote in the system.
weak convergence of processes, as well as convergence ihemma B.7:The process{Nf") /n} converges weakly to
distribution for random variables. We shall use the followinthe deterministic process taking on a constant value of 1 for
theorem to verify weak convergence. all ¢.
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Proof. By solving (15), we get for each independently
. 2
n 1 ~ N ~(n 2 Du[sv t] s—1
M = (VP i - a) (T
(36) EW]  E[W? - EW 5 —t)2
LA PR L W Pt
n n Th

Using assumptions (2) and (3) in B.6, together with Theorem
B.5, we can see that the proce{gyg")/n} converges to the Wheregq is the probability that a given flow leaves the system

process taking on a constant value. Now, fortait 0 some time in[s,?], and is given by
—t
M(n) N(") MS(") =1—e€ < ~ ) 41
ZocT < owp . ‘ P\ T/n @
n n 0<s<t n

By Lemma B.7 and the continuous mapping theorem, as
Since{MS(") /n} converges weakly to the constant process 2, — &

so does the procegsupg, <, (M /n)}, by the continuous g [K} -1 E [KQ} 1
mapping theorem. HencéNt(")/n} must converge weakly to n? '
the constant process 1. B substituting this into (40) shows that
Proof. Proof of Theorem IIl.1
Using (36), we get for each i E <D“[s,t] Cs— t>2 0
() NONI oo vn 1. '
M"Y —n _ Volp— @) (67 . "
N RIQT + 2002 /n _Henc_e, _D“[_s,t]/\/ﬁ converges in probablll_ty and, hence,
in distribution to s — ¢/7};. Using a similar argument,
6§"’)aq \/(r}gn))?ag ey (37) one can show the same thing fdp'[s,#]. By (39), this
2(fu(Mt)? pHEE implies that for fixeds andt, (D[s,t]/v/n) = (s — ¢/T3.).

A standard argument in the theory of convergence in
By assumption B.6, we know thaty/n(u — 4(t)} 2 distribution implies that for allk and si,---, s, € [0,],
—oY;, where {Y;} is a zero-mean Gaussian process Wit D[sy,t]/v/n), - - -, (D[sk, ] //n) A ((sl_t/fh),...7(3k_
autocorrelation functiorp. Also, {i("t} converges weakly ¢/7},)), i.e., finite-dimensional distributions converge. To show
to the constant procegsand {6—5")} converges weakly to the weak convergence as a process, we need to verify tightness,
constant process. By Theorem B.5 according to Theorem B.3. The first condition is trivially
satisfied. For the second condition

(n)—TL [2)
e e I

[s1—52]<6,0<s1,52<t

Next, we will show that for fixedt > 0, {DJs,¢]} as a DIkS, (k+1)8]
i ‘ministi < Pr sup @ —————= >¢

process ins converges weakly to the deterministic process o<h<(t/6) NG

{s—t/T3,} on[0,¢]. First, let us fix ans < ¢t. Define now two -

random variabled)“[s, {] and D[s, #]. D'[s,#] is the number < <f n 1) Suppr{D[ké, (k+1d] 6}

of flows departing from the system when there afés) flows B k Vvn

>

in the system at time and no more flows enter the system t 1 1 9

in [s,t]; D%[s,t] is the number of flows departing from the = <5 1>e_281,ipE[ﬁ (D[, (k +1)8])

system when there ald’ := sup.(, ;) N(7) flows at time ¢ 1 [ E[U] E[UY - E[U] ,

s and no more flows enter the system[#¢]. It can be seen < <5 + 1) 6—2< o + " D ) (42)

that for everyz

, wherel/ := sup, ¢[g N and
Pr{D'[s,] > } < Pr{D[s,#] > «} < Pr{D"[s,#] > «}. ’
(39) p = Pr{a flow departs in timéké, (k + 1)6]}

Using Chebyshev’s bound, we have for every 0 =l-exp <fh\/ﬁ>

DU[s,t] st 2
(s >C}SE[< \/7762 T;) : %(%—i—l)(%—i—o(l))

The expectation can be computed using the fact that the flowkere theo(1) term goes to zero asa — oco. Thus, by
have exponential holding time and depart from the systemppropriate choice of. and §, (42) can be made arbitrarily

By direct calculation, (42) is in turn equal to

Pr{‘D [s,t] s—t
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small. This verifies the tightness ¢D]s, t|/«/n} and, hence,
its weak convergence.
Combining the weak convergence f[s,¢]/v/n} and

{M™ — nJy/n}, it follows that
{02 )}
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