
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

An Adaptive Approach to Real-Time
Aggregate Monitoring with Differential Privacy

Liyue Fan, Li Xiong

Abstract—Sharing real-time aggregate statistics of private data is of great value to the public to perform data mining for
understanding important phenomena, such as Influenza outbreaks and traffic congestion. However, releasing time-series data
with standard differential privacy mechanism has limited utility due to high correlation between data values. We propose FAST, a
novel framework to release real-time aggregate statistics under differential privacy based on filtering and adaptive sampling. To
minimize the overall privacy cost, FAST adaptively samples long time-series according to the detected data dynamics. To improve
the accuracy of data release per time stamp, FAST predicts data values at non-sampling points and corrects noisy observations
at sampling points. Our experiments with real-world as well as synthetic data sets confirm that FAST improves the accuracy of
released aggregates even under small privacy cost and can be used to enable a wide range of monitoring applications.

Index Terms—Statistical Databases, Differential Privacy, Time Series.

F

1 INTRODUCTION

SHARING real-time aggregate statistics of private
data enables many important data mining appli-

cations. Consider the examples below:

Disease Surveillance: A health care provider
gathers data from individual visitors. The col-
lected data, e.g. daily number of Influenza cases,
is then shared with third parties, e.g., researchers,
in order to monitor and to detect seasonal epi-
demic outbreaks at the earliest.
Traffic Monitoring: A GPS service provider gath-
ers data from individual users about their loca-
tions, speeds, mobility, etc. The aggregated data,
for instance, the number of users at each region
during each time period, can be mined for com-
mercial interest, such as popular places, as well
as public interest, such as congestion patterns on
the roads.

A common scenario of such applications can be
summarized by Figure 1, where a trusted server
gathers data from a large number of individual sub-
scribers. The collected data may be then aggregated
and continuously shared with other un-trusted en-
tities for various purposes. The trusted server, i.e.
publisher, is assumed to be bound by contractual obli-
gations to protect the user’s interests, therefore it must
ensure that releasing the data does not compromise
the privacy of any individual who contributed data.
The goal of our work is to enable the publisher to
share useful aggregate statistics over individual users

• L. Fan and L. Xiong are with the Department of Mathematics and
Computer Science, Emory University, Atlanta, GA, 30322.

continuously (aggregate time series) while guarantee-
ing their privacy.

The current state-of-the-art paradigm for privacy-
preserving data publishing is differential privacy [1],
which requires that the aggregate statistics reported
by a data publisher be perturbed by a randomized
algorithm A, so that the output of A remains roughly
the same even if any single tuple in the input data is
arbitrarily modified. Given the output of A, an adver-
sary will not be able to infer much about any single
tuple in the input, and thus privacy is protected.

Most existing works on differentially private data
release deal with one-time release of static data [2]–
[7]. In the applications we consider, data values at suc-
cessive time stamps are highly correlated. A straight-
forward application of differential privacy mechanism
which adds a Laplace noise to each aggregate value
at each time stamp can lead to a very high per-
turbation error due to the composition theorem [8].
Few recent works [9]–[11] studied the problem of
releasing time series or continual statistics. Rastogi
and Nath [11] proposed an algorithm which perturbs
d Discrete Fourier Transform (DFT) coefficients of the
entire time series and reconstructs a released version
with the Inverse DFT series. Since the entire time-
series is required to perform those operations, it is
not applicable to real-time applications. Dwork et
al. [10] proposed a differentially private continual
counter over a binary stream with a bounded error
at each time step. Chan et al. [9] studied the same
problem and concluded with a similar upper bound.
However, both works adopt an event-level privacy
model, with the perturbation mechanism designed
to protect the presence of an individual event, i.e. a
user’s contribution to the data stream at a single time
point, rather than the presence or privacy of a user.

In this paper, we present FAST, a real-time frame-

0000–0000/00$00.00 c© 2007 IEEE

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

Untrusted
Third Party

Trusted Server

Individual Users

Aggregate Time-series

Fig. 1. Aggregate Data Sharing Scenario

work with Filtering and Adaptive Sampling for differ-
entially private Time-series monitoring. It uses sam-
pling to query and perturb selected values in the time
series with the differential privacy mechanism, and
simultaneously uses filtering to dynamically predict
the non-sampled values and correct the sampled val-
ues. The key innovation is that FAST utilizes feed-
back loops based on observed (perturbed) values to
dynamically adjust the prediction/estimation model
as well as the sampling rate. To this end, we exam-
ine two challenges in our system: predictability and
controllability. The former raises the question: given
a perturbed value, can we derive an estimate which
is close to the true value and dynamically adjust the
estimation model based on current observation? The
latter imposes another question: suppose an accurate
estimate can be derived at any time stamp, can we
dynamically adjust the sampling rate according to the
rate of data change? We extend our recent work [12]
and present several contributions:

1) To improve the accuracy of data release at each
time stamp, we establish the state-space model for the
time series to monitor and use filtering techniques
to estimate the original data values from observed
values. By assuming a process model that charac-
terizes the time series, we can reduce the impact
of perturbation error introduced by the differential
privacy mechanism. This is achieved by combining
the noisy observation with a prediction based on the
process model. The combined value, also referred
to as correction or posterior estimate, provides an
educated guess rather than a pure perturbed answer.
The posterior estimate is then fed back to the system
for future predictions and for dynamically adjusting
the sampling process.

2) To minimize the overall privacy cost, hence, the
overall perturbation error, we propose to sample the
time series data as needed. Besides the fixed-rate
sampling method, we introduce an adaptive sampling
algorithm which adjusts the sampling rate with PID
control (stands for Proportional, Integral, and Deriva-
tive), which is the most common form of feedback
control. We design a PID controller to detect data
dynamics from the estimates derived by the filtering

Fig. 2. FAST Released Series with Linear Data

techniques. Ultimately, we increase the sampling fre-
quency when data is going through rapid changes and
vice versa.

3) We provide formal analysis on filtering as well
as the fixed-rate sampling process to understand their
performance. We empirically evaluate our solution
with both real-world and synthetic data sets. Our
experiments show that FAST provides accurate data
release and robust performance despite different data
dynamics. Figure 2 provides an example of the orig-
inal linear times series, the released series by FAST,
and that of the baseline LPA algorithm (introduced
in Section 3.3). We observe that FAST released series
retains much higher accuracy (i.e. data value, trend)
than the LPA released series while providing the same
level of privacy guarantee. With the real-time feature
and improved utility, we believe that our solution is
applicable to a wide range of monitoring applications.

The rest of the paper is organized as follows: Sec-
tion 2 reviews previous works related to differential
privacy, time series analysis, and filtering techniques.
Section 3 provides the problem definition, preliminar-
ies on differential privacy, and outlines of existing
solutions. Section 4 presents an overview of FAST
framework, as well as the technical details of filtering
and sampling. Section 5 presents a set of empirical
studies and results. Section 6 concludes the paper and
states possible directions for future work.

