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Abstract. This paper proposes a Galilean invariant generalization of
critical points of vector field topology for 2D time-dependent flows. The
approach is based upon a Lagrangian consideration of fluid particle mo-
tion. It extracts long-living features, like saddles and centers, and filters
out short-living local structures. This is well suited for analysis of tur-
bulent flow, where standard snapshot topology yields an unmanageable
large number of topological structures that are barely related to the few
main long-living features employed in conceptual fluid mechanics models.
Results are shown for periodic and chaotic vortex motion.

1 Introduction

With increasing computational power and advancement in experimental tech-
niques, the focus in flow visualization has moved from steady to unsteady fields.
The demands for analysis and visualization tools have changed accordingly.
Many successful methods for steady fields, such as extraction of vector field
topology, only provide an incomplete view on unsteady phenomena.

There are two viewpoints for describing a flow, dependent on the choice of
independent variables. The Eulerian view assigns dynamic properties to fixed
points in space, while the Lagrangian view assigns these to moving fluid parcels;
the dynamic equations describe changes that occur to a fluid particle along its
trajectory. This view corresponds to a natural extension of particle mechanics.
Both views can be transformed into each other and offer different perspectives
onto the flow behavior; for more details see [Pan05]. Especially for unsteady
flows, it is important to provide analysis tools offering both perspectives.

Vector field topology has permeated fluid dynamics since entering the scien-
tific field [TP82]. It has significantly supported the development of conceptual
flow models for steady flows or snapshots of time dependent flows. Standard
vector field topology is based on streamline behavior and thus is appropriate to
capture snapshot features. Pathline or streakline related features are not repre-
sented. Furthermore, topological features are not invariant under Galilean trans-
formations. These are transformations between two frames of reference that differ
by a constant relative motion. The distinguished points in vector field topology
are fixed points that exhibit zero velocity. Thus, choosing a suitable Galilean
transformation any location can be turned into a feature point. Additional prac-
tical limitations result from the complexity of the topological skeleton and its



Fig. 1. Correspondences between critical points from standard vector field topology
and Lagrangian equilibrium points. Displayed are the respective distinguished points
with streamlines providing context.

high feature density. Distinguishing long-living structures from short-living in-
coherent structures is not easy.

Some of these problems have been tackled by the introduction of Lagrangian
coherent structures. These long-living features can be extracted in a number of
ways, for example by analysis of the Finite Time Lyapunov Exponent field [Hal02].
This measure characterizes the separation of particles over time, providing a
Galilean invariant Lagrangian view. Coherent features are depicted as ridges of
high separation. Center or vortex-like features are not considered by this ap-
proach, since nearly no separation can be observed here.

This paper follows a different approach to Lagrangian coherent structures,
motivated by two points: 1) The concept of critical points is successful, but its
applicability to unsteady flow fields is limited. We introduce an unsteady analo-
gon to the zero velocity definition of critical points. In the steady case, particles
at fixed points have zero acceleration, which is a Galilean invariant property.
Generalizing this behavior to unsteady fields, particles with low acceleration
compared to their neighbors become particles of interest. We call these features
Lagrangian equilibrium points (LEP). 2) Fluid flow researchers are mainly in-
terested in the dominant structures that mainly influence the flow behavior.
These interesting and influential features usually exist over some period of time.
The time a particle exhibits a given property becomes a basic component of the
analysis. In the proposed approach short-living structures are filtered out by a
lifetime parameter leaving only salient features. We consider the extracted fea-
tures to be a first building block of a Finite Time Topology (FTT). We verify the
significance of this approach by applying it to basic well-known flow structures
such as a mix of Oseen vortices. We limit our considerations to unsteady 2D
fields and leave an extension to 3D fields for future work.

2 Related Work

Streamline topology was introduced by Tobak and Peake [TP82] to the flow com-
munity and by Helman and Hesselink [HH89,HH91] to the visualization commu-
nity a few years later. In this early work, they define the concept of fixed points
and integral curves connecting these, thereby building a topological skeleton. Af-



terwards, many extensions like simplifications and tracking algorithms have been
published. We refer to the survey paper [LHZP07] and the references therein.

Appropriate vortex definitions and extraction methods are crucial for the un-
derstanding of complex flows. A variety of scalar quantities have been introduced
to extract vortex regions. Two of the most commonly used vortex identifiers are
Q [Hun87] and λ2 [JH95]. Both measures are based on the Jacobian matrix of the
flow field and are Galilean invariant. Geometrical approaches using streamline
curvature for locating vortices [SP00] are not Galilean invariant. Other meth-
ods employ the parallel vectors operator [PR00] for computing global line-like
features, such as vortex cores.

