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Abstract— This letter presents an iterative decoding method for
Reed Solomon (RS) codes. The proposed algorithm is a stochastic
shifting based iterative decoding (SSID) algorithm which takes
advantage of the cyclic structure of RS codes. The performances
of different updating schemes are compared. Simulation results
show that this method provides significant gain over hard decision
decoding and is superior to some other popular soft decision
methods for short RS codes.

Index Terms— soft decision decoding, belief propagation, Reed
Solomon codes.

I. I NTRODUCTION

BELIEF propagation (BP) based decoding has come to
researchers’ interest for its appealing performance in

decoding sparse graph based codes, such as LDPC codes.
High rate LDPC codes of short to medium lengths exhibit
an undesirable error floor in high SNR region due to their
small minimum distance. For this reason, several applications
such as, for example, magnetic recording systems employ
Reed Solomon (RS) codes, which possess good minimum
distance. Consequently, soft decision decoding of RS codes
is of practical value.

Currently popular soft decision decoding methods are Chase
decoding [1], generalized minimum distance decoding, relia-
bility based decoding [2] and more recently, the Koetter Vardy
(KV) decoding algorithm [3] which is a soft-input algebraic
decoding algorithm. An alternative approach is BP based
iterative decoding. Iterative decoding of linear block codes
and the sum product algorithm (SPA) was discussed in [4]
[5]. It is commonly believed that BP algorithm is not suitable
for high density parity check codes (HDPC), e.g., RS codes.
Since the large number of short cycles in the factor graph
will cause correlation between the messages and consequently
incur “error propagation”. Short block length codes with low
density parity check matrices, which possess sparse Tanner
graphs, were studied in [6]. However, these codes do not have
as large minimum distance as RS codes do with comparable
rate.

Recent research results of Yedidiaet al. [7] revealed
the inherent connection between BP and statistical physics.
However, the corresponding “generalized belief propagation
(GBP)” algorithm they proposed [8] still has trouble in de-
coding HDPC codes over AWGN channel.

Nevertheless, their work on GBP inspired our study of BP
algorithms for RS codes. In this paper, a stochastic shifting
based iterative decoding (SSID) scheme is proposed to show
that with proper scheduling, BP can perform well for RS
codes.

II. SOFT DECISION REED SOLOMON CODEDECODING

Consider a narrow sense RS code overGF (qm), n = qm−
1, which has a minimum distanceδ = n − k + 1. With a
bounded distance (BD) decoder, it is at = ⌊(δ − 1)/2⌋ error
correcting code. The parity check matrix can be represented
by:

H =









1 β β2 · · · β(n−1)

1 β2 β4 · · · β2(n−1)

· · ·
1 β(δ−1) β2(δ−1) · · · β(n−1)(δ−1)









(1)

The matrix can also be expressed in a systematic or cyclic
form. Here we consider RS codes over an extension field
of GF (2), i.e., q = 2. Let β be a primitive element in
GF (2m), all the 2m elements inGF (2m), 0, 1, β, β2, · · ·,
β2m

−2, can be represented using a binary vector expansion
in GF (2). Summation operation inGF (2m) is nothing but
the vector summation inGF (2) and multiplication operation
corresponds to binary matrix multiplication. Consequently, all
the codewords and the parity check matrix can be represented
in a binary vector form. Consider for example GF(4) and let
β be a root of the primitive polynomialp(x) = x2 + x + 1. β
has the binary vector expansion[0, 1] and the multiplication
operation×β corresponds the binary multiplication of the

vector expansion with a multiplication matrix:×

(

0 1
1 1

)

,

and etc.
By using this binary parity check matrix representation, RS

decoding problem turns into a general problem of decoding of
binary linear block codes [4]. Some research work has been
focused on the construction of proper parity check sets for
iterative decoding [5] [8], since the performance of iterative
decoding will be different with the choice of parity check
matrix even if the code is the same. Lucaset al. [5] suggested
using minimum weight parity check sets to propose iterative
decoding. Some algorithms for the small weight parity check
sets search is also referred. However, in general, finding a
minimum parity check vector is NP-complete. In this work, it
is shown that with proper scheduling, iterative decoding based
on a “non-optimal” parity check matrix can still perform well.

III. PROPOSEDITERATIVE DECODING STRATEGY

Suppose the coded bits are transmitted with BPSK modula-
tion format (with0 mapped to+1 and1 mapped to−1) over
AWGN channel,

y = x + n, (2)

Thus, the reliability of the received vector can be expressed
in terms of their log-likelihood ratio (LLR)L(x) (here we use
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bold face letters to denote vectors). Thea posteriori LLR of
each bit can be expressed as:

L(xi) = log
P (ci = 0|y)

P (ci = 1|y)
, (3)

Though the exacta posteriori LLR of each bit is difficult to
obtain, for sparse graph codes, a good approximation can be
obtained using the BP algorithm. However, standard BP does
not work well for HDPC codes due to “error propagation”.

