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A Framework for Robust Measurement-Based
Admission Control

Matthias Grossglauser,Member, IEEE,and David N. C. Tse,Member, IEEE

Abstract—Measurement-based admission control (MBAC) is
an attractive mechanism to concurrently offer quality of service
(QoS) to users, without requiring a priori traffic specification
and on-line policing. However, several aspects of such a system
need to be clearly understood in order to devise robust MBAC
schemes, i.e., schemes that can match a given QoS target despite
the inherent measurement uncertainty, and without the tuning of
external system parameters. We study the impact of measurement
uncertainty, flow arrival, departure dynamics, and of estimation
memory on the performance of a generic MBAC system in a
common analytical framework. We show that acertainty equiv-
alenceassumption, i.e., assuming that the measured parameters
are the real ones, can grossly compromise the target performance
of the system. We quantify the improvement in performance
as a function of the length of the estimation window and an
adjustment of the target QoS. We demonstrate the existence of a
critical time scaleover which the impact of admissin decisions
persists. Our results yield new insights into the performance
of MBAC schemes, and represent quantitative and qualitative
guidelines for the design of robust schemes.

I. INTRODUCTION

T HE traditional approach to admission control requires an
a priori traffic descriptor in terms of the parameters of

a deterministic or stochastic model. However, it is generally
hard or even impossible for the user or the application to
come up with a tight traffic descriptor before establishing a
flow. Measurement-based admission control(MBAC) avoids
this problem by shifting the task of traffic characterization from
the user to the network, so that admission decisions are based
on traffic measurements instead of an explicit specification
(cf. Fig. 1). This approach has several important advantages.
First, the user-specified traffic descriptor can be trivially simple
(e.g., peak rate). Second, an overly conservative specification
does not result in an overallocation of resources for the entire
duration of the session. Third, when traffic from different
flows are multiplexed, the quality of service (QoS) experienced
depends often on theiraggregatebehavior, the statistics of
which are easier to estimate than those of an individual flow.
This is a consequence of the law of the large numbers. It is thus
easier to predict aggregate behavior rather than the behavior
of an individual flow.
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Relying on measured quantities for admission control raises
a number of issues that have to be understood in order to
develop robust schemes.

• Estimation error: There is the possibility of making
errors associated with any estimation procedure. In the
context of MBAC, the estimation errors can translate
into erroneous flow admission decisions. The effect of
these decision errors has to be carefully studied, because
they add another level of uncertainty to the system, the
first level being the stochastic nature of the traffic itself.
Assumingcertainty equivalenceup front, i.e., assuming
that the estimated parameters are the real parameters, is
dangerous, as we simply ignore its impact on the QoS.

• Dynamics and separation of time scale:An MBAC is
a dynamical system with flow arrivals and departures
and parameter estimates that vary with time. Since the
estimation process measures the in-flow burst statistics,
while the admission decisions are made for each arriving
flow, MBAC inherently links the flow and burst time-
scale dynamics. Thus, the question of impact of flow
arrivals and departures on QoS arises. Intuitively, each
flow arrival carries the potential of making a wrong
decision. We therefore expect a high flow-arrival rate
to have a negative effect on performance. On the other
hand, the impact of a wrong flow admission decision
on performance also depends on how long it takes until
this error can be corrected—that is, on flow departure
dynamics.

• Memory: The quality of the estimators can be improved
by using more past information about the flows present in
the system. However, memory in the estimation process
adds another component to the dynamics of a MBAC.
For example, it introduces more correlation between
successive flow admission decisions. Moreover, using too
large a memory window will reduce the adaptability of
MBAC to nonstationarities in the statistics. A key issue
is therefore to determine an appropriate memory window
size to use. For this, a clear understanding of the impact
of memory on both estimation errors and flow dynamics
is necessary.

Because of the complex interplay of all these aspects of
the MBAC problem, most of the past work has either been
analytical but focused on only one of the aspects, or relied
primarily on simulations to evaluate MBAC algorithms. In this
work, we take a different approach. Using a simple model, we
study all of the above issues in a unified analytical framework.
The goal is to shed insight on the design of robust MBAC
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Fig. 1. Traditional admission control makes decisions based on thea priori traffic descriptors of the existing and the new flow. MBAC only uses the
new flow’s traffic descriptor, but estimates the behavior of the existing flows.

schemes which can make QoS guarantees in the presence
of measurement uncertainty, without requiring the tuning of
external system parameters.

Due to the complexity of the problem, approximations are
made in the performance analysis of the MBAC schemes.
These approximations are justified by limit theorems in the
heavy traffic regime, where the system size is large and when
scaling up the size of the system, we exploit the additional
statistical regularity by increasing the system utilization while
keeping the QoS constant. This is in contrast to thelarge
deviations regime,where the system utilization is asymp-
totically constant, but where the QoS requirement is scaled
with the system size,1 The heavy traffic regime allows us
to use Gaussian approximations and compute the quantities
of interest in terms of first and second-order statistics of the
traffic processes.

The rest of the paper is organized as follows. We analyze
the impulsive load modelin Section II and thecontinuous load
model in Section III. In Section IV, we apply the insights
gained in the analysis to study the problem of choosing
the appropriate memory window size of the estimators. In
Section V, we comment on some of the assumptions made in
our analysis. In Section VI, we discuss how our results relate
to previous work in measurement-based admission control. We
conclude the paper in Section VII.

1A large-deviations analysis of a related measurement-based admission
control problem can be found in [21]. In general, one would expect the
large deviations approximations to be more accurate if the QoS target is very
stringent (say,10�6 to 10�9) and the utilization low, and the heavy traffic
regime to be reasonable when the QoS target is larger (say,10�3 to 10�4)
and the utilization high. It is particularly appropriate when the number of
multiplexing flows is large.

