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Abstract—When heterogeneous congestion control protocols
that react to different pricing signals (They could be different
types of signals such as packet loss, queueing delay etc. or
different values of the same type of signal such as different
ECN marking values based on the same actual link congestion
level) share the same network, the current theory based on utility
maximization fails to predict the network behavior. Unlike in a
homogeneous network, the bandwidth allocation now depends
on router parameters and flow arrival patterns. It can be non-
unique, suboptimal and unstable. In [36], existence and unique-
ness of equilibrium of heterogeneous protocols are investigated.
This paper extends the study with two objectives: analyze the
optimality and stability of such networks and design control
schemes to improve them. First, we demonstrate the intricate
behavior of a heterogeneous network through simulations and
present a framework to help understand its equilibrium prop-
erties. Second, we propose a simple source-based algorithm to
decouple bandwidth allocation from router parameters and flow
arrival patterns by only updating a linear parameter in the
sources’ algorithms on a slow timescale. It is used to steer a
network to the unique optimal equilibrium. The scheme can be
deployed incrementally as the existing protocol needs no change
and only the new protocols need to adopt the slow timescale
adaption.

I. INTRODUCTION

Congestion control in TCP (Transmission Control Protocol),
first introduced in [11], has enabled the explosive growth
of the Internet. The currently predominant implementation,
referred to as TCP Reno in this paper, uses packet loss as the
congestion signal to dynamically adapt its transmission rate,
or more precisely, its window size.1 It has worked remarkably
well in the past, but its limitations in wireless networks and in
networks with large bandwidth-delay product have motivated
various proposals some of which use different congestion
signals. For example, in addition to loss based protocols such
as HighSpeed TCP [9], STCP [19] and BIC TCP [42], schemes
that use queueing delay include the earlier proposals CARD
[13], DUAL [39] and Vegas [3], and the recent proposal
FAST [40]. Schemes that use one-bit congestion signal include
ECN [28], and those that use multi-bit feedback include XCP
[15], MaxNet [41], and RCP [6]. Indeed, recently the Linux
operating system already allows users to choose from a variety
of congestion control algorithms since the kernel version
2.6.13, including TCP-Illinois [22] that uses both packet loss
and delay as congestion signals. Recently, compound TCP
[33] which also uses multiple congestion signals is deployed

1All our experiments and simulations use NewReno with SACK. These
are enhanced versions of the original Tahoe and Reno, but we will refer them
generically as TCP Reno.

in Windows Vista and Window Server 2008 TCP stack [25].
If explicit feedback is deployed, it will become possible to
feed back different signals to different users to implement
new applications and services. Note that in this case, the
heterogeneous signals can all be loss-based – different users
receiving different explicit values based on the actual link loss
rate – or all delay-based, or a mix. Clearly, going forward, our
network will become more heterogeneous in which protocols
that react to different congestion signals interact. Yet, our
understanding of such a heterogeneous network is rudimentary.
For example, a heterogeneous network, as shown in an early
companion paper [36], may have multiple equilibrium points,
and they cannot all be stable unless the equilibrium is globally
unique. This still leaves many other important properties open,
such as optimality and stability of equilibrium.

In a homogeneous network, even though the sources may
control their rates using different algorithms, they all adapt
to the same congestion signal, e.g., all react to packet loss
rate, as in the various variants of Reno and TFRC [8], or all
to queueing delay, as in Vegas and FAST. For homogeneous
networks, besides various detailed studies (see e.g., [27], [30]),
there is already a well-developed theory, based on network
utility maximization, e.g. [17], [21], [23], [24], [26], [43],
that can help understand and engineer network behaviors. In
particular, it is known that a homogeneous network of general
topology always has a unique equilibrium (operating point). It
maximizes aggregate utility, and the fairness associated with
it can be well predicted and controlled. More importantly, the
allocation depends only on the congestion control algorithms
(equivalently, its underlying utility functions) but not on net-
work parameters (e.g., buffer sizes) or flow arrival patterns,
and hence can be designed through the choice of end-to-end
TCP algorithms.

In contrast, we demonstrate in Section II of this paper
that the bandwidth allocation among heterogenous flows can
depend on both network parameters and flow arrival patterns.
It means that in general we cannot predict, nor control,
the bandwidth allocation through the current design of end-
to-end congestion control algorithms for heterogeneous net-
works. This implies, for example, the standard “TCP friendly”
concept is not well defined anymore. To fully understand
heterogeneous networks and develop ways to address these
issues, we review our basic model in Section III. By iden-
tifying an optimization problem associated with any given
equilibrium point, we discuss efficiency in Section IV-A and
fairness in Section IV-B. Study of stability then follows in
Section V. Finally, we propose a general scheme to steer



an arbitrary heterogeneous network to the unique equilibrium
that maximizes the standard weighted aggregate utility by
updating a linear scaler in the sources’ algorithms on a slow
timescale (Section VI). The scheme requires only local end-
to-end information but does assume all flows have access to
a common price, which is generally true in practice since the
common price can be what the incumbent dominate protocol
uses. It can be deployed incrementally as the existing protocol
needs no change and only the new protocols need to adopt
the slow timescale adaption. Packet-level (ns-2) simulation
results using TCP Reno and FAST are presented in Section VII
and Linux experiments on a realistic testbed are reported in
Appendix IX-C to further discuss some issues that are ignored
in the mathematical model. We conclude in Section VIII.

We summarize here the main results that we have derived
about heterogeneous congestion control in [36] and this paper:
• Existence of equilibrium: Theorem 2 in [36];
• Uniqueness of equilibrium.

– Local uniqueness: Theorem 3 in [36];
– Global uniqueness: Theorems 7 and 12 in [36].

• Optimality of equilibrium
– Efficiency: Theorems 1 and Corollary 3 in this paper;
– Fairness: Theorems 4 and 5 in this paper.

• Stability of equilibrium:
– Local stability: Theorem 6 in this paper;
– Special results: Theorems 12 and 13 in this paper.

• Control of heterogeneous networks: Theorem 11, Algo-
rithms 1 and 2 in this paper.

II. TWO MOTIVATING EXAMPLES

In this section, we describe two simulations to illustrate
some peculiar throughput behavior in heterogenous networks.
All simulations use TCP Reno, which uses packet loss as
congestion signal, and FAST TCP, which uses queueing delay
as congestion signal.

The first experiment (Example 1a) shows that when a
Reno flow shares a single bottleneck link with a FAST flow,
the relative bandwidth allocation depends critically on the
link parameter (buffer size): the Reno flow achieves higher
bandwidth than FAST when the buffer size is large and smaller
bandwidth when it is small. This implies that one cannot
control the fairness between Reno and FAST through just
the design of end-to-end congestion control algorithms, since
fairness is now linked to network parameters, unlike in the
case of homogeneous networks.

The second experiment (Example 2a) shows that even on a
(multi-link) network with fixed parameters, one cannot control
the fairness between Reno and FAST because the relative
allocation can change dramatically depending on which flow
starts first!

A. Example 1a: dependence of bandwidth allocation on net-
work buffer size

FAST [40] is a high speed TCP variant that uses delay as
its main control signal. Periodically, a FAST flow adjusts its

congestion window W according to

W ← baseRTT

RTT
W + α (1)

In equilibrium, each FAST flow i achieves a throughput x∗i =
α/q∗i , where q∗i is the equilibrium queueing delay observed
by flow i. Hence, α is the number of packets that each FAST
flow maintains in the bottleneck links along its path.

