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ABSTRACT
Recommending users with their preferred points-of-interest (POIs),
e.g., museums and restaurants, has become an important feature for
location-based social networks (LBSNs), which benefits people to
explore new places and businesses to discover potential customers.
However, because users only check in a few POIs in an LBSN,
the user-POI check-in interaction is highly sparse, which renders
a big challenge for POI recommendations. To tackle this chal-
lenge, in this study we propose a new POI recommendation ap-
proach called GeoSoCa through exploiting geographical correla-
tions, social correlations and categorical correlations among users
and POIs. The geographical, social and categorical correlations
can be learned from the historical check-in data of users on POIs
and utilized to predict the relevance score of a user to an unvisited
POI so as to make recommendations for users. First, in GeoSoCa
we propose a kernel estimation method with an adaptive bandwidth
to determine a personalized check-in distribution of POIs for each
user that naturally models the geographical correlations between
POIs. Then, GeoSoCa aggregates the check-in frequency or rating
of a user’s friends on a POI and models the social check-in fre-
quency or rating as a power-law distribution to employ the social
correlations between users. Further, GeoSoCa applies the bias of
a user on a POI category to weigh the popularity of a POI in the
corresponding category and models the weighed popularity as a
power-law distribution to leverage the categorical correlations be-
tween POIs. Finally, we conduct a comprehensive performance
evaluation for GeoSoCa using two large-scale real-world check-in
data sets collected from Foursquare and Yelp. Experimental results
show that GeoSoCa achieves significantly superior recommenda-
tion quality compared to other state-of-the-art POI recommenda-
tion techniques.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval – Information Filtering
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tions; geographical correlations; social correlations; categorical
correlations; popularity

1. INTRODUCTION
As an increasingly popular application of location-based ser-

vices, location-based social networks (LBSNs), such as Foursquare
and Yelp, have attracted millions of users to check in their preferred
points-of-interest (POIs), e.g., museums, restaurants and stores,
and share their experiences of visiting these POIs with friends.
For example, as of December 2014, Foursquare had over 6 billion
check-ins with millions more every day contributed by more than
55 million users worldwide. These historical check-in data incor-
porate rich information about users and POIs, and thus bring new
opportunities to mine the user visiting preferences for personalized
POI recommendations that not only help users explore new POIs
but also benefit for businesses to discover potential customers.

In the problem of personalized POI recommendations, the key
tasks are to estimate the preference or relevance scores of a user
to her unvisited POIs and return the POIs with the top-k highest
preference scores for the user. Most existing POI recommendation
methods (e.g., [3, 5, 6, 10, 11, 14, 25, 26, 36]) apply the tradi-
tional memory-based or model-based collaborative filtering tech-
niques with the user-POI check-in matrix to compute the preference
score between a user and an unvisited POI. However, the user-POI
check-in matrix is highly sparse because users have only visited a
very small proportion of POIs in an LBSN. As a result, these meth-
ods usually suffer from low recommendation quality.

In this paper, we predict the preference scores of any target user
to her unvisited POIs based on three important types of corre-
lations among the user and unvisited POIs that can be derived
from the historical check-in data of users on POIs, as depicted in
Figure 1. (1) Geographical correlations. The first law of geog-



raphy [17] states that: “Everything is related to everything else,
but near things are more related than distant things.” For exam-
ple, in reality a person usually visits a POI, e.g., museums, and
then travel to its nearby POIs, e.g., restaurants and stores. That
is, the close POIs have the stronger geographical correlations than
the POIs that are far from each other. Thus, we can estimate a
user’s relevance score for an unvisited POI based on the geographi-
cal correlations between the user’s visited POIs and unvisited POI.
(2) Social correlations. In the real world, a person may prefer POIs
highly recommended by her friends. For instance, they often visit
POIs, e.g., museums, restaurants or stores together. In other words,
social friends are more likely to share common interests on POIs
than strangers. Likewise, in LBSNs, users establish social links
with each other to share their experiences of visiting POIs. Hence,
we can compute the relevance score of a user for an unvisited POI
in terms of the social correlations between the user with her friends
who have visited the POI. (3) Categorical correlations. LBSNs
often predefine a universal set of categories and attach each POI to
a certain subset of categories. The category of a POI reflects its
usual business activities and nature. In reality people have different
biases on the categories of POIs: a foodie often visits restaurants to
taste a variety of food, and a tourism enthusiast usually travels on
tourism attractions all over the world. Accordingly, we can deduce
the relevance score of a user to an unvisited POI based on the cate-
gorical correlations in the categories of the user’s visited POIs and
the unvisited POI.