II. I MPULSIVE LOAD MODEL

The network resource considered is a bufferless single link
with capacity Flows arrive over time and, if admitted,
stay for a random holding time (cf. Fig. 1). The bandwidth
requirements of a flow fluctuate over time while in the system.
We assume that the statistics of the bandwidth fluctuations of
each flow are identical, stationary and independent of each
other, with a mean bandwidth requirement ofand variance

An important system parameter is the normalized capacity
which measures the system size in terms of the

mean bandwidth of the flows. Resource overload occurs when
the instantaneous aggregate bandwidth demand exceeds the
link capacity, and the QoS is measured by the steady-state
overflow probability (see Fig. 1).

To study the various issues outlined in the introduction, we
will first analyze a simpler variation of this model, in which an
infinite burst of flows arrives at time 0 and admission control
decisions are made then, based on the initial bandwidths of
the flows. After time 0, no more flows are accepted, and
existing flows stay in the system forever. We call this the
impulsive loadmodel. This model permits us to study the
impact of the measurement errors on the number of admitted
flows and on the overflow probability, without the need to
worry about flow dynamics. In the next section, we will extend
our analysis to the fully dynamical model, where new flows
arrive continuously.

The number of admissible flows is the largest integer
such that

(1)
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where is the bandwidth of theth flow at time (Recall
that is the total capacity of the link.) For large system
size the number of admissible calls will be large, and by
the central limit theorem

Thus, if the parameters and are knowna priori, then the
number of flows to accept should satisfy

(2)

where is the ccdf of a Gaussian random variable.2

Because the AC has perfect knowledge of the statistics, the
actual steady-state overflow probability

satisfies the QoS requirement. For reasonably large capacities,
it follows from solving (2) that is well approximated by

(3)

where and denotes a term which grows
slower than Note that is the number of flows that can be
carried on the link if each has constant bandwidthThus, the
term in the above expression can be interpreted
as the safety margin left to cater for the (known) burstiness
of the traffic.

Now consider the situation when a MBAC does not know
and a priori, but relies on an estimation of these parameters
from the initial bandwidth of the flows and uses the estimates
in a certainty equivalentfashion. Invoking again the central
limit approximation for large systems, the number of flows

the MBAC admits should satisfy

(4)

where

(5)
The criterion (4) is the same as (2), but with the true mean

and standard deviation replaced by theestimatedmean
and standard deviation respectively.3 Note that the number
of flows admitted under the MBAC is now random,
depending on the random bandwidths of the flows at time
0. This is a consequence of the fact that the admission control
decisions are made based on measurements, rather than known

2Note that here, as in the sequel, we are ignoring the fact thatm
� is an

integer and therefore (2) cannot be satisfied exactly in general. In the regime
of large capacities, however, the approximation is good and the discrepancy
can be ignored.

3Observe here that the estimation is based onn flows. In a more precise
model, the estimation should be based onM0 flows, the number to be
admitted. However, in a large system,M0 will be close to n and the
discrepancy in replacingM0 by n in the estimators are small.

parameters. Also, the scheme considered here is an example
of a memorylessMBAC, since the admission control decisions
are made based on the current bandwidths only.

We now want to approximate the average overflow prob-
ability

in steady state (i.e., forlarge) and compare it to the target
To do this, we first find an approximation for the distribution
of the number of flows admitted.

For large capacities, by the law of large numbers, the
estimated mean will be close to the true mean and the
estimated variance will be close to the true variance A
more precise approximation of the deviation of these estimated
quantities from the true values is given by the central limit
theorem

(6)

for large Here, and can be interpreted as
the scaled aggregate bandwidth fluctuation at time 0 around
the mean. Similarly, the estimated standard deviation can be
written as

(7)

where is Gaussian. These two approximations imply that
the deviation of the estimates from the respective true quan-
tities is of order Now, as mentioned earlier, if the
estimates wereexactly equal to their true values, then the
number of flows admitted would be precisely This
suggests that we can approximate the distribution of
by a linearization of the relationship (4) around a nominal
operating point (i.e., the operating point under
perfect knowledge)

Expanding the left-hand side, using (2), we get

and, hence

(8)

Thus, we see that the effect of estimation error is an order
Gaussian fluctuation around the number of sources

admitted under perfect knowledge (cf. top part of Fig. 2). Note
also that the randomness in the number of flows admitted is
due mainly to the error in estimating the mean rather than
the error in estimating the standard deviation
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(a)

(b)

Fig. 2. Uncertainty due to fluctuation in the number of flows (a) and in the aggregate bandwidth (b) for an admission controller with perfect knowledge
(left) and for an MBAC (right).

Substituting (3) into (8), we get in terms of the system
size

(9)

A precise statement of the result is as follows. The proof (of
Theorem III.1) can be found in Appendix II.

Proposition II.1: Let be the random number of flows
admitted under the MBAC when the capacity is Then the
sequence of random variables converges in
distribution to the random variable

We now proceed with an explicit approximation of the
overflow probability. The randomness in the aggregate traffic
load at some future time is due both to the randomness in the
number of flows admitted, as well as the randomness in the
bandwidth demands of those flows. This can be approximated
with the help of the following lemma, which is an extension
of the central limit theorem for a sum of a random number
of random variables:

Lemma II.2—[3, p. 369, problem 27.14]:Let
be independent and identically distributed (i.i.d.) random vari-
ables with mean and variance and for each positive let

be a random variable assuming positive integers as values;
it need not be independent of the ’s. Let
Suppose as converges to 1 almost surely.
Then as

converges in distribution to a random variable.