In this example, one FAST flow and one Reno flow share
a single bottleneck link with capacity of 8.3 pkts per ms
(equivalent to 100Mbps with maximum packet size) and round
trip propagation delay 50ms. The topology is shown in Figure
1. The FAST flow fixes its α parameter at 50 packets.
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Fig. 1. Single link example.

In all of the ns-2 simulations in this paper, heavy-tail noise
traffic is introduced at each link at an average rate of 10% of
the link capacity.2 Figure 2 shows the result with a bottleneck
buffer size B = 400 packets. In this case, FAST gets an
average of 2.1 pkts per ms while Reno gets 5.4 pkts per ms.
Figure 3 shows the result with B = 80 packets. Since the
bottleneck buffer size is smaller, the average queue is also
smaller. Therefore FAST gets a higher throughput of 3.4 pkts
per ms and Reno gets a much lower throughput of 0.6 pkt per
ms. In this case, the loss rate is fairly high and the aggregate
throughput is much lower (53.6 percent utilization) than the
bottleneck capacity due to many timeout events.

In summary, contrary to the case of homogeneous network,
bandwidth sharing between Reno and FAST depends on net-
work parameters in a heterogeneous network.
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Fig. 2. FAST vs. Reno with a buffer size of 400 pkts.

2We usually present one sample figure on the left and the summary figure
on the right. The sample figure shows the rate trajectory in one simulation run.
The rate value is measured every 2 seconds. The summary figure presents the
rate trajectory averaged over 20 simulation runs with different random seeds.
Each point in the summary figure represents the average throughput over a
period of one minute. The error bars are also shown in the summary figure.
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Fig. 3. FAST vs. Reno with a buffer size of 80 pkts.

B. Example 2a: dependence of bandwidth allocation on flow
arrival pattern

The topology of this example is shown in Figure 4. We use
RED algorithm [7] and packet marking instead of dropping.
The marking probability p(b) of RED is a function of queue
length b:

p(b) =





0 b ≤ b
1
K

b−b

b−b
b ≤ b ≤ b

1
K b ≥ b

(2)

where b, b and K are RED parameters. Links 1-2 and 3-4 are
both configured with 9.1pkts per ms capacity (equivalent to
111 Mbps), 30 ms one-way propagation delay, and a buffer
of 1500 packets. Their RED parameters are (b, b, K) = (300,
1500, 10000). Link 2-3 has a capacity of 13.8 pkts per ms (166
Mbps) with 30 ms one-way propagation delay and a buffer size
of 1500 packets. Its RED parameters are set to (0, 1500, 10).

There are eight Reno flows on path 1-2-3-4, utilizing all
three links, with one-way propagation delay of 90 ms. There
are two FAST flows on each of paths 1-2-3 and 2-3-4. Both
of them have one-way propagation delay of 60 ms. All FAST
flows use a common α = 50 packets.
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Fig. 4. Multiple equilibria scenario.

In our simulations, one set of flows (Reno or FAST) starts at
time zero, and the other set of flows starts at the 100th second.
We presents the throughput achieved by one of the FAST flows
and one of the Reno flows. Each point in the summary figures
represents the average rate over 5 minutes. Figure 5 shows
the scenario in which FAST flows start first. Initially, FAST
flows occupy most of the buffers in link 2-3. With the steep
RED dropping slope in link 2-3, the Reno flows experience
heavy loss and have very small throughput when they join the
network. Figure 6 shows the scenario in which Reno flows
start first. Initially, Reno flows maintain large queues in link

1-2 and link 3-4. FAST flows experience large queueing delays
and are never able to fully utilize link 2-3.
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Fig. 5. Bandwidth shares of Reno and FAST when FAST starts first.
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Fig. 6. Bandwidth shares of Reno and FAST when Reno starts first.

In short, bandwidth sharing in heterogeneous networks
may depend on which type of TCP starts first and becomes
unpredictable.

III. MODEL

A. Notations and Assumptions

Consider a network consisting of a set of L links, indexed
by l = 1, . . . , L, with fixed finite capacities cl. We sometimes
abuse notation and use L to denote both the number of links
and the set L = {1, . . . , L} of links. Each link has a price
pl as its congestion measure. There are J different congestion
control protocols indexed by superscript j, and N j sources
using protocol j, indexed by (j, i) where j = 1, . . . , J and
i = 1, . . . , N j . The set of links used by source (j, i) is denoted
by L(j, i), and the total number of sources by N :=

∑
j N j .

The L×N j routing matrix Rj for type j sources is defined
by Rj

li = 1 if source (j, i) uses link l, and 0 otherwise. The
overall routing matrix is denoted by

R =
[

R1 R2 · · · RJ
]

Even though different classes of sources react to different
prices, e.g. Reno to packet loss probability and Vegas/FAST
to queueing delay, the prices are related. We model this
relationship through a price mapping function that maps a
common “intrinsic” price (e.g. queue length) at a link to
different prices (e.g. loss probability and queueing delay)
observed by different sources. Formally, every link l has a
price pl. A type j source reacts to the “effective price” mj

l (pl)
in its path, where mj

l is a price mapping function that can



depend on both the link and the protocol type. The exact form
of mj

l depends on the AQM algorithm used at the link; see
(2) for links with RED. Let mj(p) = (mj

l (pl), l = 1, . . . L)
and m(p) = (mj(pl), j = 1, . . . J). The aggregate prices for
source (j, i) is defined as

qj
i =

∑

l

Rj
lim

j
l (pl) (3)

Let qj = (qj
i , i = 1, . . . , N j) and q = (qj , j = 1 . . . , J)

be vectors of aggregate prices. Then qj =
(
Rj

)T
mj(p) and

q = RT m(p).
Let xj be a vector with the rate xj

i of source (j, i) as its
ith entry, and x be the vector of xj :

x =
[

(x1)T , (x2)T , . . . , (xJ)T
]T

Source (j, i) has a utility function3 U j
i (xj

i ) that is strictly con-
cave increasing in its rate xj

i . Let U = (U j
i , i = 1, . . . , N j , j =

1, . . . , J).
With the above notation, we refer to (c,m, R,U) as a

network, where (in general) z denotes the (column) vector
z = (zk, ∀k). The following basic assumptions are adopted, as
in [36] that studies the existence and uniqueness of equilibrium
for heterogeneous protocols.
A1: Utility functions U j

i are strictly concave increasing, and
twice continuously differentiable in their domains. Price
mapping functions mj

l are continuously differentiable
and strictly increasing with mj

l (0) = 0.
A2: For any ε > 0, there exists a number pmax such that if

pl > pmax for link l, then

xj
i (p) < ε for all (j, i) with Rj

li = 1

These are mild assumptions. Concavity and monotonicity
of utility functions are often assumed in network pricing for
elastic traffic. The assumption on mj

l means that sources to
observe the fluctuation as link congestion (pl) rises and falls, as
they must in order to control congestion. Assumption A2 says
that when pl is high enough, then every source going through
link l has a rate less than ε, modeling the basic intuition in
congestion control.

