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Abstract—We present a framework for automatic specification-
guided testing for Stochastic Cyber-Physical Systems (SCPS).
The framework utilizes the theory of robustness of Metric
Temporal Logic (MTL) specifications to quantify how robustly
an SCPS satisfies a specification in MTL. The goal of the testing
framework is to detect system operating conditions that cause
the system to exhibit the worst expected specification robustness.
The resulting expected robustness minimization problem is solved
using Markov chain Monte Carlo algorithms. This also allows us
to use finite-time guarantees, which quantify the quality of the
solution after a finite number of simulations. In a Model-Based
Design (MBD) process, our framework can be combined with
Statistical Model Checking (SMC). Finally, we present a case
study on a high fidelity engine model where the goal is to verify
EPA standards on the air-to-fuel ratio.

I. INTRODUCTION

Stochasticity is inherent in many Cyber-Physical Systems
(CPS). It might arise as the result of actuator inaccuracies,
sensor readings, rate of arrivals, component failure rates, etc.
One important question is how such random phenomena can
affect the functional correctness properties of a CPS. For
instance, in a typical Model-Based Design (MBD) process
a deterministic CPS model may be first developed which
satisfies a set of design criteria and correctness requirements.
Then, the challenge that arises is whether the more accurate
stochastic variant of the CPS still satisfies the same properties
and to what degree. In other cases, the development of a
Stochastic CPS (SCPS) is required as part of the initial
modeling process and the specifications to be verified directly
on the model.

In either case, high fidelity models, e.g, internal combustion
or hybrid engine models, pose substantial challenges in the
functional verification process. For instance, complex engine
models capture highly nonlinear physical phenomena (e.g.,
combustion dynamics, fuel injection dynamics, heat transfer,
exhaust dynamics, etc), different modes of operation (e.g.,
different gears) and, on top of that, complex control algo-
rithms (e.g., adaptive control laws for variable valve timing,
powertrain control, etc). On the other hand, the functional
specifications to be verified might be complex themselves, e.g.,
in Metric Temporal Logic (MTL) [9], [23].

In the past, to address this challenge, Statistical Model
Checking (SMC) for SCPS was proposed [25], [8]. In brief,
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given a probability distribution on the parameters of the SCPS
and a specification ¢ in a temporal logic, SMC computes a
probability that ¢ holds on the SCPS along with confidence
intervals. The main advantage of such methods is that in
principle the underlying system can be arbitrarily complex
(i.e., large number of variables, nonlinearities, complex control
logic, etc).

We argue that for SCPS the probability of success of a for-
mal specification ¢ might not be sufficient in all applications.
For example, consider a simple, but important requirement
for car manufacturers: the normalized air-to-fuel (A/F) ratio
should always be within the appropriate limits (e.g., 1 £ 0.1).
We need to be able to distinguish between designs that satisfy
this requirement to varying degrees. All else being equal, a
system design for which the worst expected behavior stays
very close to 1 and the probability of failure is low should be
preferred over all other correct designs. The issue of system
variance around this minimum is also addressed.

Furthermore, SMC methods require the probability distri-
bution over input space which may not be readily available.
For instance, in the case of an engine with the throttle and
the gear selection as inputs, either a specific driving scenario
must be assessed or somehow a probability distribution over
driver patterns must be provided. Albeit such model analysis
are extremely useful, we argue that in many cases we do not
necessarily need to analyze the system behavior under typical
input scenarios, but also to discover the inputs that induce the
worst system behavior - in the expected sense. For example,
in the case of the A/F ratio verification, we would like to
discover the throttle input and gear sequence that causes the
worst expected deviation from the ideal ratio 1.

This paper presents a solution to the two aforementioned
challenges. By utilizing the notion of robustness for Metric
Temporal Logic (MTL) specifications [11], we can quantify
how robustly a system trajectory satisfies an MTL specifica-
tion. Large positive values mean that the system is robustly
correct, while negative values imply falsification of the spec-
ification. Thus, the verification problem for SCPS reduces to
finding a global minimizer for the expected temporal logic
robustness. If the expected MTL robustness on a global
minimizer is positive, then the system is correct in the expected
sense. Moreover, statistics can be collected in order to assess
the probability of satisfaction.