Most of the methods mentioned above are based either on streamlines or the
Jacobian matrix. They are well suited for analysis of single time-slices but not
for characteristics of unsteady flow fields. Thus, more attention has been paid to
methods based on pathline analysis, representing the Lagrangian point of view.
Theisel et al. [TWHS05] have presented an extension of streamline topology
to pathlines. Weinkauf et al. [WSTH07] have generalized the parallel vectors
method to detect cores of swirling motion. Fuchs et al. [FPS+08] accumulate
Eulerian quantities along pathlines to add a Lagrangian view. Similarly, Shi et
al. [STW+08] explore the dynamical process of a flow by averaging the kinetic
energy and momentum along pathlines.

Other features have also been identified as interesting by fluid flow researchers
and have subsequently found their way into flow visualization. Haller, for in-
stance, has introduced an analytical criterion for finite-time attracting and re-
pelling material surfaces [Hal01a]. A further advancement has been the intro-
duction of the Finite Time Lyapunov Exponent (FTLE) [Hal02], which is a
scalar quantity indicating the separation rate of infinitesimal close particles. Us-
ing ridge extraction [SP07], Lagrangian coherent structures can be captured.
Garth et al. [GGTH07] have presented a computational less expensive, adaptive
method to extract FTLE ridges.

3 Motivation

3.1 Acceleration and Lagrangian Equilibrium Points

The goal of this section is to explain the considerations that finally leads to the
definition of Lagrangian equilibrium points. Vector field topology defines critical
points as fixed points, as shown on the left hand side of Fig. 1. This definition
does not satisfy the requirement of Galilean invariance. This fact motivates the
investigation of alternative concepts for “distinguished points”. In the following,
let v be a flow field. As a technical requirement it is assumed that its spatial
and time derivatives are bounded. Our starting point is the observation that
for steady fields the particle acceleration at fixed points is equal to zero. Fur-
thermore, particle acceleration is a Galilean invariant entity, see Appendix. The
particle acceleration a is the material derivative of the field v, i.e. the acceleration
in a space-time point (x, t) is given by

a(x, t) = Dv/Dt = ∂tv(x, t) + (v(x, t) · ∇)v(x, t), (1)
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Fig. 2. Visualization of two co-rotating Oseen vortices in two dimensions (a) The accel-
eration magnitude of one time-slice is shown as a color-coded heightfield. The extracted
points are the acceleration minima – which include fixed points. (b) The pathline of a
particle seeded in one time-slice is displayed. The time is depicted as third dimension.
The relative behavior of the flow field in the neighborhood of this particle at a later
point in time is displayed on a surrounding circular disk. The acceleration magnitude
is color coded in the line integral convolution (LIC) images of the flow field.

where ∂t is the partial derivative with respect to t and ∇ the spatial gradient, i.e.
(∂x, ∂y) for the two-dimensional case. The squared magnitude of the acceleration
a defines a scalar field in the space-time domain by

‖a‖2 = ‖∂tv‖2 + 2 ∂tv · ((v · ∇)v) + ‖(v · ∇)v‖2. (2)

For steady fields the partial time derivative vanishes, ∂tv(x, t) = 0, resulting in

a(x) = Dv/Dt = (v(x) · ∇)v(x). (3)

It follows that at fixed points, where v is zero, the acceleration also equals zero
and its magnitude ‖a‖ takes its minimum value 0, cf. Fig. 2(a). Thus, the set of
fixed points is a subset of the zeros of the acceleration field.

The next step is to look at time-dependent vector fields. It turns out that
for unsteady fields it is not sufficient to consider points where the acceleration
of a fluid particle is equal to zero. In general unsteady flow fields, structures like
centers and saddles evolve over time, and thus the acceleration does not vanish.
This fact also follows from Eq. (2), since at fixed points the squared magnitude
of the particle acceleration equals ‖∂tv‖2, which does not vanish in general.
However, the acceleration at fixed points is not zero but is still small compared to
its neighborhood for time-dependent fields. This allows us to relax the condition
of a vanishing acceleration to a less strong requirement, the minimality of ‖a‖2.

As an illustrating example, Fig. 3 shows a steady and a convecting ver-
sion of the Stuart vortex. For a detailed discussion on Stuart vortices see Pan-
ton [Pan05]. Note that convection adds a non-stationary component to the steady
field due to the moving frame of reference. For both fields the same acceleration
minima are detected, while the location of fixed points are different.
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Fig. 3. Stuart vortices in two inertial frames of references: (a) vortices at rest, (b)
convecting vortices such that the velocity at the bottom becomes zero. Heightfield and
color represent the absolute value of the particle acceleration. The acceleration field is
the same in both cases, while the streamline patterns, observed from different inertial
systems, differ.