2 RELATED WORK

Here we briefly review the recent, relevant works on
differential privacy, time series analysis, and filtering
techniques.
Differential privacy on static data. Dwork et al. [2]
established the guideline to guarantee differential pri-
vacy for individual aggregate queries by calibrating
the Laplacian noise to the global sensitivity of each
query. Since then, various mechanisms have been pro-
posed to enhance the accuracy of differentially private
data release. Blum et al. [1] proved the possibility
of non-interactive data release satisfying differential
privacy for queries with polynomial VC-dimension,
such as predicate queries. Dwork et al. [13] further
proposed more efficient algorithms to release private
sanitization of a data set with hardness results ob-
tained. The work of Hay et al. [3] improved the accu-

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

racy of a tree of counting queries through consistency
check, which is done as a post-processing procedure
after adding Laplace noise. This hierarchical structure
of queries is referred to as histograms by several tech-
niques [3] [5] [6] [7] [14] [15], where each level in the
tree is an increasingly fine-grained summary of the
data. A recent study [4], aiming to reduce the relative
error, suggests to inject different amount of Laplace
noise based on the query result and works well with
multidimensional data. Several other works studied
differentially private mechanisms for particular kinds
of data, such as search logs [16] [17], sparse data [18],
and set-valued data [19]. When applied to highly self-
correlated time-series data, all the above methods,
designed to perturb static data, become problematic
because of highly compound Laplace perturbation
error.
Time series analysis and privacy. Time series data
is pervasively encountered in the fields of engi-
neering, science, sociology, and economics. Various
techniques [20], such as ARIMA modeling, expo-
nential smoothing, ARAR, and Holt-Winters meth-
ods, have been studied for time-series forecasting.
Papadimitriou et al. [21] studied the trade-offs be-
tween time-series compressibility property and per-
turbation. They proposed two algorithms based on
Fast Fourier Transform (FFT) and Discrete Wavelet
Transform (DWT) respectively to perturb time-series
frequencies. However, the proposed additive noise
does not guarantee differential privacy, leaving sensi-
tive information vulnerable to adversaries with strong
background knowledge. Rastogi and Nath [11] pro-
posed a Discrete Fourier Transform (DFT) based al-
gorithm which guarantees differential privacy by per-
turbing the discrete Fourier coefficients. However, this
algorithm cannot release real-time count data in a
streaming environment. The recent works [9] [10]
on continuous data streams defined the event-level
privacy to protect an event, i.e. one user’s presence
at a particular time point, rather than the presence of
that user. For example, if one user contributes to the
aggregation at time k−1, k, and k+ 1, the event-level
privacy protects the user’s presence at only one of
the three time points, resulting the rest two open to
attack.
Filtering. In our context, ”filtering” refers to the
derivation of posterior estimates based on a sequence
of noisy measurements, in hope of removing back-
ground noise from a signal. The Kalman filter, which
is based on the use of state-space techniques and re-
cursive algorithms, provides an optimal estimator for
linear Gaussian problems. R.E. Kalman published the
seminal paper on the Kalman filter [22] in 1960. Since
then, it has become widely applied to areas of signal
processing [23] and assisted navigation systems [24].
It has also gained popularity in other areas of engi-
neering. One particular application is to wireless sen-
sor networks. Jain et al. [25] adopted a dual Kalman

filter model on both server and remote sensors to filter
out as much data as possible to conserve resources.
Their main concern was to minimize memory usage
and communication overhead between sensors and
the central server by storing dynamic procedures
instead of static data. Increasingly, it has become im-
portant to include nonlinearity and non-Gaussianity
in order to model the underlying dynamics of a
system more accurately. A very widely used estimator
for nonlinear systems is the extended Kalman filter
(EKF) [26] which linearizes the current mean and error
covariance. Masreliez [27] proposed solutions to the
non-Gaussian filtering problems with linear models
in 1975. His algorithms retain the computationally
attractive structure of the Kalman filter but require
convolution operations which are hard to implement
in all but very simple situations, for instance, when
noises can be modeled as a Gaussian mixture. Gor-
don et. al [28] introduced particle filters for solving
non-linear non-Gaussian estimation problems in 1993.
Since then, particle methods have become very popu-
lar due to the advantage that they do not rely on any
local linearisation or any crude functional approxima-
tion. Pitt and Shephard [29] introduced auxiliary par-
ticle filter and adaptation. Doucet et al. [30] proposed
the optimal importance distribution, approximation,
smoothing, and Rao-Blackwellization. A few tutorials,
for instance [31] [32], on particle methods have been
published and cover most sequential Monte Carlo
algorithms in particle filtering to facilitate implemen-
tation.

3 PRELIMINARIES

3.1 Problem Statement

We formally define an aggregate time series as fol-
lows:

Definition 1 (Aggregate Time Series). A univariate,
discrete time series X = {xk} is a set of values of an
aggregate variable x at discrete time k, where 0 ≤ k <
T and T is the length of the series.

In particular, X is a count series in our example
applications, such as the daily count of patients di-
agnosed of Influenza, or the hourly count of vehicles
passing by a gas station. This assumption will hold
true for the rest of the paper. Our goal is to release in
real-time a private version of X, denoted as R = {rk},
that satisfies differential privacy.

Definition 2 (Utility Metric). We measure the quality
of a private, released series R by the average relative
error E between R and the original series X:

E =
1

T

∑
k

|rk − xk|
max{xk, δ}

(1)

where δ is a user-specified constant (also referred to
as sanitary bound in [4]) to mitigate the effect of exces-

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

sively small query results. We set δ = 1 throughout
the entire series for count data.

Intuitively, the utility of R increases as each rk
approaches xk, the extreme case of which would have
rk = xk for each k. However, a privacy-preserving
algorithm is likely to perturb original data values
in order to protect individual privacy. Therefore, a
mechanism that guarantees user privacy and yields
high utility is highly desirable.

3.2 Differential Privacy

The privacy guarantee provided by FAST is differential
privacy [1]. Simply put, a mechanism is differentially
private if its outcome is not significantly affected by
the removal or addition of a single user. An adversary
thus learns approximately the same information about
any individual user, irrespective of his/her presence
or absence in the original database.

Definition 3 (α-Differential Privacy [1]). A non-
interactive privacy mechanism A gives α-differential
privacy if for any dataset D1 and D2 differing on at
most one record, and for any possible anonymized
dataset D̃ ∈ Range(A),

Pr[A(D1) = D̃] ≤ eα × Pr[A(D2) = D̃] (2)

where the probability is taken over the randomness
of A.

The privacy parameter α, also called the privacy
budget [8], specifies the degree of privacy offered.
Intuitively, a lower value of α implies stronger privacy
guarantee and a larger perturbation noise, and a
higher value of α implies a weaker guarantee while
possibly achieving higher accuracy.
Laplace Mechanism. Dwork et al. [2] show that α-
differential privacy can be achieved by adding i.i.d.
noise Ñ to the query result q(D):

q̃(D) = q(D) + Ñ (3)

The magnitude of Ñ conforms to a Laplace dis-
tribution with probability p(x|λ) = 1

2λe
−|x|/λ and

λ = GS(q)/α, where GS(q) represents the global
sensitivity [2] of query q. In our target applications,
each aggregate value is a count query and it is known
GS(count) = 1. Later on, we denote the Laplace
distribution with 0 mean and λ scale as Lap(0, λ).
Composition. The composition properties of differen-
tial privacy provide privacy guarantees for a sequence
of computations, e.g. a sequence of count queries.

Theorem 1 (Sequential Composition [8]). Let Ai each
provide αi-differential privacy. A sequence of Ai(D)
over the dataset D provides (

∑
i αi)-differential pri-

vacy.

User-level privacy vs. Event-level privacy. The
work [10] proposed a differentially private continual

Algorithm 1 Laplace Perturbation Algorithm(LPA)
Input: Raw series X, privacy budget α
Output: Released series R

1: for each k ∈ 0, 1, ..., T − 1 do
2: rk ← perturb xk by Lap(0, Tα);

Algorithm 2 Discrete Fourier Transform(DFT)
Input: Raw series X, privacy budget α, parameter d
Output: Released time-series R

1: compute Fd ← DFTd(X)

2: compute F̃d ← LPA(Fd, α);
3: compute R← IDFT(PADT (F̃d));

counter with the notion of event-level privacy, where
the neighboring databases differ at ui, a user u’s
contribution at time stamp i. In our study, we provide
a stronger privacy guarantee, user-level privacy, where
the neighboring databases differ at the user u, i.e.
u’s contribution at all time stamps, thus protecting
sensitive information about user u at any time.

3.3 Existing Solutions
Here we present the baseline Laplace perturbation
algorithm and a recently proposed transformation-
based algorithm. Empirical studies of the two algo-
rithms against our proposed solution are included in
Section 5.