In order to solve the MTL verification problem for SCPS,
we adopt and adapt some recent results in stochastic optimiza-
tion [15] that provide finite time guarantees: how far are we
from a global minimizer after a given number of samples?

One advantage of our proposed framework is that even if
verification with the desired probabilistic guarantees cannot be
achieved, then our approach reduces to a best effort automatic
test generation scheme. Due to the underlying stochastic
optimization algorithm [15], the test generation process is
guided by the MTL robustness metric. Thus, we refer to the
latter as Robustness-Guided Temporal Logic Testing(RGTLT).
In this case, our testing framework can handle models of
arbitrary complexity.

In this paper, we also present how our framework would be
utilized in an MBD process. Finally, the paper concludes with
a case study on a high fidelity SimuQuest [19] engine model.
The work presented in this paper is readily available for use
through our Matlab toolbox S-TALIRO [5], [1].

II. PROBLEM FORMULATION

In the following, R is the set of real numbers, R the set of
positive reals, Q the set of rational numbers and N the set of
natural numbers (including zero). The extended real number
line is denoted by R = R U {#00}. Given two sets A and
B, B4 is the set of all functions from A to B, i.e., for any
f € B we have f: A — B.

We fix T'= NAt to be the maximum simulation time for
the system, where N € N and At € Q is the sampling step.
We denote by T C [0, N] C N a finite simulation time domain.
We view a system X as a mapping from a compact set of
initial operating conditions Xy C R™= and discrete-time input
signals w € UT to discrete-time output signals in Y''. Here,
U C R™ is a compact set of possible input values and ¥ C
R™v is the set of output values (output space). Discrete system
variables like counters and flags are modeled as integers, so
Xp and U can be “hybrid” spaces.

We impose the following assumptions / restrictions on the
systems that we consider:

1) The input signals (if any) must be parameterizable using

a finite number of parameters in space and time. That
is, there exists a function A such that for any u € U T
there exists a parameter vector A = [A1 ... Ay, A1 - - -
Xom]T € A, where

A=U"x{reR? |[0=11 < <...<7, =T}

is a compact set with m << N, such that for all ¢ in the
support of u, u(t) = A(N)(¢).

2) The output space Y is equipped with a metric d.

For brevity, we define

02 XyxA (1)

This will be referred to as the search space, and 6 € © will
be referred to as the search variable, or the decision variable.

Because we work with stochastic systems, the output signals
are modeled as Y'-valued stochastic processes with sample
paths in Y. Specifically, let (2, A, P) be a probability space

with probability measure P. The random events w € )
model the sources of randomness in the SCPS 3. Then,
corresponding to every decision § = (x(,A) about initial
conditions and input signal, the output of the system is a
discrete-time stochastic process parametrized by 6:

Y:(t,w;0) eTxQx0O—Y(tw0)eY

Our high level goal is to explore properties that the system
> satisfies by observing its response (i.e. its sample paths)
to particular input signals and initial conditions. We assume
that the system designer can formalize the system properties in
Metric Temporal Logic (MTL) [14]. Once the stochastic model
is developed, the engineers need to verify that the system
meets a specification ¢ expressed in MTL. This can be done
using the notion of trajectory robustness, formally introduced
in [10]. For convenience, a brief formal introduction is also
made in the technical report [4]. For this papers’ purposes, we
treat robustness as a functional which takes in a sample path
of Y, and produces a robustness value:

Po Y (o wi0) = po(Y(,w;0)) = py(w,0) €R

This value indicates how well the system satisfies (or falsifies)
the given specification ¢. A positive(resp. negative) robustness
means that the system is satisfied(resp. falsified) for a partic-
ular trajectory. The specification is implicit in all that follows,
and will be dropped from the notation.

If we think of a random variable p over (2, .4, P) induced
by the functional p, we see that its distribution is parametrized
by the decision 6:

Rp(2:0) = P({w € Q| p(w,0) < 2}) 2)

Formally, in this work, we solve the following problem.

