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Abstract —We consider the problem of maximizing the 
lifetime of a given multicast connection in wireless networks that 
use directional antennas and have limited energy resources. We 
first provide a globally optimal solution to this problem for the 
special case of using omni-directional antennas. This graph 
theoretic approach provides insights into more general case of 
using directional antennas later on, and inspires us to produce 
two heuristic algorithms. Experiment results show that minimum 
total power consumption does not guarantee maximum lifetime 
for either broadcasting or multicasting, and our algorithms 
outperform the group of minimum-energy multicast algorithms 
significantly. 

I. INTRODUCTION 
Broadcasting/multicasting is an important mechanism in 

wireless ad hoc networks, since many routing protocols for 
wireless ad-hoc networks need such mechanism to 
communicate the updates of their states and maintain the 
routes between nodes. When power efficiency is considered, 
an energy-efficiency broadcast/multicast routing protocol has 
become imperative. Typically, there are two main power-
aware metrics to gauge and to optimize the energy-efficiency 
of a broadcast or multicast routing algorithm: (1) the total 
transmission power assigned to all nodes to be minimized [1-
5], and (2) the multicast/broadcast lifetime to be maximized 
[7-10]. Maximum lifetime broadcast/multicast routing 
algorithms can distribute packet-relaying loads for each node 
in a manner that prevents nodes from being overused or 
abused. Most recent work for the broadcast/multicast using 
the minimum total transmission power as optimization metric 
is based on the obvious intuition that conserving power will 
increase the network lifetime. However, this assumption may 
not always be valid, and will be demonstrated later in this 
paper.  

Since minimum energy multicast/broadcast routing 
cannot guarantee the maximum multicast/broadcast lifetime, 
we have chosen the second optimization metric. Previous 
work closest to the present paper consists of articles [7-10], 
however these papers contain neither a complete global 
optimal solution of the problem in the case of using omni-
directional antennas, nor theoretical analysis and heuristic 
algorithms in the case of using directional antennas. 

In this paper, we have systematically explored and solved 
the Multicast/Broadcast Lifetime Maximization (MLM/BLM) 
problem. We study this problem in the omni-directional 
antenna scenarios first because it provides insights into more 
general case of using directional antennas. Our work has 
extended the BLM results in [7] to the more general MLM 
problem. From the theoretical analysis, we have derived a 
group of efficient algorithms with a lower complexity than 
those in [7]. We then studied the same problem with 
directional antennas. Two polynomial-time algorithms, called 

S-DPMT and D-DPMT, have been implemented to handle 
significantly large networks with directional antennas. 
Experiment results show that minimum total power 
consumption does not guarantee maximum lifetime for either 
broadcasting or multicasting, and our D-DPMT algorithm 
provides much better performance (over double lifetime) than 
D-MIP [5, 6], which is one of the best minimum-energy 
multicast algorithms in directional antenna applications. 

The remaining of this paper is organized as follows. 
Section 2 presents our analytical models. Section 3 provides 
globally optimal solutions for the MLM/BLM problem in the 
special case of using omni-directional antennas. Section 4 
presents two heuristic approaches that can easily handle larger 
networks with directional antennas. Simulation results 
assessing the performance using several algorithms for many 
network examples are discussed in Section 5. Section 6 
summarizes our findings and points out several future 
research problems. 

II.  PRELIMINARIES 

A. The Directional Antenna Model 
We use an idealized adaptive antenna propagation model, 

where the antenna directionality at node v is specified as the 
angle of beamwidth θv such that θmin ≤ θv ≤ 360°. By ignoring 
the possibility of sidelobe interference, the transmitted energy 
is assumed to be uniformly distributed across the beamwidth. 
Based on this model, the minimal transmitted power required 
by node v to support a link between two nodes v and u 
separated by a distance rvu (rvu > 1) is proportional to α

vur  and 
its beamwidth θv, where the propagation loss exponent α 
typically takes on a value between 2 and 4. Without loss of 
generality, all receivers are assumed to have the same signal 
detection threshold, which is typically normalized to one. 
Then the transmission power pvu needed by node v to reach 
node u can be expressed as 

pvu = αθ
vu

v r
360

. (1)

