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tion. As a result, the ability to populate web sites withcontent derived from large databases has become the key tobuilding enterprise web sites. Tools addressing this prob-lem range from low-level CGI-bin scripts to more sophisti-cated tools provided by most major DBMS vendors, thatenable embedding SQL queries in HTML templates.In parallel, a new paradigm for building and maintain-ing web sites based on declarative speci�cations has arisenin the research community [9, 3, 7, 2, 20]. Two main fea-tures underlie this paradigm. First, a declarative speci-�cation is based on a logical model of the web site, thatcaptures the content and structure of the web site and ismeant to be independent of its graphical presentation. Sec-ond, the logical model of the site is de�ned as a view, insome declarative language, over the data underlying thesite. Web-site management systems based on declarativerepresentations have been shown to provide good supportfor common tasks which are otherwise tedious to perform,such as automatic site updates, site restructuring, creationof multiple versions of a site from the same data, and spec-i�cation and enforcement of integrity constraints [10].An example of this paradigm, which is the focus of thispaper, is the case where web sites' content is derived fromlarge relational databases. We model web sites as graphswhose nodes represent pages in the web site or data itemsassociated with pages, and the links in the graph representeither hyperlinks between pages or association of data withpages in the site. The structure of the web site is de�nedintensionally by a site schema, which can be regarded as ahyperlink view de�ned over the relational database.A critical issue that arises when sites' contents are popu-lated from large databases is when to compute the pages inthe site [21] and/or the corresponding nodes in the logicalmodel. One approach is to materialize the site completely,i.e., evaluate all the database queries in the site de�ni-tion, and compute the complete site before users browseit. Unfortunately, this approach has several obvious draw-backs. First, precomputation cannot be applied to siteswith forms (since the inputs are only known at run-time).Second, materializing the site would imply an importantspace overhead, often even greater than duplicating the en-tire database, since the same information in the database



can appear in multiple web pages. Finally, propagatingupdates from the database to the web site is costly oncethe site has been materialized.A second extreme approach (deployed by commercialtools for extracting content of web sites from databases)is to precompute only the root(s) of a web site, and whena page is requested, to issue to the database a set of pa-rameterized queries that extract the necessary data. Themain disadvantage of this approach is that some queriesmay be too expensive to evaluate at run-time, which isunacceptable given the interactive nature of web access.Furthermore, evaluating queries at run-time may result inrepeated computation. An obvious repetition occurs whenmultiple browsers request the same page. A second, moreinteresting observation, is that successive queries issued bya single browser share much of their computation.Multiple requests for the same web page could conceiv-ably be treated by web caching techniques. However, thesesolutions have two problems. First, current caching tech-niques do not cache dynamically generated pages. Second,even if caching techniques are extended (e.g., by server-sidecaching for dynamically generated pages), the granularityof an entire HTML page is too coarse. Clearly, in order todevelop optimizations based on sharing of computation inquery sequences, a deeper semantic analysis of the web-sitestructure is required.Currently, since response time is the main priority, website builders end up hardwiring optimizations into the de-sign of their sites. Such hardwiring is a labor intensive taskwhich needs to be repeated whenever changes are made tothe site's structure. This paper considers the problem ofautomatically optimizing the run-time behavior of the dy-namic evaluation of declarative web sites. We describe aframework, where a declarative speci�cation is compiledinto a run-time policy. The policy decides which actionsto perform and which queries to evaluate depending onthe browsing history. Run-time policies are able to expressseveral traditional optimizations, such as view materializa-tion and data caching, and novel optimizations that dependon the structure of the web site, such as optimization un-der preconditions and lookahead computation. In a sense,the distinction between the declarative speci�cation of theweb site and the run-time policy is analogous to the dis-tinction between a declarative query and a query executionplan in a traditional database. As in the latter context,we automatically compile the declarative speci�cation intoan \optimal" run-time policy which is \equivalent" to thedeclarative speci�cation, using a global cost model, statis-tics on the database and browsing patterns.As a �rst cut, a possible approach to our problem is toconsider the set of parameterized queries that are executedagainst the database as a particular workload, and to applysome of the existing techniques aimed at optimizing a givenworkload. Such techniques have been considered in variouscontexts, such as view materialization [24, 13, 12, 14, 6],index selection, data caching [16, 15, 8], multiple queryoptimization [23], and reuse of query invariants [17, 22].However, none of the above techniques exploit a key as-pect of our context, namely the structure of the web site.The structure of a web site imposes a topology over the pos-sible navigational paths through the site and therefore onthe set of queries in the workload. More precisely, at eachpoint in the site, while issuing new queries to the database,we have an additional valuable information about the past

queries issued to the database (which we call the browsingcontext), as well as extra information about the likelihoodof possible future queries that may be executed. In this pa-per, we show that exploiting this structure leads to signif-icant savings over and above the application of the knowntechniques mentioned above. As a consequence, our tech-niques are also useful beyond web-site management, forcontexts in which the application imposes an analyzabletopology on the workload of queries (e.g. SQL queries em-bedded in programming languages or trigger chains).In summary, we make the following contributions.� We describe a framework for automatic compilation ofweb-site speci�cations. The framework distinguishes be-tween a declarative speci�cation of the structure andcontent of a web site, and a run-time policy governingthe computation of the web site. The formalism for de-scribing run-time policies can encompass traditional op-timizations as well as novel ones speci�c to our context.� We describe several optimization techniques for speed-ing up the run-time behavior of web sites. One classof optimizations includes precomputing a set of viewsand caching results of certain computations. The secondclass of optimizations exploits the structure of the website and includes (1) simpli�cation of queries based onknown preconditions, and (2) lookahead computation,i.e., computing more data than is immediately neededfor use in nodes that are likely to be visited subsequently.We evaluate the impact of these optimization techniqueson a web site derived from the TPC/D data, and showthat each of them, even in isolation, yields signi�cantspeedups.� Based on our experiments, we describe a set of guidelinesfor constructing an algorithm for compiling declarativespeci�cations into run-time policies. We show that ap-plying these guidelines in our experimental setting pro-duced high-quality run-time policies.� We describe the implementation of Strudel-R system1,which embodies the ideas described in the paper.The paper is organized as follows. Section 2 describesdeclarative web-site management systems and di�erentrun-time management techniques. Section 3 formally de-�nes the problem we consider in the paper. Section 4 de-scribes several optimization techniques and evaluates theirimpact. Section 5 formally de�nes run-time policies, andSection 6 describes the compilation methodology. Finally,Section 7 describes the implementation of Strudel-R, andthen we conclude with related work.2 Declarative speci�cation of web sitesWe begin by describing the general architecture of declar-ative web-site management systems, as embodied in theStrudel-R system. We note that the key architectural as-pects of the Strudel-R are common to other systems fordeclarative web-site management [2, 3, 20, 7]. Strudel-Ris based on a logical representation of a web site, called asite graph, which is independent of its graphical presenta-tion or of the underlying data management systems. Thesite graph models the pages in the web site, the links be-tween them, and the data associated with each page. A1Strudel-R is a derivative of the Strudel system [9] wherethe content is derived from a single relational database system,as opposed to multiple external semi-structured data sources.



