
Efficient entry-reduction algorithm for TCAM-based
IP forwarding engine

P.-C. Wang, C.-T. Chan, R.-C. Chen and H.-Y. Chang

Abstract: Ternary content-addressable memory has been widely used to perform fast routing
lookups. It is able to accomplish the best matching prefix searching in O(1) time without
considering the number of prefixes and their lengths. As compared to the software-based solutions,
the ternary content-addressable memory can offer sustained throughput and simple system
architecture. However, it also comes with several shortcomings, such as the limited number of
entries, enormous cost and power consumption. Accordingly, an efficient algorithm is proposed to
reduce the required size of ternary content-addressable memory. The proposed scheme can
eliminate 98% of ternary content-addressable memory entries by adding comparatively little
DRAM and, thus, is attractive for IPv6 routing lookup.

1 Introduction

To forward packets toward their destinations, a router must
perform forwarding decisions based on the routing prefixes
gathered by the routing protocols. Given an incoming
packet, the routing lookup operation finds the longest prefix
in the forwarding table that matches the destination
address. Since the development of CIDR in 1993 [1], the
variable-length routing prefixes incur the best matching
prefix (BMP) problem. It may be time consuming to
determine the BMP for a router with a large number of
table entries.

There have been remarkable proposals in the organisa-
tion of forwarding tables during the last few years. The
proposals include solutions for both hardware and software.
However, hardware-based schemes [2–4] generally cannot
support IPv6 because of their inflexible data structures,
while software-based schemes [5–7] are unable to keep up
with the swift updating rate owing to their burdensome
precomputation costs.

Features of TCAM open up new possibilities, particu-
larly for the BMP problems. TCAM devices can prioritise
search results to resolve the multiple matches, correspond-
ing to different prefix lengths, which is in accordance with
BMP requirements. For each destination address, the
TCAMperforms searching within all the prefixes in parallel.
Since several prefixes may match the destination address, a
priority encoder then selects the first matching entry as the

result. Note that the resulting address automatically
coincides with BMP entry address because of the way in
which prefixes are stored. With the compelling technical
advantages, TCAM-based networking devices become
a preferred solution for fast, sophisticated IP packet
forwarding.

Even though the applications of TCAM technology are
gradually growing, it still comes with some shortcomings.
For example, TCAM operates with a lower clock rate, but
accompanies much higher power consumption and thermal
dissipation. And also, TCAM is very expensive due to its
larger chip area.

Table management is another issue of TCAM. As
described above, the prefixes in the TCAM are listed in a
sorted order. However, the routing table is dynamic;
prefixes can be inserted or deleted due to the changes in
network status. These changes can occur at a rate as high as
1000 prefixes per second [8], and hence it is desirable to
maintain quick TCAM updates and keep short updating
time intervals. In [8], Shah and Gupta proposed two update
algorithms. By keeping all the unused entries in the center of
the TCAM, each prefix insertion/deletion can incur prefixes
swapping between different lengths. The worst-case update
time is W =2.

In general, reducing the number of TCAM entries can
improve the adaptability in terms of power consumption,
price and board area. In this study, we introduce a novel
TCAM entry-reduction algorithm. The new scheme can
reduce the required TCAM entries by 98%. Furthermore,
the reduced entries also eliminate the number of different
lengths to improve the update speed.

2 Related work

Extensive studies have been carried out in constructing the
routing tables during the past few years. The proposals
include both hardware and software solutions. In [2],
Degermark et al. use a trie-like data structure. The main
idea of their work is to quantify the prefix lengths to levels
of 16, 24 and 32 bits and expand each prefix in the table to
the next higher level. It is able to compact a large routing
table with 40000 entries into a table with size 150–
160kbytes. The minimum and maximum numbers of

P.-C. Wang is with the Institute of Computer Science and Information
Technology, National Taichung Institute of Technology, Taichung, Taiwan
404, Republic of China

C.-T. Chan is with the Telecommunication Laboratories, Chunghwa Telecom
Co. Ltd., Taipei, Taiwan, Republic of China

R.-C. Chen is with the Department of Logistics Engineering and Management,
National Taichung Institute of Technology, Republic of China

H.-Y. Chang is with the Department of Information Management, I-Shou
University, Kaohsiung, Taiwan, Republic of China