B. Network Model and Multicast Tree 
The network is modelled by a simple directed graph G(N, 

A), where N is a finite node set, and A is an arc set 
corresponding to the unidirectional wireless communication 
links. As commonly done in others works [1-10], we assume 
the network is static. Let the energy supply set E = {e1, e2, …, 
en}, n = |N|, be the initial energy level associated with each 
node. We assume that any node v∈ N can choose its power 
level pvu, up to some maximum value pmax. Any directed arc (v, 
u) ∈ A if and only if pvu ≤ pmax. The maximal lifetime τvu of an 
arc (v, u) ∈ A is therefore 
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τvu = 
vu

v

p
e

 (2)

We consider source-initiated multicast operation where 
any node is permitted to initiate a multicast session. Each 
multicast session is supported by a set of multicast members 
M (consisting of the source node and all destination nodes), 
and other relay nodes. Formally, a multicast tree Ts with a 
source node s is modeled by a rooted tree of G, with a node 
set N(Ts) ⊆ N, and an arc set A(Ts) ⊆ A. A property of a rooted 
tree is that, for any node u in the tree, there exists a single 
directed path from s to u in the tree. The multicast lifetime 

)( sT
M

τ , with respect to the multicast tree Ts, is defined as the 
duration of the network operation time until the battery 
depletion of the first node in N(Ts). Given an initial energy 
supply {e1, e2, …, en}, the multicast lifetime )( sT

M
τ  can be 

easily obtained and is given below. A detailed derivation can 
be found in [7].  

}{min)(
)(),( vuTAuvs

s
M

T ττ
∈

=  (3)

C. Min-Max Multicast Tree 
In a directed graph G(N, A), each arc (v, u) ∈ A associates 

a positive weight wvu. Given a source node s and a subset M of 
nodes (s ∈ M ⊆ N), the min-max Steiner or multicast tree 
(MMMT) problem is to determine a directed tree rooted at 
node s that spans all nodes in M such that the maximum of the 
tree arc weight is minimized. The arc with the maximum 
weight of a multicast tree Ts is called the bottleneck arc, 
denoted as wM(Ts).  

}{max)(
)(),(

vu
TAuv

s wTw
s

M ∈
= , M ⊆ N (4)

Let ΩM be the family of the trees Ts of G spanning all the 
nodes in M. Objective of our multicast lifetime maximization 
(MLM) problem is to find a multicast tree with the maximum 
multicast lifetime *

Mτ  defined as:  
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T
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(5)

We observe from Equation 5 that if we define wvu = 1/τvu 
as the weight for each arc (v, u), then the MLM problem is 
equivalent to the MMMT problem. The min-max multicast 
tree Ts

* corresponding to the optimal solution of the MMMT 
problem, is therefore a multicast tree with the maximum 
multicast lifetime. As a special case of MLM problem when 
M = N, the BLM problem is finding a min-max spanning or 
broadcast tree (MMBT) of G. 

III. USING OMNI-DIRECTIONAL ANTENNAS 

In this section, we investigate the MLM/BLM problem in 
energy-constrained wireless ad-hoc networks with omni-
directional antennas. We assume that once a 
broadcast/multicast tree is established at the beginning of a 
broadcast/multicast session, the same tree is used for the 
whole session duration. 

