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Abstract. The present study examined the physiological responses collected 
during a route-learning and subsequent navigation task in a novel virtual 
environment. Additionally, participants were subjected to varying levels of 
environmental threat during the route-learning phase of the experiment to assess 
the impact of threat on consolidating route and survey knowledge of the 
directed path through the virtual environment. Physiological response measures 
were then utilized to develop multiple linear regression (MLR) and artificial 
neural network (ANN) models for prediction of performance on the navigation 
task. Comparisons of predictive abilities between the developed models were 
performed to determine optimal model parameters. The ANN models were 
determined to better predict navigation performance based on 
psychophysiological responses gleaned during the initial tour through the city. 
The selected models were able to predict navigation performance with better 
than 80% accuracy. Applications of the models toward improved human-
computer interaction and psychophysiologically-based adaptive systems are 
discussed. 
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1 Introduction 

The incorporation of simulation technology into neuroergonomic and 
psychophysiological research is advancing at a steady rate (see [1], [2]).  The range 
and depth of these simulations cover a large domain, from simple low fidelity 
environments to complex fully immersive simulators, which are factors that may 
affect psychophysiological response within the environment [3]. All of these 
simulators rely on some type of representation of the real world [4]. The current study 
utilized a high fidelity, highly immersive virtual environment, as increased 
applicability to real-world performance was the goal. Specifically, the virtual 
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environment (VE) utilized herein was that of a virtual Iraqi city [5], which included a 
route-learning and navigation simulation to assess landmark and route knowledge of 
the newly experienced VE [6]. Psychophysiological responses were monitored 
throughout the experiment and were used to predict navigation performance following 
threat exposure during the route-learning phase. 

1.1 Navigation in Virtual Environments 

Numerous studies have conveyed the benefits of ecologically valid simulated 
navigation tasks as predictors of real-world functioning [4], [7], [8]. Navigation 
abilities are customarily broken down into three knowledge based components, each 
adding to the cognitive map developed by the participant. The first is landmark 
knowledge, which involves learning to recognize landmarks or salient features of the 
environment upon initial exploration of said environment [9]. In the current study, 
zone markers indicating the entrance into a new zone were the key landmarks 
involved. The second component is referred to as procedural or route knowledge and 
involves information gleaned from first-hand experience with a route which provides 
the ability to create distance and orientation relationships connecting landmarks [9],  
[10]. Real-world and virtual reality (VR) experiments suggest that active navigation, 
which was utilized in the current research, is more effective for route-learning than 
passively being exposed to the environment [11]. The third component of navigation 
ability is referred to as survey knowledge, which can be described as having 
developed a “bird’s eye view” of the environment. Survey knowledge affords the 
development of a cognitive map that provides associations between locations with 
increased levels of exposure to the environment [9], [12]. Survey knowledge is 
valuable as a means of finding shortcuts through the environment, but is not 
necessarily useful in the present study, as participants were instructed to follow a 
specific route without deviating. Thus, this study is primarily concerned with 
landmark and route knowledge. 

The current research design afforded the opportunity to investigate the effects of 
exposure to threat on route-learning. To our knowledge, no study has examined the 
effects of varying levels of threat on route-learning, making this a novel approach. We 
hypothesized that threatening stimuli in the environment would serve as distractors 
and would hinder route-learning in highly threatening areas of the VE. Past research 
involving distractors presented during route-learning typically involve cognitive 
workload tasks and tend to interfere with route-learning. Walker and Lindsay [13] 
reported decreased efficiency in wayfinding performance in a virtual city when a 
secondary speech discrimination task was introduced. They postulate that this was 
due to the switch of attentional resources to the completion of the secondary task. A 
similar result was found in a between-subjects study involving examination of the 
effects three separate types of cognitively distracting tasks presented during the route-
learning phase compared to a no task condition. All groups that experienced 
distracting tasks performed less efficiently on a wayfinding task than the group that 
was not presented with any distracting task [14]. Knowledge of psychophysiological 
states gleaned during the route-learning phase may serve as an indicator of 
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wayfinding abilities. For example, participants with lower psychophysiological 
response levels during the route-learning phase may prove more efficient during the 
navigation phase.  