As a result, acceleration and its minima are used as key features for unsteady
flow fields. In the following, space-time points (x0, t0) where ‖a(x0, t0)‖ takes a
local minimum in space are called Lagrangian equilibrium points.

3.2 Feature Lifetime and Long-Living Flow Structures

In real-world datasets the high density of features often complicates a proper
analysis. An appropriate filter mechanism differentiating between important and
unimportant structures can ease this problem. Since fluid flow researchers are
mainly interested in long-living structures, the lifetime of features is a mean-
ingful filter criterion. Thus, special attention is paid to particles that carry the
minimality property of ‖a‖ for at least a small period of time. The proposed
feature identifier makes use of the ‘feature lifetime’ in two ways: (i) Considering
and averaging the acceleration magnitude along pathlines over a lifetime interval
reinforces the Lagrangian perspective of the approach. (ii) An explicit feature
lifetime filter selecting particles that stay in a feature state a certain time period
enables the extraction of long-living features.

4 Proposed Feature Extraction Technique

4.1 Method

The center of a Lagrangian point of view is the behavior of particles, represented
by pathlines and the evolution of flow properties along these lines. Each pathline
is identified by its initial position x0 at time t0 and the corresponding trajectory
s(t,x0, t0) = s depending on the time parameter t. The contribution of a pathline
to a certain feature F is measured using a feature importance IF ; it is defined
as the average of a scalar feature identifier f(x, t) over some feature time span
[tmin(x0, t0), tmax(x0, t0)]

IF (x0, t0) =
1

tmax(x0, t0)− tmin(x0, t0)

∫ tmax(x0,t0)

tmin(x0,t0)

f (s(t,x0, t0), t)
2
dt. (4)
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Fig. 4. (a) The minimality of the acceleration can be measured by the Laplacian of
the scalar field ‖a‖, which can be computed by central differences. (b) Definition of a
feature’s lifetime along a pathline. The parameter tmin is determined by the acceleration
threshold and tmax by the maximum lifetime window.

The choice of the parameters tmax(x0, t0) and tmin(x0, t0) is crucial, since they
determine the time range of influence to the local value. They are determined
by the time a pathline exhibits a certain feature state. Thus, they depend on
the feature considered and are derived for each pathline segment. The feature
lifetime is defined as

TF (x0, t0) = tmax(x0, t0)− tmin(x0, t0). (5)

More specifically, for Lagrangian equilibrium points the feature identifier is the
acceleration magnitude a(x, t) = ‖a(x, t)‖. The lifetime parameters tmin(x0, t0)
and tmax(x0, t0) are based on three quantities: acceleration magnitude a, a min-
imality measure of the acceleration Ca, and a maximum lifetime window τ . To
measure the minimality the differences of a(x0, t0) at neighboring points are

averaged in the four main directions: Ca = 1/4
∑4
i=1∆i, where ∆i, i = 1, .., 4

are defined in Figure 4(a). Ca > Cthreshold indicates that a particle has low
acceleration compared to its neighbors.

A maximum lifetime window [t0 − τ, t0 + τ ] restricts the values of tmax and
tmin. Since saddle and vortex regions exhibit different characteristic behavior,
the parameter τ can be chosen for each of these structures separately. Possible
criteria to distinguish saddle and vortex regions can be based on the instanta-
neous Jacobian matrix and its characteristics, Q, λ2 or the Lagrangian approach
of Haller [Hal01b]. In the following the Jacobian matrix is used.

Finally, the lifetime parameters are defined as (cf. Figure 4(b))

tmin(x0, t0) = min(t′ ∈ [t0 − τ, t0] | ∀t ∈ [t′, t0] :

a(s(t,x0, t0), t) ≤ athreshold and (6)

Ca(s(t,x0, t0), t0) ≥ Cthreshold),
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Fig. 5. Illustration of the Lagrangian equilibrium point concept for two co-rotating
Oseen vortices. The color-coded heightfield represents: (a) integrated acceleration, (b)
and lifetime for the last time step.

and

tmax(x0, t0) = max(t′ ∈ [t0, t0 + τ ] | ∀t ∈ [t0, t
′] :

a(s(t,x0, t0), t) ≤ athreshold and (7)

Ca(s(t,x0, t0), t0) ≥ Cthreshold),

If one of the criteria is not fulfilled at particle position x0 and time t0, the feature
lifetime is defined as zero and tmax(x0, t0) = tmin(x0, t0) = t0; furthermore, the
acceleration is not averaged over the lifetime and the resulting importance value
is set to the square of the local acceleration magnitude.