A. The BLM Problem 
The solution of the BLM problem can be directly derived 

from the MMBT problem as explained in the last section. We 
like to point out that the minimum spanning rooted tree of a 
directed graph G is not necessarily a min-max broadcast tree 
of G (and vice versa), because the minimum and min-max 
problems have been shown to be not the same as in the 
undirected case [7]. However, we shall observe later that a 
min-max broadcast tree of a directed graph G can be simply 
obtained using the well-known Prim’s algorithm, which was 
originally designed to find an MST in an undirected graph.  

x = S(k-1)

s

y = S(k)x'

y'

 

x' = S(k’-1)

s

y' = S(k’)

x

y

 
(a) TDPT                                       (b) Tp-DPT 

Figure 1. Illustration of the proof for Theorems 1 and 2, (a) a directed 
Prim tree, (b) the corresponding pruned directed Prim tree. 

We define a directed Prim tree (DPT) as the spanning 
rooted tree constructed by Prim’s algorithm. In fact, if TDPT is 
a directed Prim tree, TDPT is also a min-max broadcast tree. In 
order to prove this, first recall the standard Prim algorithm for 
the formation of a minimum spanning tree. It maintains 
throughout its execution a single tree rooted at the source 
node. Initially, the rooted tree includes the source node only. 
Subsequently, new nodes are added to the tree iteratively one 
at a time on a minimum weight basis until all nodes are 
included in the tree. Let S(i) be the new node chosen at the i-th 
iteration of the tree incremental formation, where i = 1, 2, …, 
|N|-1, and S(0) = s. At the same time, a new arc (S(i-1), S(i)) is 
added in the tree with the minimum weight, i.e.  

)()1( iSiS
w

−
≤wvu, ∀v∈ iN1 ≡ ( )

0

i
j

j
S

=
∪ , u∈ iN2 ≡N- iN1 , (v, u)∈A. (6)

Theorem 1: In a directed graph G, if TDPT is a directed prim 
tree of G, TDPT is also a min-max broadcast tree of G. 

Proof: We assume that (x, y) is the arc of maximum weight of 
TDPT as shown in Fig. 1 (a), and it is added into the tree at the 
k-th iteration, i.e. wxy = )()1( kk SSw − = )( DPTTw

N
. For any 

broadcast tree Ts ∈ ΩN, there must exist an arc (v', u') to 
connect two node-disjoint sets kN1  and kN 2  (v' ∈ kN1 and u' 

∈ kN 2 ) in order to maintain the connectivity of the tree, and 
therefore wxy ≤ wv’u’ from Constraint (6). Finally, we 
have )( DPTTw

N
= wxy ≤ wv’u’ ≤ }{max

)(),(
vu

TAuv
w

s∈
 = )( sTw

N
, ∀ Ts 

∈ ΩN. That is, the maximum of the tree arc weight is 
minimized in TDPT over ΩM. Hence TDPT is a min-max 
broadcast tree of G. ■ 

When G is a complete undirected graph, the best known 
Prime algorithm has an O(|N|2) complexity. We extend it to 
deal with a directed graph, and denote the modified version as 
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the DPBT (Directed Prim Broadcast Tree) algorithm. The 
advantage of our approach using the DPBT algorithm is that it 
has only an O(|N|2) complexity. This can be compared to the 
complexity of Θ(|N|2log|N|) in the min-max broadcast tree 
algorithm [7]. 

B. The MLM Problem 
Similarly, the MLM problem can be formulated as an 

MMMT problem. We provide in the following a theorem that 
would give us a global optimal solution of MLM problem 
using a simple procedure PRUN, which returns the 
corresponding multicast tree spanning all the nodes in the 
multicast group M by pruning from a broadcast tree all 
transmissions that are not needed to reach the nodes in M. 

Theorem 2: In a directed graph G, if Tp-DPT is a pruned 
directed prim tree of G, then Tp-DPT is also a min-max 
multicast tree of G. 

Proof: We assume that (x, y) and (x', y') are the arcs of 
maximum weight of TDPT and Tp-DPT respectively, i.e. wxy = 

)( DPTTw
N

 and wx’y’ = )( DPTpTw
M − , as shown in Fig. 1 (b). 