Laplace Perturbation Algorithm. A baseline solution
to sharing differentially private time series is to apply
the standard Laplace perturbation at each time stamp.
If every query satisfies α/T -differential privacy, by
Theorem 1 the sequence of queries guarantees α-
differential privacy. We summarize the baseline al-
gorithm in Algorithm 1 and Line 2 represents the
Laplace mechanism to guarantee α/T -differential pri-
vacy for each released aggregate.

Discrete Fourier Transform. Algorithm 2 outlines the
Fourier Perturbation Algorithm proposed by Rastogi
and Nath [11]. It begins by computing Fd, which is
composed of the first d Fourier coefficients in the Dis-
crete Fourier Transform (DFT) of X, with the jth coef-
ficient given as: DFT (X)j =

∑T−1
i=0 e

2π
√
−1

T jixi. Then it
perturbs Fd using LPA algorithm with privacy budget
α, resulting a noisy estimate F̃d. This perturbation is
to guarantee differential privacy. Denote PADT (F̃d)
the sequence of length T by appending T − d zeros
to F̃d. The algorithm finally computes the Inverse
Discrete Fourier Transform(IDFT) of PADT (F̃d) to
get R. The jth element of the inverse is given as:
IDFT (X)j = 1

T

∑T−1
i=0 e−

2π
√
−1

T jixi.
The number of coefficients d is a user-specified

parameter. In our empirical study, we set d = 20 ac-
cording to the original paper [11]. As each IDFT (X)j

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 5

Adaptive
Sampling

Laplace Perturbation

Prediction

Correction

Filtering

noisy
oberservation

at
sampling

point

output

input stream

error

new
sampling
interval

Fig. 3. FAST Framework

may be a complex number due to truncation and
perturbation, the authors proposed to use L1 distance
to measure the quality of the inverse series. To be
consistent, we adopt the same metric in our empirical
study for this algorithm. We slightly abuse the term
and refer to their algorithm as DFT in the rest of the
paper.

4 FAST
We propose FAST, a novel solution to sharing time-
series data under differential privacy. It allows fully
automated adaptation to data dynamics and highly
accurate time-series prediction and correction. Fig-
ure 3 illustrates the framework of FAST. The key steps
are outlined below:
• For each time stamp k, the adaptive sampling

component determines whether to sample/query
the input time-series or not.

• If k is a sampling point, the data value at k is per-
turbed by the Laplace mechanism to guarantee
differential privacy. This perturbed value is then
received by the filtering component for posterior
estimation.

• The filtering component produces a prediction
of data value based on an internal state model
at every time stamp. The prediction, i.e. prior
estimate, is released to output at a non-sampling
point, while a correction, i.e. posterior estimate
based on both the noisy observation and the
prediction, is released at a sampling point.

• The error between the prior and the posterior
estimates is then fed to the adaptive sampling
component to adjust the sampling rate. Once the
user-specified privacy budget α is used up, the
system will stop sampling the input series and
will predict at each onward time stamp.

Algorithm 3 summarizes our proposed framework.
Given a raw series X, overall privacy budget α, and
maximum number of samples allowed M (M ≤ T),
FAST provides real-time estimates of data values by
the Prediction and Correction procedures and dy-
namically adjusts the sampling rate with the Adap-
tive Sampling procedure. The details will be dis-
cussed in the next two subsections. Note that FAST
evenly distributes the overall privacy budget α to each

Algorithm 3 FAST Algorithm
Input: Raw series X, privacy budget α, maximum
number of samples allowed M
Output: Released series R

1: for each k do
2: obtain prior estimate from Prediction;
3: if k is a sampling point & numSamples < M
4: zk ← perturb xk by Lap(0, Mα);
5: numSamples++;
6: obtain posterior estimate from Correction;
7: rk ← posterior
8: adjust sampling rate by Adaptive Sampling;
9: else
10: rk ← prior;

sample and the exhaustion of α can be detected if
numSamples ≥M (Line 3).

Theorem 2. FAST satisfies α-differential privacy.
Proof: Given the maximum number of samples

M and the overall privacy budget α, each sample is
α/M -differentially private. According to Theorem 1,
Algorithm 3 satisfies α-differential privacy.

There are two types of error to balance in our
solution: perturbation error by the Laplace perturba-
tion mechanism at sampling points and prediction
error by the filtering prediction step at non-sampling
points. The more we sample, the more perturbation
error is introduced, while the prediction error might
be reduced due to more feedback, and vice versa.
FAST successfully strikes a balance between the two
types of error. The adaptive sampling component
reduces the perturbation error from Θ(T) (error of
the baseline LPA) to Θ(M) and dynamically adjusts
the sampling rate. The filtering component reduces
the prediction error by model-based estimation and
achieves great accuracy especially when data fits the
underlying process model. Technical details of the two
components are described below and empirical results
which confirm the superiority of FAST are presented
in Section 5.

4.1 Filtering

The filtering component in FAST provides estimates
of monitored aggregates in order to improve the
accuracy of released data per time stamp. We first
establish a state-space model for the aggregate series
to monitor. Then we propose and present the details
of two filtering algorithms for estimation.

Process Model. Suppose the original aggregate series
is generated by a underlying process. Let xk denote
the internal state, i.e. true value, of the process at
time k. The states at consecutive time stamps can be

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 6

modeled by the following equations:

xk = xk−1 + ω (4)
ω ∼ N (0, Q) (5)

This constant process model indicates that adjacent
values from the original time series should be consis-
tent except for a white Gaussian noise ω, called the
process noise, with variance Q.

Measurement Model. The noisy observation, which
is obtained from the Laplace mechanism, can be rep-
resented as follows:

zk = xk + ν (6)
ν ∼ Lap(0, 1/α0) (7)

where ν is called the measurement noise. Clearly, the
noisy observation zk is the true state plus the per-
turbation noise. Note that α0 denotes the differential
privacy budget for each sample, e.g. α0 = α/T if
sampling at every time stamp; α0 = α/M if no more
than M samples are allowed.

Posterior Estimate. Instead of releasing the noisy ob-
servation zk as the baseline LPA does, we propose to
release the aposteriori estimate of the true state xk after
obtaining zk. The posterior estimate, denoted by x̂k,
can be given by the following conditional expectation:

x̂k = E(xk|Zk) (8)

where Zk = {z0, z1, ..., zk} denotes the set of observa-
tions obtained so far. Therefore, we can derive x̂k only
if the aposteriori probability density function f(xk|Zk)
can be determined. According to Bayes’ theorem, we
obtain the following relation between two consecutive
time stamps:

f(xk|Zk) =
f(xk|Zk−1)f(zk|xk)

f(zk|Zk−1)
(9)

where the prior and the normalizing constant are
given by:

f(xk|Zk−1) =

∫
f(xk−1|Zk−1)f(xk|xk−1)dxk−1 (10)

f(zk|Zk−1) =

∫
f(xk|Zk−1)f(zk|xk)dxk . (11)

In general, Equations (9-11) are difficult to carry out
when f(zk|xk), i.e. f(ν = zk − xk), is non-Gaussian.
Therefore, the posterior density cannot be analytically
determined without the Gaussian assumption about
the measurement noise.

We propose two solutions to the posterior estima-
tion challenge discussed above. One is to model the
Laplace perturbation noise with a Gaussian measure-
ment noise; the other is to simulate the posterior den-
sity function with Monte Carlo methods. The details
are presented below, respectively.

Algorithm 4 KFPredict(k)
Input: Previous release rk−1
Output: Prior estimate x̂−k

1: x̂−k ← rk−1;
2: P−k ← Pk−1 +Q;

4.1.1 Gaussian Approx. of Measurement Noise
In our previous work [12], we propose to model the
Laplace noise ν with an approximate, white Gaussian
error

ν ∼ N (0, R) (12)

and therefore the estimation of x̂k in Equation (8) can
be solved with the classic Kalman filter [22].