E-mail: abu@ntit.edu.tw

r IEE, 2005

IEE Proceedings online no. 20041153

doi:10.1049/ip-com:20041153

Paper first received 7th April and in revised form 11th August 2004

172 IEE Proc.-Commun., Vol. 152, No. 2, April 2005

memory accesses for a lookup are two and nine,
respectively, in hardware implementation. Gupta et al.
present fast routing-lookup schemes based on a huge
DRAM [3]. The scheme accomplishes a routing lookup
with the maximum of two memory accesses in the
forwarding table of 33Mbytes. By adding an intermedi-
ate-length table, the forwarding table can be reduced to
9Mbytes; however, the maximum number of memory
accesses for a lookup is increased to three. When
implemented in a hardware pipeline, it can achieve one
route lookup for every memory access. This furnishes
approximately 20 million packets per second (MPPS). In
addition, Wang et al. derived the scheme further by fitting
the forwarding table into SRAM [4].

Regarding software solutions, algorithms based on tree,
hash or binary search have been proposed. Srinivasan and
Varghese [9] present a data structure based on binary tree
with multiple branches. By using a standard trie representa-
tion with arrays of children pointers, insertions and
deletions of prefixes are supported. However, to minimise
the size of the tree, dynamic programming is needed. In [5],
Nilsson and Karlsson solve the BMP problem by LC tries
and linear search. Waldvogel et al. propose a lookup
scheme based on a binary search mechanism [6]. This
scheme scales very well as the size of address and routing
tables increases. It requires a worst-case time of log2(address
bits) hash lookups. Thus, five hash lookups are needed for
IPv4, and seven for IPv6 (128-bit). The software-based
schemes have been further improved by using multiway and
multicolumn search techniques [7, 10]. Although these
approaches feature certain advantages, they either use
complicated data structures [7, 9, 10] or are not scalable for
IPv6 [2–5].

3 TCAM entry-reduction algorithm

Our idea is to merge multiple routing prefixes into one
representative prefix. The prefixes generated by the
proposed algorithm are inserted into the TCAM and the
original prefixes are stored in the extra memory, such as
DRAM. The routing lookup will consist of one TCAM and
intermediate table access. Assuming that the intermediate
table is allocated in the DRAM, thus one additional
DRAM access is required as compared to the original
lookup procedure. However, we can reduce the design cost
and complexity by utilising small TCAM and cheap
DRAM. To begin with the proposed algorithm, we have
to construct the prefix trie from the routing prefixes. The
prefix trie is a binary trie constructed according to the bit-
streams of the routing prefixes. As shown in Fig. 1, there are
ten prefixes in the routing table, including the default route.
Thus the prefixes will occupy ten TCAM and ten DRAM
entries to represent the complete routing information.

The proposed subtrie construction algorithm is a
recursive function and selects the roots of the subtries from
the nodes of the prefix trie. It will traverse the prefix trie in
the depth-first search (DFS) order. To minimise the number
of subtries, we adopt the bottom-up manner to construct
the subtries. While the procedure reaches a node, it will
check the distance to the deepest successive leaves. If the
distance is equal to the height of subtrie, say H, a subtrie
rooted at the current node is generated. Otherwise, the
procedure is recursively called for both children and
followed by a depth check for uncovered leaves. It ensures
that the depth of each generated subtrie is H. An array with
2H entries is used to represent an H-bit subtrie for fast
accessing. The addresses and depths of the subtries are
recorded in the intermediate table for subtrie accessing. We

list the detailed subtrie construction algorithm below. The
time complexity is Oð2H NW Þ since the cost for constructing
subtrie array is 2H and each node will be accessed once.

1. Subtree construction algorithm:

2. Input: The root of the constructed binary tree from the
routing table

3. Output: The constructed subtrees and the corresponding
bit stream

4. Constructor (Current_Root, Current_Depth) BEGIN

5. If ((the depth of the deepest child in the subtree -
Current_Depth)¼ ¼H)

6. Generate_Subtree (Current_Root);

7. Else

8. Constructor (Current_Root�4Left_Child, Curren-
t_Depth+1);

9. Constructor (Current_Root�4Right_Child, Curren-
t_Depth+1);

10. If ((the length of the longest unprocessed prefix -
Current_Depth)¼ ¼H)

11. Generate_Subtree (Parent, Current_Root);

12. Endif

13. END

By using the subtrie construction algorithm, we can divide
the binary trie into multiple subtries. Let the height of the
subtries equal two, the binary trie can be divided into four
subtries, as shown in Fig. 2a. Each routing prefix will be
assigned to at least one of the subtries. Next, the four bit
streams, which correspond to the subtries’ roots, will be
inserted into the TCAM as a substitution for the original
prefixes. As a consequence, for each representative prefix,
there is a corresponding entry in the intermediate table with