1.2 Toward Adaptive Simulations 

The current research was concerned with informing psychophysiological computing 
strategies for creation of VEs capable of adapting to the participant’s affective and 
cognitive state to foster optimal performance. Psychophysiological computing 
represents an innovative mode of human-computer interaction (HCI) wherein system 
interaction is achieved by monitoring, analyzing and responding to covert 
psychophysiological activity from the user in real-time [15], [16]. 
Psychophysiological computing represents a means of creating for the computer 
system a more empathic link to the user.  
     The strategy employed herein for creation of a psychophysiological computing 
system initially required assessment of psychophysiological response patterns 
associated with varying affective states. The current research manipulated 
environmental threat to create response variability in order to perform such 
assessments. Data analytic approaches designed for prediction were then compared 
and tested for effective development of a psychophysiological computing system 
capable of predicting performance outcomes. Namely, the efficacy of multiple linear 
regression (MLR) and artificial neural network (ANN) models were compared for 
prediction of navigation performance based on psychophysiological responses to 
threat and cognitive workload during the route-learning phase of the experiment.  
     In summary, participants were exposed to varying levels of threat while 
concurrently completing a route-learning task, and the responses collected were 
submitted to MLR and ANN models to predict performance on the subsequent test of 
route-learning efficacy during a navigation task.  

2 Methods 

2.1 Participants  

A total of 53 participants (67.9% female; mean age = 19.79; age range = 18 to 22) 
took part in the experiment. Participants were recruited through the psychology 
subject pool at the University of Southern California. Inclusion criteria included 
normal or corrected to normal vision, and English fluency. Participants were between 
the ages of 18 and 35.  

2.2 Stimuli 

A virtual environment depicting an Iraqi city was presented to participants with use of 
an eMagin Z800 head mounted display complete with head tracking capabilities to 
allow the participant to explore the environment freely. The virtual environment was 
created using graphic assets from the virtual reality cognitive performance test 
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(VRCPAT) [6], [17], using the Gamebryo graphics engine to create the environment. 
A tactile transducer floor was utilized to enhance the ecological validity of the VE by 
making explosions and other high threat stimuli feel more lifelike. Auditory stimuli 
were presented with a Logitech surround sound system. Psychophysiological 
measures related to electrodermal and electroencephalographic activity were collected 
using a Biopac MP150 system. Participants experienced the VE while residing in an 
acoustic dampening chamber, which had the added benefit of creating a dark 
environment to remove any peripheral visual stimuli that were not associated with the 
VE, resulting in increased immersive qualities of the simulation. 

2.3 Procedural Design 

Following a baseline procedure, participants were exposed to the route-learning task. 
The task consisted of following a guide through six zones that alternated between 
high and low levels of threat. All environmental stimuli were pre-scripted, allowing 
each participant to experience exactly the same environmental stimuli at the same 
time to enhance experimental control of stimulus presentation. The high and low zone 
presentation order was counterbalanced across subjects as to which type of zone was 
experienced first. During the high threat zones, participants experienced an ambush 
situation in which bombs, gunfire, screams and other visual and auditory forms of 
threat were present, whereas none of these stimuli were presented in the low threat 
zone. Each zone was preceded by a zone marker, which served as landmarks to assist 
in remembering the route. 

The route-learning task was followed immediately by the navigation task in which 
the participants were asked to return to the starting point of their tour through the city. 
Participants were to pass through each zone in reverse order until reaching the 
original starting point. If the participant strayed too far from the path, which was 
quantified as the distance it would take to walk for 10 seconds in a perpendicular 
direction from the original path, an arrow appeared in the corner of the screen that 
assisted the participant in finding his or her way back to the original path. During the 
navigation task, there were no longer any threatening stimuli presented in the high 
threat zones. The navigation task ended when the participant crossed the zone 1 
marker. 

2.4 Analytic Approach 

Data were scored using an in-house custom designed Matlab scoring program. The 
program includes graphical representations of each channel of psychophysiological 
data for manual inspection of scoring accuracy.  

Electrodermal Data Scoring. The scoring program was used to partition response 
levels into each zone, and then calculate the median skin conductance level (SCL) and 
the number of spontaneous fluctuations (SFs) in each. The median SCL was chosen 
for analyses rather than the mean because it is a more robust feature as it is less 
susceptible to influences of artifacts, which will be especially useful in future adaptive 
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applications. SFs, which were also scored during trimmed zones, were quantified as 
any change in slope of the response curve resulting in a > 0.01 µS response, with a 
peak latency of 1 to 3 seconds following onset.  

Electrocardiographic Data Scoring. ECG data were scored as inter-beat intervals 
(IBIs), which were calculated as median values for each zone. Accuracy of the peak 
detection scoring program was assessed manually, with visual inspection of all 
selected R-waves. Missed R-waves were manually added to the calculation of zone 
medians. Power spectral density analyses of heart rate variability (HRV) were also 
performed with use of a fast Fourier Transform based algorithm. The algorithm was 
used to calculate the spectral power of the low frequency (LF) component and the 
high frequency (HF) component of HRV associated with each zone. The frequency 
range of the LF component is between 0.04 and 0.15 Hz, while the HF component is 
between 0.15 and 0.4 Hz [18]. 

Respiratory Data Scoring. Respiration was scored in a similar fashion to the ECG 
data, and reported as interbreath intervals. Peak detection of each positive deflecting 
curve in the breathing cycle was manually reviewed in order to ensure accuracy of the 
scoring program, and median intervals were calculated for each zone. 