Problem 1 (ERGMC Problem): Take an SCPS X, an MTL
specification ¢, a test duration 7" > (. Define the expected
robustness of the SCPS w.r.t. ¢ as

U:0—-R

U0) = Erlpw.0)] = [ pw0)aPe) G
Compute the minimum expected robustness of the system with
respect to the MTL specification:

U.=inf{U(9)|0 € O}

An overview of our proposed solution to Problem 1 appears
in Fig. 1. The sampler produces a point zy from the set of
initial conditions and a vector of parameters ) that characterize
the control input signal u. These are passed to the system
simulator which returns a set of J sample paths (ak.a.
output trajectories) yi, .. .,ys, Where J is computed after the
considerations in Section IV. The set of trajectories is then
analyzed by the MTL robustness analyzer which returns a
vector of robustness values for each trace representing the best
estimate for the parameter found so far. In turn, the robustness
scores computed are used by the stochastic sampler to decide
on a next input to analyze. The process terminates after a
maximum number of tests.
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Fig. 1. Overview of the solution to finding the 6 on the search space
that corresponds to the minimum expected robustness value for a MTL
specification.

III. STOCHASTIC OPTIMIZATION ALGORITHM

In this section we present the optimization algorithm we use
to solve Problem 1. Algorithm 1, which we call ERGMC, is
a Simulated Annealing (SA) algorithm first proposed in [16],
applicable to expected value objectives. For reasons on which
we will elaborate in the next section, we use Algorithm 1 to
maximize the following modified objective function: V (§) =
Ep[1/(1 + e#?)]. By maximizing V, we minimize U. For
completeness, a proof is included in the technical report[4].
Thus, ERGMC is a maximization algorithm.

Algorithm 1 ERGMC - Expected Robustness Guided Monte
Carlo Algorithm
Require: Search space ©, number of tests K, number of
independent extractions J , scaling factor b > 0, parameter
>0
Draw a random sample 6y € ©.
fori=0to K —1do

Draw a random candidate 9~7;+1 according to the sym-
metric proposal kernel Q. ‘

Draw J independent extractions {p(wﬂ)l,éﬂrl), j=
1...,J} by simulating the system J times and computing
the robustness of the J sample paths.

Scale all .J robustness values: p = 1/(1 + e?/?)

Calculate the acceptance probability

I lper) Big) +90]
T 1w, 0;) + 0]

r = uniform random number between 0 and 1
if (r <a) then

Oiy1 =011
else
0iy1 =0;
end if
end for
return 6y

Algorithm 1 iterates a Markov transition kernel with sta-
tionary (or ‘target’) distribution [16]

m(d6; J,6) o< (V(6) + )7 u(df) )

where 4 is the Lebesgue measure. 7 is concentrated around

the global maximizers of V, so with a correspondingly high

probability, sampling from 7 yields points with large objective
value. Therefore, as the distribution of the chain Py, converges
to , the generated samples 6y, 041, ... have V-values close
to the global maximum with high probability. The next sec-
tion quantifies this statement by providing convergence rate
bounds.

Given that every iteration of Algorithm 1 generates J
extractions of the random robustness p, this data can be used
to generate a point estimate of the robustness variance var(6)
at the decision #. To obtain a good quality estimate without
doing further costly simulations, bootstrapping can be used
to re-sample the obtained J values p;...p;. The resulting
variance estimate is valuable feedback to the designer, since
a positive but small average robustness with a large variance
indicates a probability of failing the specification.

IV. FINITE-TIME GUARANTEES FOR ERGMC

The sequence of samples generated by Simulated Anneal-
ing (SA) is known to converge in probability to the global
minimum of the objective function. However, this does not
tell us how fast convergence happens, nor how far we are
from the optimum after a given number of iterations. This
sort of finite-time guarantee is important in practice, since it
helps to determine the cut-off point at which to terminate the
algorithm’s run. In this section, we apply the results in [15]
to provide finite-time guarantees for SA solving ERGMC in
general SCPSs. The results of [15] provide finite-time guar-
antees for Algorithm 1 under rather simple and unrestrictive
conditions. Recall that © = X x A is the search space.