B. Network Model

As usual, we use xj
(
qj

)
=

(
xj

i

(
qj
i

)
, i = 1, . . . , N j

)
and

x(q) =
(
xj

(
qj

)
, j = 1, . . . , J

)
to denote the vector-valued

functions composed of xj
i . Since q = RT m(p), we often abuse

notation and write xj
i (p), xj(p), x(p). Define the aggregate

source rates y(p) = (yl(p), l = 1, . . . , L) at links l as:

yj(p) = Rjxj(p), y(p) = Rx(p) (4)

We consider the “dual algorithm” [17], [23] 4 where sources
select transmission rates that maximize their utility minus

3Most TCP variants proposed or deployed can be shown to implicitly
maximize some strictly concave increasing utility functions [24]. Here we
take this reverse-engineering view and use utility function to represent the
exact form of congestion protocol.

4Delay is omitted for simplicity.

bandwidth cost, and network links adjust bandwidth prices
according to the utilization of the links:

xj
i

(
qj
i

)
=

[(
U j

i

)′−1 (
qj
i

)]+

ṗl(t) = yl(p(t))− cl =: fl(p(t)) (5)

Remark: There are different fluid models in the literature. For
example, the “primal algorithm” has dynamics at sources while
the congestion signal at links depends on the instantaneous
arrival rate or even both arrival rate and queue state. One
is refered to e.g., [5], [18], [21], [31] for related discussion
and justification. The main issues of heterogeneous congestion
control (multiple equilibria, optimality loss and asymmetric Ja-
cobian which may lead to instability) remain the same for both
the primal and dual models. In other words, the difficulty due
to heterogeneity is the same for various dynamical models. For
example, if there are two marking functions p1

l (t) = g1
l (yl(t))

and p2
l (t) = g2

l (yl(t)) at the same link l as in the primal model,
then these functions g serve the role of m functions defined
above and aggregate rate yl becomes the intrisic measure of
congestion as pl defined before. The results and techniques
developed in this paper should be useful for analyzing other
models.

Under the assumptions in this paper,
(
U j

i

)′−1 (
qj
i

)
> 0 for

all the prices p that we consider, and hence we can ignore the
projection [·]+ and assume, without loss of generality, that

xj
i

(
qj
i

)
=

(
U j

i

)′−1 (
qj
i

)
(6)

(6) is nothing but the “response function” of TCP which deter-
mines source rate based on its observed end-to-end congestion
signal.

In equilibrium, the aggregate rate at each link is no more
than the link capacity, and they are equal if the link price is
strictly positive. Formally, we call p an equilibrium price (or
a network equilibrium or an equilibrium) if it satisfies (from
(3), (6), (4))

P (y(p)− c) = 0, y(p) ≤ c, p ≥ 0 (7)

where P := diag(pl) is a diagonal matrix.
When all sources react to the same price, then the equilib-

rium described by (3), (4), (6) and (7) is the unique solution
of the following utility maximization problem defined in [17]
and its Lagrange dual [23]:

max
x≥0

∑

i

Ui(xi) (8)

subject to Rx ≤ c (9)

where we have omitted the superscript j = 1. The strict
concavity of Ui guarantees the existence and uniqueness of the
optimal solution of (8)–(9) as well as the global convergence
of the dual algorithm.

For heterogeneous case, the utility maximization problem
no longer underlies the equilibrium described by (3), (4), (6)
and (7). The current theory cannot be directly applied and
substantial difficulties had to be overcome when exploring
even some basic questions such as existence and uniqueness
of equilibrium [36].



IV. OPTIMALITY

As we have shown in [36], for heterogeneous congestion
control networks, equilibrium cannot be characterized by (8)–
(9) anymore. In this section, we further investigate the devia-
tion of optimality in terms of both efficiency and fairness. This
analysis provides insights on networks with heterogeneous
congestion signals, for example, how to define inter-protocol
fairness. It also motivates the algorithm design in section VI.

A. Efficiency

We first make the following key observation, which moti-
vates other results on optimality and algorithm development.

Theorem 1. Given an equilibrium p∗, there exists a positive
vector γ(p), such that the equilibrium rate vector x∗(p) is the
unique solution of following problem:

max
x≥0

∑

i,j

γj
i U j

i (xj
i ) (10)

subject to Rx ≤ c (11)

Proof. The KKT (Karush-Kuhn-Tucker) optimality conditions
for (10)-(11) are:

γj
i

(
U j

i

)′
(xj

i ) =
∑

l

Rj
ilpl for all (i, j) (12)

pT (Rx− c) = 0 (13)
Rx− c ≤ 0 (14)

where the (x, p) are the primal-dual variables. We now claim
these conditions are satisfied with equilibrium rates and prices
(x∗, p∗) by choosing

γj
i =

∑
l R

j
ilp
∗
l∑

l R
j
ilm

j
l (p

∗
l )

(15)

To see this, note (13) and (14) are conditions for equilibrium.
After substituting (15) into (12), we have

(
U j

i

)′
(xj∗

i ) =
∑

l

Rj
ilm

j
l (p

∗
l ) (16)

That is consistent with equations (3) and (6) that are used to
define equilibrium.

Unlike the homogenous case where the equilibrium maxi-
mizes aggregate utility

∑
i Ui(xi), in the heterogeneous case,

an equilibrium x(p∗) maximizes a weighted aggregate utility∑
i,j γj

i Ui(x
j
i ), where the weight depends on the equilib-

rium itself. Theorem 1 characterizes this underlying convex
optimization problem that an equilibrium solves. It further
motivates the algorithm in section VI. Since this optimization
problem itself depends on the equilibrium, it cannot be used to
find equilibrium directly, nor does it guarantee existence and
uniqueness properties as in the single-protocol case [36].

As stated by the celebrated first fundamental theorem of
welfare economics, assuming a homogeneous price signal,
any competitive equilibrium is Pareto efficient. As a direct
corollary of Theorem 1, the same holds for networks with
heterogeneous price signals.

Corollary 2. All equilibrium points are Pareto efficient.

Pareto efficiency can be viewed as a necessary requirement
for an efficient allocation. An equilibrium is optimal if it is
Pareto efficient and maximizes (possibly weighted) aggregate
utility. As shown in (8)-(9), for the homogeneous case, the
equilibrium is indeed optimal. For the heterogeneous case,
Theorem 1 implies a bound on the loss in optimality, as the
following corollary states.

Corollary 3. Assume all utility functions are nonnegative, i.e.,
U(x) ≥ 0. Suppose the optimal aggregate utility is U∗ and
Û is the achieved aggregate utility at an equilibrium (x̂) of a
network with heterogeneous protocols. Then

Û

U∗ ≥
γmin

γmax
(17)

where γmin and γmax are any lower and upper bounds of
γj

i
5, i.e., γmin ≤ γj

i ≤ γmax.