MLR and ANN Approach. The experimental conditions described herein are 
designed to provoke responses typical of high and low extremes of experienced threat. 
The ultimate purpose of the proposed ANNs is to develop a strategy for creating 
adaptive systems for future research and eventual real-world applications including 
enhanced training scenarios and adaptive assistance for any individual who must 
fulfill tasks that involve high levels of threat, stress, or cognitive effort. A 
backpropagated algorithm was utilized to train the ANN models mainly because it can 
be thought of as a specialized case of the general linear model that is capable of more 
effectively fitting curvilinear data distributions than is possible with a linear 
regression model. Additionally, because the ANN model can be thought of as a 
special type of regression, and provides similar output, results can be compared 
directly to predictive results generated with the use of more standard and widely used 
MLR. This sets the backpropagated algorithm apart from numerous machine learning 
algorithms, such as support vector machines, which can lead to difficulties when 
trying to compare causes for predictive differences with other algorithms.  
     First, a MLR model that used the psychophysiological data gathered during the 
initial tour through the city to predict the navigation performance was developed. The 
navigation performance was quantified as the time needed to return to the starting 
point. A set of six psychophysiological predictors were utilized. Included in the 
analyses were SCLs, SFs, IBIs, interbreath intervals, and the LF and HF components 
of the HRV measure.  Due to the relatively small sample size in this experiment, an 
attempt to condense the number of predictors was made by calculating difference 
scores between the high and low threat zones for each of the psychophysiological 
predictors. Difference scores were calculated in two ways. First, the overall difference 
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between all three high and low threat zones was calculated as a representation of the 
response levels associated with the task as a whole. Next, a difference score that 
would serve as an index of the habituation involved in the responses to the high threat 
zones compared to the low threat zones was calculated. To accomplish this, difference 
scores between the high and low threat zones in the first pair of zones experienced in 
the route-learning phase (zone pair A) and the third pair (zone pair C) were 
calculated. The zone pair C difference score was then subtracted from the zone pair A 
difference score. This threat habituation index was calculated to account for the 
waning response levels during high threat zones present in a number of response 
measures. Analyses not reported here determined that the habituation-sensitive 
predictors were preferable. A backward-elimination stepwise regression was utilized 
for the MLR model.  
      The ANN model was developed in a manner analogous to the above MLR model, 
such that the predictor variables, or inputs, were the same in each model. The output 
node will again represent the continuous navigation performance outcome measure of 
the time needed to return to the starting point. The primary goal of the BPN used 
herein is prediction. In order to increase the probability of generalization and to avoid 
over-fitting of the observed sample, three data sets were considered, including the 
training set, validation set, and the test set (see [18] for review of these data sets). The 
test set contains a set of examples that had not been previously considered during the 
training or validations phases, which is used to calculate the global predictive ability 
of the network for generalizations to future practical applications. After the 
development and implementation of the ANN, comparisons were made (following 
[18]) between its output and that of the general linear model’s regression for the 
predicted outcome measure. 

3 Results 

3.1 Regression Results 

The MLR model was able to explain a significant proportion of the variance in 
navigation performance, R2 = 0.27, F(7, 45) = 2.32, p < 0.05. Significant predictors 
included SFs, β = -0.34, t = 2.66, p < 0.05, and interbreath intervals, β = 0.28, t = 
2.13, p < 0.05. The negative correlation coefficient related to the SF measure indicates 
that participants who had a greater difference between the high and low threat zones 
during zone pair A than zone pair C, due to habituation in high threat zones, took less 
time navigating back. Though interbreath intervals correlation coefficient was 
positive, the results are analogous to those of the SFs. Increased activation leads to 
more SFs and shorter interbreath intervals, so the response patterns are reversed. 
Thus, greater reduction in differential activation between high and low threat zones 
during zone pair C resulted in more efficient navigation performance.  
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Table 1. MLR model summary statistics 

RMSE = root mean squared error.  