Assumption 1: © has a finite Lebesgue measure. The

objective function is well-defined point-wise, measurable and
bounded between 0 and 1.
In general, our U is not bounded between O and 1, and its
bounds (if any) are a priori unknown. So we used a logistic
map with scaling factor b > 0 to enforce this requirement:
p€ R p= 5 €[0,1]. The objective function passed
to Algorithm 1 is then effectively V(0) = E[p(¢)], which
can be seen to satisfy Assumption 1. Note that maximizing
V minimizes U. The first guarantee uses a set which contains
‘most’ near-maximizers:

Definition 1: Let @ € (0,1] and € € [0,1]. Then the
approximate domain optimizer with imprecision € and residual
domain « is given by

Ole,a) ={0cO|u{# st. V() >V(B)+e}) < au(©)}

Loosely speaking, there aren’t many points 6’ with objective
value much better than the value of the points in ©(e, a). €
controls how much is ‘much better’, and a controls how many
is ‘not many’. Therefore, if we can generate samples from
O(e, ) with small € and «, this increases the probability of
finding points such that V() > V* — e. Recall that 7 is the
target distribution of Algorithm 1 (see (4)).

Proposition 1: [15, Prop. 3] Let « € (0,1], € € [0,1], and
0 > 0. Assume J satisfies
Jltetd o 1 146

log + log — + 2log
€ l—0o @ )
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Let Py, be the distribution of the MCMC chain at step k.
Then Py, (O(¢,); J,8) > 0 — || Py, — (-3 J,0)||lrv
where || - |7y is the Total Variation of the distribution.
Because Py, converges to the stationary distribution 7 in total
variation, convergence rates automatically carry over from TV
convergence to SA convergence.

In general, U need not be Lipschitz continuous. If we add
that assumption, a stronger results holds as asserted in Prop. 2.

Assumption 2: © is compact and is contained in a ball of
radius RR. U is Lipschitz continuous with constant L.

Proposition 2: Let assumptions 1 and 2 hold. Let o € (0, 1],
e € (0,1], o € (0,1), and § > 0. Define the set of value
optimizers ©*(e) = {# € © | V8 € ©,V(0') < V(0) + ¢}
If J satisfies J > LE'“; log 7= +nlog% + 2log %]
then Py, (©*(€); J,0) > 0 — || Py, — w(-; J,0) |7y

V. DESIGN PROCESS USING ERGMC

Model M Specification ¢
Model \
Repair
ERGMC
If min U is not
acceptable iL
If P(M E ¢) not sMC

acceptable
Fig. 2. Overview of the model based design process using ERGMC.

Our framework for Model Based design verification is illus-
trated in Fig 2. Once a model is developed, we devise MTL
formulae ¢;...p,, for the properties that the system should
satisfy. For every ¢, we run ERGMC and find the regions of
the search space with the minimum expected robustness value.
Call this region ©,,. If the minimum expected robustness is too
low (or worse, negative, indicating that the specification has
been violated), we can go back and make modifications and
repair the model. On the other hand, if we are satisfied with
the minimum expected robustness, we run statistical model
checking (SMC) methods, e.g. [25], to estimate the probability
that the model will satisfy the specification when operating in
O,,. This is important because even if the minimum expected
robustness is positive, the probability of satisfying ¢ can still
be low, due to the variance in the system behavior around the
minimum. If the probability calculated by SMC is too low,
we go back to model development and repair the model. If
the probability level meets the requirements, we accept the
model. Therefore, ERGMC and SMC complement each other,
each providing important information to the model developers.
This way we calculate the probability of success in the “worst”
region in the input space, in the average sense.

VI. EXPERIMENTAL RESULTS

We present a case study of a high fidelity engine model.
Two examples from the automotive industry are presented in
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Fig. 3. Case Study 1. SimuQuest Enginuity model components. Used with
permission, (©SimuQuest[19].

the technical report [4]. We provide a description of the system
and illustrate the advantages of using the proposed framework.