We further assume wxy = )()1( kk SSw −  and wx’y’ = )'()1'( kk SSw − . Note 

that there is at least one multicast member z belonging to '
2
kN , 

i.e. z ∈ '
2
kN ∩M, since otherwise any node in '

2
kN  should be 

pruned, which contradicts the fact y' ∈ '
2
kN . For any multicast 

tree Ts ∈ ΩM, there must exist an arc (v', u') ∈ A(Ts) 
connecting '

1
kN and '

2
kN  (v' ∈ '

1
kN and u' ∈ '

2
kN ) in order to 

satisfy the requirement that there exists a directed path from s 
to the multicast member z. Therefore, from Constraint (6) and 
Equation (4) we have )( DPTpTw

M − = wx’y’ ≤ wv’u’ ≤  

}{max
)(),(

vu
TAuv

w
s∈

 = )( sTw
M

, ∀ Ts ∈ ΩM. Hence T p-DPT is a min-

max multicast tree of G. ■ 

Theorem 2 immediately suggests our algorithm for the 
MLM problem, called DPMT (Directed Prim Multicast Tree) 
algorithm. To obtain the optimal solution of the MLM 
problem based on a min-max broadcast tree, our approach 
only yields an additional O(|N|) complexity on the procedure 
PRUN.  

IV. USING DIRECTIONAL ANTENNAS 

We now turn our attention to the more difficult task of 
multicast time maximization using direction antennas. We 
must first incorporate the directionality of the antenna in the 
weight on each arc. By substituting Equation (1) into Equation 
(2) and taking reciprocal, we easily obtain:  

wvu =
v

svvu

e
Tr

⋅
⋅

360
)(θα

 (7)

where θ v(Ts) ∈ [θmin, 360°] is the antenna beamwidth applied 
by node v in the tree Ts. If v is a leaf node, then θ v(Ts) = θmin. 
Otherwise (v is a internal node) θ v(Ts) is set to be the 
minimum possible width that can cover all its children in Ts. 

In fact, in an energy-limited wireless ad-hoc network, it is 
desirable to be able to precompute the min-max 
broadcast/multicast tree for any given M. However our 

approaches in Section 3 are only for fixed weight vvu er /α  in 
the case of omni-direction antennas, but not necessarily valid 
for direction antennas (see Equation 7) since the value of θv(Ts) 
normally remains unknown until the tree is completely 
constructed. Unfortunately, we do not have any scalable 
solutions for the general MLM/BLM problem using adaptive 
antennas. In fact, we suspect and conjecture that this problem 
is NP-complete. Therefore we shall design heuristic 
algorithms for the MLM/BLM problem to explore the 
properties we have studied in Section 3. Similar to [5, 6], we 
have considered two approaches for broadcasting and 
multicasting with adaptive antennas. They are called the static 
weight approach and the dynamic weight approach, and their 
details are given in Section IV-A and IV-B respectively. 

A. Static Weight Approach 
This approach disregards the item θv(Ts)/360 in Equation 

(7) and directly applies DPBT or DPMT, under the 
assumption that the transmitting antennas are omni-directional. 
Then, after the tree is constructed in this manner, each internal 
node reduces its antennas beamwidth to the smallest possible 
value that provides coverage of the node’s downstream 
neighbors in the tree, subject to the constraint θmin ≤ θ v(Ts) ≤ 
360°. Thus in the process of the tree formation, the tree 
structure is independent of θmin. When applied to the DPBT 
algorithm, we shall call this scheme Static-weight DPBT (S-
DPBT). Likewise, when applied to the DPMT algorithm, the 
resulting scheme is called Static-weight DPMT (S-DPMT).  