Applying this lemma, the aggregate load at timecan be
approximated by

(10)

Here, and can be interpreted as an approximation
for the scaled aggregate bandwidth fluctuation at time

(11)

Intuitively, (10) means that the fluctuation of the aggregate
load is approximately the linear superposition of two effects:
the random number of flows, together with the random band-
width fluctuation around the mean. Substituting (9) into (10),
we get

Thus, for large the overflow probability at time is

This expression gives us an interpretation of how overflow
occurs in a MBAC system: it is a combination of an aggregate
bandwidth estimation error at admission time and a
fluctuation of the aggregate bandwidth at time after
the flows have been accepted. Contrast this with the case with
perfect knowledge, where the overflow probability at timeis
simply due to bandwidth fluctuation at time
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To get the overflow probability in steady state, we set
in which case is independent of Therefore, the

difference is a Gaussian random variable with mean
0 and variance The overflow probability is therefore

(12)

We summarize this result more formally in the following
proposition:

Proposition II.3: Suppose the target overflow probability
QoS is Let be the actual average steady-state overflow
probability using the certainty equivalent MBAC for capacity

Then as the system size grows

Note that for the AC with perfect knowledge, the over-
flow probability is exactly This is because the aggregate
bandwidth fluctuation stems only from the fluctuation of the
individual flow bandwidths (cf. lower left part of Fig. 2). On
the other hand, in the measurement-based case, the variance
of the aggregate bandwidth is doubled because the number
of flows also fluctuates due to measurement error (cf. lower
right part of Fig. 2). The factor is, therefore, the effect
of measurement error, and has quite a tremendous impact on
the overflow probability For example, if
then the actual performance in the MBAC system would be

a difference of two orders of magnitude. In
other words, if we want to achieve using a MBAC in
this impulsive load model, then we have to adjust the target
overflow probability under certainty equivalence

or (13)

Using the approximation for small
where is the pdf of we see that

Thus, we see that to achieve a targetin this setting, we need
to set roughly to be the square of the target probability. This
conservatism leads to a loss in systemutilization compared
to the scheme with perfect knowledge of the statistics. The
average utilization (in terms of bandwidth) for the certainty
equivalent scheme using parameterinstead of is given
by or as implied by (8). The average
utilization for the perfect knowledge scheme, on the other
hand, is given by or as inferred from (3).
Thus, if we pick to be this translates to a loss of
utilization of

Proposition II.3 has several surprising aspects. First, it is
a universal result in the sense that the performance of the
certainty equivalent scheme does not depend on the stationary
distribution of the flow nor its mean and variance. Second,
although the estimators are unbiased, the net impact on the
performance of the system is negative. Thus, there is an
inherent asymmetry between the effects of over-estimation
and underestimation. Third, the impact of the estimation error

does not vanish as the system size becomes large, even though
the estimates become more and more accurate. Fourth, for a
large system, the degradation in performance of the certainty
equivalent scheme is due mainly to the estimation error in the
mean of the bandwidth distribution and not to that in the
standard deviation

To get more insight into the last two phenomena, let us
perform the following deterministic sensitivity analysis. Define
the following function:

which is the overflow probability when there are flows in
the system each with mean rateand variance Suppose
first that we measure only but that is known exactly.
The number of flows admitted depends on the measured
value and is given by the certainty-equivalent admission
criterion [compare with (4)]

(14)

Note that theactualoverflow probability for a given
is The sensitivityof the overflow probability
with respect to the measuredis the deviation of from its
target value if deviates slightly from its target value
For small deviations, we can simply use the derivative of
with respect to

Using (14), this derivative can be computed as

Similarly, the sensitivity with respect to measuredassuming
known, is given by

Now observe that the sensitivity of the system performance
on the knowledge of the standard deviationdoes not depend
on the system size. Therefore, increasing the system size—and
therefore improving the quality of the estimator—results in
a diminishingnet impact on the overflow probability. On the
other hand, the sensitivity increaseswith the system size,
approximately as while the variance of the estimator
decreases approximately as This suggests that the net
impact of the uncertainty in the mean bandwidth estimate does
not diminish as the system size grows, and also explains why
the deviation from from the target overflow probability
is asymptotically independent of: both effects cancel out.
The increased sensitivity to the mean estimate arises because
when there are more flows in the system and, therefore,
more statistical regularity in the aggregate bandwidth, the
system is driven closer to full utilization, which makes it more
susceptible to admission mistakes.
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III. T HE CONTINUOUS LOAD MODEL

In the impulsive load model, arrivals only occur at time 0
and admitted flows do not depart from the system. We shall
now consider a dynamical model, where flows arrivecon-
tinuouslyover time and stay for an exponentially distributed
holding time with mean We assume a worst-case scenario,
where the effective arrival rate is infinite, i.e., there are always
flows waiting to be admitted into the network. Thus, admission
control decisions are made continuously at all times. Clearly,
the performance of any admission control algorithm under a
finite arrival rate will be no worse than its performance in this
model. Another advantage of this model is that we need not
worry about the specific flow arrival process which may be
hard to model in practice. Furthermore, we let denote a
flow’s autocorrelation function, where

A. Memoryless MBAC

We first look at a memoryless scheme that only bases
admission decisions on estimates of the mean and variance
based on the current bandwidths of the flows. Assume that
the system starts at time 0. Our goal is to find the overflow
probability at an arbitrary time particularly at which
yields the steady-state overflow probability. We do this by first
analyzing the dynamics of the number of flows in the system.

At any time the MBAC estimates the admissible number
of flows As in (4), is given by

(15)

where

(16)

Observe that is random and depends only on the current
bandwidths ’s of the flows. An approximation is given
by (8)

(17)

where is a stationary zero-mean Gaussian process with
unit variance and autocorrelation function (that of an
individual flow), and can be interpreted as the scaled aggregate
bandwidth fluctuation of the flows around the mean.