site graph in Strudel-R is de�ned intensionally, via a siteschema. Applying the site schema to a particular instanceof the database results in a site graph. The site graphcomputed by the above procedure can be converted into abrowsable web site by applying HTML templates to eachof the nodes in the graph.The Strudel-R system contains two components. Thesite graph generator applies the intentional de�nition ofthe site schema to the underlying data and produces (frag-ments of) the site graph. The HTML generator appliesHTML templates to nodes in the site graph, resulting inbrowsable HTML pages. In the rest of this section we de-scribe site graphs and site schemas. The details of theHTML templates [9] are not relevant to our discussion.2.1 Site graphsA site graph is a directed, rooted, labeled graph. There aretwo types of nodes in the site graph: internal nodes cor-responding to web pages, and leaf nodes corresponding todata values. 2 An edge between two internal nodes, calleda ref arc, models a hyperlink, or the nesting of page compo-nents; an edge from an internal node to a leaf, called a dataarc, models data values to be displayed on the page. Ev-ery arc l in the site graph is labeled with a string label(l),and with a string anchor(l): label(l) is the name of therelationship between the two nodes (e.g., \Region"), whileanchor(l) is the string shown on the HTML link corre-sponding to the arc (e.g., the name of the region \Eu-rope").In Strudel-R pages are classi�ed into a small num-ber of relatively homogeneous collections [9]: for examplenodes corresponding to customers form a collection, whilethose corresponding to suppliers another. We refer to thecollections of pages in a web site as site collections. Eachinternal node can be uniquely identi�ed by a term of theform F (a1; : : : ; an), where F is the collection's name, anda1; : : : ; an are data items from the database: such an ex-pression is called a Skolem term, and n � 0 is the collec-tion's arity. We can always model a highly specialized nodeas a collection with one member, e.g., the root collectionRoot is of arity 0 and has a single member: Root().2.2 Site schemasA site schema is a directed, rooted, labeled graph G,whose nodes are partitioned into internal nodes and leafnodes. There is one internal node for each site collectionF , and that node is labeled by a Skolem term of the formF (X1; : : : ; Xn) (F ( �X), in short), where F is a site col-lection name and X1; : : : ; Xn are variables. The root islabeled by a 0-arity Skolem function: in this paper it willalways be Root(). Leaf nodes are labeled with single vari-ables and correspond to data items. As before we classifyedges into ref arcs and data arcs.A ref arc between two internal nodes F1( �X1) and F2( �X2)in the site schema is labeled by a query specifying the con-ditions needed for the existence of an arc between instancesof F1 and F2 in the site graph. Similarly a data arc betweenF1( �X1) and Y has a query specifying the conditions needed2To simplify the exposition, our discussion does not includethe formalisms needed to model forms in HTML pages, as wellas the internal structure within a page. However, we note thatextending site speci�cations to include the above features is rel-atively straightforward.
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Q19Q15Figure 1: The site schema for the TPC/D example. Forclarity, we omitted the data arcs, the anchors and the la-bels.for the existence of a corresponding arc in the site graph.In this paper we use the notation of conjunctive queries(corresponding to select-project-join queries in SQL) of theform: q( �X) : �e1( �X1); : : : ; em( �Xm);where e1; : : : ; em are relations in the database and�X; �X1; : : : ; �Xm are tuples of variables or constants. Wedenote all variables in q by V ars(q), and call the variablesin �X distinguished variables. Thus, arcs in the site schemaare labeled as follows.� Ref Arcs: an arc from F1( �X1) to F2( �X2) is labeledby a triple: (q; anchor; label), where: (a) q is a conjunc-tive query whose distinguished variables are �X1[ �X2, (b)anchor is either a string or one of the distinguished vari-ables of q, and (c) label is a constant string associatedwith the arc.� Data arcs: an arc from F ( �X) to Y is labeled by a pair:(q; label), where q and label have the same meaning asabove and �X [ fY g are distinguished variables of q.Example 2.1 We use the following example throughoutthe paper and in our experiments. Suppose we want toproduce a browsable version of the data contained in theTPC/D benchmark. The database contains informationabout products, customers, and orders. A simpli�ed ver-sion of the TPC/D schema is given below.Part(partkey, name, brand, type, size)Supplier(suppkey, name, address, nationkey, phone)PartSupp(partkey; suppkey, availqty, supplycost, comment)Customer(custkey, name, address, nationkey, phone)Nation(nationkey, name, regionkey, comment)Region(regionkey, name, comment)Lineitem(orderkey; linenumber, partkey, suppkey, quantity)Order(orderkey, custkey, orderstatus, totalprice, orderdate)The site schema shown in Figure 1 provides the follow-ing organization of the data. The root node has two links tosuppliers (Suppliers()) and customers (Customers()). Bothsuppliers and customers are grouped by geographical re-gion (e.g., SupplierReg(RK)), and inside each region by na-tionality (e.g., SupplierNat(NK)). Suppliers and customershave further links to detailed information about orders.Speci�cally there is one page for each customer-supplierpair (CustSupp(CK,SK)) where the customer ordered fromthe supplier: that page can be accessed from both the sup-plier and customer pages. From here there are further links



to pages detailing orders placed by that customer to thatsupplier. Of course, in designing the web site, we also addlinks back to facilitate navigation. The de�nitions of thequeries in the site schema are given in Figure 2.2.3 Semantics of site schemasA site schema G and a database instance D de�ne a uniquesite graph G(D) as follows.� Create ref arcs: let l = (q; anchor; label) be an arcfrom F1( �X1) to F2( �X2). Let q(D) be the result of eval-uating q over the database D. For each tuple �a 2 q(D),we de�ne �a1 and �a2 as restrictions of �a to the variables�X1 and �X2, respectively. Then, G(D) contains a linkbetween F1(�a1) and F2(�a2), labeled label and whose an-chor is the value of the variable anchor in the tuple �a.We note that if the nodes F1(�a1) and F2(�a2) were notin the site graph, then they are added as a side e�ect ofinserting the arc.� Create data arcs: let l be a data arc in G betweenthe nodes F ( �X) and Y , labeled by (q; label). For each�a 2 q(D) we de�ne �a1 and a2 as projections of �a on �Xand Y , respectively. Then, G(D) contains a link betweenF (�a1) and a2, labeled label.� Root node: the root node in G(D) is Root().� Eliminate unreachable nodes: any node in the sitegraph that is not reachable from the root is removed.2.4 Strategy for site graph evaluationThere are many strategies for computing the site graph.The semantics described above provide a natural methodto compute the entire site graph in advance of browsing.We refer to it as the static evaluation strategy.An alternative strategy is to expand the site graph dy-namically, starting from the root and computing the nodesin the site graph only upon request. We recall that eachweb page corresponds to a node F (�a) is the site graph.Therefore, an HTTP request for a given page translatesinto a request for a node of the form F (�a). To constructthat page we need to compute all the data appearing in thepage as well as all the outgoing HTML links. Formally, thistranslates into the following procedure.Given a site schema G and a database instance D, inorder to produce the node F (�a), the dynamic algorithmproceeds as follows:� Create ref arcs: let l(q; anchor; label) be an arc fromF ( �X) to F1( �X1). Let q(D) be the result of evaluating q^( �X = �a) over the database D. For each tuple �b 2 q(D),we de�ne �b1 to be the projection of �b on �X1. Then, G(D)contains a link between F (�a) and F1(�b1), labeled labeland whose anchor is the value of the variable anchor inthe tuple �b.� Create data arcs: let l = (q; label) be a data arc fromF ( �X) to Y . For each tuple �b 2 q(D) we de�ne b1 to bethe projection of �b on Y . Then, G(D) contains a linkbetween F (�a) and b1, labeled label.Starting at Root() and applied repeatedly (e.g., in depth�rst order), this procedure eventually computes the en-tire site graph. It is important to note that this graph isprovably isomorphic to the site graph given by the staticcomputation, assuming that the database is not changingduring the computation.