Therefore, we are motivated to propose a new probabilistic ap-
proach for point-of-interest recommendations through exploiting
and integrating Geographical, Social and Categorical correlations,
called GeoSoCa. (1) Geographical correlation modeling. With
the visited POIs of a user, we estimate a personalized check-in dis-
tribution over the geographical latitude and longitude coordinates
for the user; the personal check-in distribution naturally models
the geographical correlations between the user’s visited POIs and
her unvisited POIs and is able to compute the geographical rele-
vance score of the user to any unvisited POI. (2) Social correlation
modeling. Given an unvisited POI of a user, we first aggregate the
check-in frequency or rating on the POI from her social friends;
then the social check-in frequency (or rating) is transformed into a
social relevance score of the user to the unvisited POI, based on the
social check-in frequency (or rating) distribution that is estimated
from the historical check-in data of all users. (3) Categorical cor-
relation modeling. At first, we derive the bias of a user to a certain
category according to her visited POIs; then the bias is used to
weigh the popularity of an unvisited POI in the corresponding cat-
egory. Further, the weighed popularity for the user to the unvisited
POI is also mapped into a categorical relevance score based on the
popularity distribution estimated from the historical check-in data
of all users. The categorical correlation also takes into account the
POI popularity from all users which indicates the quality of the POI
and benefits for POI recommendations.

The main contributions of this study can be summarized:

• To model the geographical correlations, we extend the kernel
density estimation by applying an adaptive bandwidth that
is learned from the underlying check-in data. Our adaptive
kernel estimation method can improve the predictive ability
of the estimated check-in distribution for a user, in com-
parison to the kernel density estimation with a fixed band-
width [30, 31, 33, 34] and the common distance distribution
for all users [9, 13, 15, 22, 23, 28, 29]. (Section 3.2)

• To model the social correlations, we develop a method to
estimate the social check-in frequency or rating by a user’s

friends to a POI as a power-law distribution that is learned
from the historical check-in data of all users. Our method
is distinct from the current works [2, 4, 20, 21, 23, 27, 30,
31, 33, 34, 35] that derive the similarities between users in
terms of their social links and then integrate them into the
traditional collaborative filtering techniques. (Section 3.3)

• To model the categorical correlations, we devise a method
to combine the category bias of a user and the popularity of
a POI into a relevance score between the user and POI in
terms of the estimated popularity distribution from the his-
torical check-in data of all users. Our method is different
from the existing works [1, 8, 15, 18, 27, 35] that separately
utilize the category and/or popularity information of POIs.
(Section 3.4)

• To the best of our knowledge, our proposed GeoSoCa is the
first study to integrate the geographical, social, categorical
and popularity information for POI recommendations. (Sec-
tion 3.5)

• We conduct extensive experiments to evaluate the recom-
mendation accuracy of GeoSoCa using two large-scale real-
world data sets collected from Foursquare and Yelp. Experi-
mental results show that GeoSoCa significantly outperforms
other state-of-the-art POI recommendation techniques. (Sec-
tion 4)

The rest of this paper is organized as follows. We review the
related work on POI recommendations in Section 2. Our proposed
methods to model geographical, social and categorical correlations
are presented in Section 3, followed by experimental evaluation in
Section 4. Finally, Section 5 concludes this paper.

2. RELATED WORK
This section reviews existing POI recommendation techniques

on how they employ the geographical, social, categorical, and pop-
ularity information.

POI recommendations using geographical information.
Based on the fact that the geographical proximity significantly af-
fects the check-in behaviors of users on the POIs, the geographical
information has been intensively used in POI recommendations.
One way is to simply consider the current locations of users to
filter out the POIs that are far from the users [1, 4, 20, 14]. An-
other way is to apply the geographical latent factor or topic models
to derive latent features of regions or POIs [7, 8, 12, 16, 25, 26].
The more sophisticated way is to estimate the geographical cor-
relations of check-in POIs as a common distance distribution for
all users, e.g., a multi-center Gaussian distribution [2], a power-
law distribution [9, 13, 15, 22, 23, 28, 29], or a personalized non-
parametric distribution for each user [30, 32, 33]. In particular,
the recent works [31, 34] employed the kernel density estimation
method with the fixed bandwidth to model the geographical check-
in distribution of POIs for each user over the latitude and longitude
coordinates. Further, in this paper we develop an adaptive kernel
estimation method to enhance the ability of the obtained check-in
distributions to predict the relevance score between a user and an
unvisited POI.

POI recommendations using social information. Social links
between users have also been widely utilized to improve the qual-
ity of location-based recommender systems, since the social friends
are more likely to share common interests on POIs than strangers.
Most current works derive the similarities between users from so-
cial links and put them into the traditional memory-based or model-



based collaborative filtering techniques. For example, some lit-
eratures [4, 20, 23, 27, 30, 31, 33, 34] seamlessly integrated the
similarities of users into the user-based collaborative filtering tech-
niques, while others [2, 21, 35] employed the user similarities as
the regularization terms or weights of latent factor models. In this
paper, we contrive a new method to exploit the social correlations
between users by aggregating the check-in frequency or rating of
friends to POIs and transforming them into relevance scores, based
on the estimated social check-in frequency or rating distribution
from the historical check-in data of all users.