The actual number of flows in the system at time
is no less than since there are always flows waiting to
be admitted. On the other hand, can be strictly greater
than as flows that were admitted earlier stay for a certain
duration and thus cannot perfectly track the fluctuations of

(see Fig. 3). To compute first observe that if is the
last time at or before timethat flows were admitted, then the
number of flows in the system at time is precisely the same
as number of flows admissible at time i.e.,
Between time and time no new flows were admitted.

Fig. 3. The relationship between the current estimate of admissible number
of flows Mt and the actual number of flowsNt: The time scale~Th is the
typical time for the system to recover from admission errors.

Hence, if we let be the number of flows departed in
time interval then

(18)

On the other hand, for any

(19)
where is the number of flowsadmittedduring
Thus, we conclude from (18) and (19) that

(20)

It is clear from Fig. 3 and (20) that flow departures have a
repair effect to past mistakes made by the MBAC. Equation
(17) tells us that the the fluctuations of the estimated number of
admissible flows around the perfect knowledge operating
point is of the order of Thus, it takes of the order
of flows to depart to rectify past errors in accepting too
many flows. How much time on the average is needed for this
to occur? Since the flow departure rate is of the order of
this “repair time” is on the order of
We call this thecritical time scale of the dynamical system:
admission errors at time have little influence on the future
much beyond as many flows would have been departed
by then to repair the errors. Thus, is the natural time scale
to analyze the full dynamics of the system. To make such
analysis more convienent, let us scale the flow holding time

so that the critical time scale can be viewed
as fixed as grows large.4 Under this scaling, the number of
flows departed in time can be approximated as

(21)

4It should be emphasized that in reality, the system sizen and the average
flow holding timeTh are independent system parameters. The scaling ofTh

as
p
n is done solely to enable us to studyboth the effect of traffic fluctuation

and flow departures in the asymptotic analysis. If the holding timeTh were
fixed asn grows, the critical time scale would approach zero, leading to an
asymptotic model where any admission errors can be immediately restored by
flow departures.
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Such linearization is valid for large such that we are
focusing on the time scale during which only a small fraction
(order ) of the flows depart from the system.

Combining (17), (20), and (21) yields an approximation for
the number of flows in the system at time The following
limit theorem makes such an approximation precise.

Theorem III.1: Let be the process describing the
evolution of the number of flows in the system. Assume
condition B.6 is satisfied. As for each

converges in distribution to

where is defined as above.
The proof uses the machinery ofweak convergenceand is

given in Appendix B. Condition B.6 contains mild techni-
cal assumptions on the individual flow processes; these are
also stated in the appendix. These assumptions hold for a
very broad class of models. For example, they hold if each
individual flow is a Markov-modulated fluid

Once we obtained an approximation for we can imme-
diately deduce an approximation for the aggregate loadat
time and, hence, the steady-state overflow probability
using the same argument as for the impulsive load model.

Proposition III.2: Let be the aggregate load at time
and be the overflow probability at time As

converges in distribution to

and the overflow probability converges to

For brevity, we will define the important parameter

(22)

The steady-state overflow probability can then be approx-
imated by taking in Proposition III.2 and using
stationarity of to get

(23)

Interestingly, one can interpret the limiting overflow proba-
bility at time as that of the length of a certainqueueat time
exceeding The queue is one which has a constant service
rate of with the amount of work arriving in time interval

given by

B. Analysis of Overflow Probability

Our next step is to analyze the approximation to the over-
flow probability given by (23). Since the process is
stationary and symmetrically distributed around 0, we can
rewrite (23) as

This can be interpreted as thehitting probability of a Gaussian

process on a moving boundary
While there is no known closed-form solution to this problem,
an approximation can be obtained by applying results due to
Bräker [13], [14] on hitting probabilities of locally stationary
Gaussian processes, extending the results by [7] for stationary
processes. Define

to be the variance of (recall that has zero mean
and unit variance). Assume the single-sided derivatives of
at exist and are finite, let be the right derivative
of the function at 5 Then an approximation to the
hitting probability is given by

(24)

where is the probability density function. The
integrand above can be viewed as an approximation to the first
hitting time density at time integrating over all yields the
probability that hitting occurs at all. This is an approximation
in the sense that as the ratio of the left-hand and
the right-hand sides approaches 1. Hence, this approximation
is good when is small.

While this yields an approximation that can be computed
numerically for general autocorrelation functions, we would
like to get more analytical insights. To that end, consider the
specific autocorrelation function

(25)

With this choice of the autocorrelation function, is
the well-known Ornstein–Uhlenbeck process. The parameter

governs the exponential drop-off rate of the correlation
function, and is a naturalcorrelation time scalefor the burst
dynamics of the traffic. Substituting this into the approximation
(24) and rescaling the time variable, we get

(26)

where

One can think of as the separation between the flow and burst
scales, although note that is the scaled holding time. If we
make a time-scale separation assumption, i.e., then

(27)

Note that the first approximation is via for

5That is,v+(0) := lim
t!0 (�2(t)� �2(0)=t):
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Fig. 4. For the memoryless estimator, the overflow probability depends on
the ratio of the correlation time scaleTc and of the critical time scale~Th:
An estimation memory window of lengthTm reduces the variance of the
bandwidth estimator, and also smoothes its fluctuation to a time scale of
roughly Tc + Tm:

It is interesting to compare this overflow probability for
the continuous-load model with the corresponding result for
the impulsive load model under long flow durations, given in
Proposition II.3. To do this, we first use the approximation

and rewrite (27) in terms of the flow
parameters as

(28)