3 Problem de�nitionThe static and the dynamic evaluation algorithms repre-sent two extreme strategies, with obvious advantages anddisadvantages. The goal of our work is to automatically�nd an optimal intermediate strategy for a given web site,that combines pre-computation, caching and dynamic eval-uation of the requested data. The optimal strategy is ex-pressed as a run-time policy, which speci�es which data toprecompute or cache and which actions to execute at eachpage request, depending on the history of the browsing.In this section we set up a general framework for study-ing run-time policies and formally de�ne the optimizationproblem we consider.3.1 Inputs to the optimization problem3.1.1 Statistics on browsing patternsTo evaluate a particular run-time policy, it is necessary toknow the characteristics of the browsing patterns. There-fore, we assume that we have access to the following statis-tics:� Node probability distribution: let F1; : : : ; Fn be theset of internal nodes in the site schema. We assume theavailability of the probability distribution (p1; : : : ; pn),where pi is the probability that a request for a page onthe site (from any user) will be for an instance of Fi.� Arc probability distribution: for internal node F inthe site schema, with the set of successors F1; : : : ; Fm,we assume the availability of the probability distribution(l0; l1; : : : ; lm), where li is the probability that a user willrequest a page of type Fi after viewing a page of type F ,and l0 is the probability that a user does not follow oneof F 's children (i.e., either stops browsing or goes backto a predecessor page).� Value probability distribution: for each internalnode F in the site schema, let (F (�a1); : : : ; F (�as)) be itsinstances in the site graph. We assume that we havethe probability distribution (r1; : : : ; rs), where rj is theprobability that a request for a page of F will be forF (�aj).� Context probability distribution: since in ourframework the actions to evaluate a speci�c node de-pend on the browsing history leading to that point, weassume that there exists an integer k, such that for everyinternal node F and and a path P = F1; : : : ; Fl in thesite schema where Fl = F and l � k, we can obtain theprobability that, given a request for an instance of F , itwas made after following the path P .The statistics above can be obtained in several ways.One possibility is to analyze the web site log and anotheris for the web site administrator to estimate them based onknowledge of the application. It is important to emphasizethat, since these statistics (except for the value probabilitydistribution) concern the site schema, they are independentof database updates.3.1.2 Application constraintsClearly, the choice of an optimal run-time strategy dependson speci�c constraints of the given application. In ourframework, we identify the following measures associatedwith a given web site:



Q1(RK, RN) :- Region(RK, RN, )Q2(NK, RK, NN) :- Nation(NK, RK, NN, )Q3(SK, SN, NK) :- Supplier(SK, SN, ,NK, )Q4(CK, CN, NK) :- Customer(CK, CN, , NK, )Q5(SK, RK, RN) :- Supplier(SK, , , NK, ), Nation(NK, , RK, ), Region(RK, RN, )Q6(CK, RK, RN) :- Customer(CK, , , NK, ), Nation(NK, , RK, ), Region(RK, RN, )Q7(PK, SK, PN) :- Part(PK, PN, , , ), PartSupp(PK, SK, , , )Q8(CK, SK, CN) :- Customer(CK, CN, , , ), LineItem(OK, , , SK, ), Order(OK, CK, , , )Q9(CK, SK, SN) :- Supplier(SK, SN, , , ), LineItem(OK, , , SK, ), Order(OK, CK, , , )Q10(OK, CK, OD) :- Order(OK, CK, , , OD)Q11(CK, SK, PT) :- LineItem(OK, , PK, SK, ), Order(OK, CK, , , ), Part(PK, , , PT, )Q12(CK, SK, PK, PN) :- LineItem(OK, , PK, SK, ), Order(OK, CK, , , ), Part(PK, PN, , , )Q13(CK, SK, SN) :- Supplier(SK, SN, , , ), LineItem(OK, , , SK, ), Order(OK, CK, , , )Q14(CK, SK, CN) :- Customer(CK, CN, , , ), LineItem(OK, , , SK, ), Order(OK, CK, , , )Q15(CK, SK, PK, PN, PT) :- LineItem(OK, , PK, SK, ), Order(OK, CK, , , ), Part(PK, PN, , PT, )Q16(CK, SK, PK, PN) :- LineItem(OK, , PK, SK, ), Order(OK, CK, , , ), Part(PK, PN, , , )Q17(CK, SK, PK, OD) :- LineItem(OK, , PK, SK, ), Order(OK, CK, , , OD), Part(PK, , , , )Q18(CK, SK, PK, PN, OD) :- LineItem(OK, , PK, SK, ), Order(OK, CK, , , OD), Part(PK, PN, , , )Q19(CK, SK, PK, OK, OD) :- LineItem(OK, , PK, SK, ), Order(OK, CK , , OD), Part(PK, , , , )Q20(PK, SK, SN) :- PartSupp(PK, SK, , , ), Supplier(SK, SN, , , )Q21(SK, PK, SN) :- Supplier(SK, SN, , , ), PartSupp(PK, SK, , , )Q22(CK, SK, PK, CN) :- Customer(CK, CN, , , ), LineItem(OK, , PK, SK, ), Order(OK, CK, , , )Figure 2: Queries labeling the arcs in the site schema in Figure 1. The attribute names in boldface are bound variablesin the dynamic evaluation.� size(WS): the size of the (possibly) materialized HTMLpages plus the size of the (possibly) precomputed orcached data;� age(WS): every data item I shown in the web site de-pends on a set of data items dep(I) in the database.The age of a web site denotes the maximum di�erencebetween the timestamp of a data item I in the web siteand the timestamp of a data item in dep(I).� wait(WS): the maximum estimated cost of all thedatabase operations needed to compute a web page.We assume that a given web site has a set of given pa-rameters (S;A;W ) such that we have the following con-straints: (size(WS) < S; age(WS) < A;wait(WS) < W ),specifying that we should not exceed space S, the maxi-mum waiting time should be at most W , and the web sitefreshness should be at least A.3.2 Cost modelAmong the evaluation strategies that satisfy the above con-straints, our goal is to �nd the strategy minimizing thewaiting time for expanding an instance of a node in thesite schema, weighted by the probability of requesting thatnode. Formally, we denote by waitRP (F ( �X)) the averagetime for executing the queries needed for expanding a nodeof type F ( �X) in a run-time policy RP . Let F1; : : : ; Fn bethe set of internal nodes in the site schema. The cost for-mula that we use to estimate the e�ciency of a speci�crun-time policy RP for a web site is:cost(RP ) = nXi=1 pi � waitRP (Fi) (1)3.3 Equivalence of run-time policiesIdeally, our optimization algorithm should choose amongequivalent run-time policies, i.e., policies that produce