POI recommendations using categorical information. The
categories of POIs visited by a user implicitly indicate the activities
of the user in the POIs. For instance, a person checking in a cinema
means that she is watching a movie there. Thus, the category infor-
mation of POIs is useful for modeling the specific preference of a
user. However, there are only a few studies that utilize the category
information for POI recommendations. Rahimi and Wang [18] sim-
ply identified the preference of a user to a POI with the bias of the
user to the category of the POI. Bao et al. [1] calculated the cate-
gory biases of users to compute the similarity of the users for the
user-based collaborative filtering method. Besides the category bi-
ases of users, Ying et al. [27] also derived the category weights of
POIs from the tags annotated on the POIs and then estimated the
relevance scores between users and POIs based on the inner product
of the category biases and weights. Liu et al. [15] clustered POIs
into groups based on their categories, built a user-category transi-
tion matrix instead of user-POI check-in matrix from the historical
check-in data of users, and applied the matrix factorization tech-
nique to discover the next top-k categories that a user would like to
check in. Zhao et al. [35] clustered users into communities and rep-
resented each community as a weighted category vector, in which
each dimension is the check-in counts of a particular POI category
by users in the community; to apply the user-based collaborative
filtering method, they further computed the similarity of users ac-
cording to the category vectors of the communities of the users. Hu
et al. [8] leveraged the matrix factorization technique to associate
each category with a latent vector and deuced the relevance score
of a user to a POI based on the latent vectors of the categories of
the POI.

POI recommendations using popularity information. The
popularity of a POI reflects the quality of products or services pro-
vided by the POI. For example, a restaurant receiving a lot of visits
from customers indicates that the restaurant provides high-quality
foods for its customers. Thus, the popularity of POIs is also helpful
for POI recommendations. Most existing works regard the popu-
larity of a POI as the universal prior preference of users to the POI.
Specifically, the study [27] employed the prior preference of users
to unvisited POIs as the weight of the edges between the users and
POIs in the complete bipartite graph, while other studies utilize
the prior preference to adjust the posterior preference that are de-
rived from the geographical information [8, 13, 14, 28]. However,
in these studies the prior preference is not personalized for users
and thus in practice the benefit from the popularity is considerably
limited. On the other hand, the current works [1, 8, 15, 18, 27,
35] separately modeled the effect of the category and popularity
of POIs and may not take full advantage of them for POI recom-
mendations. In this paper, we devise a new method to combine the
category bias of a user and the popularity of a POI into a relevance
score between the user and POI so as to personalize the effect of
the popularity of the POI on the user.

3. MODELING CORRELATIONS FOR POI
RECOMMENDATIONS

Table 1: Key Notations in the Paper
Symbol Meaning
U Set of all users in an LBSN
u Some user: u ∈U
L Set of POIs in an LBSN
l Some POI with a pair of geographical latitude and

longitude coordinates (x,y): l ∈ L
C Set of categories of POIs in an LBSN
c Some category: c ∈C
R|U |×|L| Check-in matrix: Ru,l is the check-in frequency or

rating of user u on POI l
S|U |×|U | Social link matrix: if u,u′ ∈ U have a social link,

Su,u′ = 1; otherwise, Su,u′ = 0.
B|U |×|C| Categorical bias matrix: Bu,c is the frequency of

user u visiting category c
P|C|×|L| Popularity matrix: Pc,l is the popularity of POI l

in category c

In this section, we introduce the research problem with the re-
quired data structures (Section 3.1), model the geographical, social,
and categorical correlations (Sections 3.2, to 3.4), and integrate
these three correlations to recommend POIs to users (Section 3.5).

3.1 Problem Statement
Here we define the data structures and the research problem in

this paper. These data structures can be extracted from the rich
information in an LBSN, incorporating the historical check-in data
of users on POIs, social links between users, the categories of POIs,
and the geographical latitude and longitude coordinates of POIs.
Table 1 lists the key symbols used in this paper.

DEFINITION 1 (CHECK-IN MATRIX). Given the historical
check-in data of users on POIs from an LBSN, we can easily build
a check-in matrix R|U |×|L|, in which each entry Ru,l represents the
check-in frequency (e.g., Foursquare) or rating (e.g., Yelp) of user
u ∈U on location l ∈ L, and U and L are the sets of users and POIs
in the LBSN, respectively. Note that most entries in R are zero,
since users have only visited a very small proportion of POIs in the
LBSN.

DEFINITION 2 (SOCIAL LINK MATRIX). Given the social
links between users from an LBSN, it is easy to construct a social
link matrix S|U |×|U |, in which if there exists a social link between

two different users u,u′ ∈U , Su,u′ = 1; otherwise, Su,u′ = 0.

DEFINITION 3 (CATEGORICAL BIAS MATRIX). Given the
historical check-in data of users on POIs and the categories of POIs
from an LBSN, we construct a categorical bias matrix B|U |×|C|, in
which each entry Bu,c represents the frequency of user u visiting
the POIs that belong to category c ∈C, and C is the universal set of
categories of POIs that is often predefined in the LBSN. Note that
a POI could belong to multiple categories.

DEFINITION 4 (POPULARITY MATRIX). We build a popu-
larity matrix P|C|×|L|, in which each entry Pc,l represents the popu-
larity of POI l in category c, i.e., the check-in frequency or overall
rating of all users on l. Note that most entries of P are zero, because
a POI only belongs to a certain subset of the universal category set
C.