For the impulsive load model, the overflow probability
is approximately Equation (28) tells us that in
the regime of separation of time scales, the corresponding
overflow probability can be much worse in the continuous-
load model. This is because while in the impulsive load
model estimation errors can occur only at asingle point
in time (time 0), whereas in the continuous load model,
estimation errors can occur up to roughly before time

to have a significant impact on the number of flows at
time The shorter the traffic correlation time scale the
faster the memoryless mean bandwidth estimates fluctuates,
and the larger the probability of having an underestimation
at some time in the interval. Hence, the overflow probability
in the continuous-load model increases with the separation
of time scale For example, note the multiple peaks
(underestimations of within the interval of length in
Fig. 4: each of these peaks could potentially cause overload
within the critical time scale The lesson is that it is not
only important to consider the estimation error at a single time
instant, but also the chance of making error any time in the
interval defined by the effective flow holding time scale
Note also that since decreases as where is the
actual mean holding time, the overflow probability decreases
roughly as

We can also write the above approximation as (using again

(29)

C. MBAC with Estimation Memory

We see that the memoryless scheme suffers from two
problems. First, the estimation error at a specific admission
time instant is large, and in fact has impact which is of
the same order of magnitude as that due to the statistical
fluctuations of the bandwidths when the correct number of
flows are admitted. Second, the correlation time scale of the
estimation errors is the same as that of the traffic itself; thus,
in the regime when the flow holding time is much larger than
the traffic correlation time scale the probability
of having a large underestimation of mean bandwidth atsome
timeduring the time scale is high. A strategy which, as we
will see, counters both these difficulties is to use more memory
in the mean and variance estimators.

To be more concrete, let us consider using the first-order
auto-regressive filter with impulse response

to estimate both the mean and the variances. (Here, is
the unit step function.) Thus, in place of the memoryless
estimators in (16), the MBAC would use

Note that the estimates are obtained by an exponential weight-
ing of the past bandwidths of the flows. The parameter
governs how the past bandwidths are weighted; it can be
thought of as a measure of theestimation window length. The
relationship between and the memoryless estimator
is simply where is the convolution operation.

Corresponding to Theorem III.1 and Proposition III.2 in the
memoryless case, we can show:

Theorem III.3: For the system of size let be the
process describing the evolution of the number of flows in the
system. Assume condition B.6 is satisfied. If we scale the flow
holding time as where is a fixed constant,
then as for each converges in
distribution to

(30)

where and is a zero-mean unit-variance
stationary Gaussian process with autocorrelation function iden-
tical to that of an individual flow. The overflow probability

at time converges to

One can interpret as the error in thefiltered estimate
of the mean bandwidth of a flow at time The steady-
state overflow probability under the MBAC with memory can
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therefore be approximated by

This is again a hitting probability of a Gaussian process
on a moving boundary, and an approximation

of such a probability is given by [13], [14]

(31)

where

Now, under separation of time scales we have the
approximation that

in which case the above integral can be explicitly computed as

(32)

To compare this result to the memoryless case, let us first
use the approximation to rewrite (32) in
terms of and also the flow parameters

(33)

Comparing (32)–(27), we can explicitly see the effect of
memory. Let us look at the first term in (32), which cor-
responds to (29). The exponent is
which is when there is no memory (as we had in
the memoryless scheme), monotonically increasing with
and reaching a value of 1 for infinite memory. This effect
can be explained by the fact that the variance of the mean
bandwidth estimate is and decreases
monotonically to 0 with more memory. Thus, the inaccuracy
in the estimates and, hence, the inaccuracy in the number of
flows accepted decreases (cf. Fig. 4). Furthermore, increasing
the amount of memory has an additional effect ofsmoothing
the mean bandwidth estimates; thus, not only are theindividual
bandwidth estimates more accurate, they also fluctuate less so
that the probability of having an underestimation atsome time
over an interval of length is reduced. This is reflected in

the smaller pre-factor in the first
term of (33), replacing the factor in the memoryless
case. This can be interpreted as increasing the correlation time
scale by the estimation window length.

In the limit for large we always have exactly the right
number of flows in the system, and the overflow occurs due
only to the fluctuation of bandwidth requirements of flows in
the system, and not to the fluctuation of the number of flows
in the system. This is now given by the second term in (33).

IV. ROBUST MBAC

In this section, we discuss how our results can be used to
make MBAC robust. We use simulations with synthetic and
actual traffic sources to verify these insights. The details of
the simulation setup are described in Appendix A.

A. Robust MBAC with Known

In this section, we assume that the correlation time scale
is known to the MBAC. Our goal is to verify the validity of
the formulas presented in the previous section. Equation (33)
can be used to choose the memory size and to adjust the target
overflow probability in the MBAC, such that the overflow
probability meets the QoS requirement, i.e., chooseand

such that The shorter the more
conservative the choice of has to be, resulting in a loss
of bandwidth. This loss of utilization can be quantified. The
average utilization (in terms of bandwidth) of the system is
given by where is the (stationary) number of flows
in the system at time Equation (30) allows us to approximate
this when is used as the target overflow probability

Since the other terms do not depend on we see that the
difference in utilization in using and is simply

(34)

This allows us to quantify the impact on the utilization on
using a more conservative target overflow probability.

We now describe the simulations we have performed to
verify that our formulas can be used to perform robust
measurement-based admission control. We proceed in two
steps. First, we compare the overflow probabilityobtained
through simulation to the value predicted by theory. Second,
we invert (32) to obtain an adjusted target overflow probability

such that We then simulate the
system with this adjusted target overflow probability in order
to check if the overflow probability really is close to
the target overflow probability regardless of the other
parameters.