identical site graphs. However, equivalence of site graphsis tricky to de�ne when the underlying data is updatedconcurrently with the site graph expansion. In this work,we consider a weak equivalence condition, by imposing anage constraint of k time units on the site. In this case,we are assured that all the data associated with a givenpage is computed on snapshots within k time units fromone another.4 Optimization techniques for web-sitemanagementIn order to develop a meaningful formalism for specify-ing run-time policies, we �rst need to consider which opti-mizations such a formalism should capture. In this sectionwe describe several techniques for optimizing the dynamicevaluation of web sites, and validate their utility. The �rstclass of optimizations includes precomputation of material-ized views and dynamic caching of data. The second classis more specialized for our context, and exploits the struc-ture of the web site in order to reformulate the queries inthe site de�nition and to determine useful caching policies.We evaluate the impact of our optimizations on theStrudel-R system. Our experiments were performed ona web site derived from the TPC/D benchmark. The ex-periments were run on a TPC/D database at scale factor1, resulting in a database of 1.84GB. We used the OracleDBMS Version 7.3.2 and a dedicated Ultra Sparc I machine(143 MHz and 128MB of RAM), running SunOS Release5.5. The indexes on the database were manually tunedfor performance before applying our optimizations.Our experiments measure the average time for thedatabase operations needed to expand a node in the sitegraph. The numbers are generated as a result of running100 independent browsing sequences of length at most 20.The browsing sequences are generated by choosing the nextweb page randomly using a uniform distribution over theemanating links. Note, however, that since our experi-



ments report speedups per node in the site schema, as op-posed to the global utility of a run-time policy, the uniformdistribution does not bias the results. The experiments re-port only the running times for the nodes a�ected by theproposed optimization and are all presented on a logarith-mic scale.4.1 Query simpli�cation under preconditionsThe �rst optimization we consider is a query rewritingtechnique that exploits the knowledge about the path usedto reach a given node. When evaluating a parameterizedquery with a particular input, we can often simplify thequery if we know which previous query produced the input.For example, assume the user requests the node F2(�a2) af-ter visiting F1(�a1), and q0 is the query on the correspondingarc between F1 and F2 in the site schema. According tothe semantics, the tuple (�a1; �a2) is in the result set of q0. Inorder to expand F2(�a2) we have to evaluate all the querieslabeling the outgoing arcs from the node F2 in the siteschema, with the additional selection �X2 = �a2. Let q beone of those queries. In some cases the query q^( �X2 = �a2)can be simpli�ed given that we know that the tuple (�a1; �a2)is in the result set of q0 (i.e., some conjuncts will be re-moved from the query). The following example illustratesthis optimization, which we call simpli�cation under pre-conditions.Example 4.1 Consider a request for an instance of thenode CustSuppPart(CK,SK,PK) in Figure 1. In order toexpand this node we have to compute the following query.In the rest of the paper we note in bold the variables whichare bound in the evaluation of the queries.Q16(CK,SK,PK,PN) :- Order(OK,CK, , , ),Part(PK,PN, , , ), LineItem(OK, ,PK,SK, )We observe that one way we could have reached this nodeis from CustSupp(CK,SK) via the edge Q12. To be moreprecise, the values binding the variables CK, SK, PK shouldbe in the answer set of the query:Q12(CK,SK,PK,PN) :- Part(PK,PN, , , ),Order(OK,CK, , , ), LineItem(OK, ,PK,SK, )Based on this knowledge, it is possible to expand the in-stance of the CustSuppPart(CK,SK,PK) node by computingthe following simpler query:Q16'(CK,SK,PK,PN) :- Part(PK,PN, , , )Query simpli�cation under preconditions is a form of queryrewrite. Unlike traditional query rewriting techniques,this rewriting cannot be done manually by the person writ-ing the queries for the site speci�cation. For example, theuser cannot manually replace Q16 in Figure 1 with Q16' forseveral reasons. First, this query is not safe for the staticevaluation (since some variables in the head do not occurin the body). Second, we may not use this query even dur-ing dynamic evaluation if the time between page requestsexceeds the age limit of the site. In that case we need touse the original query Q16. Third, the correctness of thisrewrite depends on the user's browsing context. Whenthere are multiple paths to a node in the site schema, weobtain di�erent rewritings of the query depending on thepath traversed.
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Figure 3: The left graph shows the speedups obtainedfrom query simpli�cation under preconditions. The rightgraph shows the running times of data caching (hits ormisses), view materialization and the original queries.When query simpli�cation under preconditions modi�esthe query, it always reduces the running time. Figure 3(left) shows the running times for the naive dynamic run-time policy versus the policy where all queries are simpli-�ed under preconditions (this plan is referred to as Plan 00in the �gures). As we can see, we obtain up to a 4 foldspeedup in performance (for the node CustSuppPartDate).The �gure shows all the nodes that bene�ted from querysimpli�cation under preconditions. In subsequent experi-ments, we always compare the additional optimizations tothe plan obtained after applying query simpli�cation underpreconditions.4.2 View materializationAnother way to speed up the web-site's performance is toprecompute materialized views. The problem is to decidewhich set of views V to materialize in order to optimizethe evaluation of the parametrized queries involved in therun-time of the web site. The problem of choosing a set ofmaterialized views for a given query workload has receivedsigni�cant attention in the recent literature [24, 13, 12, 14,6]. Two issues are important when deciding which views tomaterialize. First, it is essential to choose simultaneouslythe views and their respective indexes. Second, we need toconsider views with outerjoins. In order to simultaneouslyoptimize two queries q1 and q2 which have a common sub-query q3 (i.e., q1 = q3^q01 and q2 = q3 ^q02), it is attractiveto materialize the outerjoin of the queries q3, q01 and q02,i.e., materialize the expression (q31��q01)1��q02. In this case,the materialized result can be reused in both q1 and q23.Example 4.2 As an example, assume we decide to mate-rialize the following view with an index on the attributeSK:V(CK,SK,PK,CN) :- Order(OK,CK, , , ),LineItem(OK, ,PK,SK, ), Customer(CK,CN, , , )The view V can be used in answering the queries Q14, Q8and Q22. We measured considerable speedup rates for the3We note that algorithms for rewriting queries using viewsare actually simpler when joins are replaced by outerjoins.