DEFINITION 5 (GEOGRAPHICAL COORDINATES). A POI
l ∈ L is associated with a pair of geographical latitude and longitude
coordinates (x,y).
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Figure 2: Geographical check-in distribution (contour line) of
random users from the real-world data

Problem definition on POI recommendations. Given the geo-
graphical coordinates of POIs, check-in matrix R|U |×|L|, social link
matrix S|U |×|U |, categorical bias matrix B|U |×|C|, and popularity

matrix P|C|×|L|, the goal is to predict the preference score s(u, l) of
a user u to an unvisited POI l (i.e., Ru,l = 0), and then return the
top-k POIs with the highest preference score s(u, l) for the user u.

3.2 Geographical Correlations
Distinctly from non-spatial items, such as books and music in

conventional recommendation systems, in LBSNs users are re-
quired to physically interact with POIs to consume their offered
products or services, e.g., eating food at restaurants or watching
movies at cinemas. Thus, the geographical proximity of POIs plays
a significant role in the check-in behaviors of users. In other words,
the close POIs have the stronger geographical correlations than the
far POIs. Therefore, we can exploit the geographical correlations
between a user’s visited POIs and her unvisited POI to estimate the
relevance score of the user on the unvisited POI. To model the geo-
graphical correlations between POIs, we estimate a personalized
check-in distribution over the geographical coordinates for each
user based on her own visited POIs.

Due to the fact that the check-in distributions of users are dif-
ferent from one another, e.g., indoorsy persons like visiting venues
around their living areas while outdoorsy persons prefer explor-
ing new interesting places by traveling around the world. Accord-
ingly, the current works [30, 31, 33, 34] learn the distribution form
from the check-in POIs of a user based on a nonparametric estima-
tion method, i.e., the kernel density estimation with a fixed band-
width [19]. Nonetheless, the fixed bandwidth does not reflect the
facts in the user check-in data: dense urban areas will have high
check-in density and sparsely-populated rural areas will have low
check-in density. To this end, in this paper we adapt the kernel
bandwidth to each check-in data point and the adaptive bandwidth
itself is also learned from the underlying check-in data. In general,
the adaptive kernel estimation method includes three steps: pilot
estimation, local bandwidth determination, and adaptive kernel es-
timation for geographical relevance score.

Step 1: Pilot estimation. First, we find a pilot estimation based
on the kernel density estimation with a fixed bandwidth [19]. Let
Lu = {l1, l2, · · · , ln} be the set of check-in POIs of user u, in which
each POI li is associated with a pair of latitude and longitude
(xi,yi). Specifically, we use the frequency or rating of user u on
POI li, i.e., Ru,li (DEFINITION 1), as the weight of li because a
higher frequency or rating at a POI indicates that it is more im-
portant to the user. The pilot estimation f̃Geo(l|u) of the check-in
distribution of user u on an unvisited POI l is given by

f̃Geo(l|u) = 1

N

n

∑
i=1

(
Ru,li ·KH(l − li)

)
(1)

together with

N =
n

∑
i=1

Ru,li (2)

and

KH(l − li) =
1

2πH1H2
exp

(
− (x− xi)

2

2H2
1

− (y− yi)
2

2H2
2

)
, (3)

where KH(l− li) is the normal kernel function with the fixed band-
width H consisting of two global bandwidths (H1,H2) for the lati-
tude and longitude, given by

H1 = 1.06n−
1
5

√√√√ 1

N

n

∑
i=1

(
Ru,li · xi − 1

N

n

∑
j=1

Ru,l j · x j

)2

(4)

and

H2 = 1.06n−
1
5

√√√√ 1

N

n

∑
i=1

(
Ru,li · yi − 1

N

n

∑
j=1

Ru,l j · y j

)2

, (5)

where (H1,H2) are computed from the standard deviation of the
latitude and longitude values in the check-in data of user u, respec-
tively [19].

Step 2: Local bandwidth determination. Further, instead of
directly using the pilot estimation f̃Geo(l|u) in Equation (1) to pre-
dict the relevance score of user u to POI l, we utilize the pilot esti-
mation to determine the local bandwidth hi for each check-in POI
li, given by

hi =
(

g−1 · f̃Geo(li|u)
)−α

, (6)

where α is the sensitivity parameter with 0 ≤ α ≤ 1, i.e., the larger
the parameter α , the more sensitive the local bandwidth hi will be
to the pilot estimation f̃Geo(li|u), and g is the geometric mean:

g = n

√
n

∏
i=1

f̃Geo(li|u) (7)

which imposes the constraint that the geometric mean of the hi (i =
1,2, · · · ,n) is equal to one.

Step 3: Adaptive kernel estimation for geographical rele-
vance score. Finally, with the global bandwidth H = (H1,H2) in
Equations (4) and (5) and the adaptive local bandwidth hi in Equa-
tion (6), the adaptive kernel estimation fGeo(l|u) of the check-in
distribution of user u on an unvisited POI l is computed through

fGeo(l|u) = 1

N

n

∑
i=1

(
Ru,li ·KHhi(l − li)

)
, (8)

where

KHhi(l − li) =
1

2πH1H2h2
i

exp

(
− (x− xi)

2

2H2
1 h2

i
− (y− yi)

2

2H2
2 h2

i

)
. (9)

It is important to note that: When a check-in POI li lies in the
area with a higher check-in density, it has a larger pilot estima-
tion f̃Geo(li|u) in Equation (1) or a smaller local bandwidth hi in
Equation (6) that will produce a peak adaptive kernel estimation
fGeo(l|u) around li in Equation (8). In contrast, when a check-
in POI li lies in the area with a lower check-in density, it has a
smaller pilot estimation f̃Geo(li|u) in Equation (1) or a larger local
bandwidth hi in Equation (6) that will generate a smooth adaptive
kernel estimation fGeo(l|u) around li in Equation (8). Therefore,
our adaptive kernel estimation method can improve the predictive
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Figure 3: Social check-in frequency or rating distribution in
the real-world data

ability of the estimated check-in distribution for the geographical
relevance score of user u on an unvisited POI l, i.e., fGeo(l|u).