B. Dynamic Weight Approach 
In this section, we introduce and describe the D-DPBT 

(Dynamic-weight DPBT) algorithm, which is another major 
contribution of this paper. D-DPBT is similar in principle to 
DPBT algorithm for the formation of directed Prim tree, in the 
sense that new nodes are added to the tree one at a time on a 
minimum weight basis until all nodes are included in the tree. 
Unlike the input arc weights wvu = vvu er /α in the DPBT, which 
are precomputed and remain unchanged throughout the 
execution of the algorithm, D-DPBT must dynamically update 
the weights wvu = )360/()( vsvvu eTr ⋅⋅θα  at each step to reflect 
the value θ v(Ts). A pseudo code of the D-DPBT algorithm is 
given below where Ts

(i) is the intermediate tree constructed at 
the i-th iteration using our D-DPBT algorithm. 

The D-DPBT(G, s) Algorithm 
1) Initialize Ts

(0) by setting N(Ts
(0))={s} and A(Ts

(0))=∅, 
and initialize arc weight as wvu = min /(360 )vu vr eα θ⋅ ⋅ . 

2). For (i = 1 to |N|-1) 
i) Find the arc (x, y) connecting tree node outside 

node such that the value wxy is minimized, i.e. wxy = 
min{wvu|v∈N(Ts

(i-1)), u∈ N-N(Ts
(i-1)) , and (v, u)∈ A}. 

ii) Construct Ts
(i) by setting N(Ts

(i)) = N(Ts
(i-1))∪{y} 

and A(Ts
(i))=A(Ts

(i-1))∪{(x, y)}. 
iii) Update wxu = )360/()( xsxxu eTr ⋅′⋅θα  for any node u∈ 

N-N(Ts
(i)) and (x, u)∈A, where N(T's) = N(Ts

(i)) ∪ {u} 
and A(T's) = A(Ts

(i)) ∪{(x, u)}. 
3) Return the final broadcast tree Ts

(|N|-1). 
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C. Example 
Table 1. Network configuration 

i 0 1 2 3 4 5 6 7 8 9 
xi 3.8 8.0 6.1 8.2 8.4 5.5 1.6 6.8 4.0 7.1 
yi 8.3 1.0 0.8 4.6 7.9 5.6 4.5 8.1 7.4 7.8 
ei 854 593 415 695 560 274 662 1001 698 244 
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         (a) Step 1: 0 → 8                         (b) Step 1: 8 → 5 
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   (c) final tree (D-DPBT/D-DPMT)   (d) final tree (S-DPBT/S-DPMT) 

Figure 2. Examples of broadcast/multicast tree construction using D-
DPBT/D-DPMT and S-DPBT/S-DPMT algorithms (Solid arcs 
indicate multicast tree arcs; light arcs indicate the pruned branches 
from the broadcast tree.) 

This simple example uses a ten-node network to 
illustrate the basic tree construction steps in D-DPBT. Nodes 
{0, 1, 2, 3, 4} are multicast members and Node 0 is the source. 
Each node is equipped with a directional antenna that has a 
minimal beamwidth of 30°. The node placement (xi, yi) and 
initial energy supply ei are listed in Table 1. No restrictions 
are placed on the maximum transmission power, and a 
propagation-loss exponent of α = 2 is assumed.  

Step 1: Initially, the tree consists of only the source node (i.e. 
N(T0

(0))= {0} and A(T0
 (0)) =∅0, and the initial weight value 

wvu on each arc (v, u) is set as [(xv -xu)2 +(yv -yu)2]⋅30/(ev ⋅360). 
We then determine the node u that Node 0 can reach with the 
minimum arc weight w0u (u = 1, …, 9). Based on the 
information from table 1, Node 8 is chosen and arc (0, 8) is 
added to the tree. Thus N(T0

(1)) = {0, 8} and A(T0
(1)) = {(0, 8)} 

as shown in Fig. 2 (a), where 0→8 denotes the arc chosen to 
be included in the tree at this step. We then update weigh for 
each arc (0, u) (u ∈ {1, 2, 3, 4, 5, 6, 7, 9}). For an example, 
after the new arc (0, 8) is included, the value of w07 is changed 
accordingly from 2 2

0 7 0 7 0[( ) ( ) ] 30/( 360)x x y y e− + − ⋅ ⋅  to 
2 2

0 7 0 7 0[( ) ( ) ] 807/( 360)x x y y e− + − ⋅∠ ⋅ , where ∠807 indicates 
the degree of angle between arc (0, 8) and arc (0, 7). 