Proof. Assume x̂ is one of the solutions of (10)-(11), then

max
x

∑

i,j

γj
i U j

i (xj
i ) =

∑

i,j

γj
i U j

i (x̂j
i ) ≤ γmaxÛ (18)

On the other hand,

max
x

∑

i,j

γj
i U j

i (xj
i ) ≥ γmin max

x

∑

i,j

U j
i (xj

i ) = γminU∗ (19)

Combining the two equalities above, we get Û
U∗ ≥ γmin

γmax

It has been well known that price can serve as the “in-
visible hand” to coordinate competing users and realize op-
timal resource allocation. That however requires two basic
assumptions. The first assumption is that users are all price
takers. If instead they are noncooperative game players, there
will be efficiency loss. Such “price of anarchy” was recently
bounded from above for both routing [29] and congestion
control [14]. The second assumption is the homogeneity of
price, which does not hold in networks with more than one
type of congestion control signals. Our result above attempts
to quantify the “price of heterogeneity” in congestion control.

B. Fairness

In this subsection, we study fairness in networks shared by
heterogeneous congestion control protocols. Two questions we
address are: how the flows within each protocol share among
themselves (intra-protocol fairness) and how these protocols
share bandwidth in equilibrium (inter-protocol fairness). The
results here generalize the corresponding theorems in [35].

1) Intra-protocol fairness: As indicated by (8)–(9), when a
network is shared only by flows using the same congestion
signal, the utility functions describe how the flows share
bandwidth among themselves. When flows using different
congestion signals share the same network, this feature is still
preserved “locally” within each protocol.

5Both γmin and γmax can be bounded using ṁj
l . For example, for a

network with both loss based and delay based protocols and assuming RED
is used, the slopes of RED at different links can be used to compute γmin

and γmax.



Theorem 4. Given an equilibrium (x̂, p̂), let ĉj := Rj x̂j be
the total bandwidth consumed by flows using protocol j at
each link. The corresponding flow rates x̂j are the unique
solution of:

max
xj≥0

Nj∑

i=1

U j
i (xj

i ) subject to Rjxj ≤ ĉj (20)

Proof: Since (x̂j , p̂j) ≥ 0 is an equilibrium, from (3) to (7),
we have(

U j
i

)′ (
x̂j

i

)
=

∑

l

Rj
lip̂

j
l for i = 1, ..., Nf

This, together with (from the definition of ĉj)

∑

i

Rj
lix̂

j
i ≤ ĉj

l , p̂j
l

(∑

i

Rj
lix̂

j
i − ĉj

l

)
= 0, ∀l

forms the necessary and sufficient condition for x̂j and p̂j to
be optimal for (20) and its dual respectively.

Note that in Theorem 4, the “effective capacities” ĉj are
not preassigned. They are the outcome of competition among
flows using different congestion prices and are related to inter-
protocol fairness, which we now discuss.

2) Inter-protocol fairness: Even though flows using differ-
ent congestion signals individually solve a utility maximization
problem to determine their intra-protocol fairness, they in
general do not jointly solve any predefined convex utility
maximization problem. Here we provide a feasibility result,
which says any reasonable inter-protocol fairness is achievable
by linearly scaling congestion control algorithms.

Assume flow (j,i) has a parameter µj
i with which it chooses

its rate in the following way:

xj
i

(
qj
i

)
=

(
U j

i

)′−1
(

1
µj

i

qj
i

)
(21)

Our main result here says that for a network with J protocols,
given any desirable bandwidth allocation across protocols,
there exists a µ vector such that one of the resulting equilibria
achieves the given bandwidth partition. Before stating the
theorem, we first characterize the feasible set of predefined
bandwidth allocation.

Assume that except for j = J , flow (j, i) has parameter µj
i .

Or equivalently, we can define µJ
i = 1. The equilibrium rates

xj clearly depend on parameter µ. For j = 1, 2, ...J − 1, let
xj(µ) be the unique rate vector of flows using protocol j if
there were no other protocols in the network, i.e., xj(µ) solves
the following problem.

max
xj≥0

Nj∑

i=1

µj
iU

j
i (xj

i ) subject to Rjxj ≤ c

Let xj(µ) be the unique rates of type j flows if network
capacity were (c−∑

k 6=j Rkxk)+ and no other protocols are
in the network, i.e., xj(µ) solves the following problem.

max
xj≥0

Nj∑

i=1

µj
iU

j
i (xj

i ) subject to Rjxj ≤ (c−
∑

k 6=j

Rkxk)+

Let X := { x|xj(µ) ≤ xj ≤ xj(µ), µ ≥ 0, Rx ≤ c}. X
includes all possible rates of flows using protocol j if they
were given strict priority over other flows or if others were
given strict priority over them, and all rates in between. In
this sense X contains the entire spectrum of inter-protocol
fairness among different protocols. The next result says that
every point in this spectrum is achievable by an appropriate
choice of parameter µ.

Let S(µ) denote the set of equilibrium rates of flows
when the protocol parameter is µ. Clearly, equilibrium is
characterized by (3), (4), (7) and (21).

Theorem 5. For every link l, assume there is at least one type
J flow that only uses that link. Given any x ∈ X , there exists
an µ ≥ 0 such that x ∈ S(µ).

Proof: Given any x ∈ X , the capacity for all type J flows is
c−∑

k 6=J Rkxk. Since Rx ≤ c (for all coordinates), we have
c−∑

k 6=J Rkxk ≥ RJxJ , which is greater than or equal to 0.
Hence the following utility maximization problem solved by
flows of type J is feasible:

max
xJ≥0

∑

i

UJ
i (xJ

i )

subject to RJxJ ≤ c−
∑

k 6=J

Rkxk

Let pJ be the associated Lagrange multiplier vector. By
the assumption that every link has at least one single-link
type J flow, we know pJ

l > 0 for all l. Choose µj
i =∑

l Rj
lim

j
l ((m

J )−1
l (pJ

l ))

(Uj
i )′(xj

i)
. It can be checked that all equations

that characterize an equilibrium (3), (4), (7) and (21) are
satisfied.

In general, one can view Theorem 1 as defining fairness of
flows using heterogeneous protocols and can conclude that
price mapping functions (router parameters) affect fairness
(supported by Example 1a). Clearly, if one can choose price
mapping functions, one can achieve any predefined fairness.
More interestingly, Theorem 5 implies that given any reason-
able fairness among flows using different congestion signals,
in terms of a desirable rate allocation x, there exists a protocol
parameter vector µ that can achieve it without changing
parameters inside the network. In section VI, we will discuss
distributed algorithms to compute a particular µ, which will
result in the optimal bandwidth allocation.

V. STABILITY

For general dynamical systems, a globally unique equilib-
rium point may not even be locally stable [16], [32]. In this
section, we focus on the stability of heterogeneous congestion
control protocols, which dictates whether an equilibrium can
manifest itself experimentally or not [35]. For general net-
works, it is shown that once the degree of heterogeneity is
properly bounded, the equilibrium is not only unique as shown
in [36] but also locally stable. Stronger results for some special
cases can be found in the Appendix IX-A.

We now state the general result on local stability. It essen-
tially says that if the similarity condition on price mapping



functions that guarantees uniqueness [36] is satisfied, the
unique equilibrium is also locally stable. In particular, if for
any l all mj

l are the same, then (22) is satisfied and the
equilibrium is locally stable. This certainly agrees with our
knowledge on the homogeneous case.