The Kalman Filter. At time stamp k, the prior state
estimate x̂−k is made according to the process model
in Equation (4) and is related to the posterior estimate
of the previous step:

x̂−k = x̂k−1 . (13)

The posterior estimate x̂k can be given as a linear
combination of the prior x̂−k and the observation zk:

x̂k = x̂−k +Kk(zk − x̂−k) . (14)

where Kk, the Kalman Gain, is adjusted at every time
stamp to minimize the posterior error variance. Below
we briefly show how Kk is derived for each time
stamp k.

Let P−k and Pk denote the apriori and aposteriori
error variance, respectively. They are defined as

P−k = E[(xk − x̂−k)(xk − x̂−k)T] (15)

Pk = E[(xk − x̂k)(xk − x̂k)T] . (16)

By the Gaussian assumption regarding ω and ν and
given the prior error variance P−k at time stamp k, we
can substitute Equation (14, 15) into Equation (16) and
apply the gradient descendant method to minimize
Pk. Therefore, we obtain an optimal value for Kk as

Kk = P−k (P−k +R)−1 (17)

and thus the optimal Pk is

Pk = (1−Kk)P−k . (18)

Similarly, given Pk, we can easily project the prior
error variance at k + 1 according to Equation (4):

P−k+1 = Pk +Q . (19)

The classic Kalman filter recursively performs two
operations: Prediction and Correction, which corre-
spond to prior and posterior estimation respectively.
Algorithm 4 and 5 provide details of the two estima-
tion steps used in FAST framework.

Accuracy. Here we study the performance of the
Kalman filter based algorithm without sampling.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 7

Algorithm 5 KFCorrect(k)

Input: Prior x̂−k , noisy measurement zk
Output: Posterior estimate x̂k

1: Kk ← P−k (P−k +R)−1;
2: x̂k ← x̂−k +Kk(zk − x̂−k);
3: Pk ← (1−Kk)P−k ;

Therefore, a noisy observation is obtained and the
Prediction and Correction pair is performed at every
time stamp. Theoretically, the Kalman filter is optimal
when the Gaussian assumption regarding the mea-
surement noise holds, i.e. Equation (12). However,
additional approximation error is introduced since we
explicitly model the Laplace perturbation noise as
Gaussian in posterior estimation. Below we analyze
the posterior error var(xk − x̂k) where zk is obtained
from the Laplace mechanism and x̂k is derived under
the Gaussian assumption. The goal is to find the
optimal approximate Gaussian noise, i.e. the optimal
value of R, in order to achieve minimum variance
posterior estimate. Due to the recursive nature of
filtering, it’s difficult to obtain a closed form for the
optimal R value. We conclude our main finding in the
theorem below and refer readers to Appendix A for
the detailed least square analysis.

Theorem 3 (Optimal Approximation). Given the per-
turbation noise distribution Lap(0, T/α) at every time
stamp, using an approximate Gaussian noise that
follows N (0, R) leads to the following posterior error:

var(xk − x̂k) =

R2[var(xk−1 − x̂k−1) +Q]

(P−k +R)2
+

2P−k
2
T 2

(P−k +R)2α2
(20)

and optimal posterior estimation requires R ∝ T 2

α2 .
Proof: See Appendix A.

Theorem 3 provides guidance for choosing the
Gaussian measurement noise, i.e. the value of R, to
approximate the perturbation noise introduced by
differential privacy mechanism. The result confirmed
that the optimal R is proportional to the variance of
the Laplace perturbation noise, given that the privacy
budget is uniformly allocated to every time stamp.

Estimation with Sampling. Note that the posterior
estimate x̂k cannot be determined when noisy obser-
vation zk is absent. When combined with sampling
in our overall solution, we propose to estimate as
follows: at sampling points, i.e. when noisy obser-
vations are available, both Prediction and Correction
will be performed and the posterior estimates will
be released; at non-sampling points, i.e. when noisy
observations are absent, only the Prediction step will
be performed and the prior estimates will be released.

One advantage of the Kalman filter based algorithm
is it estimates the internal state by properly weighing
and combining all available data (prior and noisy
observation). Another advantage is its computation
efficiency: only O(1) computations are required for
each time stamp according to Algorithm 4 and 5.

4.1.2 Monte Carlo Estimation of Posterior Density
Besides modeling the Laplace perturbation with an
approximate Gaussian noise, Monte Carlo methods
can be used to represent the posterior density function
f(xk|Zk) by simulation. In this section, we will show
the solution to posterior estimation based on the
Sampling-Importance-Resampling(SIR) particle filter,
which is also known as bootstrap filtering [28] and
condensation algorithm [33].

SIR Particle Filtering. With a collection of N
weighted samples or particles, {xik, πik}Ni=1, where πik
is the weight of particle xik, the posterior density at
time k can be represented as follows:

f(xk|Zk) =

N∑
i=i

πikδ(xk − xik) (21)

where δ(·) is Dirac delta measure.
The weights {πik}Ni=1 are chosen according to the

importance sampling method, where particles {xik}Ni=1

can be easily generated from a proposal q(·) called
an importance density. The details of the importance
sampling method are omitted here and can be found
in [34]. By assuming that the importance density q(·)
depends only on the previous state and current mea-
surement, the following weight relationship between
two successive time stamps can be derived:

πik ∝ πik−1
f(zk|xik)f(xik|xik−1)

q(xik|xik−1, zk)
. (22)

According to Arulampalam et al [31], it is offen
convenient to choose the importance density q(·) to
be the prior density f(xk|xik−1). Substituting it into
Equation (22) then yields

πik ∝ πik−1f(zk|xik) (23)

where
f(zk|xik) = f(ν = zk − xik) (24)

and ν follows the Laplace distribution in Equation (7).
The SIR particle filter explicitly employs a resam-

pling step at every time stamp in order to circumvent
degeneracy phenomenon, where after a few iterations,
all but one particle will have negligible weights. In
our solution, we adopt systematic resampling as rec-
ommended in [31]. Since πik−1 = 1/N for every i after
resampling, weights at time k can be simplified as
follows:

πik ∝ f(zk|xik) . (25)

We will use the above result for correction in the
overall algorithm.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 8

Algorithm 6 PFPredict(k)

Input: Particles at time k − 1 {xik−1, πik−1}Ni=1

Output: Prior estimate x̂−k

1: for each i ∈ 1, ..., N do
2: draw xik ∼ f(xk|xik−1)

3: x̂−k ←
1
N

∑N
i=1 x

i
k

Algorithm 7 PFCorrect(k)

Input: Particles {xik}Ni=1, noisy measurement zk
Output: Posterior estimate x̂k

1: for each i ∈ 1, ..., N do
2: assign particle weight πik according to (25)
3: normalize {πik}Ni=1

4: x̂k ←
∑N
i=1 π

i
kx

i
k

5: resample from {xik, πik}Ni=1

Prediction and Correction. Algorithm 6 and 7 pro-
vide details of the particle filtering based estimation
algorithm used in FAST framework.

For each particle i, the Prediction step (Line 1-2 in
Algorithm 6) projects its value for the next time stamp
according to the process model f(xk|xik−1). Note that
f(xk|xik−1) represents the distribution N (xik−1, Q), ac-
cording to Equation (4). Once the particles are drawn,
the prior estimate can be given with the uncorrected
weights (Line 3 in Algorithm 6):

x̂−k =

N∑
i=1

πik−1x
i
k =

1

N

N∑
i=1

xik . (26)

The Correction step adjusts particle weights accord-
ing to the noisy observation zk. After weight adjust-
ment and normalization (Line 1-3 in Algorithm 7), the
posterior estimate can be derived as follows (Line 4
in Algorithm 7):

x̂k =

N∑
i=1

πikx
i
k . (27)

As implied by the SIR particle filtering method, re-
sampling is applied at the end of the Correction step
(Line 5 in Algorithm 7).