Subsequently, feature candidates are extracted by searching minima in the re-
sulting scalar importance field IF . Finally, a filtering with the extracted lifetime
distinguishes important and unimportant features.

4.2 Implementation

The input to the algorithm is a 2D vector field defined on a sample grid. The
algorithm consists of three main steps: integration of the acceleration values,
extraction of the minimum points and filtering of these points with the lifetime.

Integration. The first step is the determination of the lifetime parameters, ac-
cording to Eqs. (5), (6) and (7). A suitable threshold value for a is extracted by
analyzing the acceleration characteristics of the first time-slice of the dataset. In
this exploratory work it is simply set to ten percent of the maximum value. The
threshold Ca has to be set a little above zero, to avoid setting a long lifetime for
regions with low acceleration at all. For each discrete point (x0, t0), a backward
search in time on the trajectory s determines tmin(x0, t0). The lifetime criteria
at each sample step on s is tested until either one of the thresholds is violated,
or the maximum time window or the domain boundary is reached. Then, the
feature importance is computed according to Eq. (4). For numerical integration,
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Fig. 6. (a) Extraction of features for a motion of six Oseen vortices. Since particles
leave the saddle regions quickly, the saddles do not emerge as prominently as the vor-
tex cores. The integration windows of 0.3 in each direction are too large for particles
passing through the saddle in the center. In comparison, all other long-living structures
such as the vortex cores are extracted effectively. The heightfield represents the inte-
grated acceleration. (b) Visualization of the feature lifetime. The illuminated pathline
segments show the interval of the lifetime used for the integration of the accelera-
tion. Pathlines seeded in vortex-like feature points are long centerlines, while pathlines
seeded in saddle-like feature points diverge rapidly.

a Runge-Kutta integrator RK4(3) with adaptive step-size control is used. After
the starting point tmin for the forward integration is found, the accumulation
of the acceleration magnitude along s is started. The integration is terminated
if one of the lifetime criteria is not fulfilled. Then, the resulting values are nor-
malized by the factor 1/TF (x0, t0) and both lifetime TF (x0, t0) and importance
measure IF are stored as scalar fields.
Extraction. Feature candidates are extracted by searching local minima in the
importance field I using a discrete neighbor analysis. Alternatively, other meth-
ods like the watershed transformation [Soi99] could be used for locating local
minima.
Filtering. After these initial feature candidates are found, the lifetime filter
is applied. Using a threshold for lifetime, it is now possible to emphasize long-
living structures. The threshold can be chosen separately for saddles and centers
to account for the different lifetime characteristics.

5 Visualization

All results in this paper are visualized in a volume spanned by two spatial co-
ordinates and time. The extracted feature points are illustrated using spheres.
The spheres are scaled and colored according to the associated lifetime, choosing
a color table where high lifetime values are marked red, see Fig. 5 and 6(a). In
some images, illuminated pathline segments are seeded in the extracted feature
points to get a more intuitive notion of the lifetime. The pathlines are termi-
nated after exceeding their feature lifetime, as shown in Fig. 6(b). Color-coding
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Fig. 7. Comparison of (a) λ2 and (b) Q with the proposed Lagrangian equilibrium
points. The extracted feature points include the vortex cores marked by high values of
Q or low values of λ2. In addition the saddle between the two vortices is detected.

is the same as for the spheres. The scalar fields used for the feature extraction
can be added as heightfield for one time step.

To understand the local flow structure it is helpful to observe not only sin-
gle pathlines but also the behavior of bundles. Such an exploratory analysis is
facilitated by the possibility to select a point of interest in the LIC image. For
this location, the pathline is displayed together with a moving disk depicting the
flow relative to this pathline, see Fig. 2(b).

6 Results

To evaluate its effectiveness, the proposed method has been applied to two dif-
ferent datasets. The first dataset represents a pair of co-rotating Oseen vortices,
see Fig. 5. The Oseen vortex models a line vortex that decays due to viscosity.
The velocity VΘ in the circumferential direction θ is given by

VΘ(r) =
Γ

2π

1− e−(
r
rc

)2

r
,

where r is the current radius, rc the core radius and Γ the circulation contained
in the vortex. For further information, we refer to Rom-Kedar et al. [RKLW90] or
Noack et al. [NMTB04]. A more complex flow field is generated by the interplay
of six moving Oseen vortices, see Fig. 6. Both datasets are given for a temporal
bounding box of [−1.0, 1.0]. The maximum lifetime window τ for integration is
set to 0.3 in each direction. The extraction process takes a couple of minutes on
standard hardware using non-optimized software.