respective nodes: 32 for PartSupp nodes and 18 for Suppliernodes. However, the additional space needed for the viewand the indexes is around 600M (27% of the size of theoriginal database).4.3 Data cachingView materialization decreases query response time, butcomes at the expense of signi�cant space overhead and highmaintenance costs. An alternative strategy is to cache atrun-time the result of parameterized queries executed sofar [8, 16] and reuse the result if the same computation isrequested again. In this way we can store less data and stillobtain signi�cant speedups in certain cases. Furthermore,it is often cheaper to periodically invalidate data in a cachethan to pay the cost of view maintenance.Therefore, our optimization algorithm stores the re-sult of certain parameterized queries in particular relationscalled cache functions. Formally, a cache function f is apair (qf ; input(f)), where qf is a conjunctive query and theinput variables input(f) are a subset of the distinguishedvariables of qf . The function encodes a mapping �a 7! S,where �a is a binding for input(f), and S is the set of tuplesin the answer of qf whose projection on input(f) is �a.In our system, cache functions are implemented as ta-bles in the DBMS, with the same schema as their corre-sponding view qf . At run-time, the corresponding tableis initialized to be empty, and tuples from qf are insertedwhenever qf is evaluated with new bindings for the inputvariables. We impose the following invariant on the con-tents of a cache function: for any constant �a, either thecache function does not contain any tuples from qf whoseprojections on input(f) is �a, or it contains all such tuples.An important question is how functions are used atrun-time. Assume that we have a cache function f =(qf ; input(f)) stored in a table T and a query q to be ex-ecuted. Let q0 be the equivalent reformulation of q thatuses the view qf and let q00 be obtained by replacing theoccurrence of qf in q0 by T. The result of the queries qand q00 are identical if and only if all the needed values forcomputing q00 are cached in T. Therefore, before comput-ing q0 we �rst need to check whether the needed values arecached, and if not, we compute them before submitting q00.In order to guarantee that we can perform this check, welimit the ways in which functions can be used. Speci�cally,we require that for any occurrence of T in q00, the variablescorresponding to input variables of the cache function arealso bound variables in q (and consequently in q00). If atleast one of the queries that have to be evaluated in orderto expand a certain type of node can bene�t from a cachefunction, we say that the cache is used in this node.Finally, an important di�erence between materializedviews and cache functions concerns their maintenance pol-icy. Here we assume that views are periodically updated,while functions are not. Instead, expired or invalidatedtuples are simply dropped from a function.Example 4.3 As we saw in Example 4.2, the view V sig-ni�cantly improved performance but at the price of highspace overhead. Suppose that instead of V we want tomaintain a semantically equivalent cache function, updatedwhile expanding an instance of a node Supplier(SK) andused in the node PartSupp(PK,SK). For simplicity, we markin bold the input variables of the cache function.

F(SK,CK,PK,CN) :- Customer(CK,CN, , , ),LineItem(OK, ,PK,SK, ), Order(OK,CK, , , )Assume we store the content of the cache function in thetable T. The query Q22' bellow is equivalent to the queryQ22, in the case where the binding for the variable SK givenin Q22 is cached in T.Q22'(CK,SK,PK,CN) :- T(SK,CK,PK,CN)At run-time, when we compute Q22', we �rst check to see ifthe given value for SK occurs in the cached input values inT. If we have a hit, we return the set of associated valuesfor the variables PK,CK,CN, from which we selected theones corresponding to the desired value of PK. In the caseof a miss, we �rst compute the function's body with theadditional binding for SK, insert the result in the table T,and then proceed as before.The utility of cachingFigure 3 (right) illustrates the utility of caching. For eachnode in the �gure we compare the average cost of comput-ing the node in four cases: (1) using a view for one of theoutgoing arcs, (2) using an equivalent cache function andassuming a hit, (3) similar to (2), but assuming a miss, and(4) no views or functions. Clearly, the time for case (1) isthe lowest because no checks are needed. Case (2) providesspeedup factors of 25 and 17 compared to case (4). Mostinterestingly, the overhead of case (3) compared to case (4)is relatively low (a slowdown of 2%) due to the extra cachecheck and update.Choosing which functions to cache and how much mem-ory to allot to each cache is an optimization problem withtwo constraints: (1) the size of the cache should be su�-ciently large so that the hit rate guarantees better perfor-mance than no caching at all, and (2) the size of the cacheshould be much less than the size of the materialized viewas to make caching the more attractive option.Given estimates on the costs of evaluating the query ineach of the cases described above, we can use the valueprobability distribution to estimate the minimal cache sizethat will yield savings. Speci�cally, suppose we denote thecost of evaluating a query with no caching by cregular, thecost of evaluating a query with a cache hit by chit(f), andthe cost of evaluating a query with a cache miss by cmiss(f).In the �rst step, we use the following formula to derive theminimum value of the hit ratio �(f) that will yield savingsfor the cache f :�(f)� chit(f) + (1� �(f))� cmiss(f) < cregular (2)Given the minimum value of �(f) and the value probabil-ity distribution (see Section 3), we can derive the minimumamount of memoryM such that if we allot to the cache lessthan M we are guaranteed that we cannot achieve the re-quired hit ratio. We assume that there exists a modulein the system responsible for periodically removing itemsfrom the cache such that the hit ratio is maintained abovethe necessary threshold, the size of the cache does not ex-ceed the limit and the age constraints are satis�ed. Thekey for such a module is the use of the value probabilitydistribution.Up to this point we have only considered caching local toa particular node, i.e., a cache is updated in the same nodein which it is used. In addition, the cache functions always