The initialization of particles {xi0, πi0}Ni=1 is non-
trivial, since the distribution of the initial state is
unlikely to be available in many real-time applica-
tions. Therefore, we skip the estimation steps, i.e.
Equation (26-27), at time 0 and release the noisy
measurement z0. Particles {xi0}Ni=1 are then uniformly
drawn from the vicinity of z0 and {πi0}Ni=1 are initial-
ized as 1/N .

Accuracy. We refer the readers to [32] for the accuracy
and convergence results of the SIR algorithm. Intu-
itively, a larger number of particles implies a more
accurate distribution estimation. On the other hand,

Algorithm 8 Fixed Rate Sampling
Input: Current time stamp k, fixed interval I
Output: Sampling or not

1: if k%I == 0
2: k is a sampling point
3: else
4: k is a non-sampling point

a larger number of particles requires more compu-
tation time, which is crucial to real-time monitoring
applications. As a matter of fact, the complexity of
Algorithm 6 and 7 is O(N) per time stamp. We will
examine the trade-off between accuracy and run time
of Algorithm 6 and 7 in the experiment section.

Estimation with Sampling. Combined with sampling
in the overall solution, the particle filtering based al-
gorithm adopts the same strategy as the Kalman filter:
it releases posterior estimates at sampling points and
prior estimates at non-sampling points. The utility of
the particle filtering based algorithm will be evaluated
against other methods in Section 5.

4.2 Sampling

Since each noisy observation from Laplace mechanism
comes with a cost (privacy budget spent), we are mo-
tivated to sample data values through the differential
privacy interface only when needed in our overall
solution. Below we propose two sampling strategies:
one is to sample the series with a fixed interval, while
the other is to dynamically adapt the sampling rate
based on feedback control.

Fixed Rate Sampling. Given a pre-defined interval
I , the fixed-rate algorithm samples the time series
periodically and releases the posterior estimate per
I time stamps. As for the time points between two
adjacent samples, a predicted value/prior estimate
is released. Privacy budget α/(TI) will be spent on
each sample to guarantee α-differential privacy for the
entire series according to Theorem 1.

Algorithm 8 summarizes the fixed rate sampling
algorithm which can be used in FAST framework.
The challenge of fixed-rate sampling is to determine
the optimal interval I . When increasing the sampling
rate, i.e. when I is low, an extreme case of which is
to issue a query at each time step as in the baseline
solution, the perturbation error introduced at each
time stamp is increased. On the other hand, when we
decrease the sampling rate, i.e. when I is high, the
perturbation at each sampling point will drop, but
the published series will not reflect up-to-date data
values, resulting large prediction error. We analyze the
posterior error of fixed-rate sampling and find that it
is very challenging to quantify and minimize the sum
of error a priori. Detailed discussion is in Appendix

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 9

Adjusted sampling rate

Observed/predicted dynamics

Adaptive Sampling

Fig. 4. Adaptive Sampling with Traffic Data

B. Therefore, the fixed-rate sampling method may not
be optimal in our problem setting.
Adaptive Sampling. With no a priori knowledge of
the time series, it is desirable to detect data dynamics
and to adjust the sampling rate on-the-fly. Figure 4
illustrates the idea of adaptive sampling. We plot
the original traffic series as well as the number of
queries (samples) issued by the adaptive sampling
mechanism during each corresponding time unit. As
is shown, the adaptive sampling mechanism increases
sampling rate between day 20 and day 100, when
the traffic count exhibits significant fluctuations, and
decreases sampling rate beyond day 100, when there’s
little variation among data values.

In FAST framework, we propose an adaptive sam-
pling algorithm with feedback control. The feedback is
the error between the posterior and the prior estimates
from the filtering module, which is defined below.

Definition 4 (Feedback Error). At time step kn (0 ≤
kn < T), where the subscript n indicates the n-th
sampling point (0 ≤ n < M), we define the feedback
error Ekn as follows:

Ekn = |x̂kn − x̂−kn |/max{x̂kn , δ} . (28)

Note that no error is defined at a non-sampling point.

The feedback error measures how well the internal
state model describes the current data dynamics, as-
suming x̂kn is close to the true state. Since x̂−kn is given
by a constant state model, we may infer that data
is going through rapid changes when the error Ekn
increases. In response, the controller in our system
will detect the error change and increase the sampling
rate accordingly.

FAST adopts a PID controller, the most common
form of feedback control [35], to measure the perfor-
mance of sampling over time. We re-define the three
PID components, Proportional, Integral, and Derivative,
with the feedback error defined in Equation (28).
• Proportional error is to keep the controller output

(∆) in proportion to the current error Ekn with
kn being the current time step and subscript n
being the sampling point index. It is given by
∆p = CpEkn where Cp denotes the proportional
gain which amplifies the current error.

• Integral error is to eliminate offset by making
the change rate of control output proportional

Algorithm 9 Adaptive Sampling
Input: Current time stamp k, next sampling point ns
Output: Sampling or not

1: if k == ns
2: k is a sampling point
3: afterwards, obtain feedback from filtering
4: update ∆ according to (29)
5: calculate I ′ according to (32)
6: ns← ns+ I ′, I ← I ′

7: else
8: k is a non-sampling point

to the error. With similar terms, we define the
integral control as ∆i = Ci

Ti

∑n
j=n−Ti+1Ekj where

Ci denotes integral gain amplifying the integral
error and Ti represents the integral time window
indicating how many recent errors are taken.

• Derivative error attempts to prevent large errors
in the future by changing the output in propor-
tion to the change rate of error. It is defined as
∆d = Cd

Ekn−Ekn−1

kn−kn−1
where Cd is derivative gain

amplifying the derivative error.
The full PID algorithm is thus

∆ = CpEkn+
Ci
Ti

n∑
j=n−Ti+1

Ekj+Cd
Ekn − Ekn−1

kn − kn−1
. (29)

Control gains Cp, Ci, and Cd denote how much each
of the proportional, integral, and derivative counts for
the final calibrated PID error. In FAST, they are con-
strained by:

Cp, Ci, Cd ≥ 0 (30)
Cp + Ci + Cd = 1 . (31)

Note that setting Ci > 0 requires Ti previous samples
in order to evaluate the integral error, which can be
implemented as a straight-forward initialization prior
to adaptive adjustment of the sampling rate.

Given the PID error ∆, a new sampling interval I ′

can be determined:

I ′ = max{1, I + θ(1− e
∆−ξ
ξ)} (32)

where θ and ξ are user-specified parameters. By
default, the smallest sampling interval is set to 1.
Parameter θ determines the magnitude of change and
ξ is the set point for the sampling process. We assume
ξ is 10% in our empirical studies, i.e. the maximum
tolerance for PID error is 10%. It can be determined
by FAST users according to specific applications.

Algorithm 9 summarizes the adaptive sampling
algorithm used in FAST framework. It maintains and
updates the variable ns indicating the next sampling
point. If the current time stamp is determined to be a
sampling point, a feedback error can be obtained from
the filtering component (Line 3) after correction. The
current PID error ∆ can then be evaluated (Line 4)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 10

(a) flu data (b) traffic data

Fig. 5. Data Snapshots

as well as a new sampling interval I ′ (Line 5). A
future sampling point, i.e. updated ns, is derived by
applying the new sampling interval I ′ (Line 6). When
k is a non-sampling point, the algorithm receives no
feedback since only the prediction step is run in the
filtering component. We will study the parameters as
well as the performance of both sampling algorithms
in the next section.