We call a vector σ = (σ1, . . . , σL) a permutation if each
σl is distinct and takes value in {1, . . . , L}. Treating σ as a
mapping σ : {1, . . . , L} → {1, . . . , L}, we let σ−1 denote
its unique inverse permutation. For any vector a ∈ <L, σ(a)
denotes the permutation of a under σ, i.e., [σ(a)]l = aσl

.
If a ∈ {1, . . . , L}L is a permutation, then σ(a) is also a
permutation and we often write σa instead. Let l = (1, . . . , L)
denote the identity permutation. Then σl = σ. Finally, denote
dmj

l /dpl by ṁj
l .

Theorem 6. If for any vector j ∈ {1, . . . , J}L and any
permutations σ, k, n in {1, . . . , L}L,

L∏

l=1

ṁ
[k(j)]l
l +

L∏

l=1

ṁ
[n(j)]l
l ≥

L∏

l=1

ṁ
[σ(j)]l
l (22)

then the equilibrium of a regular network is locally stable.

Proof. For a real matrix A, if all its principle minors are
positive, A is called a P -matrix [34]. If aii ≥ 0, aij ≤ 0, then
A is called an M -matrix. Clearly if a P -matrix is symmetric,
then it is positive definite and hence stable. However, the Ja-
cobian matrix in our problem is not symmetric when multiple
protocols exist, which is the main difficulty in proving stability.
Before getting into the main proof, we state three lemmas. One
is referred to [1] for other related results.

Lemma 7. If A is a P -matrix and also an M -matrix, then
all its eigenvalues have positive real parts.

Let e be the column vector e = [1, 1, · · · , 1]T .

Lemma 8. If A is an M-matrix and all its eigenvalues have
positive real parts, then there is an D = diag[d1, · · · , dn],
di > 0 for all i, such that D−1ADe > 0. In other words, A
is strictly diagonally dominant.

For a matrix A, we define its comparison matrix M(A) =
(mij) by setting mii = |aii|, and mij = −|aij | if i 6= j.
Clearly M(A) is an M -matrix. The following lemma points
out a simple yet important fact that relates diagonal dominance
property of A with positive diagonal entries and that of M(A).

Lemma 9. Suppose all diagonal entries of A are positive. If
there is a an D = diag[d1, · · · , dn], di > 0 for all i, such that
D−1M(A)De > 0, then D−1ADe > 0, i.e., A is also strictly
diagonally dominant.

We now state the proof of Theorem 6. We need to show
all eigenvalues of −J have positive real parts, where J is the
Jacobian of equilibrium equations (J = ∂y/∂p) evaluated at
equilibrium. It is enough to show −J is strictly diagonally
dominant and by Lemma 9 we only need to show M(−J) is
strictly diagonally dominant since all diagonal entries of −J
are positive (each link has at least one flow using it). Using
Lemma 8, it suffices to show that M(−J) is positive stable,
which then can be reduced to check whether M(−J) is a

P -matrix by Lemma 7. By similar arguments in [36], it is
enough to show det(M(−J)) > 0, which will be done in the
remainder of the proof.

Following [36], let π denote an L-bit binary sequence
that represents the path consisting of exactly those links k
for which the kth entries of π are 1, i.e., πk = 1. Let
Π(k, l) := {π|πk = πl = 1} be the set of paths that contain
both links k and l. Let Ij

π = {i|Rj
li = 1 if and only if πl = 1}

be the set of type j sources on path π, possibly empty. Let

rj
π = rj

π(p) =
∑

i∈Ij
π

(
− ∂2U j

i

∂(xj
i )2

)−1

(23)

where rj
π is zero if Ij

π is empty. Denote by 1(a) the indicator
function that is 1 if the assertion a is true and 0 otherwise.
Define

µ(j) :=
L∏

l=1

ṁjl

l (24)

ρ(j, π) :=
L∏

l=1

rjl

πl (25)

For any permutation k, Define L+
k = {l|kl = l} and L−k =

{l|kl 6= l}. We then have

det(M(−J)) =
∑

j

∑
π

G(j, π) ρ(j, π) (26)

where the last summation in (26) is over the vector
index π = (π1, . . . , πL) that takes value in the set
{ all L-bit binary sequences }L. l = (1, . . . , L) denotes the
identity permutation, and “π ∈ Π(k, l)” is a shorthand for
“πl ∈ Π(kl, l), l = 1, . . . , L”. and

G(j,π) :=
∑

k

1(π ∈ Π(k, l)) sgnk(−1)|L
−
k | µ(j)(27)

Then let Θ0 be the largest subset of the set of all possible
(j, π)’s that is permutationally distinct, i.e., no vector in Θ0

is a permutation of another vector in Θ0. We then have

det(M(−J(p))) =
∑

(j,π)∈Θ0

H(j, π) ρ(j, π) (28)

H(j,π) =
∑

σ∈Σ(j,π)

∑

k

1(σ(π) ∈ Π(k, l))T (29)

where

T = sgnk(−1)|L
−
k | µ(σ(j))

and Σ(j, π) is the largest subset of the set of all permutations
σ that generates distinct σ(j, π).

We now use (29) to derive a sufficient condition under
which H(j,π) are nonnegative for all permutationally distinct
(j, π). The main idea is to show that for every negative term
in the summation in (29), either it can be exactly cancelled by
a positive term, or we can find two positive terms whose sum
has a larger or equal magnitude under the given condition.
Theorem 6 is then directly implied by the following Lemma,
whose proof is provided in the Appendix IX-B.



Lemma 10. Suppose for any j ∈ {1, . . . , J}L and permuta-
tions σ, k,n in {1, . . . , L}L, we have for a regular network

µ(k(j)) + µ(n(j)) ≥ µ(σ(j))

Then, for all (j,π) ∈ Θ0, H(j,π) ≥ 0.

VI. SLOW TIMESCALE UPDATE

A. Motivation

As pointed out in Corollary 2, all equilibria are Pareto
efficient. However, based on analysis in section IV, large
efficiency loss may occur and no guarantee on fairness can be
provided. This motivates us to turn from analysis to design,
and develop a readily implementable control mechanism that
“drives” any network with heterogeneous congestion control
protocols to a target operating point with a fair and efficient
bandwidth allocation. Our target equilibrium is the maximizer
of some weighted aggregate utility. The first step is to set up
the existence and uniqueness of such a solution.

Theorem 11. For any given network (c,m, R, U), for any
positive vector w, there exists a unique positive vector µ such
that, if every source scales their own prices by µj

i , i.e.,

xj
i =

(
U j

i

)′−1
(

1
µj

i

∑
mj

l (pl)

)
(30)

then, at equilibrium(x, p), x solves

max
x≥0

∑

(i,j)

1
wj

i

U j
i (xj

i ) (31)

subject to Rx ≤ c (32)

Moreover,

µj
i =

1
wj

i

∑
l∈L(j,i) mj

l (pl)∑
l∈L(j,i) pl

Proof. We claim that the optimality conditions of (31) and (32)
are the same as equations that characterize the equilibrium of
the above system ((3), (30), (4) and (7)). Capacity constraints,
nonnegativity, and complementary slackness are obviously the
same. We only need to check the relation between rates and
prices at equilibrium. Those are

µj
i

(
U j

i

)′
(xj

i ) =
∑

l∈L(j,i)

mj
l (pl) (33)

and

µj
i =

1
wj

i

∑
l∈L(j,i) mj

l (pl)∑
l∈L(j,i) pl

(34)

Combining them, we get

1
wj

i

(
U j

i

)′
(xj

i ) =
∑

l∈L(j,i)

pl (35)

which is the relation between x and p specified by the
optimality conditions of problem (31)-(32). On the other hand,
given x and p that satisfy (35), one can always define µ by
(34), and (33) will also be satisfied.