binary trie representation

P8

default route

P9

prefixes

default route

P1 0000

P2 0001

P3 001

P4 01

P5 010000

P6 010001

P7 0101

P8 0111

P9 11

P4

P5

P7

P6

P1 P2

P3

P5

nexthop

default

P9

P4

P3

P8

P7

P2

P1

P6

TCAM entries

prefixes

0000/4

*/0

01/2

0001/4

001/3

010001/6

010000/6

0101/4

0111/4

11/2

DRAM entries

Fig. 1 Representation of the routing prefixes with prefix trie

IEE Proc.-Commun., Vol. 152, No. 2, April 2005 173

the subtrie information. Then, we expand each subtrie
completely and put it into DRAM. In our example, each
subtrie will be expanded to four (¼ 22) entries.

3.1 Routing lookup
The routing lookup procedure consists of two steps. The
first step is to find out the best matching ‘subtrie’ while the
second step extracts the best match prefix based on the
intermediate table. In the first step, the TCAM lookup
result indicates the corresponding entries in the intermediate
table, as shown in Fig. 2b. Each entry shows the address of
the subtrie and its depth. Since the height of the subtries is
equal to two, the following two bits behind the effective bit
length (subtrie depth) are used to select the corresponding
entry. For example, we perform the search for address
000111. The third entry will be selected in the TCAM
lookup and the corresponding subtrie (S2) and depth (i.e.
the effective bit length: 2) are shown in the third entry of the
intermediate table. Then the third and fourth bits (‘0’ and
‘1’, respectively) will be used to indicate the second entry in
the S2 and derive the result of BMP ‘P2’.

In the proposed scheme, each routing lookup needs one
TCAM and two DRAM accesses, which is one DRAM
access more than the original implementation. To prevent

any performance degradation, the use of hardware pipelin-
ing design is necessary. Although pipelining design will
increase the circuit design complexity, it has been widely
adopted in the design of network processors due to the
advance of VLSI technology [11]. With pipelining, the
proposed scheme can be accomplished as efficiently as one
lookup per clock cycle.

3.2 Route update
Since the original routing prefixes have been encapsulated in
the subtries, each route update must enquire the best
matching subtrie to check whether the updated prefix can
be located. If yes, the related entries in the DRAM will be
modified. Otherwise, the routing prefix is inserted into the
TCAM directly. After accumulating a certain number of
such entries, we can rebuild the subtries to keep the number
of TCAM entries low. The worst-case update time is
maximum(W/2, 2height of subtrie).

3.3 Redundant route remove
Although the aggregation of redundant routes for a single-
site or campus-level network is straightforward, it is
considerably more difficult to aggregate routes at a larger
scale, including going across multiple backbone providers.
Moreover, it requires close co-operation among service
providers. The main reason for poor aggregation is the
increasing trend toward end-sites-connectivity multiple
service providers. In our experiments, we found that there
are many such routes in the routing tables. We could
remove these redundant routes without affecting the packet
forwarding.

We start the redundant route remove algorithm with the
root of the prefix trie and default route. When we reach a
node with prefix, we would compare whether its nexthop
value is identical to that of the ancestor prefix. If yes, we
identify this prefix as redundant route and drop it.
Otherwise, we use the nexthop value to examine the
successive nodes. The time complexity is O(NW).

1. Redundant route remove algorithm:

2. Input: The root of the binary trie which is constructed
from the routing table.

3. Output: The routing table after removing redundant
routes.

4. Remove (Current_Node,Nexthop) BEGIN

5. If (Current_Node corresponds to a routing prefix)

6. If (Current_Node�4Nexthop ¼ ¼ Nexthop)

7. RemoveRoute(Current_Node�4Route);

8. Else

9. Nexthop¼Current_Node�4Nexthop;

10. Remove (Current_Node�4Left_Child, Nexthop);

11. Remove (Current_Node�4Right_Child, Nexthop);

12. Endif

13. END

4 Performance evaluation

To investigate the scalability of the proposed scheme, we
use the real data available from the IPMA [12] and
NLANR [13] projects for comparison. These data provide a
daily snapshot of the routing tables used by some major
network access points (NAPs). We set the height of the
subtrie as four and eight to investigate the effects of
different subtrie height. The performance metrics include
the number of generated TCAM entries and the required

binary trie representation

P8

default route

P9P4

PP1 P2

P3

7

P5 P6

S1

S2 S3

S4

representative
prefixes

TCAM entries

0100/4

* /0

01/2

00/2

intermediate
table

S1/0

S4/4

S3/2

S2/2

00

01

10

11 P3

P2

P1

P3

P8

P7

P4

P4

P6

P5

P4

P4

default

P9

P4

default

DRAM entries

b

a

Fig. 2 Reorganisation of the binary trie into four subtries whose
heights are two

174 IEE Proc.-Commun., Vol. 152, No. 2, April 2005

DRAM storage. We also list the number of different prefix
lengths to examine the update cost. Through experiments,
we demonstrate that the proposed scheme features much
fewer TCAM entries with less extra DRAM.