concerned one of the queries on the arcs in its entirety. Inthe next section we extend the idea of caching to exploitthe structure of the web-site de�nition. In particular, (1) acache function can be updated in one node in the site andthe result can be used in multiple nodes, and (2) a cachecan be de�ned as a subquery or a superquery of a queryappearing on an arc.4.4 Lookahead computationThe key idea behind lookahead computation is to modifythe de�nition of cache functions such that a query com-puted in a node F can be used later in one or more of F 'sdescendants in the site schema. We describe two typesof lookahead computations: conservative and optimisticlookahead. Intuitively, conservative lookahead representsthe minimal amount of work that would have been doneanyway at F and can be reused as much as possible insubsequent requests. In contrast, optimistic lookahead in-troduces additional computation that would not be neededat F , but is deemed to be useful for future nodes.Conservative lookaheadConsider the expansion of an instance of the node Cust-SuppPart(CK,SK,PK) in our example, where we need tocompute the following query:Q17(CK,SK,PK,OD) :- Order(OK,CK, , ,OD),LineItem(OK, ,PK,SK, ), Part(PK, , , , )In a subsequent click of the same user, we mighthave to expand an instance of a node CustSuppPart-Date(CK,SK,PK,OD), with the same bindings for the vari-ables CK,SK,PK. In order to do this, we need to computethe query Q19:Q19(CK,SK,PK,OK,OD) :- Order(OK,CK, , ,OD),LineItem(OK, ,PK,SK, ), Part(PK, , , , )Assume we updated a cache function for Q17 with inputsCK, SK and PK. As we can see, much of the computa-tion performed for the function for Q17 is also useful forQ19. However, if we simply cache the result of Q17, wecannot use it unchanged for Q19 because Q17 projectedout the attribute OK. Conservative lookahead would de-�ne a function with the same subgoals (since the subgoalsof Q17 and Q19 are identical) and whose head includes allthe attributes needed for both Q17 and Q19.More generally, consider two consecutive arcs in the siteschema, F1( �X1) �! F2( �X2) �! F3( �X3), where the arcsare labeled with the queries q and q0, respectively. Wewant to de�ne a function in the �rst node and use it in thesecond. We want to update a cache while expanding thenode F1 and use it while expanding F2. The cache f willhave as body the intersection: body(f) = body(q)\body(q0).The distinguished variables of f include (1) all variables inf which are distinguished in q or q0, and (2) all variables inf which also occur in q�f or in q0�f , where the di�erencedenotes the set di�erence of the subgoals of the respectivequeries. input(f) are de�ned to be those variables of f thatoccur in �X1. The cache f will be updated while expandingF1( �X1). It can be used at node F2( �X2) only if input(f) ��X2; otherwise we cannot use it (because of the constraintwe imposed on cache usability in Section 4.3).

The previous technique can be extended to a set of arcsthat form a tree in the site schema. In this way, a cache up-dated at the root of the tree can be used in its descendants.By applying this technique to the set of nodes CustSupp,CustSuppType, CustSuppPart and CustSuppDate, we obtainthe following cache function, updated in the node CustSuppand used in all the others.F(CK,SK,PK,OD,OK,PN,PT) :- Order(OK,CK, , ,OD),LineItem(OK, ,PK,SK, ), Part(PK,PN, ,PT, )Optimistic lookaheadOptimistic lookahead performs while expanding a certainnode an additional computation that may be usable for ex-panding later nodes. For example, consider the expansionof an instance of a node Customer(CK), where we need tocompute the following query:Q9(CK,SK,SN) :- Supplier(SK,SN, , , ), Order(OK,CK, , ,OD),LineItem(OK, ,PK,SK, )In a subsequent request, we might need to expand an in-stance of the node CustSupp(CK,SK). In order to do so, weneed to compute the query:Q12(CK,SK,PK,PN) :- Part(PK,PN, , , ), Order(OK,CK, , , ),LineItem(OK, ,PK,SK, )Suppose we want to use a cache function for Q9 that alsoperforms all the necessary computation for query Q12. Todo this, we de�ne a function that includes the commonsubgoals of Q9 and Q12, but also performs an outerjoinwith the other subgoals of Q9 and Q12 that are not in theintersection. Speci�cally, we would de�ne a cache functionas follows:F(CK,SK,PK,PN,SN) :- ((Order(OK,CK, , , ) 1LineItem(OK, ,PK,SK, )) 1�� Part(PK,PN, , , )) 1��Supplier(SK,SN, , , )This cache is de�ned in the node Customer but can alsobe used in the rewriting of one of the queries of the nodeCustSupp. Note that in node Customer we do a join withPart that is not necessary there, but that will drasticallyreduce the cost of computing CustSupp.More generally, consider two consecutive arcs in the siteschema, F1( �X1) �! F2( �X2) �! F3( �X3), where the arcsare labeled with the queries q and q0, respectively. We wantto update a cache in the �rst node that also performs thecomputation necessary for the second node. Let q0 be theintersection of the bodies of q and q0. The cache f will haveas body the expression (q01��(q � q0))1��(q0 � q0), wherethe di�erence denotes the set di�erence of the subgoals ofthe respective queries.. The distinguished variables are theunion of the distinguished variables of q and q0. input(f)are de�ned to be those variables of f that occur in �X1. Thecache f will be updated at node F1( �X1). It can be used atnode F2( �X2) only if input(f) � �X2: otherwise we cannotuse it.As with conservative lookahead, we can generalize opti-mistic lookahead to trees in the site schema. For example,the cache function shown above can also be used in theevaluation of the queries needed for the nodes CustSupp-Type, CustSuppPartDate, CustSuppPart and CustSupp.
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Figure 4: The left graph shows the bene�ts of conservativelookaheads performed in the node CustSupp. The rightgraph shows the bene�ts of optimistic lookahead performedat the node Customer.The utility of lookaheadsFigure 4 shows the experimental results concerning looka-head computations. The �rst graph shows the speedupsobtained by using conservative lookahead. We observe thatthe cost of computing CustSupp was not a�ected, while thespeedups obtained for its descendants ranged from factorsof 3 to 210. The second graph shows the results for opti-mistic lookahead. We observe that the node Customer thathas a more expensive computation was slowed down by afactor of 3.7, while the speedups for its descendants variedfrom 5 to 161.We end this section by noting that lookahead compu-tations bene�t from speci�c patterns in the structure ofweb sites. However, these patterns occur quite frequentlyin web sites because they correspond to a natural hierar-chical organization of data.5 Run-time managementAfter the discussion of possible optimizations in the pre-vious section, we are now in a position to formally de�nerun-time policies that encompass the di�erent optimiza-tions that we presented so far. To de�ne run-time policieswe �rst describe run-time schemas, which are the sets ofviews and caches over which the run-time policies are ex-pressed.5.1 Run-time schemaThe run-time schema consists of a set of precomputed viewsV and a set of dynamically maintained functions F , for-mally de�ned as follows.� V is a set of view speci�cations, where a viewspeci�cation is formally de�ned as a quadruple(NV ; QV ; I; ageV ), where NV is the name of thedatabase table storing the view, QV is a select-project-join-outerjoin expression de�ning the view, I is a set ofindices on the view NV and ageV is the maximum al-lowed di�erence between a data item in the view and theraw data.� F is a set of cache function speci�cations, where afunction speci�cation is formally de�ned as a quintu-ple (NF ; QF ; InputF ;max sizeF ;min hitF ; ageF ),where NF is the name of the database table storing