5 EXPERIMENT

We have implemented FAST in Java with JSC (Java
Statistical Classes1) for simulating the statistical distri-
butions. Our study has been conducted with synthetic
as well as real-world data sets. The synthetic data
sets are 1000 time stamps long and generated with
Q = 105 to incorporate data value fluctuations.
• Linear is a synthetic series generated by our

process model in Equation (4).
• Logistic is a synthetic series generated by the

logistic model xk = A(1 + e−k)−1 with A = 5000.
• Sinusoidal is a synthetic series generated by a

sinusoid xk = A sin(bk + c) with A = 5000, b =
π/6, c = π/2.

The real-world data sets are of variable length.
• Flu is the weekly surveillance data of Influenza-

like illness provided by the Influenza Division of
the Centers for Disease Control and Prevention2.
We collected the weekly outpatient count of the
age group [5-24] from 2006 to 2010. This time-
series consists of 209 data points.

• Traffic is a daily traffic count data set for Seattle-
area highway traffic monitoring and control pro-
vided by the Intelligent Transportation Systems
Research Program at University of Washington3.
We chose the traffic count at location I-5 143.62
southbound from April 2003 till October 2004.
This time-series consists of 540 data points.

• Unemploy is the monthly unemployment level
of African American women of age group [16-
19] from ST. Louis Federal Reserve Bank4. This

1. http://www.jsc.nildram.co.uk
2. http://www.cdc.gov/flu/
3. http://www.its.washington.edu/
4. http://research.stlouisfed.org/

TABLE 1
FAST Parameters

Symbol Description Default Value
α Total Privacy Budget 1
Q Process Noise 105

R Gaussian Measurement Noise 106

N Number of Particles 103

(Cp, Ci, Cd) Control Gains (0.9, 0.1, 0)
Ti Integral Time Window 5

(θ, ξ) Interval Adjustment Params (10, 0.1)

(a) R vs. T (b) R vs. α

Fig. 6. Choice of R in the Kalman Filter

data set contains observations from January 1972
to October 2011 with 478 data points.

Figure 5 illustrates the different dynamics of the
data sets. For instance, the flu data set has a relatively
smooth curve and reflects significant changes in data
value (unemploy data shows similar characteristics),
while the traffic data has a less smooth curve but
fluctuates around a rather stable average value.

To show the impact of FAST parameters, we will
only present empirical results with the Linear data
set for brevity. The default parameter setting, unless
otherwise noted, is summarized in Table 1.

5.1 Effects of Filtering
Here we study the impact of parameters on filtering
performance alone. Therefore, no sampling is applied
in the experiments of this section, hence a posterior
estimate can be derived for each time stamp.

Choice of R in the Kalman Filter. Since the process
noise Q is intrinsic to the time-series data of interest,
it can be determined by domain users who have
good understanding about the process to monitor or
have access to historic data. What is not straight-
forward is the choice of R, the Gaussian measurement
noise we have proposed to approximate the Laplace
perturbation noise. Figure 6(a) plots the utility of the
released time-series with various R values when using
first 10% of the data series versus using the entire
series. Figure 6(b) plots the utility with various R
values when α set to 0.1 versus 1. As can be seen in
Figure 6(a), when using 10% of the data, the optimal
R value is 104, as opposed to 106 when using the
entire series. Similarly in Figure 6(b), when α = 1, the
optimal R value is 106, which is a hundred times less
than 108, the optimal R for α = 1. Both these results

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 11

(a) Accuracy (b) Runtime

Fig. 7. Choice of N in Particle Filter

Fig. 8. Comparison of Two Filtering Algorithms

confirm our finding in Theorem 3 that the optimal R
value is proportional to T 2/α2.

Choice of N in Particle Filter. Due to the Monte
Carlo nature of the particle filtering method, a larger
number of particles implies more accurate estimation
of the posterior distribution and more computation
time. Therefore, N cannot be infinitely large for real-
time applications where fast response is required.
Here we examine the trade-off between accuracy and
runtime of the particle filter. Figure 7(a) plots the
utility of particle filtering with different N values. As
we expect, the relative error goes down as the number
of particles increases and we observe no significant
boost in accuracy when N is greater than 103. On
the other hand, a larger number of particles requires
more processing time, as in Figure 7(b). Based on
these results, we choose N = 103 as the default value
as it provides a good balance between accuracy and
computation efficiency.

Kalman Filter vs. Particle Filter. Recall that the num-
ber of computations per time stamp for the Kalman
filter is O(1) and that of the particle filter is O(N).
Here we compare the utility of the two methods and
summarize our findings in Figure 8. For logistic and
sinusoidal data, both the Kalman filter and particle
filter result in high relative error due to the non-
linearity in the data. For the rest data sets, both filter-
ing algorithms achieve high accuracy and their utility
results are comparable. We conclude that particle filter
requires more time and is more robust since it relies
on only one parameter N which is independent of
data sets, while the Kalman filter is more efficient and
provides comparable accuracy on condition that the

(a) Choice of θ (b) Choice of M

Fig. 9. Choice of Adaptive Sampling Params

Gaussian variance R is wisely chosen.

5.2 Effects of Sampling
In the following studies, we apply sampling tech-
niques on top of filtering and examine the advantage
of adaptive sampling.

Parameters for Adaptive Sampling. We first study the
settings of adaptive sampling parameters θ and M .
Recall θ represents the magnitude of sampling interval
adaptation and M represents the maximum number
of samples allowed for each application. Figure 9(a)
shows the impact of θ. Both the Kalman filter and
particle filter show similar utility results and trends
as θ varies. We observe that the error is prohibitive
when θ = 1, due to insufficient interval adjustment.
In that case, the application quickly exhausts the
given privacy budget. The optimal θ value for the
Kalman filtering method is 5, while that of the particle
filtering method is observed at θ = 10. Both filter-
ing methods result in slightly increased error as θ
increases beyond the optimal point, due to enlarged
sampling interval and hence a higher prediction error
between two adjacent samples. However, the increase
is insignificant compared to the extreme case where
θ = 1. Therefore, we conclude that FAST algorithms
are robust to θ as we avoid apparent, extremely small
values. Similarly, we state the same conclusion for
the maximum number of samples M . As shown in
Figure 9(b), we observe robust performance of FAST
to the ratio M/T as long as it is not deliberately
set to be M/T < 0.1. The optimal performance of
FAST with the Kalman filter in this setting is achieved
at M = 15%T and with particle filter the optimal
performance is at M = 25%T . We record the findings
above and use them for our other empirical studies.

We also study the impact of the control gains
(Cp, Ci, Cd) as well as the integral time Ti. We find
that as long as the control gains are set according
to the common practice: proportional > integral >
derivative, the error variation between different set-
tings is insignificant and is likely to be introduced by
randomness. Hence we omit the detailed results and
conclude that there’s no extra “rule of thumb” beside
the common practice for tuning the controller gains.
Similarly, as the integral time increases, the resulting

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

Fig. 10. Fixed-Rate Sampling vs. Adaptive Sampling

(a) Overall Performance (b) Performance with Larger
Budget

Fig. 11. Utility vs. Privacy with Linear Data

error shows no clear trend. We consider the above
control parameters as non-influential in our system.

Fixed-Rate vs. Adaptive Sampling. We now compare
the performance of adaptive sampling, denoted as
PID in Figure 10, with fixed-rate sampling, while
varying the sampling interval for fixed-rate algorithm
from 1 to 20. For our adaptive approach, we use the
optimal M setting for each filtering method. However,
there’s a wide range of M to choose from, which
provides equivalent level of utility, according to our
previous study.

The result is shown in Figure 10. As the sampling
interval increases, i.e. from 1 to 3, fixed-rate sam-
pling shows reduced average relative error of various
scales. This phenomenon can be interpreted by the
reduction of perturbation error resulting from less
frequent queries. As the interval further increases,
from 5 to 20, the error starts to rise, which can be
explained by the accumulation of prediction error due
to longer intervals between adjacent samples. The
optimal sampling interval, which is 3 and 5 for linear
data set, may not be known a priori and may differ
from dataset to dataset. We found that the perfor-
mance of adaptive sampling with no prior knowledge
is comparable to the optimal fixed-rate despite the
filtering method in use, which confirms once again
the advantage of FAST adaptive framework.