Example. Figure 2 depicts the contour line of the geographical
check-in distribution estimated through Equation (8) with α = 0.5
for a user who is randomly selected from two publicly available
real-world data sets: Foursquare [6] and Yelp [24], respectively.
The estimated geographical distribution is able to capture the ge-
ographical preference of a specific user on POIs: the user in
Foursquare visits POIs over the world, with concentration on two
areas, while the user in Yelp checks in POIs only in Arizona of
USA, with focus on three areas.

3.3 Social Correlations
In reality, friends often go to some places like movie theaters or

restaurants together or a person may travel on spots highly recom-
mended by her friends. In other words, the social correlations be-
tween users greatly affect the check-in behaviors of users to POIs.
Likewise, in LBSNs users create social links with each other to
indicate the social friendships among them. Accordingly, we can
deduce the relevance score of a user and an unvisited POI through
leveraging the social correlations between the user with her friends
who have visited the POI. The process consists of three steps: so-
cial aggregation, distribution estimation of social frequency or rat-
ing, and social relevance score computation.

Step 1: Social aggregation. Formally, given a user u and an
unvisited POI l, we aggregate the check-in frequency or rating xu,l
of the user u’s friends (i.e., u′ with Su,u′ = 1) on the POI l, given by

xu,l = ∑
u′∈U

Su,u′ ·Ru′,l , (10)

where Ru′,l is the check-in frequency or rating of user u′ on POI
l (DEFINITION 1) and Su,u′ indicates whether there exists a social
link between users u and u′ (DEFINITION 2).

One can naively regard the social check-in frequency or rating
xu,l as the relevance score between user u and POI l or simply di-
vide xu,l by the number of friends of u as in the traditional col-
laborative filtering techniques. More sophisticatedly, in this study
we transform the social check-in frequency (or rating) into a nor-
malized relevance score based on the social check-in frequency (or
rating) distribution that is learned from the historical check-in data
of all users.

Step 2: Distribution estimation of social frequency or rat-
ing. In real-world data sets, the social check-in frequency or rating
random variable x follows a power-law distribution, the probability
density function of which is defined by

fSo(x) = (β −1)(1+ x)−β ,x ≥ 0,β > 1, (11)

where β is estimated by the check-in matrix R and social link ma-

trix S:

β = 1+ |U ||L|
[

∑
u′∈U

∑
l′∈L

ln

(
1+ ∑

u′′∈U
Su′,u′′ ·Ru′′,l′

)]−1

, (12)

in which ∑u′′∈U Su′,u′′ ·Ru′′,l′ is the social check-in frequency or rat-
ing of the friends u′′ of user u′ on POI l′.

To observe the real distribution of the social check-in frequency
or rating, we conducted analysis on the two publicly available real-
world data sets: Foursquare [6] and Yelp [24]. Figure 3 shows that
the social check-in frequency or rating (i.e., the dots) in the two
real-world data sets fits a certain power-law distribution very well
(i.e., the line), estimated through Equations (11) and (12). Thus,
modeling the social check-in frequency or rating as a power-law
distribution is reasonable and effective.

Step 3: Social relevance score computation. The estimated
probability density function fSo in Equation (11) is monotonically
decreasing with respect to the social check-in frequency (or rating)
x, but the social relevance score should be monotonically increas-
ing with regard to the social check-in frequency (or rating) because
friends share more common interests on POIs. Thus, we define the
social relevance score of xu,l in Equation (10) based on the cumu-
lative distribution function of fSo, given by

FSo(xu,l) =
∫ xu,l

0
fSo(z)dz = 1− (1+ xu,l)

1−β , (13)

where FSo is an increasing function respecting the social check-in
frequency or rating xu,l because of 1−β < 0. Moreover, based on
the cumulative distribution function FSo in Equation (13), the so-
cial check-in frequency (or rating) xu,l is transformed into a social
relevance score that reflects the relative position of xu,l in all social
check-in frequencies (or ratings) of users on POIs.

3.4 Categorical Correlations
In LBSNs, each POI is attached to a few categories. The category

of a POI has a strong indication about what activities happen in the
POI and what products or services are provided by the POI. For
instance, a person visiting a restaurant means that she may have
a meal there and a Chinese restaurant indicates that Chinese food
will be provided for customers. In practice, people have shown
distinct biases on the categories of POIs, e.g., a foodie likes visiting
restaurants to taste various food and a tourism enthusiast prefers
traveling all over the world to view tourism attractions. Hence, we
also can derive the relevance score of a user to an unvisited POI
through exploiting the categorical correlations between the visited
POIs and the unvisited POI of the user.