Fig. 5 shows the overflow probability as a function of
the memory window size The most striking aspect of
this figure is that for small memory window size the
overflow probability can be orders of magnitude larger
than the target overflow probability This confirms that the
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Fig. 5. The overflow probabilitypf as predicated by theory (32) and obtained by simulation(Th = 1000; Tc = 1:0; p0

q = 1:0e � 3):

Fig. 6. The simulated overflow probabilitypf for the synthetic traffic model using the adjusted target overflow probabilityp0

q:

memory window size is a crucial parameter in achieving
a desired QoS target. If it is chosen too small, then the
performance of the MBAC can degrade dramatically. We
observe that the overflow probability predicted by theory is
slightly conservative with respect to the simulated value. We
attribute this offset to the assumptions in our model, such as
ignoring the discreteness of the number of flows. However,
the shape of the graphs correspond very well; in particular, the
knee, corresponding to the value of beyond which using

a longer memory window size has little additional benefit, is
well matched. Fig. 6 demonstrates that our formulas can be
used to perform robust measurement-based admission control.
We see that with an adjusted overflow probability target, the
actual overflow probability is slightly smaller than over the
whole range of parameters (cf. Fig. 6). It is important to note
that for small the adjusted target overflow probability

can be very small with respect to the target
overflow probability of
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Fig. 7. The overflow probabilitypf obtained by numerical integration of (31), as a function of the normalized memory window sizeTm= ~Th and of
the correlation time scaleTc:

B. Robust MBAC with Unknown

So far, we have assumed that the correlation time-scale
parameter and the flow holding time are known to the
MBAC algorithm so that an adjusted QoS parametercan
be computed. In practice, it is not difficult to obtain a good
estimate of the average holding time of flows. On the other
hand, the correlation time scale and, more generally, the
correlation structure of the traffic is hard to estimate reliably.
Therefore, we would like to design the MBAC such that its
performance is good over a wide range of values forWe
claim that this can be accomplished by choosing the memory
window length on the order of the critical time scale

For concreteness, let us pick the window size to be
and examine the performance of the system for a range

of
First, assume is small with respect to This is the

separation of time-scale regime and formula (33) applies and
holds for all Using the fact that we get
the further approximation

(35)

which is of the order of In this regime, the effect of
the estimator memory effectively smoothes the fluctuations
of the traffic and obtain a reliable estimate of the mean
traffic rate. Although this result is derived using the simple
exponential autocorrelation function (25), it can be easily
shown that in this regime, the detailed correlation structure
is not relevant and a similar approximation holds for other
autocorrelation functions. We call this the masking regime
because the memory window size masks the impact of the

parameter on the overflow probability the fluctuation
time scale of the mean estimator is determined by alone
(cf. Fig. 4).

Next, let us consider the other extreme, whenis much
longer than In this case, and we
have the approximation

Substituting this into the general formula (31) and evaluating
the integral, we get

which definitely meets the target QoS, since in this
regime. In contrast to the masking regime, the time scale of the
estimator fluctuation is dominated by The memory window
is effectively useless in this regime, as it does not reduce
estimation errors. However, the fluctuation of the estimators
around their mean is at a time scale longer than the critical
time scale. This is precisely the regime where the repair effect
makes overflow unlikely. Therefore, we call this the repair
regime.

For in between the two extremes, there is no closed-
form expression for the overflow probability, and we resort
to a numerical integration of the formula (31) to study the
performance of the MBAC. This is shown in Fig. 7, where
we plot the overflow probability as a function of and

We see that while for small the performance is not
robust, the QoS is satisfied over a wide range ofonce the
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Fig. 8. The simulatedpf over the same parameter range as in Fig. 7.

memory window size is chosen to be a significant fraction of
This is further corroborated by simulation results shown

in Fig. 8.
The above analysis and simulations are based on a traffic

model with correlation at a single time scale. In practice,
traffic fluctuations may occur at multiple time scales. In
particular, several studies of various types of network traffic
have found phenomenon of long-range dependence (LRD)
[18], [8], [1], [6]. However, based on the intuition gained
from the single time-scale model, we expect that a memory
window size on the order of is again appropriate here.
As before, flow departures dictate a critical time scale
over which the statistics of the future behavior of the traffic
has to be predicted. A memory window of allows the
simultaneoussmoothingof the fluctuations faster than for
reliable estimation and thetracking of fluctuations at a time
scale larger than The statistics of the long-term fluctuations
of LRD is therefore irrelevant.

To provide some support for this hypothesis, we present
simulation results on an actual traffic trace. Figs. 9 and 10
show the overflow probability when the flow is a piecewise
CBR version of the MPEG-1 encoded Starwars movie [10].
This particular trace has been shown to exhibit LRD [8]. We
vary the average flow holding time and plot the overflow
probability as a function of As with the synthetic
traffic above, we see that the performance is not robust under
memoryless estimation. When is large (corresponding to
small in Fig. 7), the performance misses the target by
one or two orders of magnitude. On the other hand, we note
that with the choice of memory window size the
MBAC is robust (cf. Fig. 10). Apparently, the strong long-term
fluctuations of this traffic do not degrade the performance of
the MBAC.

V. DISCUSSION

A. Critical Time Scale

Our analysis has demonstrated the fundamental importance
of the critical time scale as the time scale over which
the effect of admission decisions persists. This insight leads
to two important principles for the design of robust and
efficient MBAC schemes. First, traffic fluctuations on a time
scale longer than the critical time scale fall into therepair
regime; these fluctuations should be tracked by the MBAC
so that they can be compensated for by flow admissions and
rejections. Second, spare link bandwidth should be set aside
to absorb fluctuations at a time scale shorter thanas these
fluctuations are too fast to be compensated for by the repair
effect. A consequence is that a robust MBAC shouldpredict
the fluctuation statistics over a time scale of rather than
estimatethe long-term statistics of the traffic. In this context,
it does not matter whether or not the traffic is stationary or
not over a time scale much longer than or if the traffic
exhibits LRD.