Algorithm 1 Two timescale control scheme
1) Every source chooses its rate by

xj
i (t) = (U ′)−1

(
qj

i (t)

µj
i (t)

)
;

2) Every source updates its µj
i by

µj
i (t+T ) = µj

i (t)+κj
i

(∑
l∈L(j,i) mj

l (pl(t+T ))∑
l∈L(j,i) pl(t+T ) − µj

i (t)
)

where κj
i is the stepsize for flow (j, i) and T is large

enough so that the fast timescale dynamics among x and
p can reach steady state.

Parameter w enables us to control fairness and to achieve
any desired fair bandwidth allocation. Moreover, Theorem 11
suggests Algorithm 1 as a two-timescale scheme to control
the operating point of networks with heterogenous congestion
control protocols. The essential idea in Algorithm 1 is that
by reacting to the same price (pl(t)) on slow timescale, it
is guaranteed to reach the optimal equilibrium in the long
run. Yet the algorithm allows sources to react to their own
effective prices mj

i (pl(t)) on fast timescale. This flexibility on
timescales is important in practice when, for example, the link
prices pl are loss probability that are hard to reliably estimate
on the fast timescale. The slow timescale algorithm only
updates a linear scaler (µj

i ), which is readily implementable,
e.g., this corresponds to updating a parameter α in FAST; see
Section VII. In general, one can always choose mj

l (pl) = pl

for a particular j, say j = 1. Then µ1
i = 1. This is desirable for

incremental deployment as only new protocols need to adapt
while the current Reno (j = 1) does not.

B. Numerical Examples

Throughout this subsection, we provide some numerical
results to further validate the effectiveness of Algorithm 1.
For simplicity we choose w = 1, i.e., we attempt to maximize
the aggregate utility.

Example 3: L=3 with multiple equilibria
We use the following example that has multiple equilibria [36].
The network is shown in Figure 7 with three unit-capacity
links, cl = 1. There are three different protocols with the
corresponding routing matrices

R1 = I, R2 =
[

1 1 0
0 1 1

]T

, R3 = (1, 1, 1)T

The price mapping functions are linear: mj
l (pl) = kj

l pl where

K1 = I, K2 = diag(5, 1, 5), K3 = diag(1, 3, 1)

Utility functions of sources (j, i) are

U j
i (xj

i , α
j
i ) =

{
βj

i (x
j
i )

1−αj
i /(1− αj

i ) if αj
i 6= 1

βj
i log xj

i if αj
i = 1

with appropriately chosen positive constants αj
i and βj

i [36].
These utility functions can be viewed as a weighted version of
the α-fairness utility functions proposed in [26]. Parameters µj

i

are updated every 20 time units. We show that starting from
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Fig. 7. A three-link network with three equilibria

different initial conditions, although the system reaches dif-
ferent equilibria after the first iteration, it nevertheless finally
reaches the unique optimal equilibrium with p∗1 = 0.222.

Case 1: We start with initial point p1(0) = p2(0) = p3(0) =
0.3. After the first iteration, the network goes to an equilibrium
(p1 = p3 = 0.165, p2 = 0.170). Price p1(t) with different
stepsize κj

i is shown in Figures 8.
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Fig. 8. Case 1: p1(t) with different κj
i

Case 2: We choose another initial point p1(0) = p3(0) = 0.1,
p2(0) = 0.3 As shown in Figure.9. After the first iteration,
the system reaches another equilibrium, p1 = p3 = 0.135 and
p2 = 0.230. However finally, the system still reaches the same
steady state as in Figure 8.
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Fig. 9. Case 2: p1(t) with different κj
i

Example 4: L=5 with asynchronous update
In this example, the network has five links and 15 flows.
Algorithm 1 is tested in an asynchronous environment. We
assume that every five time units, flows can update their µj

i

and they do so with certain probability. Hence every five time
units, only a portion of flows update their µj

i . We set link
capacities uniformly between 1 to 10, price mapping functions
are m1(p) = p and m2(p) = pα, where α is chosen between

0.5 to 5 with uniform distribution. Flows 1 to 5 use links 1 to
5 correspondingly while a random routing matrix with entries
0 or 1 with equal probability is used to define routes for other
flows. Finally each flow chooses to use price 1 or 2 with equal
probability.

All of the 1000 trials converge to the right operating point.
Some typical convergence patterns are shown in Figure 10
where the five curves correspond to the p value of the five
links. It shows clearly that although asynchronism causes
longer convergence time, the system still converges to the
target equilibrium.
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Fig. 10. p(t) with different probability of updating

VII. SIMULATION RESULT: RENO AND FAST
In this section, we apply Algorithm 1 to the case of Reno

and FAST to resolve the issues illustrated in Section II. It
demonstrates how the algorithm can be deployed incrementally
where the existing protocol (Reno in this case) needs no
change and only the new protoocls (FAST in this case) need
to adopt slow timescale adaptation for the whole network to
converge to the unique equilibrium that maximizes (weighted)
aggregate utility. Experiments in this section were conducted
in ns-2; Section IX-C presents results in a real testbed,
Caltech’s WAN-in-Lab.

We take Reno’s loss probability as the link price, i.e.,
m1

l (pl) = pl for Reno. Algorithm 1 then reduces to an α
adaptation scheme for FAST that uses only end-to-end local
information that is available to each flow. This algorithm,
displayed as Algorithm 2, tunes the value of α according
to the signals of queue delay and loss on a large timescale.
The basic idea is that FAST should adjust its aggressiveness
(parameter α) to the proper level by looking at the ratio of end-
to-end queueing delay and end-to-end loss. Therefore FAST
also reacts to loss in a slow timescale. We apply Algorithm 2
to the examples illustrated in Section II.

A. Example 1b: independence of bandwidth allocation on
buffer size

We repeat the simulations in Example 1a with Algorithm 2,
with w set to 125s6. Figure 11, Figure 12, should be compared
with Figure 2, Figure 3, respectively.

With Algorithm 2, FAST achieves 3.4 pkts per ms with
buffer size of 400 and 3.2 pkts per ms with buffer size of

6The parameter w determines the equilibrium bandwidth share. Formally,
it is stated in (31)-(32). Here w is chosen so that Reno and FAST get equal
rates.



Algorithm 2 α adaptation algorithm
1) Every α update interval (2 minutes by default), calculate:

α∗ =
q

lw
α0

α0 is the initial α value; q and l are average queueing
delay and average packet loss rate over the interval; w
is a parameter with the same unit of q/l. It determines
the relative fairness between delay-based and loss-based
protocols. Then

α =
{

min {(1 + δ)α, α∗} if α < α∗

max {(1− δ)α, α∗} if α > α∗

where δ determines the responsiveness and is 0.1 by
default.

2) Every window update interval (20ms by default), run
FAST algorithm (1).