By taking advantage of the cyclic property of RS codes,
a sum product algorithm (SPA) with a stochastic shifting
schedule is proposed to help alleviate deterministic errors. Let
L(j) denote the sum of the received LLRs and all extrinsic LLR
produced until thejth iteration. During thejth iteration, the
SPA is used on the vectorL(j) to produce extrinsic information
L(j)

ext. The LLR L(j+1) is then updated according to:

L(j+1) = L(j) + αL(j)
ext, (4)

where0 < α ≤ 1 is a damping coefficient. The updated LLR
L(j+1) is cyclically shifted byθ symbols, whereθ is a random
integer unformly distributed between(0, n − 1). Since RS
codes are cyclic, the cyclically shifted version ofx is a valid
codeword. Hence, a shifted version ofL(j+1) can be thought of
as the received signal when a shifted version of another valid
codeword was transmitted. Therefore, another iteration ofthe
SPA is performed with the shifted version of the LLRL(j+1).
Since the geometry of the factor graph with the shifted version
is different from the previous ones, deterministic errors can be
suppressed. We continue this procedure for a predetermined
number of times or until the parity checks are satisfied. When
the maximum ofjmax iterations is reached, another outer
round, with a different realization of the random shifts andan
increasedα, begins with the original LLR from the channel,
which prevents SPA decoding from getting stuck at pseudo-
equilibrium points.

Define ψ(L) as an one iteration of the SPA algorithm
function with the input LLRL. DefineLθ as a cyclic shift of
the vector byθ symbols (Note that received symbols should
be shifted at symbol level). A detailed description of the
algorithm is then given in Algorithm 1.

Kou et al. [9] also made use of the cyclic property of
Geometry codes to construct redundant parity check matrix
by cyclicly shifting parity check vectors, which is an exhaus-
tive deterministic version of our method. Simulation results
suggested that, the SSID based random updating scheme
(RUS) outperforms the exhaustive parallel updating scheme
(PUS). This is similar to the updating rules in a Hopfield
network, where asynchronous and stochastic updating scheme
outperforms synchronous updating scheme. The performance
gain is believed to be mainly due to the stochastic shifting and
multiple outer iteration rounds.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, simulation results for decoding of RS codes
based on the SSID algorithm are presented. The initial damp-
ing coefficientα0 is selected to be0.08 based on simulation.

Algorithm 1 SSID algorithm for RS codes
Step1.Initialization: setq = 0, j = 0 andα0.
Step2.Set the coded bits LLR as observed from the channel:

L(0)(xi) = 2
σ2 yi.

Step3.SPA: Feed the LLRs into the decoder and generate
extrinsic LLRs for each bit using SPA:
L(j)

ext = ψ(L(j)).
Step4.Parameter Update: Update the LLR of each bit:

L(j+1)(xi) = L(j)(xi) + αL(j)
ext(xi).

where α is a gradually increasing damping coeffi-
cient to control the updating step width.

Step5.Random Shifting: Cyclicly shift the LLRs byθ
symbols and record the overall shiftΘ:
L(j+1) ← L(j+1)

θ .

Step6.Hard Decision:ĉi =

{

0, L(j+1)(xi) > 0;
1, L(j+1)(xi) < 0.

Step7.Termination Criterion: If all the checks are satisfied,
stop iteration and go toStep9, else if j = jmax, go
to Step8, otherwise setj ← j + 1 and go toStep3
for another SPA iteration.

Step8.Outer Round: If q = qmax, declare a decoding
failure, otherwise setq ← q+1 andj = 0, update the
damping coefficientα = α0+(q/(qmax−1))(1−α0)
and go toStep2 for another outer round.

Step9.Extract Information Bits: Shift the decoded bits back
to their original position and get the information bits
from coded bits.̂c = ĉ(−Θ)

Consider an RS(15,7) code and assume BPSK transmission
over an AWGN channel. The performances of several updating
schedules are shown in Fig. 1 along with the performance
of the KV algorithm with a list size 4 taken from [10]. The
updating schemes evaluated are: standard BP (300 iterations),
RUS with a gradually changing damping coefficient (i.e.,
SSID), RUS with constant damping coefficient, serial updating
scheme (SUS), PUS with redundant checks. Note that all the
above schedules set a maximum30 SPA iterations and20
outer rounds and another RUS (with30 SPA iterations and
300 outer rounds) is proposed of the same complexity with
the PUS scheme, which uses redundant checks.

We note that standard BP outperforms hard decision decod-
ing by 1.4 dB at an FER of10−3. However, further improve-
ment can be achieved by proper updating and scheduling. RUS
with gradually increasing damping coefficient outperformsthat
with constant damping coefficient, since it keeps updating
damping coefficient from being either too conservative or too
aggressive. RUS outperforms both PUS and SUS with the
same complexity by0.5 and0.3 dB respectively. This is due
to the fact that RUS can reduce deterministic error patterns
and therefore improve the performance. The best result can
be achieved so far is RUS with300 outer rounds, which
outperforms hard decision decoding by 3.1dB and the KV
algorithm (mmax = 4) by about 2 dB at an FER of10−5.