In addition, the popularity of a POI reflects the quality of prod-
ucts or services offered by the POI, e.g., a popular restaurant usu-
ally indicates that it supplies high-quality foods. Therefore, it is
helpful to utilize the popularity for POI recommendations. Specif-
ically, we develop a new method to combine the category bias of
a user and the popularity of a POI into a relevance score between
the user and POI through three steps: weighing popularity by cate-
gorical bias, distribution estimation of categorical popularity, and
categorical relevance score computation.

Step 1: Weighing popularity by categorical bias. At first, we
take the bias of a user u to a certain category c as Bu,c, i.e., the
frequency of user u visiting the POIs that belong to category c
(DEFINITION 3). Then, the bias Bu,c is used to weigh the popu-
larity of an unvisited POI l in category c, i.e., Pc,l (DEFINITION 4).
Correspondingly, we obtain the categorical popularity yu,l for user
u on POI l:

yu,l = ∑
c∈C

Bu,c ·Pc,l , (14)
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Figure 4: Categorical popularity distribution in the real-world
data

where C is the predefined universal set of categories in an LBSN.
A larger value of yu,l indicates that the category of POI l is more
satisfied with the bias of user u and the POI l is more popular to the
general public.

One may naively consider the categorical popularity yu,l as the
relevance score between user u and POI l or simply normalize the
categorical bias Bu,c in advance. Nevertheless, in this research the
categorical popularity of a user to an unvisited POI is sophisticat-
edly mapped into a relevance score based on the distribution of the
categorical popularity that is learned from the historical check-in
data of all users.

Step 2: Distribution estimation of categorical popularity. As
the distribution of the social check-in frequency or rating, we apply
the similar process to build the distribution of the categorical popu-
larity. Formally, we assume the probability density function of the
categorical popularity random variable y, defined by

fCa(y) = (γ −1)(1+ y)−γ ,y ≥ 0,γ > 1, (15)

in which γ can be learned from the categorical bias matrix B and
popularity matrix P:

γ = 1+ |U ||L|
[

∑
u′∈U

∑
l′∈L

ln

(
1+ ∑

c∈C
Bu′,c ·Pc,l′

)]−1

, (16)

where ∑c∈C Bu′,c ·Pc,l′ is the categorical popularity of user u′ on
POI l′.

As depicted in Figure 4, we have also observed that the cate-
gorical popularity (i.e., the dots) in the two real-world data sets
approaches to the power-law distribution (i.e., the line) that is es-
timated in terms of Equations (15) and (16). Thus, these results
have validated that the assumption of the power-law distribution is
in accordance with reality.

Step 3: Categorical relevance score computation. Similarly,
the estimated probability density function fCa in Equation (15) is
monotonically decreasing regarding the categorical popularity y;
however, the categorical relevance score is monotonically increas-
ing respecting the categorical popularity, since people prefer the
popular POIs that also meet their categorical biases. To this end,
we employ the cumulative distribution function of fCa to obtain the
categorical relevance score of yu,l in Equation (14), given by

FCa(yu,l) =

∫ yu,l

0
fCa(z)dz = 1− (1+ yu,l)

1−γ , (17)

where due to 1− γ < 0, FCa is an increasing function with respect
to the categorical popularity yu,l . Importantly, the categorical yu,l is
also normalized into a categorical relevance score, i.e., the relative
position of yu,l compared to other categorical popularities of users
on POIs.

Table 2: Statistics of the two data sets
Foursquare Yelp

Number of users 4,163 70,817
Number of POIs 121,142 15,579
Number of categories 35 591
Number of check-ins or ratings 483,813 335,022
Number of social links 32,512 303,032

User-POI matrix density 2.83×10−4 1.46×10−4
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Figure 5: Distribution of POIs in the two data sets

3.5 POI Recommendations
Finally, we integrate the geographical, social and categorical rel-

evance scores, given by Equations (8), (13) and (17), into a unified
preference score s(u, l) for user u to unvisited POI l based on the
product rule:

s(u, l) = fGeo(l|u) ·FSo(xu,l) ·FCa(yu,l). (18)

The top-k POIs l with the highest score s(u, l) are recommended
to user u. It is worth mentioning that the product rule has been
widely used to fuse different factors for POI recommendations in
the previous works [2, 13, 30, 33] and has shown high robustness.

4. EXPERIMENTS
In this section, we conduct intensive experiments to evaluate the

recommendation quality of GeoSoCa, compared to state-of-the-art
POI recommendation techniques. We present experimental settings
in Section 4.1 and analyze experimental results in Section 4.2.

4.1 Experimental Settings
Two real data sets. We use the two publicly available large-

scale real check-in data sets that have been studied in Section 3
and were crawled from Foursquare [6] and Yelp [24]. Note that
the Foursquare data set provides the check-in frequencies of users
to POIs and the Yelp data set offers the ratings of users on POIs.
Table 2 shows the statistics of the data sets and Figure 5 depicts
the distribution of POIs over the world from Foursquare while the
greater Phoenix, Arizona, USA from Yelp. The half of check-in
data with earlier check-in times are used as the training set and the
other half of check-in data are used as the testing set, because in
practice we can only utilize the past check-in data to predict the
future check-in events.