Step 2: We then again determine the next new node to be 
added into the tree. We see that there are two alternatives, 
Node 0 or Node 8. Either node can adjust its transmission 
power level and antenna beamwidth to reach a new node 
outside {0, 8}. Since w85 = { }0 80,8

min ,u uu
w w

≠
, Node 5 is chosen 

at this time, and a new arc (8, 5) is added into the tree. At this 
point, we have obtained N(T0

(2)) = {0, 5, 8} and A(T0
(2)) = {(0, 

8), (8, 5)} as shown in Fig. 2 (b). Consequently, we update the 
weight for each arc (8, u), u ∈ {1, 2, 3, 4, 6, 7, 9}. For 
example, the value of w87 is changed accordingly from 

360
30])()[(

8

2
78

2
78

⋅
⋅−+−

e
yyxx

 to 
360

587])()[(

8

2
78

2
78

⋅
∠⋅−+−

e
yyxx

. 

The following iterative steps: This procedure is continued 
until all nodes are included in the tree, as shown in Fig. 2 (c). 
The order in which the nodes were added in the subsequent 
steps is: 8→7, 7→9, 7→4, 4→3, 3→1, 1→2, 0→6. 

Figures 2 (c) and (d) also show the multicast trees pruned 
from the corresponding broadcast trees produced by D-DPMT 
and S-DPMT respectively. 

D. Time Complexity 
The complexity of constructing the initial broadcast tree 

in the S-DPBT algorithm is O(|N|2) as explained in Section III. 
The overall complexity of the beam reduction operation for all 
transmitting nodes using the sector-choosing algorithm [6] is 
O(|N|2log|N|). A similar complexity analysis can be made for 
the S-DPMT algorithm. Therefore, the time complexity of 
both algorithms is O(|N|2log|N|). 

The time complexity of D-DPBT is O(|N|3log|N|). This 
can be explained as follows. In Step 2-i), a minimum-weight 
arc (x, y) must be chosen, and the complexity of this search is 
at most O(|N|2). Then in Step 2-ii), the new arc (x, y) is added 
into the tree with a complexity of O(1). Finally, in Step 2-iii) 
the weights that relate to the new child’s parent x must be 
updated. For each outside node u, the complexity of the 
weight update operation is O(|N|log|N|) using the sector-
choosing algorithm [6], which involves to calculate the 
minimum beamwidth of node x after the new child u is added. 
Since the number of children outside the tree the node x may 
have is at most |N| – 1, the overall complexity of Step 2-iii) is 
O(|N|2log|N|). Therefore, the complexity at each iteration of 
Step 2) is at most O(|N|2log|N|). Since there are |N| steps, the 
overall complexity is at most O(|N|3log|N|). Similar to the 
approach we have applied in Section III-B, the D-DPMT 
(Dynamic-weight DPMT) algorithm simply prunes the 
broadcast tree obtained using D-DPBT. It has the same 
complexity of O(|N|3log|N|) as D-DPBT. 

V. PERFORMANCE EVALUATION 
We have evaluated the performance of a set of heuristic 

algorithms I = {S-DPMT, D-DPMT, RB-MIP, D-MIP}, 
where RB-MIP and D-MIP are two well-known minimum-
energy multicast algorithms using directional antennas [5, 6]. 
We specify a normal distributed initial energy supply with a 
mean of 5000-unit energy and a variance of 2000 in a 100-
node network. Other experimental setup is the same as in 
Section IV-C. In all cases, our results are based on the 
performance of 100 randomly generated network examples. 
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Table 2. Mean and variance of normalized multicast lifetime with normal distributed energy supply 

|M| S-DPMT D-DPMT RB-MIP D-MIP S-DPMT D-DPMT RB-MIP D-MIP 
 °= 30minθ  °= 60minθ  

25 (0.53, 0.044) (0.98, 0.005) (0.26, 0.023) (0.54, 0.076) (0.74, 0.040) (0.98, 0.005) (0.32, 0.030) (0.47, 0.062) 
50 (0.49, 0.031) (0.99, 0.003) (0.24, 0.021) (0.51, 0.073) (0.71, 0.040) (0.98, 0.004) (0.31, 0.028) (0.49, 0.077) 