By setting the measurement window size to be our
scheme implicitly embodies the first principle: effective track-
ing of traffic fluctuations slower than On the other hand,
the scheme sets aside spare bandwidth of the order Since

is the long-term variance of a flow, this leads to an over-
conservative spare bandwidth allocation when much of the
fluctuation is actually slower than (This can be seen in
Fig. 7, where the actual overflow probability drops rapidly
with increasing traffic correlation time scale ) In a sequel
to this paper [12], we propose a novel MBAC design which
goes one step further. By appropriate filtering of the traffic
measurements, the MBAC scheme simultaneously tracks slow
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Fig. 9. The overflow probability for Starwars sources with memoryless estimation(Tm = 0):

Fig. 10. The overflow probability for Starwars sources withTm = ~Th:

fluctuations and estimates the variance of fast fluctuations, so
that the appropriate amount of spare bandwidth can be set
aside.

B. Heterogeneous Flows

Although the results in this paper are derived under the
ideal assumption of identical traffic statistics across flows,
many of the ideas are in fact extensible to a heterogeneous
environment. The key concept behind our approach is the
existence of an appropriate operating point about which the

load fluctuates. We express this operating point in terms of
the number of admissible flows However, when flow
statistics are heterogeneous, the operating point should be
thought of as atarget utilization levelof This level
depends on the statistics of the individual flowsonly through
the statistics of the aggregate traffic (mean and variance in the
central-limit framework). Moreover, as long as there are many
independent flows in the system and no single flow dominates
the entire link, the traffic fluctuations can be well approximated
as Gaussian, even in the heterogeneous case. In [12], we extend
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the framework developed here to analyze the performance of
the MBAC design under heterogeneous flows.

VI. RELATED WORK

Past work on measurement-based admission control [5],
[19], [15] has either ignored measurement errors or assumed
a static situation where calls do not arrive or depart the
system and there is an arbitrarily long time to make accurate
measurements. Here, we discuss three more recent papers
which are closer in spirit to our work.

Jamin et al. [16] presented a specific algorithm for
measurement-based admission control of predictive traffic, and
evaluated its performance through simulation. The algorithm
relies on measurements of the maximum delay and maximum
bandwidth over a measurement interval. There are several
tuning parameters in the algorithm (sampling window size
measurement window size utilization target, back-off factor

that are found to have a significant impact on performance.
We believe that our work offers some insight into the impact
of these system parameters. In particular, the measurement
window size is very similar to our measurement time scale

Also, is a parameter that controls anoverestimation
of the actual measured delay—in other words, it controls
conservativeness, which in our work is represented through
the parameter

The MBAC algorithm proposed by Casettiet al. [4] rec-
ognizes the importance of the measurement window size as a
system parameter. The authors propose an adaptive algorithm
to determine an appropriate window size. While this is an
improvement over the fixed window length parameter in [16],
the adaptive algorithm itself has external tuning parameters. It
is not clear if the overall system is easier to tune.

Gibbenset al. [9] studiedmemorylessmeasurement-based
admission control in a decision-theoretic framework. Their
work takes into account the impact of measurement errors on
performance and also considers the call dynamics. However,
there are some significant differences between their and our
work. First, a perfect time-scale separation is explicitly built
into their model by assuming that the network states seen by
successive call arrivals are independent. This makes it difficult
to evaluate the performance of MBAC schemes with memory
and also the effect of traffic correlation on a system with very
high call-arrival rates. Indeed, they only focused onmemory-
lessschemes. Moreover, our results show that the condition
for time-scale separation is rather subtle, as it depends, among
others parameters, on the system size. Second, while they also
observed that a memoryless certainty equivalent scheme can
perform poorly, their remedy is quite different. They relied on
essentially two mechanisms: the use of a Bayesian prior on
the call statistics and network state-independent call rejection.
The first mechanism serves to smooth out the fluctuation
in successive memoryless estimates, as the observations are
weighted by a fixed prior. The second mechanism counters
very high call-arrival rates, by not accepting calls until one
has left the system. In contrast, we propose the use of an
appropriate amount of memory in the estimator, which as we
have seen, deals with both these problems. Our framework,

without a priori assuming time-scale separation, allows us
to evaluate the performance as a function of the amount of
memory used. We believe the appropriate use of memory is
a natural and effective strategy, particularly when no reliable
prior exists.

Our approach of abstracting away enough details of the
measurement and admission decision process in order to focus
on the fundamental issues of measurement uncertainty and
system dynamics is corroborated by recent work by Jamin
and Shenker [17]. They simulate several specific MBAC
algorithms that have been proposed in the literature, and find
them to be essentially equivalent with appropriate tuning of
system parameters. In our work, we attempt to study, in a
sense, the common denominator of these proposed schemes,
and focus on how the “performance-tuning knobs,” such as
memory window size and degree of conservativeness, should
be set to achieve robustness.

VII. CONCLUSION

In this paper, we have presented a framework for studying
the performance of admission control schemes under mea-
surement uncertainty and flow dynamics. Using heavy-traffic
approximations, the analysis of the resulting dynamical system
is simplified via linearization around a nominal operating point
and by Gaussian approximations of the statistics via central
limit theorems. The insights gained include:

• quantification of the impact of estimation errors on the
QoS performance of MBAC schemes;

• identification of acritical time scalefor which the effect
of admission decisions persist;

• demonstration of precisely how the memory time scale of
the estimators affects performance and what the appro-
priate choice of memory time scale is to achieve robust
performance.

These insights are directly applicable to the design of robust
MBAC schemes. Such schemes do not have to rely on external
tuning parameters to achieve the desired performance despite
the inherent measurement uncertainty and the complicated
system dynamics.

APPENDIX I
SIMULATION SETUP

We simulate the admission controller under infinite load
and we measure the resulting overflow probability on a
bufferless link of capacity We describe the details of the
simulation setup.

We model traffic flows as fluid flows, i.e., we do not simulate
individual packets. In particular, we use a piecewise constant-
rate traffic model, where the fluid rate only changes at certain
points in time, and remains constant between these points [10].
The advantage of this traffic model is that it lends itself to
very efficient simulation.