R R2 Adj. R2 Std. Error  RMSE F P 
0.52 0.27 0.17 48538.0 220.3 2.32 <0.05 
       

3.2 ANN Results 

The backpropagated ANN that was developed included the same six predictor 
variables used in the preferred MLR model, here entered as inputs to the system. In 
the preliminary tests to assure that the ANN achieved its optimal output, the network 
model was developed with different numbers of nodes in the single hidden layer. The 
hidden layer learns to provide a representation for the inputs through an alteration of 
the weights associated with each node and then connects to the output layer. The 
experimental method involved developing a hidden layer that contained a minimum 
of four nodes and a maximum of twenty-four nodes. It was found that six hidden layer 
nodes resulted in optimal model performance. A tanh activation function was applied 
to the hidden and output nodes, which is recommended when the sum of squares error 
function is employed, as it was in this case. Descriptive statistics associated with the 
training, validation, and test set samples are included in Table 3. 
     Following network training, the test set was applied to the network to test the 
generalizability of the model. It should be noted that the predictor values of the test 
set were not involved in the training of the model, providing a “test” of the 
generalizability of the model to new data. A gradient descent learning algorithm was 
applied along with a sum of squares error function. Hyperbolic tangent activation 
functions were applied to the hidden and output nodes. The ANN was able to predict 
the outcome measure with 76.0% accuracy (training performance = 0.938; test set 
performance = 0.871).   
     A global sensitivity analysis was performed in order to determine the relative 
importance of each input (i.e., predictor variable) to the successful prediction of the 
output. A sensitivity analysis tests how the error rates would increase or decrease if 
each individual input value were changed (see [20] for review). More specifically, the 
data set is repeatedly submitted to the network, and in turn each input variable is 
replaced with its mean value calculated from the training sample, and the resulting 
network error is recorded. Important inputs cause for a large increase in error, while 
the error increase was small for unimportant inputs. Thus, sensitivity analysis allows 
for a rank order of the importance of the individual inputs [21, 22]. Ratio values less 
than 1 indicate that the network actual performs better without inclusion of the 
associated input. All inputs had ratio values of greater than 1, indicating that all 
contributed to the performance of the model. The highest ranked inputs were SCLs, 
IBIs, SFs, and interbreath intervals, each having a ratio value greater than 4.  
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3.3 ANN and MLR Comparisons 

Examination of the squared correlation coefficient associated with each model reveals 
that there is a 49.0% increase in prediction of navigation performance when the ANN 
is employed. The drop in root mean squared error related to use of the ANN (RMSE = 
205.39) in comparison the MLR model (RMSE = 220.30) signifies that the neural 
network model better fits the data. Direct comparison of correlation coefficients 
associated with each model with use of the Fisher z transformation revealed that the 
ANN had significantly greater predictive ability than the MLR model, z = 3.84, p < 
0.001. Thus, the ANN was determined to be the preferable model due to the increase 
in the squared correlation coefficient in addition to the decrease in RMSE.  

4 Discussion 

The current research offers a number of beneficial design advances for potential use 
in future training simulation technologies and adaptive systems in general. A VE was 
developed that was capable of providing a route-learning scenario and the ability to 
test route-knowledge with use of a navigation task. Manipulations embedded within 
the VE also afford the opportunity to test the effects of varying levels of threat in the 
environment. Models were designed to predict navigation performance based on 
psychophysiological response measures collected during the route-learning phase. 
Evidence presented led to the conclusion that ANNs were better able to predict 
performance outcomes, and were generalizable to previously unseen data following 
training of the model. The goal of this study was to develop strategies for the 
successful development of systems that utilize psychophysiological computing to 
adapt to the individual in such a way that an optimal pace for training is achieved in 
order to foster ideal learning settings. A number of findings reported in the current 
research provide informative material for such adaptive system development.   
     Adaptive automation systems generally utilize psychophysiological responses to 
assess user-states in order to determine the necessity of automated assistance to 
facilitate optimal system performance [1]. In the current study, habituation effects on 
threat responses led to the calculation of predictor variables better suited for 
navigation performance prediction. Responses to threat habituated almost universally 
throughout the task. Thus, a set of predictors designed to account for habituation 
effects produced better prediction of navigation performance. This distinction could 
be used to inform future adaptive system design in that thresholds for adaptations 
based on responses to threatening stimuli must be concerned with the change in 
response levels with repeated exposure to the stimuli and must allow for dynamic 
adjustment to thresholds for adaptive change.  

Finally, the current research provided encouraging support for the use of ANNs for 
prediction of performance outcomes based on psychophysiological response 
measures. The ANN provided significantly enhanced predictive abilities compared to 
a traditional MLR model. This demonstrated that psychophysiological responses to 
varying levels of threat during a route-learning task could be used to predict 
performance on a subsequent navigation task with better than 76% rates of accuracy. 
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Recently, researchers have begun applying advanced algorithms such as ANNs for 
data classification in real-time. For example, a number of studies have utilized ANNs 
for the initiation of adaptive assistance when features meet classification requirements 
for a state of overload [23, 24]. These techniques are often used for assessment and 
classification of nonlinear data (see [19]). The models produced in the current 
research lend themselves well to use in adaptive training simulations to enhance 
route-learning abilities when confronted with threatening stimuli. An adaptive 
automation approach can be employed to training making use of the VE developed 
herein, such that psychophysiological responses gleaned during the route-learning 
phase can be assessed for hyper- or sub-threshold criteria related to overload or fear, 
and adaptive assistance may be provided during the navigation task to fit the needs of 
the individual and promote optimal performance. 
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