The following features were added to S-TALIRO to en-
able and facilitate the simulations. First, support for par-
allel simulations was added. Second, the search space for
input parameters was expanded: previously, the input signal
was parametrized using an interpolation function with m
signal levels evenly distributed over the simulation interval
[0,T]. That is, u was obtained by interpolating the sequence
((ula 0)7 (u2a %)7 (u37 %)a R (umaT)) € (UX [O7T])m
Now the control times are free, so u is obtained by inter-
polating ((u1,0), (uz, 7(2)), (u3,7(3)), ..., (tm,T)), and the
vector 7 is a free search variable subject to the constraint
7(1) =0 < 7(2) < ... < 7(m) = T. The features were
easily incorporated in the modular architecture of S-TALIRO.

Most of the experimental results presented were generated
using the A2C2 cluster system at ASU where each run was
simulated in parallel.

A. Case Study: Engine Model

We will work with a high fidelity engine model from the
SimuQuest Enginuity [19] Matlab/Simulink tool package. The
goal of this case study is to illustrate the design process using
our proposed method ERGMC.

The Enginuity tool package includes a library of modules
for engine component blocks. It also includes pre assembled
models for standard engine configurations. In this work, we
will use the Port Fuel Injected (PFI) spark ignition, 4 cylinder
inline engine configuration. It models the effects of combus-
tion from first physics principles on a cylinder-by-cylinder
basis, while also including regression models for particularly
complex physical phenomena. Simulink reports that this is a
56 state model.

We have used industry estimates for the sensor noise in
several parts of the model. We have included the noise in
the engine model thereby making the model stochastic. An
interesting specification for an engine is the settling time for
the A/F ratio, which is the quotient between the air mass and
fuel mass flow. A model output is the normalized A/F ratio A
which should ideally be 1, indicating that the ratio of the air
and fuel flow is the same as the stoichiometric ratio. Under
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Fig. 4. Case Study 1. US EPA Urban Dynamometer Driving Schedule
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engine operating conditions, this output fluctuates +%10. We
define the specification using MTL as follows:
¢ = Op,102)((A out of bounds) —
<10,11070,117 (X out of bounds))

The specification states that always from 1 to 102 seconds,
if the A/F ratio output should go out of bounds, then within
1 second it will settle inside the bounds and stay there for a
second. The input to the model u is the throttle level which
is between 0 and 100. We set the transmission to automatic
and the engine ignites in the first second of the simulation.
The total simulation time is 105 seconds. In this case study,
the robustness metric which we will use to measure the
satisfiability of the MTL formula will be the state robustness
metric as defined in [10]. We are interested to know whether
the model would satisfy the settling time specification under
the United States Environmental Protection Agency’s Urban
Dynamometer Driving Schedule (UDDS), which is commonly
called “LA4” or “the city test”, which represents city driving
conditions. Due to the computational limitations, we limit the
simulation time to 105 seconds, and therefore we only test a
part of the 1352 seconds of the “LA4” driving pattern. The
driving pattern is presented in Figure 4.

The input signal u was modeled using Piecewise Cubic
Hermite Interpolating Polynomials with 14 control points for
the throttle angles which were distributed in the simulation
time in such a way that the target speed is within £3 of the
LA4 driving pattern. We run our algorithm which returns the
minimum expected robustness value of 0.23.

Since we are testing only a section of the driving pattern
we cannot claim that the system meets the specification for
the whole driving pattern. Therefore, we will conduct an
unconstrained search of the search space, with throttle levels
between 0 and 100. We use 7 control points for the throttle
angles and include the timing distribution of the control points
as part of the search space. Our search space now includes 12
search variables.

The following is an illustration of the ERGMC design
process that we followed:

1. We run the ERGMC algorithm which returns a minimum
expected value -9.48. This was not an acceptable value and,
therefore, we had to go back and modify the model.

2. After analyzing the output traces we noticed that in a
significant number of trials the engine is stalling. Upon further
investigation, we find where the issue lies. When fuel gets
injected to a particular cylinder, a portion of the fuel is added
to a puddle on the walls of the cylinder and the remainder is
ingested during the next intake stroke of that cylinder.