For both datasets, it can be seen in Fig. 5(a) and Fig. 6(a) that the integrated
acceleration is low at vortex centers and saddle points. While the lifetime is high
for all features of interest in the co-rotating case, the lifetime only marks centers
clearly in the complex field. The structures extracted are displayed as spheres,
using the lifetime to define color and size. Due to the finite time window, the life-
time is low at the beginning, grows and then drops off to the end. After applying
the lifetime filter, vortices are marked as important, but interesting saddles are
also removed. This is a consequence of the fact that particles stay longer in the
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Fig. 8. Motion of six Oseen vortices: (a) All features before filtering; (b) Applying the
lifetime filter filters the short-living out. (c) Employing a shorter life-time window also
saddles are extracted.

vicinity of centers than in the vicinity of saddles. The illuminated pathline seg-
ments in Fig. 6(b) indicate the interval used for the integration. Pathlines seeded
in vortex-like features form long centerlines due to the strong rotation within the
vortex. In contrast, pathline segments seeded in saddle-like structures diverge.
This is consistent with the observation that interesting saddles are removed.

Since vortex cores are extracted, Fig. 7 shows a comparison with standard
vortex indicators such as λ2 and Q. The values of λ2 and Q are color-coded in
the LIC texture and in the spheres. The minima of λ2 or the maxima of Q reveal
nearly the same structures as our approach. With λ2 or Q, however, separating
structures such as saddles cannot be extracted.

The ability of our approach to filter out short-living features is illustrated in
Fig. 8. The chosen time window determines the maximal lifetime. All features
with higher lifetime cannot be differentiated. Choosing a time window of length
1.0, only three long-living vortices remain.

Distinguishing between saddle and vortex regions by using the Jacobian leads
to the results depicted in Fig. 8(c). In the example the lifetime for vortex-like
regions is 0.6 and for saddle-like regions 0.1. With this differentiation all salient
features including saddles are visible.

7 Conclusions

The proposed method enables a Galilean invariant extraction of long-living
structures, based on the concept of Lagrangian equilibrium points. The method
features the following characteristics, which demonstrate that the concept is a
first step to overcome the limitations of standard vector field topology. The La-
grangian viewpoint helps to analyze time-dependent structures. The filtering of
the extracted points by lifetime enables to mark salient structures. It provides
a generalization of critical points of standard vector field topology since fixed
points are also Lagrangian equilibrium points for the steady case.

In the current state, the method is still based upon two major thresholds
athreshold and τ . While the first parameter determines whether a particle carries



a feature, the second parameter represents a characteristic feature lifetime and
depends on the scale of feature lifetimes in the given dataset. Currently, the ac-
celeration threshold is chosen heuristically. We leave it to future work to identify
the relevant scale.

The application to datasets that are well understood proves the effectiveness
of the proposed extraction scheme for salient structures in time-dependent flow
fields. The next steps will be to improve the efficiency of the algorithm, to apply
it to real world datasets, which also includes three-dimensional data, and to find
ways to select appropriate parameter values automatically.
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Appendix

A transformation from one inertial frame F to another F ′, moving with a rel-
ative velocity u, i.e., a Galilean transformation, is defined in space-time by
x ≡ (t,x) ⇒ x′ ≡ (t′,x′) = (t,x − ut). The corresponding transformation
for the four-velocity then is v ≡ (1,v) ⇒ v′ ≡ (1,v′) = (1,v − u). The dif-
ferential operators ∂t ≡ ∂/∂t and ∂k ≡ ∂/∂xk (∂k′ ≡ ∂/∂x′k) are transformed
according to ∂t ⇒ ∂t′ − (u · ∇′), where ∇ ≡ (∂1, ∂2, ∂3) and ∇′ ≡ (∂1′ , ∂2′ , ∂3′)
From this it is easy to see that the material derivative Dt ≡ ∂t + (v · ∇) is
invariant under Galilean transformations:

∂t + (v · ∇) = ∂t′ + (v′ · ∇′).

A specific consequence is that the total acceleration a flow particle experiences
is Galilean invariant, a ≡ Dtv = Dt′v

′ ≡ a′, i.e. independent of the frame of
reference.
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