the function, QF is a select-project-join-outerjoin ex-pression de�ning the function, InputF is a set of distin-guished variables of QF which are inputs to the function,max sizeF is the maximum allowed size for the dynam-ically maintained table, ageF is the maximum alloweddi�erence between a data item in the function and theraw data, and min hitF is the minimum hit ratio ac-ceptable for the function.5.2 Run-time policyThe run-time policy tells the system what to compute atevery page request, i.e., how to use the run-time schemaand data in order to compute the requested HTML page.There are several points to note about run-time policies.First, the action that the policy speci�es does not dependonly on the origin and destination of the hyperlink beingfollowed, but may also take into consideration the path (orparts thereof) used to get to the origin. Hence, the actionsin a run-time policy are parameterized by contexts, whichwe de�ne below. The second point to note is that there aretwo types of possible actions: query actions, which specifyhow to obtain the data needed, and update actions, specify-ing when to update the dynamically maintained functions,and with which inputs.Contexts are used to formalize the dependence of ac-tions in the run-time policy on the previously visited nodesin the site graph. Formally, a path [F1; : : : ; Fn] in the siteschema G is called the context of a request for a node F (�a)if F = Fn and the previously requested nodes of the sameuser were of the form [F1(�a1); : : : ; Fn�1(�an�1)]. A run-time policy �xes the maximum length of the contexts thatare maintained at run-time. An action parameterized by aspeci�c context is called a rule.A run-time policy PG for a site schema G is a directedgraph, isomorphic to the graph of G, and whose nodes arelabeled with the same Skolem terms as in G. In addition,nodes are labeled with set of update rules, and the arcsare labeled with sets of query rules. An update rule as-sociated with a node F is a triple (H; f;  ), where H is apossible context for the node F , f is the name of a givenfunction and  : Inputf ! �X is a mapping from the inputvariables of the function to the set of variable �X, whichdescribes how to obtain input values for the function fromthe current binding of �X. A query rule associated withan arc F1( �X1) ! F2( �X2) is a pair (H; q), where H is apossible context for the node F1, and q is the parametrizedquery to be executed in order to obtain all the outgoinglinks of a node of type F1 to nodes of the type F2.In order to facilitate inspection and manual constructionof run-time policies in our work, we developed a languagefor describing run-time schemas and policies. We illustraterun-time policies with this language [11] in Figure 5.5.3 Run-time algorithmThe execution engine of the web-site management systeminterprets the run-time policy. Execution proceeds in asimilar fashion to the dynamic approach, with a few no-table di�erences. Suppose the user requests an instanceof the node F ( �X) with a binding �X = �a and a context[F1; : : : ; Fk] where Fk = F (k is a constant depending onthe run-time policy). We proceed in two steps:1. Execute any update action (H; f;  ) associated withthe node F whose history H is a su�x of [F1; : : : ; Fk].



/* Run-time schema definition */define view V asSELECT o.custkey l.suppkey, l.partkey,FROM LineItem l, Order oWHERE l.orderkey=o.orderkeymax age = 2 hoursdefine index on suppkeydefine cache function T asSELECT o.custkey,l.suppkey,p.partkey,p.name,s.nameFROM LineItem l, Order o, Supplier sWHERE l.orderkey=o.orderkey and s.suppkey=l.suppkeyinput custkeymax size = 1Mmin hit ratio=0.3max age = 20min/* Run-time policy for the node CustSupp */Node CustSupp(CK, SK)/* check and (eventually) update the cache */if context [Customer,CustSupp]update T with custkey ! CKLink to CustPartType(CK,SK,PT)if context [Customer,CustSupp] computeSELECT f.custkey, f.suppkey, p.name, p.typeFROM T f, Part pWHERE f.custkey=CK and f.suppkey=SK andf.partkey=p.partkeyelse computeSELECT v.custkey, v.suppkey, p.name, p.typeFROM V v, Part pWHERE v.custkey=CK and v.suppkey=SK andv.partkey=p.partkeyFigure 5: Fragments of a run-time schema and policy forour running example.Speci�cally, if  (�a) is not in the cache of f , we computeqf with bindings �a �  and add the result to the cache.2. For each arc l outgoing from F we select the rule (H; q)with the most speci�c context matching [F1; : : : ; Fk](i.e., for which there is no longer su�x of [F1; : : : ; Fk]matching another rule). We evaluate the query q withthe binding �a.5.4 Correctness of a run-time policyClearly, we need to impose constraints on run-time policiesin order for them to be faithful to the declarative site def-inition. As we discussed earlier, updates to the databasecomplicate the notion of correctness of a web site. We aimto formalize a minimal notion of correctness here: giventhat the materialized views and cache functions are takenfrom the same snapshot of the database, then applying thedynamic evaluation strategy to that snapshot will producethe same result as invoking the run-time policy.The conditions are the following. Consider a link in thesite de�nition F1( �X1) ! F2( �X2) labeled with a query q.Suppose the corresponding link in the run-time policy islabeled by the pairs (h1; q1); : : : ; (hn; qn), where the hi'sare contexts. The following conditions have to be satis�ed:� For each i, 1 � i � n, qi is an equivalent rewriting ofq using the views and the functions under the precondi-tions implied by hi (note that in this de�nition functionsare used as view de�nitions).� If one of the qi's uses a cache function f , then the nodeF in the run-time policy includes a update action for

f . The update action in the node F does not necessar-ily imply that the appropriate values are computed atF . Indeed, they may be computed elsewhere in the site(e.g., using lookahead computations), but the check isstill necessary.� For each possible context H for a request for a node oftype F1 and for each outgoing arc from the node F1,there it exists a rule (hi; qi) labeling this arc such thathi is a su�x of the context H.Finally, it should be noted that given the probability dis-tributions on contexts (see Section 3) and estimates on thecost of evaluating SQL queries, it is possible to computethe average waiting time for a request for an instance ofa node F in the site schema for a given run-time policy.Hence, we can now compute the global cost of a run-timepolicy according to Formula 1 in Section 3.6 Compiling site de�nitionsThe ultimate goal of our work is to automatically compile adeclarative site de�nition into an e�cient run-time policy.We have shown that various optimizations can signi�cantlyimprove the behavior of a web site. In section 5 we showedhow to formalize the compilation problem as a search ina space of run-time policies. An important observationis that, in order to obtain the optimal run-time policy, itsu�ces to consider a �nite number of policies.4Given the number of parameters involved and the sizeof the resulting search problem, �nding a compilation al-gorithm that is both e�cient and produces high qualityrun-time policies is a problem in its own right. We nowdescribe a set of heuristics to partition the search prob-lem into manageable steps that are each relatively wellunderstood. The steps that we describe are inspired bythe results of our experiments. In our experiments, apply-ing these heuristics provided signi�cant improvement overthe naive dynamic evaluation approach. Hence, we arguethat our steps (which can be embodied by a collection ofalgorithms) provide a proof of the viability of automaticcompiling of web-site speci�cations.The steps are the following:1. Apply query simpli�cation under preconditions to all thenodes in the site schema.2. Detect the set of sensitive nodes in the site schema: (1)the nodes whose average cost is above the acceptablelimit on waiting time, and (2) the nodes with relativelyhigh cost and probability of access. Let q1; : : : ; qn bethe parameterized queries on the arcs outgoing from thechosen nodes.3. Apply a view materialization selection algorithm toq1; : : : ; qn, with the size and freshness constraints im-posed by the web site. This step results in a set of viewsto materialize. In this step we can apply an exhaustivetransformational algorithm similar to the one describedin [24].4. If a view V was a good candidate for improving perfor-mance in the previous step but was not chosen because ofspace or freshness constraints, consider including in the4The crux of the claim is that it su�ces to consider only a�nite number of run-time schemas because there are only a �nitenumber of views or functions that can be maintained and stillbe useful in a run-time policy.