Evaluated techniques. Our proposed method, i.e., GeoSoCa, is
compared with the state-of-the-art POI recommendation techniques
including:

• USG: This method is a unified location recommendation
framework that integrates User preferences, Social and Geo-
graphical information [23].

• CoRe: This method fuses social collaborative filtering and
geographical check-in distribution using kernel density esti-
mation with a fixed bandwidth [31].



• DRW: This method is a Dynamic Random Walk model that
combines social, category and popularity information [27].

• LCARS: This method builds a Location-Content-Aware Rec-
ommender System based on the well-known topic model
(i.e., latent Dirichlet allocation) to infer personal interest and
local preference [25, 26].

• NCPD: This method applies matrix factorization to incorpo-
rate the influence of Neighborhood, Category, Popularity and
Geographical distance of POIs [8].

Performance metrics. To evaluate the quality of POI recom-
mendations, it is important to find out how many POIs actually
visited by a user in the testing set are discovered by the recom-
mendation techniques. For this purpose, we employ two standard
metrics:

Precision =
No. of discovered POIs

No. of POIs recommended for the user: k
,

Recall =
No. of discovered POIs

No. of POIs actually visited by the user
.

Parameter settings. We examine the precision and recall with
respect to various numbers of POIs recommended for users (top-k
from 2 to 50) and numbers of POIs visited by users in the training
set (n from 2 to 50). Further, we investigate the recommendation
accuracy of the three components in GeoSoCa and the effect of
sensitivity parameter α , by default α = 0.5, in Equation (6). Note
that β and γ are not free parameters and are learned from check-in
data according to Equations (12) and (16), respectively.

4.2 Experimental Results
We compare our GeoSoCa with the state-of-the-art POI recom-

mendation techniques in Section 4.2.1, study the recommendation
quality of the three components in GeoSoCa in Section 4.2.2, and
investigate the effect of sensitivity parameter α in Section 4.2.3.

4.2.1 Method Comparison
Figures 6 and 7 depict the recommendation accuracy of our

GeoSoCa compared to the state-of-the-art POI recommendation
techniques with respect to the number k of POIs recommended for
users and the number n of POIs visited by users in the training set.
The trends in the precision and recall of all evaluated methods are
intuitive. For example, as k increases, the precision gets lower and
the recall becomes higher, because recommending more POIs for
users can discover more POIs that the users would like to check
in, but some recommended POIs are less possible to be visited by
the users. With the increase of n, the precision and recall gradually
raise, since all methods can learn better recommendation models
through using more check-in data.

The absolute accuracy of POI recommendation techniques is
usually not high, because the density of user-POI check-in ma-
trix is pretty low as shown in Table 2, but POI recommendation
techniques will perform better as more check-in data are collected.
This phenomenon has been repeatedly observed in previous works
(e.g., [23, 31]). Instead, we concentrate on contrasting the relative
accuracy of the evaluated POI recommendation techniques.

USG. This method [23] linearly integrates user preference from
user-based collaborative filtering, social influence from social col-
laborative filtering, and geographical influence from a common dis-
tance distribution for all users, but it does not take into account the
category and popularity information of POIs. Moreover, it is not
advisable to apply the universal linear weights for user preference,
social influence, and geographical influence, since some users are

affected by social friends more and other users may rely on the
geographical influence more. According to Figures 6 and 7, USG
subsequently gives the third worst recommendation result on the
Foursquare data set and the worst recommendation accuracy on the
Yelp data set that has two time lower density than the Foursquare
data set, as depicted in Table 2.

CoRe. This method [31] employs the social influence in the
same way as USG, but it models a personalized geographical
check-in distribution for each user and combines the social and geo-
graphical influences by a more robust product rule rather than using
the linear sum rule. CoRe accordingly outperforms USG to some
extent as depicted in Figures 6 and 7. However, CoRe still misses
the category and popularity information of POIs and estimates the
geographical check-in distribution based on the kernel density es-
timation method with a fixed bandwidth. As a result, in general it
only generates the third best recommendation precision and recall
on the two data sets.

DRW. This method [27] adopts a dynamic random walk model
to fuse the social links between users and the category and popu-
larity information of POIs, but it does not consider the unique char-
acteristic of POI recommendations for LBSNs, i.e., the influence
of geographical information of POIs on the check-in behaviors of
users. Consequently, DRW reports the lowest recommendation ac-
curacy on the Foursquare data set, as shown in Figures 6(a), 6(b),
7(a), and 7(b). Interestingly, on the Yelp data set with lower den-
sity in Figures 6(c), 6(d), 7(c), and 7(d), DRW is superior to USG
through taking full advantage of the popularity of POIs to deal with
the sparsity of data.

LCARS. This method [25, 26] exploits the well-known topic
model, i.e., latent Dirichlet allocation, to infer the personal inter-
est of users and local preference (i.e., local specialty) of regions
(e.g., a city). The personal interest or local preference is repre-
sented as a mixture of topics, in which each topic is a distribution
over POIs and is learned from the check-in data and categories of
POIs. Nonetheless, LCARS ignores the geographical and social
characteristics in the check-in behaviors of users on POIs, so it also
suffers from the low recommendation accuracy as in DRW.