We use two types of flows. The first type is based on
a stochastic model. Each flow is the realization of an i.i.d.
stationary fluid process. This fluid process is modulated by
an underlying renewal process; the fluid rate is constant on
the time interval between two consecutive renewals. The fluid
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rate in each interval is chosen independently according to the
marginal rate distribution, which in this case is Gaussian with

The renewal time distribution is exponential with
mean which implies that the autocorrelation function of
the traffic rate process is precisely as in (25).

The second flow type is based on an actual video trace,
namely a two-hour MPEG-1 encoded version of the Starwars
movie [8]. We use the smoothing algorithm described in
[10] to transform this trace into a piecewise constant-rate
flow. For this flow model, Each flow is a
subsequence of the trace (with wrap-around at the end of
the trace) with a randomly chosen starting point. Note that
this trace exhibits the LRD property, i.e., its autocorrelation
function decreases subexponentially [8]; also, its empirical
marginal rate distribution is not Gaussian. For both traffic
models, the flow holding time is exponentially distributed with
mean

We periodically sample the empirical overflow probability
over intervals of length This sample

period is long enough to give approximately independent
samples, as the only “memory” in the system is due to
flow dynamics, estimation memory, and traffic correlation.
By chosing a multiple of the maximum of their respective
time scales, we are assured that consecutive samples represent
essentially independent observations of the system.

After each sample period, we compute the (two-sided) 95%
confidence interval around the estimated value of We
terminate simulations when: 1) the 95% confidence interval
is less than 20% of the estimated value (i.e., we are confident
that the estimated is close enough to the actual or 2)
the estimated value plus the (one-sided) confidence interval is
at least two orders of magnitude below the target overflow
probability (i.e., we are confident that the estimated is
considerably lower than the target overflow probability
We also discard all initial samples until the simulated MBAC
has reached steady state.

APPENDIX II
WEAK CONVERGENCE RESULTS FOR

HEAVY-TRAFFIC APPROXIMATION

In this appendix, we will prove Theorem III.1, giving a
rigorous justification of the heavy traffic approximations we
used.

Definition B.1: The space is the space of all real-
valued functions on that are continuous from the right
and have limits from the left. There is a metric (Skorohod
metric) defined on such that it is complete and
separable.

Definition B.2: Let be a sequence of processes
whose sample paths are in is said to
converges weaklyto if for every continuous function

With a slight abuse of notation, we will use to denote
weak convergence of processes, as well as convergence in
distribution for random variables. We shall use the following
theorem to verify weak convergence.

Theorem B.3:A sequence of processes converges
weakly to if all finite-dimensional distributions converge
and is tight, i.e.,

1) For every there exists an such that

2) For every there exists a and
an integer such that

We will use the following theorems [2].
Theorem B.4 (continuous mapping theorem for processes):

Let be a sequence of processes whose sample paths
are in If is continuous and

then
Theorem B.5:Let and ’s be processes

defined on the same probability space, and

is continuous. If and
converges weakly to a deterministic process

then
We need the following technical conditions on the flow

processes.
Assumptions B.6:
1) The sample paths of the individual flow processes

are in
2) The mean bandwidth estimates converges weakly

to the constant process
3) The standard deviation estimates converges

weakly to the constant process
4) If we define

to be the scaled and centered sum of the individual flows,
then as converges weakly to which
is a stationary zero-mean Gaussian process with unit variance
and autocorrelation function (that of an individual flow).

The fourth condition says that the aggregation of the individ-
ual flows satisfies a functional central limit theorem. It holds
for a very broad class of models for the individual sources.
For example, it can be shown [20] that the condition holds if

is a -state continuous-time Markov fluid, in which
case the limiting process is a linear functional of a
dimensional diffusion process.

To prove the main theorem, we need the following lemma,
which can be viewed as a functional law of large number for
the process describing the evolution of the number of flows
in the system.

Lemma B.7:The process converges weakly to
the deterministic process taking on a constant value of 1 for
all
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Proof: By solving (15), we get for each

(36)

Using assumptions (2) and (3) in B.6, together with Theorem
B.5, we can see that the process converges to the
process taking on a constant value. Now, for all

Since converges weakly to the constant process 1,
so does the process by the continuous

mapping theorem. Hence, must converge weakly to
the constant process 1.

Proof: Proof of Theorem III.1
Using (36), we get for each

(37)

By assumption B.6, we know that
where is a zero-mean Gaussian process with

autocorrelation function Also, converges weakly
to the constant processand converges weakly to the
constant process By Theorem B.5

(38)

Next, we will show that for fixed as a
process in converges weakly to the deterministic process

on First, let us fix an Define now two
random variables and is the number
of flows departing from the system when there are flows
in the system at time and no more flows enter the system
in is the number of flows departing from the
system when there are flows at time

and no more flows enter the system in It can be seen
that for every

(39)

Using Chebyshev’s bound, we have for every

The expectation can be computed using the fact that the flows
have exponential holding time and depart from the system

independently

(40)

where is the probability that a given flow leaves the system
some time in and is given by

(41)

By Lemma B.7 and the continuous mapping theorem, as

Substituting this into (40) shows that

Hence, converges in probability and, hence,
in distribution to Using a similar argument,
one can show the same thing for By (39), this

implies that for fixed and
A standard argument in the theory of convergence in
distribution implies that for all and

i.e., finite-dimensional distributions converge. To show
weak convergence as a process, we need to verify tightness,
according to Theorem B.3. The first condition is trivially
satisfied. For the second condition

(42)

where and

a flow departs in time

By direct calculation, (42) is in turn equal to

where the term goes to zero as Thus, by
appropriate choice of and (42) can be made arbitrarily
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small. This verifies the tightness of and, hence,
its weak convergence.

Combining the weak convergence of and
it follows that
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