run-time schema functions of the form (V; Inp), whereInp is a subset of the arguments of V .5. For each such function which is usable for expandinga node F , consider applying conservative and optimisticlookahead optimizations, for all the subtrees rooted at F .The decision on which subtrees to consider should takeinto account the probability of visiting the descendants,given that the user visited F .Figure 6 shows the results of applying these steps intwo scenarios. In the upper �gure we alloted enough spacefor the web site to be able to materialize a sizeable view(we allowed an additional 1GB to the original size of thedatabase). In the lower �gure we only alloted an additional10MB. In the �rst case the run-time schema included thematerialized join between Order and LineItem with 4 in-dexed columns. The view is used in almost all the nodes,and as a result, all the queries in the site ran in less than8 seconds, and all but three in less than 400 milliseconds.In the second case the run-time policy includes a conser-vative lookahead in the node Supplier (which bene�ts thenode PartSupp), and an optimistic lookahead computationin the node Customer which bene�ts the nodes CustSupp,CustSuppType, CustSuppPart and CustSuppDate. The run-ning times of all the other nodes are comparable with thatof the previous run-time policy. This example highlightsthe savings obtained purely by exploiting the structure ofthe web site, with very little memory overhead.7 ImplementationThe Strudel-R system[11] is implemented and fully op-erational, though the compiler from declarative speci�ca-tions to run-time policies is relatively simple. The queriesin the site de�nitions are given in SQL, and are allowed tocontain selections, projections, joins, and outerjoins. Run-time policies are expressed in the language described inthe previous section [11]. We note that it is also possiblefor a web site administrator to directly specify a particulardesired run-time policy, bypassing Strudel-R's compiler.A browsing session starts with a simple request for aroot of the web site, which is precomputed. In order to em-ploy our run-time policies, when an HTML page is servedto the browser, the outgoing links (within the same site)are implemented as calls to a CGI-bin script. The scripttake as input the node in the site schema, the bindings forthe variables associated with the node and the browsingcontext. It �rst calls the HTML generator, which in turncalls Strudel-R's execution engine with the same param-eters. The execution engine follows the speci�cation of therun-time policy. In doing so, certain functions can be up-dated. Finally, the result (the data contained in the pageand information about the outgoing links) is sent back tothe HTML generator which delivers the �nal page. Therequest, as well as all the statistics associated with it (util-ity of caches, response time, cardinality of resulting data,etc) are recorded in the web site trace.In order to perform our experiments we also imple-mented a browser simulator. The input to this module isa set of probability distributions, as described in section 3.The simulator bypasses the HTML generator and calls theexecution engine directly. Given a node in the site graph,the simulator randomly chooses the next node to request,according to the given probability distribution.
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Figure 6: Results of two run-time policies. The uppergraph shows a run-time policy in which 1GB of additionalmemory were provided, and the lower graph shows a policywhen only 10MB was provided.The system is implemented in Java, and all the databaseconnections are done through Oracle's JDBC driver.8 Conclusions and related workCommercial products for constructing web sites from largedatabases and recent research prototypes are clearly mov-ing in the direction of declarative speci�cation of the struc-ture and content of web sites. A critical issue that immedi-ately arises is when to compute parts of the site. Currently,web site designers manually optimize site design in orderto achieve reasonable performance, and this is a very laborintensive activity.This paper described several techniques for optimizingthe run-time behavior of web sites, and a framework inwhich declarative site speci�cations can be automaticallycompiled into run-time policies which incorporate theseoptimizations. Broadly speaking, many optimizations areeasy to achieve if we have unlimited space. However, wehave shown that, even with limited additional space, wecan obtain order-of-magnitude speedups by exploiting thestructure of the web site. We described a heuristic based al-gorithm for compiling a declarative web site de�nition intoa run-time policy, which already yielded much better per-formance in our experiments. The problem of developingcompilation algorithms that are both e�cient and producehigh-quality run-time policies clearly deserves signi�cant



further research. Finally, another important note aboutour framework and implementation is that they were pur-posely designed to be built on top of an existing databasesystem and did not require modifying any of its internals.In fact, our prototype can be deployed on top of any JDBCcompliant database.To begin our discussion of related work, several othersystems have considered web-site management based ondeclarative representations [7, 2, 4, 20, 3, 25] but none con-sidered the problem of run-time management of the site.The work of [25] considers the problem of decomposing asite speci�cation to produce an entire tree of HTML pagesinto smaller chunks which are dynamically invoked whenpages are requested. This decomposition can also resultin our version of lookahead computation, though their de-composition is at the level of HTML pages and not theunderlying data. Furthermore, they do not perform theirdecomposition w.r.t. a cost function.A large body of work is concerned with caching webdocuments (e.g., [5]). The work in [19] extends the idea toprefetching of pages based on statistics on web site brows-ing patterns. However, this work considers caches at thelevel of HTML pages, as opposed to the underlying con-tent. The performance improvements and the added 
exi-bility achieved in our work were obtained by analyzing thedatabase queries that produce the content of HTML pages.In database systems, caching the result of parameterizedcomputations has also been considered in several contextssuch as data integration [1], nested correlated queries (im-plemented in commercial databases), caching for expensivemethods [16, 15]. Our work takes the idea of caching fur-ther into the context of web-site management: our deci-sions of what to cache are based on cost estimates, and wedo not necessarily cache exactly the computation speci�edby the parameterized input, but possibly only parts of itor larger computations. In addition, our caching decisionsare based on the structure of the web site.As stated early on, there has been a signi�cant amountof work that tries to optimize workloads of queries onDBMS. This work took the form of selecting views to ma-terialize (and their indexes) (e.g., [24, 13, 12, 14, 6]), multi-ple query optimization [23] and index selection. All thesetechniques are of course applicable to our context, since adynamically generated web site can be viewed as a work-load of parameterized queries. However, in our context wecan perform additional optimizations because of the knownstructure of the web site. Also, our application is di�erentin that it has new age and time limit constraints, and be-cause queries in the workload are considered in succession,not in parallel.Finally, a related body of work uses invariants for queryexecution [22] (in the context of nested correlated queries)and [17] in the context of optimizing recursive trigger calls.In the latter work, the authors compile the code of thetriggers depending on the context of the calls, which aresimilar to our simpli�cation under preconditions.AcknowledgmentsThe authors are thankful to Zack Ives, Ioana Manolescu,Rachel Pottinger, Eric Simon, Ken Ross and Alain Pirottefor many insightful comments on this paper.
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