5.3 Utility vs. Privacy
We examine the trade-off between utility and privacy
in FAST, in comparison to the baseline LPA algorithm
and the DFT algorithm. We note that DFT algorithm
can be only applied offline and was run using the

10
−4

10
−3

10
−2

10
−1

10
0

10
−1

10
0

10
1

10
2

10
3

α

R
el

at
iv

e
E

rr
or

KF+PID
PF+PID
LPA
DFT

(a) Traffic Data

10
−4

10
−3

10
−2

10
−1

10
0

10
−2

10
−1

10
0

10
1

10
2

10
3

α

R
el

at
iv

e
E

rr
or

KF+PID
PF+PID
LPA
DFT

(b) Unemploy Data

Fig. 12. Utility vs. Privacy with Real-World Datasets

entire series in our experiments while FAST was run
real-time. Figure 11 shows the empirical study con-
ducted with the linear data set. Figure 11(a) plots the
relative error against a wide range of privacy budget
values, from 10−4 to 1. As we relax the privacy level
and increase the privacy budget α, all four methods
show reduced relative error, to different extents. We
observe that the DFT algorithm with off-line process-
ing provides highest utility when α ∈ [10−4, 10−1].
However, no significant utility improvement can be
seen when α ≥ 10−3 due to its dominant reconstruc-
tion error. On the other hand, FAST algorithms, i.e.
KF+PID and PF+PID, consistently outperform LPA
with reduced relative error. When compared with
DFT, FAST algorithms provide comparable utility and
even outperform DFT when α ∈ [10−1, 1]. Figure 11(b)
presents a closer look at this privacy budget inter-
val, where FAST algorithms outperform both existing
methods, providing high utility without compromis-
ing the privacy guarantee.

In addition, we conducted the same trade-off anal-
ysis with real-world data sets in order to study the
robustness of FAST framework. Figure 12 summarizes
our findings with traffic and unemploy data. For both
data sets, FAST methods greatly outperform the LPA
algorithm, especially under small privacy budget, i.e.
α ≤ 0.1. With larger privacy budget, i.e. α ≥ 0.1, our
methods are comparable to the off-line DFT algorithm
and even outperform DFT with the unemploy data.
We observe that the result with flu data is similar
to Figure 12(b). With non-linear synthetic data sets,
FAST methods result in higher relative error due to
model misfit but show similar overall trends as in
Figure 12(a) in comparison to LPA and DFT. Therefore
the detailed figures are omitted here for brevity. We
conclude that FAST algorithms greatly improve the
utility of released series over the baseline LPA method
especially under small privacy cost and provide ro-
bust performance despite different data dynamics.

5.4 Detection and Correlation

In this study, we explore FAST performance with
respect to utility metrics besides the standard relative
error. In particular, we studied the F1 metric for
outbreak detection with the released series and also

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 13

Fig. 13. F1 Metric of Outbreak Detection

Fig. 14. Spearman’s Rank Correlation between Original
Series and Released Series

performed correlation analysis between the released
and original aggregate series.

There have been extensive studies on effective
methods in epidemic outbreak detection and various
definitions of an outbreak/signal period have been
adopted [36]–[38]. We take a simplified interpreta-
tion of outbreak similar to Pelecanos et al. [38] and
define a target event/signal as a significant increase
between two adjacent aggregate values. Usually the
threshold of increase can be given by users according
to the application. In our empirical study, we set this
threshold to be 5% of the median value in the original
aggregate series, in order to mitigate the effects of
extremely small or large values. Figure 13 compares
FAST solution against existing methods and shows
the F1 metric of event/signal detection in the released
series across multiple data sets. We observe that FAST
consistently outperforms LPA algorithm and provides
comparable utility to DFT algorithm. Especially with
traffic data, our approach provides 30% improvement
over existing methods due to reduced false positives.

As for correlation analysis, we measure the sim-
ilarity between the released series and the original
series with Spearman’s rank correlation. Figure 14
summarizes the comparative study on FAST and ex-
isting methods. We observe that the DFT algorithm
doesn’t preserve the ranking order for log or sinusoidal
data. In contrast, FAST algorithm provides robust
performance across all data sets, even when DFT fails
to produce correlated release.

To summarize, FAST yields high utility in both
outbreak detection and correlation analysis compared
to existing methods. In many cases, our solution out-
performs both existing methods, e.g. with traffic data

in Figure 13. Furthermore, FAST releases differentially
private aggregates in real-time , in contrast to the
offline DFT algorithm. We believe that FAST will
enable a wide range of monitoring applications with
the real-time feature and the adaptive strategies.

6 CONCLUSION AND DISCUSSION

We have proposed FAST, an adaptive framework with
filtering and sampling for monitoring real-time aggre-
gates under differential privacy. The key innovation
is that our approach utilizes feedback loops based on
observed values to dynamically adjust the estimation
model as well as the sampling rate. To minimize the
overall privacy cost, FAST uses the PID controller
to adaptively sample long time-series according to
detected data dynamics. As to improve the accuracy
of data release per time stamp, FAST adopts the state-
space model and filtering techniques to predict data
values at non-sampling points and to estimate true
values from perturbed values at sampling points. Our
experiments with real-world and synthetic data sets
show that it is beneficial to incorporate feedback into
both the estimation model and the sampling process.
The results confirmed that our adaptive approach im-
proves utility of time-series release and has excellent
performance even under small privacy cost.

FAST framework can be easily generalized to moni-
tor other aggregates supported by differential privacy,
such as average, sum, min, and max, with the pertur-
bation mechanism as well as the state-space model
adapted to the specific type of query and its global
sensitivity. Note that certain types of analysis, such as
min and max, are in general difficult under differential
privacy, since they rely only on very few records in
the underlying database. Future work directions may
include the study of alternative differential privacy
mechanisms, such as geometric mechanism [39] and
exponential mechanism [40], and investigate their
privacy-utility tradeoff under FAST framework.

ACKNOWLEDGMENT

This research is supported by NSF under grant CNS-
1117763 and AFOSR under grant FA9550-12-1-0240.
The authors would also like to thank anonymous
reviewers for their comments and suggestions.

REFERENCES
[1] A. Blum, K. Ligett, and A. Roth, “A learning theory approach

to non-interactive database privacy,” in STOC, 2008.
[2] C. Dwork, F. Mcsherry, K. Nissim, and A. Smith, “Calibrating

noise to sensitivity in private data analysis,” in In Proceedings
of the 3rd Theory of Cryptography Conference. Springer, 2006,
pp. 265–284.

[3] M. Hay, V. Rastogi, G. Miklau, and D. Suciu, “Boosting the
accuracy of differentially private histograms through consis-
tency,” Proc. VLDB Endow., vol. 3, no. 1-2, pp. 1021–1032, Sept.
2010.

[4] X. Xiao, G. Bender, M. Hay, and J. Gehrke, “ireduct: differential
privacy with reduced relative errors,” ser. SIGMOD ’11. New
York, NY, USA: ACM, 2011, pp. 229–240.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 14

[5] X. Xiao, G. Wang, and J. Gehrke, “Differential privacy via
wavelet transforms,” Knowledge and Data Engineering, IEEE
Transactions on, vol. 23, no. 8, pp. 1200 –1214, aug. 2011.

[6] Y. Xiao, L. Xiong, and C. Yuan, “Differentially private data
release through multidimensional partitioning,” in Secure Data
Management, ser. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2010, vol. 6358, pp. 150–168.

[7] J. Xu, Z. Zhang, X. Xiao, Y. Yang, and G. Yu, “Differentially
private histogram publication,” in ICDE, 2012.