The deposition of fuel on the port walls is commonly
referred to as wall-wetting. Under transient conditions, the

faster the throttle moves, due to the wall-wetting dynamics, the
engine experiences a sustained lean excursion which can cause
the engine to stall. In practice, the wall-wetting dynamics are
compensated using a transient fueling control strategy.

The model we are using does not include a transient fueling
strategy. Therefore as part of the design process, we go back
to the model and introduce a rate limiter which will limit the
increase and decrease of the acceleration.

3. After making the changes, we rerun the ERGMC algo-
rithm and we get a minimum expected value of 0.048.

4. We run Bayesian statistical model checking and find that
the system, with 0.99 confidence, satisfies the specification
with 0.9956 probability. The algorithm returned a positive
robustness for 227 consecutive tests.

Finally, we check whether the engine fails the specification
¢ under varying environmental conditions. The two parameters
included in the search space are the atmospheric pressure
and temperature which will remain constant throughout the
simulation. The atmospheric pressure ranges between 46.6 kPa
to 101 kPa corresponding to the pressure at altitudes at sea
level up to 20, 000 ft. The temperature ranges between —40°
and 40° Celsius. The simulation results return a minimum
expected value of -2.0781, indicating that the model does not
satisfy the specification. The environmental parameters at the
minimum expected robustness value are: Atmospheric pressure
= 55.56 kPa and Temperature = 34.12°C. The atmospheric
pressure corresponds to an elevation of about 15,000 ft.

VII. RELATED WORK

For deterministic systems, a thorough review of the different
testing methodologies can be found in [3], [22]. Out of the
extensive literature, the most related works are [18], [3],
[12], [17]. The works [18], [3] investigate the problem of
falsification by property guided search using Markov Chain
Monte Carlo techniques. Monte-Carlo testing techniques were
developed in [12] in order to perform random walks over
the state space of a finite system. Another temporal logic
robustness optimization framework is presented in [17].

The verification problem for stochastic or probabilistic
hybrid systems has received much attention over the years.
The focus of the early work was mainly on probabilistic
reachability verification problems [7]. Temporal logic model
checking and verification problems for stochastic hybrid sys-
tems have also been researched for a long time [20], [2]. Many
of such works are focused on building system abstractions
that can be checked using existing verification tools such
as PRISM [13]. Recently, the focus has shifted to statistical
model checking methods for Cyber-Physical Systems [25], [8]
using as foundational principle the seminal work by Younes
and Simmons [24].

In our work, instead of computing the probability that a
system satisfies the property with a certain confidence, we
focus on the problem of computing the worst “expected”
system behavior as a quantitative value. Moreover, the worst
system behavior can be returned to the user for system debug-
ging. Note that debugging as a design process is not possible



when using probabilistic verification techniques [13] or even
statistical model checking [25], [8].

The work that is the closest to ours appeared recently in [6].
In brief, the authors in [6] also formulate an optimization prob-
lem over system parameters with the goal of optimizing the
average temporal logic robustness. However, their approach
utilizes an optimization algorithm [21] that first learns an
approximation of the robustness landscape. Due to the learning
step their framework is limited to up to 10 search variables. We
remark that the search spaces of the examples presented in [6]
were up to 2 dimensions. Since the parameters of the examples
were not published a direct comparison was not possible.

Beyond the formal guarantees and the new theoretical
results that we provide in our work, we have also demonstrated
that our framework can handle industrial strength systems
with 14 dimensional search spaces. Our framework has been
included in our publicly available tool S-TALIRO [1].

VIII. CONCLUSIONS

Testing and verification of Stochastic Cyber Physical Sys-
tems is a challenging problem. In this work, we have presented
the verification problem for SCPS as a global optimization
problem of the expected temporal logic robustness. We have
utilized recent results in stochastic optimization and proved
that for a specific class of cyber physical systems, we can
approximate the global minimizer in finite time. For the
systems outside this class, our method is reduced to a best
effort automatic test generation scheme. We have extended
our tool S-TALIRO to work with the class of SCPS and
search over a wider class of input signals. We have presented
a framework that will utilize both guided search over the state
space as well as statistical model checking methods to assist
engineers in analyzing SCPSs. The use of our framework is
presented through experiments and a case study of a high-
fidelity engine model.
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