Figure 3 shows the processing results for different routing
tables. Both performance metrics are proportionate to the
number of prefixes. For the largest table with 102271
prefixes (NLANR), it generates 15998 and 3691 TCAM
entries accompanying 249kbytes and 922kbytes DRAM,
respectively. It is straightforward that a larger subtrie could
reduce the number of TCAM entries, but also results in
more required DRAM. By changing the height of the
subtrie, the TCAM entries and the required DRAM can be
adjusted according to practical environments. Note that the
different characteristics of the routing tables (e.g. the
number of prefixes and nexthops) might cause variation
in the numerical results.

In addition to the basic scheme, we could adopt various
heuristics to improve the performance. Accordingly, we
show the performance of two enhancements. In the first
enhancement, we adopt a dynamic mechanism based on the
number of prefixes in the subtrie to decide how to
implement the subtrie. This is based on the observation in
the experiments. We noticed that some subtries only
occupied one prefix. In such a case, we do not have to
allocate DRAM for this representative prefix. Only the
dense prefixes will be merged. This enhancement will
eliminate the required DRAM, but will not affect the
number of TCAM entries, as shown in Fig. 4. The
decreased DRAM space varies from 15% to 35%.

The second enhancement merges prefixes before execut-
ing the subtrie construction algorithm. This enhancement is
based on the observation that there is a large number of
single-path prefixes in the routing tables [5]. The sparseness

caused by the single-path prefixes will make the subtrie
construction inefficient. We can apply limited path
compression to eliminate the single-path leaves before the
subtrie construction. When we reach a node with a prefix in
the prefix trie and there is only one longer prefix in the
children nodes, we could merge the longer prefixes into a
shorter one, and the resultant prefix includes the informa-
tion of the merged prefix and a pointer to the original one.
This is a special case of the single-path prefix. While the
resultant prefix is fetched in the lookup, the bit stream of the
longer prefix is compared. If it is matched, the nexthop of
the longer prefix is used. Otherwise, the nexthop of the
shorter prefix is preferred. Hence in the worst case, the
lookup procedure requires one extra memory access. As
shown in Fig. 5, we are able to reduce both the required
TCAM entries and DRAM significantly. A 100K-entry
routing table could be composed of 2187 TCAM entries
and 546kbytes DRAM (subtrie height¼ 8). Only about 30–
60% TCAM entries of the basic scheme is required in the
process, yet is accomplished at a slower speed.

Finally, we present the number of different prefix lengths
to estimate the update cost in Table 1. The update cost
could benefit from less distinct lengths. Since the TCAM
update cost is low, the update performance ties to the
subtrie update in DRAM. We could update the modified
subtrie into different locations followed by changing
pointers to minimise forwarding suspension.

5 Conclusions

This study investigates the related issues in TCAM-based
forwarding engine design. To make use of the TCAM in
IPv6 routing lookup, we need a more efficient approach to
fulfill the requirements of the forwarding engine as well as
to improve the routing lookup performance. The proposed

0

4

8

12

16

0 20 40 60 80 100 120

number of prefixes (×103)

nu
m

be
r

of
 T

C
A

M
 e

nt
rie

s
(×

10
3)

0

400

800

1200

1600

2000

re
qu

ire
d

D
R

A
M

, k
by

te
s

TCAM entries (H=8)
TCAM entries (H=4)
memory required (H=8)
memory required (H=4)

Fig. 3 Performance metrics for different routing tables
Subtrie height¼ 4.8

0

4

8

12

16

0 20 40 60 80 100 120

number of prefixes

nu
m

be
r

of
 T

C
A

M
 e

nt
rie

s
(×

10
3)

0

400

800

1200

1600

2000

re
qu

ire
d

D
R

A
M

, k
by

te
s

TCAM entries (H=8)
TCAM entries (H=4)
memory required (H=8)
memory required (H=4)

Fig. 4 Performance metrics for different routing tables
Subtrie height¼ 4.8; dynamic