80, while Reno gets 4.2 pkts per ms and 4.1 pkts per ms,
respectively. The fairness is greatly improved and essentially
independent of buffer size now. This is summarized in table I
by listing the ratio of Reno’s bandwidth to FAST’s. We also
note that the utilization of the link for B = 80 increases
significantly from 53.6% to 97.7%. This point will be further
discussed in Example 5 in section IX-C.

B=400 B=80
Without Algorithm 2 5.4/2.1=2.6 0.6/3.4=0.18

With Algorithm 2 4.2/3.1=1.4 4.1/3.2=1.3

TABLE I
RATIO OF RENO’S RATE AND FAST’S RATE
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Fig. 11. FAST vs. Reno, with buffer size of 400 pkts.
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Fig. 12. FAST vs. Reno, with buffer size of 80 pkts.

The trajectories of α with different buffer sizes are presented
in Figure 13. It is clear that although FAST starts with α =
50 in both cases, it finally ends up with a much larger α in
the scenario where B = 400, as it experiences much higher
equilibrium queueing delay with the large buffer.
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Fig. 13. α trajectory of example 1b

B. Example 2b: independence of bandwidth allocation on flow
arrival pattern

We repeat the simulations in Example 2a with Algorithm
2, with w set to 1,820s. Figure 14 and Figure 15 show the
effect of α adaptation in the multiple-bottleneck case and
should be compared with Figure 5 and Figure 6 respectively.
Theorem 11 guarantees a unique equilibrium when we adapt
α according to Algorithm 2. In this particular case, this single
equilibrium is around the point where each Reno flow gets a
throughput of 0.6 pkts per ms and each FAST flow gets 1.5
pkts per ms. At this single equilibrium, link 1 and link 3 are
the bottleneck links. In Figure 14, FAST flows start at time
zero and link 2 becomes the bottleneck. When Reno flows
join at the 100th second, the ratio of queue delay and loss at
link 2 is much higher than the target value. The FAST flows
hence reduce their α values gradually and the set of bottleneck
links switches from link 2 to links 1 and 3 around the 2000th
second. After that, FAST flows and Reno flows converge to
the unique equilibrium.
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Fig. 14. FAST starts first.

The trajectory of α is presented in Figure 16. Although the
α values converge to the same equilibrium value with different
starting sequence, the trajectories are very different: When the
Reno flows start first, the value of α gradually increases from
the initial value of 50 to the equilibrium value of around 96.
However, when FAST flows start first, the value of α first
decreases, and then increases to the equilibrium value.
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Fig. 15. Reno starts first.
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Fig. 16. α trajectory of example 2b

Queue trajectories of the links help better understand this
process. Figure 17 presents the queue trajectories of the two
cases. When the system converges, the α value is around 96
and the bottleneck links are link 1-2 and link 3-4. If Reno
flows start first, the initial bottleneck set is the same as the
bottleneck set in equilibrium. With the correct bottleneck set,
the α adaptation algorithm adjusts the α value to reach a
fair share defined by the w parameter as in Example 1. If
FAST flows start first, the initial bottleneck is link 2-3, with
which there is no (x, p) that solves the optimization problem
defined in Theorem 1. Hence, the α adaptation algorithm keeps
decreasing the value of α due to the small delay-to-loss ratio
in link 2-3 until the bottleneck link set switches to be link
1-2 and link 3-4. The α adaptation algorithm then works as
the scenario when Reno flows start first and finds the right
equilibrium point.

We note that the bottleneck switching point has the α value
with which the two stable equilibria are very close to each
other. Without the α adaptation algorithm, the equilibrium
bottleneck set can vary due to random noise, even with the
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(a) Reno flows start first
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(b) FAST flows start first

Fig. 17. Trajectories of queues of example 2b

same setup and same starting order. To intuitively illustrate
this transition point, Figure 18 presents two individual results
of the same scenario of Example 2a, with FAST flows starting
first with fixed α value, and with different random seeds in
the simulation. Although in both cases FAST flows start first,
Reno flows may or may not take over link 1-2 and link 3-4,
depending on the randomness of the noise traffic when Reno
flows join.
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(a) Result 1
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Fig. 18. Trajectories of queues of example 2a, with α fixed at 8.2 and using
different random seeds (FAST flows start first)

VIII. CONCLUSION

Congestion control has been extensively studied for net-
works running a single protocol. However, when sources
sharing the same network react to different congestion signals,
the existing duality model no longer explains the behavior of
bandwidth allocation. The existence and uniqueness properties
of equilibrium in heterogeneous protocol case are examined in
[36]. In this paper, we study optimality and stability properties.
In particular, it is shown that equilibrium is still Pareto
efficient, but there is efficiency loss. On fairness, intra-protocol
fairness is still determined by utility maximization problem,
while inter-protocol fairness is the part which we do not have
control on. However, we can achieve any desired inter-protocol
fairness by properly choosing protocol parameters. Motivated
by the analytical results, we further propose a distributed
scheme to steer the whole network to the unique optimal
equilibrium. The scheme only needs to update a linear scaler in
the source algorithm on a slow timescale. It can be deployed
incrementally as the existing protocol needs no change and
only the new protocols need to adapt on the slow timescale.

There are several interesting directions in this relatively
open area. For example, more efforts are still needed to fully
clarify the global dynamics of the two timescale system.
The main technical difficulty here is that the fast timescale
system may have multiple equilibria and therefore the usual
two timescale argument (e.g. singular perturbation) is not
applicable. Our current model assumes each protocol only
reacts to one particular price on the fast timescale, even
when they have access to multiple types of prices. It’d be
interesting to generalize the analysis where a protocol can
react to a combination of price types, as new protocols such
as TCP Westwood [4], CTCP [33] and TCP-Illoinois [22] do.
Preliminary steps along this direction can be found in [37].
Finally, the current results should be extended from static to
dynamic setting where flows come and go [2], [20].
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IX. APPENDIX

A. Stability: Special Cases

Theorem 12. For a network with L ≤ 3, if there is only one
equilibrium, it is also locally stable.

Proof. We want to prove all eigenvalues of J(p) lie in the left
half plane. By the index theorem, we have det(−J) > 0 for
the unique equilibrium.

When L equals 1 or 2, it is obvious as Jii < Jij < 0
for j 6= i. Let’s consider the case with L = 3. Suppose λ3 +
ρ1λ

2 +ρ2λ+ρ3 = 0 is the characteristic equation for J . Then
ρ1 is the trace of −J , ρ2 is sum of all 2× 2 principle minors
of −J and ρ3 = det(−J ).

The Routh array for the equation is



1 ρ2

ρ1 ρ3

(ρ1ρ2 − ρ3)/ρ1 0
ρ3 0






Applying Routh stability criterion [10], we need all quantities
in the left column to be positive to guarantee all roots lie in
the left half plane. Clearly ρ1 > 0. Global uniqueness implies
ρ3 > 0. Hence we only need to check ρ1ρ2 > ρ3. We have

det(J) = J11(J22J33 − J23J32)− J12(J21J33 − J23J31)
+J13(J21J32 − J22J31)

> J11(J22J33 − J23J32) + J22(J11J33 − J13J31)
+J33(J11J22 − J12J21)

> (J11 + J22 + J33)((J11J22 − J12J21)
+(J11J33 − J13J31) + (J22J33 − J23J32))

= −ρ1ρ2

The first inequality follows from Jii < Jij < 0 for j 6= i. The
second one follows from JiiJjj − JijJji > 0 for j 6= i. One
is referred to [36] for detail properties of J . Therefore

ρ3 = det(−J) = − det(J) < ρ1ρ2

As reviewed in III-B, when there is only one kind of price,
global stability is proved by using the objective function of
the dual of the system problem as a Lyaponov function. For
heterogeneous protocols, we have the following.