NCPD. This method [8] utilizes matrix factorization to derive a
latent factor vector for each user, POI and category, a geographi-
cal bias for each user, and a popularity bias for each POI. Then,
NCPD computes the preference score of a user to a POI based on
(1) the latent factor vectors of the user, the categories that the POI
belongs to, and the neighborhoods of the POI, (2) the user’s ge-
ographical bias, and (3) the POI’s popularity bias. Accordingly,
NCPD shows the second best recommendation result as depicted
in Figures 6 and 7. However, its improvement is very limited in
comparison to CoRe, because NCPD simply regards the geograph-
ical and popularity influence as a bias, instead of modeling them as
a geographical or popularity distribution.

GeoSoCa. Our proposed GeoSoCa always exhibits the best rec-
ommendation quality in terms of both precision and recall. In
particular, it achieves the significant improvement compared to
the second best recommendation technique NCPD. The reason is
threefold: (1) GeoSoCa models the geographical check-in distri-
bution using the adaptive kernel estimation method, in which the
bandwidth is adaptive to each check-in data point rather than using
a fixed bandwidth. This adaptive method can capture the real ge-
ographical check-in patterns of users on POIs, e.g., high check-in
density in dense urban areas and low check-in density in sparsely-
populated rural areas. (2) GeoSoCa exploits the social check-in
frequency or rating of friends based on the power-law distribution
which is learned from the historical check-in data of users. This
method can effectively transform the social check-in frequency or
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Figure 6: Recommendation accuracy with respect to top-k values
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Figure 7: Recommendation accuracy with respect to given-n values
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Figure 8: Recommendation accuracy of the three components of GeoSoCa

rating into a reasonable relevance score and is superior to the tradi-
tional social collaborative filtering. (3) GeoSoCa takes full advan-
tage of the category and popularity information through seamlessly
combining the categorical bias of users and the popularity of POIs
into a reasonable relevance score based on the estimated power-law
distribution from check-in data of users.

4.2.2 Study on Three Components in GeoSoCa
Here we study the three components of GeoSoCa including ge-

ographical, social and categorical correlations, written as Geo, So
and Ca, respectively. Figure 8 depicts the recommendation accu-
racy of the three components based on Equations (8), (13) and (17),
respectively. We have two observations: (1) All the three compo-
nents play a key role in GeoSoCa for POI recommendations and
they are competitive to one another. For example, So outperforms
Geo and Ca on the Foursquare data set, but reversely on the Yelp

data set. And the performance of Geo and Ca is similar on the two
data sets. (2) The integration of the three components is helpful
for enhancing the recommendation quality, since GeoSoCa is sig-
nificantly superior to each component, i.e., Geo, So and Ca. The
behind reason is that in practice people are affected by the geo-
graphical, social and categorical correlations in varying degrees; it
is unable to model the check-in behaviors of all users by consid-
ering only one type of correlations. Thus, POI recommendations
should take full advantage of various types of useful information
implied the check-in behaviors of users on POIs.

4.2.3 Effect of Sensitivity Parameter α
Figure 9 depicts the effect of the sensitivity parameter α in Equa-

tion (6) on the precision and recall of GeoSoCa in the two real-
world data sets; note that β and γ are not free parameters and are
learned from the check-in data. We have the following three obser-
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Figure 9: Effect of sensitive parameter α on recommendation
accuracy of GeoSoCa

vations: (1) The optimal value of α usually lies between 0.4 and
0.6 that generates the highest recommendation accuracy. (2) As the
value of α varies from 0.4 to 0, the local bandwidth gets less sen-
sitive to the pilot estimation in terms of Equation (6), i.e., the local
bandwidth is less related to the check-in data. Especially, when
α = 0, the adaptive local bandwidth is degraded to the fixed band-
width that has nothing to do with the check-in data. As a result, the
precision and recall decrease. (3) In contrast, when the value of α
becomes higher from 0.6 to 1, the local bandwidth gets more sensi-
tive to the pilot estimation in Equation (6), i.e., the local bandwidth
is prone to over-fitting the check-in data. Thus, the recommenda-
tion quality deteriorates as well.

5. CONCLUSION AND FUTURE WORK
This paper proposes a new POI recommendation approach

GeoSoCa by exploiting three types of correlations that are derived
from the historical check-in data of users on POIs. (1) GeoSoCa
uses the kernel estimation with an adaptive bandwidth to model
the geographical correlations between POIs as a personalized geo-
graphical check-in distribution of POIs for each user. (2) GeoSoCa
models the social check-in frequency or rating as a power-
law distribution to utilize the social correlations between users.
(3) GeoSoCa models the popularity of POI categories as a power-
law distribution to employ the categorical correlations between
POIs. The experimental results on the two large-scale real-world
data sets collected from Foursquare and Yelp show that GeoSoCa
significantly improves the recommendation accuracy of the current
state-of-the-art POI recommendation approaches. As a part of our
future work, we plan to extend our GeoSoCa by integrating the sen-
timent or opinion extracted from the textual reviews of users com-
menting POIs to improve the recommendation quality of GeoSoCa.
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