An additional simulation of RS (15,7) is presented over fully
interleaved Rayleigh fading channel (the decoding scheme is
proposed with300 outer rounds and30 SPA iterations). Fig.
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Fig. 1. RS (15,7) code with BPSK modulation over AWGN channel under
different updating schemes.
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Fig. 2. RS (15,7) code with BPSK modulation over Rayleigh fading channel
under SSID decoding.

2 suggests that the gain is even larger for fading channel,
about 8.8dB for bit interleaving and about 5dB for symbol
interleaving at an FER of10−5. This is mainly due to the
performance degradation of BD decoding in a fading channel.

We present results for the RS (31,25) code over AWGN
channel in Fig. 3. Several soft decision decoding methods are
compared. For this code, standard BP algorithm has little gain
due to the large number of short cycles. However, with SSID
scheduling (with200 outer rounds and50 SPA iterations),
the new method outperforms Berlekamp & Massey (BM)
decoding, Generalized Minimum Distance (GMD) decoding
and combined chase & GMD decoding, by 1.9dB, 1.3dB
and 0.63dB, respectively at an FER of10−4. As mentioned
previously, the performance gain is due to the beyond bounded
sphere decoding capability of the proposed algorithm.

Unfortunately, we notice that the soft decision gain of the
new method still diminishes as the codeword length becomes
long (for a (63,55) code, which is not shown here, the gain is
only 0.6dB compared with hard decision at an FER of10−3).
However, the reason for performance loss under the BP algo-
rithm is mainly due to the fact that the parity check matrix has
high density and correlated unreliable information bits cause
“error propagation”. This is essentially different from other
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Fig. 3. RS (31,25) over AWGN channel under different decodingmethods.

soft decision algorithms. We believe that more sophisticated
decoding schemes can further improve the performance.

The worst case complexity of this scheme is quite high,
i.e., the performance gain is obtained by running more outer
rounds. However, the outer rounds and maximum iteration
numbers are adjustable, which can offer reasonable trade-off
between complexity and error correcting capability.

V. CONCLUSION

In this letter, a novel iterative soft decoding scheme for
RS code has been proposed. We have shown that a properly
scheduled BP algorithm outperforms algebraic decoding meth-
ods. This iterative decoding method can be readily extendedto
algebraic cyclic codes, such as BCH and Geometry codes. In
principle, this decoding algorithm works forqm-ary channels
also, however the performance needs to be studied in more
detail.

REFERENCES

[1] N. Kamiya, “On algebraic soft-decision decoding algorithms for BCH
codes”,IEEE Trans. Info Theory, vol.47, pp.45-58, Jan. 2001

[2] M. Fossorier, S. Lin, “Soft Decision Decoding of Linear Block Codes
Based on Ordered Statistics”,IEEE Tran. Info Theory, pp.1379-1396,
Sept. 1995.

[3] R. Koetter, A. Vardy, “Algebraic Soft-Decision Decoding of Reed-
Solomon Codes”,IEEE Trans. Info Theory, submitted 2001.

[4] J. Hagenauer, E. Offer, L. Papke, “Iterative decoding ofbinary block and
convolutional codes”,IEEE Trans. Info Theory, vol.42, pp. 429-445, Mar.
1996

[5] R.Lucas, M. Bossert, M. Breitbach, “On iterative soft-decision decoding
of linear binary block codes and product codes”,IEEE Journal Selected
Areas in Communications, vol.16, pp. 276-296, Feb. 1998

[6] Y. Kou, S. Lin, M. P. C. Fossorier, “Low-density parity-check codes based
on finite geometries: a rediscovery and new results”,IEEE Trans. Info
Theory, vol.47, pp. 2711-2736, Nov. 2001

[7] J. S. Yedidia, W. T. Freeman, Y. Weiss, “Constructing FreeEn-
ergy Approximations and Generalized Belief Propagation Algorithms”,
Merl Technical Report: TR2002-35, Oct. 2002, available online at
http://www.merl.com/papers/TR2002-35/

[8] J. S. Yedidia, J. Chen, M. Fossorier, “Generating Code Representations
Suitable for Belief Propagation Decoding”,Proc. Allerton’2002, Illinois
Oct. 2002

[9] Y. Kou, J. Xu, H. Tang, S. Lin, K. Abdel-Ghaffar, “On circulant low
density parity check codes”,Proc. ISIT’2002, pp.200 Lausanne Jun. 2002

[10] W.J. Gross, F.R. Kschischang, R. Koetter, P.G. Gulak, “Simulation
Results for Algebraic Soft-Decision Decoding of Reed-Solomon Codes”,
Proc. of 21st Biennial Symp. on Comm, pp. 356-360, Kingston, CA.Jun.
2002