[8] F. McSherry, “Privacy integrated queries: An extensible plat-
form for privacy-preserving data analysis,” in SIGMOD, 2009.

[9] T.-H. H. Chan, E. Shi, and D. Song, “Private and continual
release of statistics.” in ICALP (2), ser. Lecture Notes in Com-
puter Science, vol. 6199. Springer, 2010, pp. 405–417.

[10] C. Dwork, M. Naor, T. Pitassi, and G. N. Rothblum, “Differen-
tial privacy under continual observation,” ser. STOC ’10. New
York, NY, USA: ACM, 2010, pp. 715–724.

[11] V. Rastogi and S. Nath, “Differentially private aggregation of
distributed time-series with transformation and encryption,”
in SIGMOD, 2010.

[12] L. Fan and L. Xiong, “Real-time aggregate monitoring with
differential privacy,” ser. CIKM ’12, 2012.

[13] C. Dwork, M. Naor, O. Reingold, G. N. Rothblum, and S. Vad-
han, “On the complexity of differentially private data release:
efficient algorithms and hardness results,” ser. STOC ’09. New
York, NY, USA: ACM, 2009, pp. 381–390.

[14] C. Li, M. Hay, V. Rastogi, G. Miklau, and A. Mcgregor, “Opti-
mizing linear counting queries under differential privacy,” ser.
PODS ’10. ACM, 2010, pp. 123–134.

[15] C. Li and G. Miklau, “An adaptive mechanism for accurate
query answering under differential privacy,” in VLDB, 2012.

[16] A. Korolova, K. Kenthapadi, N. Mishra, and A. Ntoulas,
“Releasing search queries and clicks privately,” in WWW.
ACM, 2009, pp. 171–180.

[17] Y. Hong, J. Vaidya, H. Lu, and M. Wu, “Differentially private
search log sanitization with optimal output utility,” in EDBT,
2012.

[18] G. Cormode, C. M. Procopiuc, D. Srivastava, and T. T. L. Tran,
“Differentially private summaries of sparse data,” in EDBT,
2012.

[19] R. Chen, N. Mohammed, B. C. M. Fung, B. C. Desai, and
L. Xiong, “Publishing set-valued data via differential privacy,”
The Proceedings of the VLDB Endowment (PVLDB), vol. 4, no. 11,
pp. 1087–1098, August 2011.

[20] P. Brockwell and R. Davis, Introduction to time series and
forecasting, ser. Springer texts in statistics. Springer, 2002.

[21] S. Papadimitriou, F. Li, G. Kollios, and P. S. Yu, “Time series
compressibility and privacy,” ser. VLDB ’07. VLDB Endow-
ment, 2007, pp. 459–470.

[22] R. E. Kalman, “A new approach to linear filtering and pre-
diction problems,” Transactions of the ASME–Journal of Basic
Engineering, vol. 82, no. Series D, pp. 35–45, 1960.

[23] R. G. Brown and P. Y. C. Hwang, Introduction to Random Signals
and Applied Kalman Filtering. John Wiley & Sons, 1997, vol. 2,
no. 4.

[24] Y. Bar-Shalom, X.-R. Li, and T. Kirubarajan, State Estimation
in Discrete-Time Linear Dynamic Systems. John Wiley & Sons,
Inc., 2002, pp. 199–266.

[25] A. Jain, E. Y. Chang, and Y.-F. Wang, “Adaptive stream re-
source management using kalman filters,” ser. SIGMOD ’04.
New York, NY, USA: ACM, 2004, pp. 11–22.

[26] H. Sorenson, Kalman filtering: theory and application, ser. IEEE
Press selected reprint series. IEEE Press, 1985.

[27] C. Masreliez, “Approximate non-gaussian filtering with lin-
ear state and observation relations,” Automatic Control, IEEE
Transactions on, vol. 20, no. 1, pp. 107 – 110, feb 1975.

[28] N. Gordon, D. Salmond, and A. Smith, “Novel approach to
nonlinear/non-gaussian bayesian state estimation,” Radar and
Signal Processing, IEE Proceedings F, vol. 140, no. 2, pp. 107
–113, apr 1993.

[29] M. K. Pitt and N. Shephard, “Filtering via simulation: Auxil-
iary particle filters,” Journal of the American Statistical Associa-
tion, vol. 94, no. 446, pp. 590–599, 1999.

[30] A. Doucet, S. Godsill, and C. Andrieu, “On sequential monte
carlo sampling methods for bayesian filtering,” Statistics and
Computing, vol. 10, no. 3, pp. 197–208, July 2000.

[31] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A
tutorial on particle filters for on-line non-linear/non-gaussian
bayesian tracking,” IEEE Transactions on Signal Processing,
vol. 50, pp. 174–188, 2001.

[32] A. Doucet and A. M. Johansen, “A tutorial on particle filtering
and smoothing: fifteen years later,” 2011.

[33] J. MacCormick and A. Blake, “A probabilistic exclusion prin-
ciple for tracking multiple objects,” in Computer Vision, 1999.
The Proceedings of the Seventh IEEE International Conference on,
vol. 1, 1999, pp. 572 –578 vol.1.

[34] A. Doucet, N. de Freitas, N. Gordon, and A. Smith, Sequential
Monte Carlo Methods in Practice, ser. Statistics for Engineering
and Information Science. Springer, 2001.

[35] M. King and M. King, Process Control: A Practical Approach.
John Wiley & Sons, 2011.

[36] M. Wagner, F. Tsui, J. Espino, V. Dato, D. Sittig, R. Caruana,
L. McGinnis, D. Deerfield, M. Druzdzel, and D. Fridsma, “The
emerging science of very early detection of disease outbreaks,”
Journal of Public Health Management and Practice, vol. 7, no. 6,
pp. 51–59, 2001.

[37] K. P. Kleinman and A. M. Abrams, “Assessing surveillance
using sensitivity, specificity and timeliness,” Statistical Methods
in Medical Research, vol. 15, no. 5, pp. 445–464, 2006.

[38] A. Pelecanos, P. Ryan, and M. Gatton, “Outbreak detection
algorithms for seasonal disease data: a case study using ross
river virus disease,” BMC medical informatics and decision mak-
ing, vol. 10, no. 1, p. 74, 2010.

[39] A. Ghosh, T. Roughgarden, and M. Sundararajan, “Universally
utility-maximizing privacy mechanisms,” in Proceedings of the
41st annual ACM symposium on Theory of computing, ser. STOC
’09. New York, NY, USA: ACM, 2009, pp. 351–360.

[40] F. McSherry and K. Talwar, “Mechanism design via differential
privacy,” in Proceedings of the 48th Annual IEEE Symposium on
Foundations of Computer Science, ser. FOCS ’07. Washington,
DC, USA: IEEE Computer Society, 2007, pp. 94–103.

Liyue Fan Liyue Fan is a Ph.D. candidate
in the Department of Mathematics and Com-
puter Science at Emory University. Prior to
Emory, she obtained B.S. in Mathematics at
Zhejiang University in China. Her research
interests are in data privacy, data mining,
machine learning, data integration, temporal
and spatial databases.

Li Xiong Li Xiong is an Associate Profes-
sor in the Department of Mathematics and
Computer Science and the Department of
Biomedical Informatics at Emory University
where she directs the Assured Information
Management and Sharing (AIMS) research
group. She holds a PhD from Georgia In-
stitute of Technology, an MS from Johns
Hopkins University, and a BS from University
of Science and Technology of China, all in
Computer Science. She also worked as a

software engineer in IT industry for several years prior to pursuing
her doctorate. Her areas of research are in data privacy and security,
distributed data management, and bio and health informatics. She
is a recent recipient of the Career Enhancement Fellowship by
Woodrow Wilson Foundation. Her research is supported by NSF,
AFOSR, a Cisco Research Award, and an IBM Faculty Innovation
Award.