100 (0.47, 0.026) (0.98, 0.005) (0.20, 0.013) (0.52, 0.081) (0.68, 0.032) (0.99, 0.003) (0.29, 0.027) (0.47, 0.073) 
 °= 90minθ  °= 360minθ  

25 (0.88, 0.024) (0.98, 0.004) (0.38, 0.045) (0.45, 0.071) (1.00, 0.000) (1.00, 0.000) (0.45, 0.061) (0.45, 0.061) 
50 (0.87, 0.026) (0.98, 0.004) (0.37, 0.041) (0.48, 0.080) (1.00, 0.000) (1.00, 0.000) (0.46, 0.066) (0.46, 0.066) 

100 (0.85, 0.027) (0.99, 0.002) (0.35, 0.038) (0.45, 0.071) (1.00, 0.000) (1.00, 0.000) (0.45, 0.058) (0.45, 0.058) 
 

To gauge the performance of our algorithm, we compare 
the normalized multicast lifetime τM

i
 /τM

BEST defined as the 
ratio of actual multicast lifetime τM

i obtained using heuristic 
algorithm-i to the best solutionτM

BEST =max{τM
i | i∈I }. This 

metric allows us to facilitate the comparison of different 
algorithms over a wide range of network examples.  

Performance results for 100-node networks with normal 
distributed energy supply are shown in Table 2. For all the 
cases, D-DPMT performs much better than the other 
algorithms. On the average, D-DPMT has about double the 
lifetime for all possible minimum beamwidth when compared 
to D-MIP, which is one of the best minimum-energy multicast 
algorithms in directional antenna applications. This 
improvement ratio, when compared to RB-MIP, can be up to 
2 ~ 5. We attribute the improved performance of the D-DPMT 
algorithm to the DPMT algorithm’s property of finding min-
max multicast tree. In fact, as an extension of DPMT, the D-
DPMT algorithm partially possesses this property. 
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(a) |M| = 25                                      (b) |M| = 100 

Fig 3. Performance comparison based on normalized multicast 
lifetime (denoted by L) and normalized tree power (denoted by P) for 
100-node networks with normal distributed energy supply. 

In order to investigate the relationship of two types of 
energy-efficiency related performance metrics, normalized 
multicast lifetime and normalized tree power, we depict them 
together as shown in Fig. 3. We observe that the minimal total 
power consumption does not guarantee maximum lifetime for 
a network either for broadcast or multicast. For example in 
Fig. 3, D-DPMT uses about 20% more energy than D-MIP, 
but improves multicast lifetime over 100% than D-MIP. 

VI. CONCLUSION 
In this paper, we have studied some of the fundamental 

issues associated with maximum lifetime broadcasting and 
multicasting in energy-constrained wireless ad-hoc networks, 
and we have presented preliminary algorithms for cases of 
both omni-directional antennas and adaptive antennas. Our 
analysis and experiment show that: (1) our DPMT/DPBT 
algorithm always maximizes the multicast/broadcast lifetime 
in the case of using omni-directional antennas, (2) the D-
DPMT/D-DPBT algorithm, which exploits the property of 
minimizing the bottleneck arc weight, provides much better 
performance than the other algorithms over a wide range of 
network examples. A major challenge, and a topic of 
continued research, is the development of distributed 
algorithms that provide the benefits that have been 
demonstrated in this paper.  
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