Theorem 13. For a network with L ≤ 2, the equilibrium is
globally asymptotically stable.

Proof sketch. Assume the equilibrium price is p∗. When L=1,
consider the simple quadratic Lyaponov function

L(p(t)) = (p(t)− p∗)2

When L=2, consider

L(p(t)) = |p1(t)− p∗1|+ |p2(t)− p∗2|

B. Proof of Lemma 10

Proof. Fix any (j,π) ∈ Θ0. Each term in (29) is in-
dexed by a pair (σ, k). Fix also a permutation σ in
(29). Suppose there is only one permutation k for which
the term indexed by (σ, k) has a negative sign given by
1(σ(π) ∈ Π(k, l)))sgn(k)(−1)|L

−
k | = −1. This term is

then −µ(σ(j)) < 0. Since the summation over k ranges
over all permutations, we can find a positive term, indexed
by (σ, k̂) with k̂ = l, that exactly cancels this negative
term. This is because 1(σ(π) ∈ Π(l, l)) is always 1 and
sgn(l)(−1)|L

−
l | = 1, yielding the term µ(σ(j)). Hence we

have shown that, given σ, if there is only one k that yields a
negative term, then it is always cancelled by another positive
term indexed by (σ, k̂) with k̂ = l.

Given a σ, suppose now there are two permutations k,n
for which

σ(π) ∈ Π(k, l) and σ(π) ∈ Π(n, l) (36)

and

sgn(k)(−1)|L
−
k | = sgn(n)(−1)|L

−
n | = −1 (37)

Each of (σ, k) and (σ,n) yields a negative term −µ(σ(j))
in the summation in (29). Notice that (36) says that, for all

l = 1, . . . , L, paths σ(π)l contains link pairs (kl, l) and (nl, l).
Hence σ(π)l also pass through link pairs (l, l), (kl, nl) and
(nl, kl), i.e.,

σ(π) ∈ Π(l, l)) (38)
σ(π) ∈ Π(k, n), σ(π) ∈ Π(n, k) (39)

(38) implies that there is a positive term in the summation in
(29) indexed by (σ, k̂) with k̂ = l:

sgn(l)(−1)|L
−
l |µ(σ(j)) = µ(σ(j)) > 0

It cancels the negative term −µ(σ(j)) in the summation
indexed by (σ,k).

To deal with the negative term −µ(σ(j)) indexed by (σ, n),
note that (39) implies that there are two nonzero terms in the
summation, indexed by (n−1σ,n−1k) and (k−1σ, k−1n),
that we now argue are positive. Indeed the term indexed by
(n−1σ, n−1k) is sgn(n−1k) (−1)|L

−
n−1k

| µ(n−1(j)). We
further have

|L−n−1k| = |L−k ∪ L−n | − |(L−k ∩ L−n)| (40)

= |L−k |+ |L−n | − 2|(L−k ∩ L−n)|
Hence

sgn(n−1k) (−1)|L
−
n−1k

| = sgn(n)sgn(k) (−1)|L
−
k | (−1)|L

−
n |

= 1

The last equality follows from (37). Similarly, the term with
index (k−1σ,k−1n) is µ(k−1(j)). The hypothesis of the
lemma implies that

µ(n−1(j)) + µ(k−1(j))− µ(σ(j)) ≥ 0

Hence, given σ, if there are two negative terms in the
summation in (29) indexed by (σ, k) and (σ, n), then we
can always find three positive terms, indexed by, (σ, l),
(n−1σ, n−1k) and (k−1σ, k−1n), so that the sum of these
five terms are nonnegative.

If there are more than two negative terms, take any addi-
tional negative term, indexed by, say, (σ, n̂). The same argu-
ment shows that it will be compensated by the two (unique)
positive terms indexed by (n̂−1σ, n̂−1k) and (k−1σ, k−1n̂).
This completes the proof.

C. WAN-in-Lab Experiments

In this section, we present two experimental results to illus-
trate the behavior of Algorithm 2 in new scenarios: when the
bottleneck buffer is small and when all flows are FAST. The
experiments were conducted on a realistic testbed, Caltech’s
WAN-in-Lab, which is a wide area network consisting of
2,400 km of long haul optical fiber, a reconfigurable array
of Cisco 7609 routers and ONS 15454 high speed switches,
servers, clients, interconnected via OC-48, GbE and 10GbE
links, using a Calient MEMS optical switch. considering some
previously ignored scenarios (e.g., small buffer size, only
FAST flows). We test our algorithm with a single bottleneck
link with 1Gbps capacity.

Example 5: small buffer size



As we have seen in Example 1a and Example 1b, Algorithm
2 can significantly increase link utilization when buffer size B
is not too larger than α. In this experiment, we have B < α.
Without Algorithm 2, every FAST flow tries to maintain α
packets in the queues along its path leading to high packet
loss rate and poor throughput for both Reno and FAST. With
Algorithm 2, α is automatically adjusted to a proper value
with respect to the network parameter B.

One FAST and one Reno compete for bandwidth at a
bottleneck link of 1Gbps (80pkts/ms) capacity. The buffer
capacity B is 480pkts. The initial α is set to be α=800pkts.
The results are summarized in Figure 19. As the left part
of the figure shows, both Reno and FAST get very low
throughput due to the high packet loss rate (FAST: 135Mbps;
Reno: 22Mbps). However, using Algorithm 2, FAST decreases
its α as it sees high loss and finally both flows get high
throughput (FAST: 593Mbps; Reno: 246Mbps). The utilization
is increased significantly from 15.7 percent to 83.9 percent.

(a) Without Algorithm 2 (b) With Algorithm 2

Fig. 19. Bandwidth partition between Reno and FAST

Example 6: only FAST flows
Although the slow timescale update shows desirable properties
in various tests we have discussed so far, there is a problem
we have not touched, namely the case when there are only
FAST flows in a network. As FAST is designed to achieve a
steady state with no loss, flows will keep increasing their α
according to Algorithm 2 until the buffer is filled and loss is
generated. This is undesirable and we propose to turn off the
slow timescale update when a FAST flow has not seen any
loss for a certain amount of time (ten seconds by default).
We conduct a test using three FAST flows all with initial
α=200pkts sharing the common 1Gbps link. The throughput
trajectories are shown in Figure 20. We can see that after
a period of adjustment, all flows are stabilized. The steady
state throughputs are 128Mbps, 234Mbps and 566Mbps, which
result in a high utilization of 92.8 percent even though the
initial sum of α (600 pkts) exceeds the buffer capacity (480
pkts). However, this introduces potential fairness problem as
we cannot make sure the individual α values are equal when
the update algorithm stops. For example, instead of achieving
perfect fairness with a Jain index [12] of 1, we have 0.733 in
this experiment.

Fig. 20. Bandwidth sharing among FAST flows
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