0

2

4

6

8

10

0 20 40 60 80 100 120

number of prefixes (×103)

nu
m

be
r

of
 T

C
A

M
 e

nt
rie

s
(×

10
3)

0

400

1200

1600

800

2000

re
qu

ire
d

D
R

A
M

, k
by

te
s

TCAM entries (H = 8)
TCAM entries (H = 4)
memory required (H = 8)
memory required (H = 4)

Fig. 5 Performance metrics for different routing tables
Subtrie height¼ 4.8; dynamic; path compression

Table 1: Number of difference prefix lengths

NAPs Number of prefixes Number of different lengths

Original H¼ 4 H¼8

Paix 13395 20 20 18

AADS 25407 23 22 15

PacBell 32388 23 22 18

Mae-
West

36943 23 23 19

Mae-East 58101 23 23 20

NLANR 102271 25 23 18

IEE Proc.-Commun., Vol. 152, No. 2, April 2005 175

algorithm reduces the number of TCAM entries by merging
routing prefixes into subtries according to the associative
positions. The subtries’ roots and their interior information
are stored in the TCAM and DRAM, respectively. Each
routing lookup procedure consists of one TCAM and
DRAM access that can proceed in pipelining. By adjusting
the parameters of the subtries, including the height and
dynamic property, we can decide the number of generated
TCAM entries and the required DRAM size. Furthermore,
we adopt the technique of path compression to reduce both
the required TCAM and DRAM. The enhancement will
incur one extra memory access due to the possible
‘incorrect’ match. In the experiments, we have illustrated
various performance metrics with different settings. The
proposed algorithm can eliminate 98% of TCAM entries
using only 550kbytes DRAM in the best case. Although the
complex IPv6 routing tables are not yet available, we believe
that this scheme would simplify the design of the IPv6
routers by alleviating the TCAM cost dramatically.

6 References

1 Rekhter, Y., Li, T.: ‘An architecture for IP address allocation with
CIDR’, RFC 1518, Sept. 1993

2 Degermark, M., Brodnik, A., Carlsson, S., and Pink, S.: ‘Small
forwarding tables for fast routing lookups’. Proc. ACM SIGCOMM’
97, Cannes, France, Sept. 1997, pp. 3–14

3 Gupta, P., Lin, S., and McKeown, N.: ‘Routing lookups in hardware
at memory access speeds’. Proc. IEEE INFOCOM’98, San Francisco,
CA, USA, March 1998

4 Wang, P.-C., Chan, C.-T., and Chen, Y.-C.: ‘A fast IP lookup scheme
for high-speed networks’, IEEE Commun. Lett., 2001, 5, (3), pp. 125–
127

5 Nilsson, S., and Karlsson, G.: ‘IP-address lookup using LC-tries’,
IEEE J. Sel. Areas Commun., 1999, 17, (6), pp. 1083–1029

6 Waldvogel, M., Varghese, G., Turner, J., and Plattner, B.: ‘Scalable
high speed IP routing lookups’. Proc. ACM SIGCOMM ’97, Cannes,
France, Sept. 1997, pp. 25–36

7 Lampson, B., Srinivasan, V., and Varghese, G.: ‘IP lookups using
multiway and multicolumn search’, IEEE/ACM Trans. Netw., 1999, 7,
(4), pp. 324–334

8 Shah, D., and Gupta, P.: ‘Fast updating algorithms for TCAMs’,
IEEE Micro, 2001, 21, (1), pp. 36–47

9 Srinivasan, V., and Varghese, G.: ‘Fast IP lookups using controlled
prefix expansion’, ACM Trans. Comput., 1999, 17, (1), pp. 1–40

10 Wang, P.-C., Chan, C.-T., and Chen, Y.-C.: ‘Performance enhance-
ment of IP forwarding by reducing routing table construction time’,
IEEE Commun. Lett., 2001, 5, (5), pp. 230–232

11 Haas, R., Kencl, L., Kind, A., Metzler, B., Pletka, R., Waldvogel, M.,
Frelechoux, L., Droz, P., and Jeffries, C.: ‘Creating advanced
functions on network processors: experience and perspectives’, IEEE
Netw., 2003, 17, (4), pp. 46–54

12 Merit Networks, Inc. Internet performance measurement and analysis
(IPMA) statistics and daily reports. See http://www.merit.edu/ipma/
routingtable/

13 NLANR Project. See http://moat.nlanr.net/

176 IEE Proc.-Commun., Vol. 152, No. 2, April 2005

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

